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1. Introduction

1.1 Transposition

Transposable elements are discrete DNA segments that can translocate

between non-homologous insertion sites.  The transposon family of mobile

genetic elements is widespread among organisms, with transposons having been

identified in virtually all organisms examined (Berg and Howe, 1989).

Transposable elements are involved in a wide variety of biological transactions

including genome alterations by element insertion and deletion, homologous

recombination between element copies, viral integration and replication, and the

dispersal of a variety of determinants, most notably antibiotic resistance genes

(Craig, 1997).

There are two major pathways for transpositional recombination, usually referred

to as transposition and retrotransposition.

In transposition, element translocation results from DNA breakage and

joining reactions.  The ends of the mobile element are disconnected from a donor

site by DNA cleavage reactions, and these exposed ends are then joined to a

Transpositional Recombination

Retrotransposition
non-LTR retrotransposons
LINE
mobile group II introns

Transposition

replicative
(involve cointegrate)

non-replicative
(cut and paste)

Mu
Tn3

Tn7
Tn10
P element
Tc1, Tc3
Ty1, Ty3
retroviruses
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target site by DNA strand transfer reactions (Craig, 1996; Mizuuchi, 1992a;

Plasterk, 1995).  This pathway of translocation of a DNA substrate is used by

elements that exist only as DNA.  Their category is further subdivided into a) non-

replicative transposition, as found in transposition of bacterial Tn7 and Tn 10

elements, the Drosophila P element, C.elegans Tc1 and Tc3 elements, yeast Ty1

and Ty3 and in retroviral integrases, and b) replicative transposition, as found

during the replicative lifecycle of bacteriophage Mu and with bacterial transposon

Tn3 (see previous page).  The mechanism(s) of replicative and non-replicative

transposition will be discussed in the next section.

In the other pathway for transposition, often called retrotransposition,

DNA, RNA, and reverse transcriptase all participate directly in recombination

(Craig, 1997; Eickbush, 1992).  Recombination initiates by target DNA breakage

at the site of element insertion, a target 3’-OH exposed by this break then

provides a primer for reverse transcription which uses an element RNA as its

template.  The ultimate result of this retrotransposition reaction is the insertion of

a DNA-form of the element into the target site through this copying mechanism.

Elements using this pathway are termed non-LTR (Long Terminal Repeat)

retrotransposons, and include the human LINE element (Long Interspersed

Nuclear Element), and mobile group II introns (Craig, 1997).  Fundamental to

both transposition and retrotransposition is the assembly of a functional protein-

DNA complex, which is likely to be the key regulating step.

1.2. Mechanism of replicative versus non-replicative transposition

In the transposition reaction, transposase performs two distinct and

sequential reactions on its DNA substrate.  In both replicative and non-replicative

transposition pathways, the first step is a pair of site-specific, endonucleolytic

cleavages that separate the 3’-OH of the transposon DNA ends from the 5’

phosphoryl ends of the adjoining host (Fig. 1A) (Grindley and Leschziner, 1995).

In other words, a nuclear substitution reaction (Sn2) using water as a nucleophile

creates the first DNA break.
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In the second step, the mechanism of transposition is determined by

whether cleavage occurs at the 5’ ends (Fig. 1A).  If the 5’ end of the element is

cleaved to generate an excised transposon intermediate, the element transposes

by a cut-and-paste mechanism.  Tn7 (Bainton et al., 1991), Tn10 (Benjamin and

Kleckner, 1992), the Tc elements (Luenen et al., 1994; Vos et al., 1996), and the

P element (Kaufman and Rio, 1992) all transpose by such a mechanism.

Bacteriophage Mu also transposes by the cut-and paste mechanism during the

lysogenic pathway of its lifecycle (Pato, 1989).  The nature of the nontransferred

strand cleavage, however, is variable and occurs either 3 bp outside for the Tn7

element (Bainton et al., 1991; Gary et al., 1996), 2 bp inside for the Tc element

(Luenen et al., 1994; Vos et al., 1996), at the transposon termini for the Tn10

element (Benjamin and Kleckner, 1992), or 17 bp within the transposon termini

for the P element (Beall and Rio, 1997).

If the 5’ end of the element is not cleaved, the element transposes by a

replicative transposition mechanism in which the transposon remains attached to

both the donor site and the target site.  The intermediate is replicated by host

replication proteins to produce two copies of the element in a structure called a

cointegrate (Fig. 1A, right panel).  Bacteriophage Mu and the Tn3 element can

transpose by this type of mechanism (Craigie and Mizuuchi, 1985; Lavoie and

Chaconas, 1996; Mizuuchi, 1992b).

Analogous to Mu, retroviral integration, like HIV integration, does not

require processing at the 5’ end of the reverse-transcribed genome by the

integrase protein prior to insertion into the host genome (Fig.1A, left panel)

(Engelman et al., 1991).  A staggered target-site cleavage is made by most

transposases and integrases, and DNA repair of the gaps that flank the newly

inserted element generated the characteristic target-site duplications present

after insertion.

Thus, all these DNA transposition reactions are related by 3’-end breakage,

whereas the 5’-end processing may vary.
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Figure 1A.    Schematic diagram of the transposition reactions that underlie
the translocation of three mobile elements  (redrawn from Craig, 1995).  For P
element transposition, the first step of the reaction, DNA cleavage, results in
excision of the P element by the transposase protein through double-stranded
DNA breaks at each end of the P element.  The element is then inserted into a
new target site by strand transfer of the 3’-OH groups at the P element termini to
the 5’-phosphate groups at the target site.  The resulting intermediate consisting
of a double-stranded DNA break at the donor site and a gapped DNA at the
target site.  The DNA gaps must be repaired by the Drosophila repair enzymes in
order to complete the transposition reaction and to prevent chromosome loss.
[Red boxes, mobile elements; black lines, flanking donor and target DNA; small
black arrows, cleavage at 3’-OH and 5’-OH ends; green boxes, DNA replication.]

1.3. Energetics of strand transfer: one-step transesterificaton

Neither of the two transfer reactions in the transpositional recombination of

Tn10 (Morisato and Kleckner, 1987), phage Mu (Maxwell et al., 1987), and

retroviral DNA integration (Bushman and Craigie, 1991) depends on hydrolysis of

any high energy cofactor such as ATP.  ATP is required for Tn7 transpositional

recombination (Bainton et al., 1991), but its role, as in the Mu reaction, appears

to be in the target DNA selection process rather than in the chemistry of the

transfer steps (Mizuuchi, 1992a).  In contrast, the Drosophila  P element

transposase requires GTP as a cofactor for transposition.  However, GTP

hydrolysis is not required for the steps of transposition in vitro, because

nonhydrolyzable GTP analogs can completely substitute for GTP (Kaufman and

Rio, 1992).  GTP hydrolysis may be required for subsequent steps of the

transposition reaction that occur after strand transfer.  Thus, strand transfer must

proceed via a transesterification step(s) rather than by sequential steps of

phosphodiester bond hydrolysis and ligation (which would require exogeneous

energy).

Strong evidence that the phosphoryl transfers involved in 3’-end processing and

strand transfer both occur by a single-step mechanism has been obtained for HIV

integrase (Engelman et al., 1991) and Mu transposase (Mizuuchi and Adzuma,

1991)
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using chiral thiophosphates at the cleaved position; each single reaction

analyzed results in an inversion of the stereochemical configuration of the

phosphorothioate.  These findings render strong support to a one-step

mechanism and thus argue against the involvement of a covalent intermediate.

1.4. Active complex composition

The number of subunits and the size of the transposase/integrase protein

varies widely between different elements.  The Tn7 transposon for instance,

encodes five proteins, two of which, TnsA and TnsB, in conjunction with

combinations of the three additional Tn7-encoded proteins, carry out the

cleavage and strand transfer steps of the transposition reaction (Bainton et al.,

1991).  In contrast, Tn10 transposon encodes a single polypeptide that performs

the catalytic steps of transposition (Benjamin and Kleckner, 1992).  In phage Mu,

the active form of the transposase protein is a tetramer (Mizuuchi, 1992b) in

which the same two monomers within a MuA tetramer provide the catalytic

domains for the strand cleavage and strand transfer reactions (Namgoong and

Harshey, 1998).  However, a functional Mu tetramer complex can only assemble

at the Mu termini after interaction with the E.coli HU protein bound to the left end

of the Mu genome and E.coli IHF bound to the Mu enhancer element (Lavoie and

Chaconas, 1993).

For the retroviruses such as MLV and HIV, large nucleoprotein complexes

containing the integrase protein and host factors assemble onto the ends of the

reverse-transcribed proviral genome prior to processing and insertion into the

host genome (Farnet and Bushman, 1997).

1.5. Target site selection

There is a wide variety of patterns of target site selection used by the

different transposable elements, which suggests that many strategies

successfully promote element propagation and optimization of the element–host
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relationship.  To avoid insertion into essential genes, transposon Tn7, for

example, inserts into a specific site in bacterial chromosomes that provides a

“safe” place where insertion will not adversely affect the host bacterium  (Craig,

1997).   Some other elements, including the yeast Ty1 and Ty3 elements and the

Drosophila P element, usually insert upstream of promoters, thereby decreasing

the probability of element insertion into essential protein coding sequences.

However, this type of insertion often inactivates the promoter resulting in a

mutant phenotype which is very deleterious (Engels, 1989).  Some very

“resourceful” mobile elements are also introns, so if they insert into an essential

gene, they can be removed from the mRNA by RNA splicing (Craig, 1997). The

DNA sequences required for integration of retroviruses are short, imperfect

inverted repeats at the outer ends of the retroviral long terminal repeats (LTR)

(Vink and Plasterk, 1993).  There is no systematic evidence for preferential

integration into nonessential sequences by any retrovirus, however, anecdotal

evidence suggests that some important genes are used more frequently

(Hubbard et al., 1994) while other genes are used less frequently than expected

as integration targets (Frankel et al., 1985; King et al., 1985).  There does seem

to exist a preference for insertion of retroviruses into bent DNA, as found for

example in nucleosomes, however, not all bends in DNA result in preferred

targets (Craig, 1997; Muller and Varmus, 1994).

1.6. Catalytic Motif

Despite the many obvious differences in the life-style and “features” of the

various mobile DNA elements, they appear to be fundamentally related by the

structure of the catalytic domain of the encoded transposase protein, the

DD(35)E motif.  This motif, so-called because of the usually 35 amino acid

spacing between the last two residues, is thought to coordinate divalent metal-ion

binding during catalysis (Engelman et al., 1993; Kulkosky et al., 1992).  Even

conservative substitutions at these positions have a drastic effect on cleavage

and strand transfer (Baker and Luo, 1994; Engelman et al., 1993; Kim et al.,
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1995; Kulkosky et al., 1992).  The presence of these conserved, essential

carboxylates and the requirement for divalent metal ion(s) during catalysis led to

the suggestion that these enzymes may promote phosphoryl transfers by a

process similar to the two-metal ion mechanism proposed for the 3’-5’

exonuclease of DNA polymerase (Joyce and Steitz, 1994) and RNAse H (Davies

et al., 1991).  In fact, structural analysis has revealed that the integrases

(HIV,RSV) are members of a superfamily of nucleic acid-processing enzymes

that include RNAse H (Yang et al., 1990b), the Holliday junction-resolving

enzyme RuvC (Ariyoshi et al., 1994) and the Mu transposase (Bujacz et al.,

1996; Bujacz et al., 1995; Dyda et al., 1994; Rice and Mizuuchi, 1995; Rice et al.,

1996).

1.7. V(D)J Recombination

V(D)J recombination is the process by which functional immunoglobulin

and T cell receptor genes are assembled from multiple gene coding segments in

developing lymphocytes.  The segments are composed of variable (V),

diversity(D), and joining (J) gene segments that are distributed throughout a wide

portion of the genome.  One of each type of gene segment is joined together in a

site-specific recombination reaction that is tightly regulated and involves the

RAG1 and RAG2 gene products (Oettinger et al., 1990; Schatz et al., 1989).

Each coding segment is flanked by a conserved recombination signal sequence

(RSS) that consists of a heptamer and a nonamer sequence separated by either

a 12 or 23 bp spacer sequence.  Efficient recombination requires one RSS of

each type, a restriction known as the 12/23 rule (Tonegawa, 1983).

Together, the RAG1 and RAG2 proteins bind two recombination signals, bring

them into close juxtaposition (this process is termed synapsis), and cleave the

DNA, thereby separating the signals from the flanking coding segments

(Eastman et al., 1996; Van Gent et al., 1996b).

The DNA-bending high-mobility group proteins HMG1 and HMG2

substantially enhance the efficiency of coordinate cleavage (Sawchuk et al.,
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1997; Van Gent et al., 1997), in part by improving binding to the 23-signal, and

by their general ability to bind and to modulate DNA structures.  DNA bending

induced by the HMG proteins can facilitate the formation of higher-order

nucleoprotein complexes, suggesting that these proteins may have an

architectural role in assembling such complexes (Grosschedl et al., 1994).

 After HMG-protein assisted DNA binding of RAG1 and RAG2, cleavage

occurs in two steps, with a nick first introduced adjacent to the heptamer to

expose a 3’-OH group on the coding flank, followed by a direct nucleophilic

attack of the 3’-OH on the opposite DNA strand (McBlane et al., 1995).  The

products are blunt, 5’-phosphorylated signal ends and covalently sealed hairpin

coding ends.

The chemical steps of V(D)J recombination are similar to the steps of

retroviral integration and  transposition in that they proceed through a common

pathway that involves exposure of a 3’OH group and is attack on the target

phosphodiester bond in a magnesium-dependant reaction (Craig, 1995; Van

Gent et al., 1996a).  Also, the RAG proteins remain stably associated with a

synapsed pair of recognition elements after DNA cleavage, as is common in

transposition (Agrawal and Schatz, 1997; Mizuuchi, 1992b).

These findings together with the fact that the RAG1 and RAG2 genes have a

compact genomic organizaton, as would be expected for components of a

transposable element, support the idea that the antigen receptor gene segments

and the RAG1 and RAG2 proteins may have evolved from an ancestral

transposon (Agrawal et al., 1998; Hiom et al., 1998; Lewis and Wu, 1997; Litman

et al., 1993; Thompson, 1995).  Further evidence in support of this idea comes

from data demonstrating that the RAG1 and RAG2 proteins can perform strand

transfer in vitro (Agrawal et al., 1998; Hiom et al., 1998).  It was postulated that

the split nature of immunoglobulin and T-cell-receptor genes derives from

germline insertion of this element into an ancestral receptor gene soon after the

evolutionary dievergence of jawed and jawless vertebrates (Agrawal et al., 1998;

Litman et al., 1993; Rast et al., 1997).
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1.8. The Drosophila P element

P elements were discovered as the agents that cause a syndrome of

genetic traits in Drosophila known as hybrid dysgenesis (Engels, 1989; Rio,

1990). This collection of abnormalities, including temperature-dependent sterility,

elevated rates of mutation, chromosome rearrangement, and recombination is

usually seen only in the progeny of a cross of males with autonomous P

elements and females that lack P elements.  These two kind of strains are called

“P” and “M” because they contribute paternally and maternally, respectively, to

hybrid dysgenesis.  No dysgenic traits are observed in the progeny of the

reciprocal M  male by P female cross or in progeny from P x P or M x M crosses.

Furthermore, the symptoms of hybrid dysgenesis are restricted entirely to the

germ lines of the progeny from a dysgenic cross.  These phenotypes are caused

by the high rates of P element transposition that occur in this tissue.  Thus, P

element transposition is regulated in two ways: genetically (it occurs only in P

male x M female progeny) and tissue specifically (it occurs only in the germ lines

of dysgenic progeny) (Rio, 1991).

The full-length P element is 2.9 kb in length (Fig 1B).  A heterogeneous class of

internally deleted elements also exists, some of which appear to encode

truncated proteins with distinct biological activities, such as the KP element,

which contains an internal deletion from amino acid 807 to 2561 (Fig. 1B) (Rio,

1991).  In a typical P strain, there are approximately 10-15 complete elements

and 30-40 smaller, deleted elements.  Mutational analysis has shown that all four

open reading frames are required for production of a functional 87 kD

transposase protein (Karess and Rubin, 1984; Rio et al., 1986).  In the soma,

removal of the third intron, or IVS3 sequence, from the P element pre-mRNA is

inhibited, resulting in the production of a 66 kD protein (Fig. 1B) (Laski et al.,

1986; Rio et al., 1986).  Both the 66 KD protein and the KP protein are
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Figure 1B.  Schematic structure of the 2.9 kb P element, including the
derived mRNAs and proteins.   The full-length P element is 2.9 kb and contains
four open reading frames encoding exons 1 to 4.  Removal of all three
intervening sequences (IVS1-3) allows for production of an 87 kD transposase
protein that catalyzes transposition.  Transposase synthesis is restricted to the
germ line because splicing of the third intron (IVS3) is inhibited in somatic
tissues.  IVS3-containing transcripts produce a 66 kD transpositional repressor
protein in both somatic and germ line tissues by using a stop codon within the
IVS3 sequence.  In addition to full-length P elements, many Drosophila strains
contain internally deleted P elements such as the KP element shown at the
bottom of the figure.  The KP element contains an internal deletion from
nucleotides 807-2561 of the P element sequence.  As a result, a 24 kD protein is
produced that also represses transposition and contains the amino-terminal 199
amino acids of the transposase protein in addition to 8 amino acids of unique
sequence at the C-terminus.

repressors of transposition in vivo (Andrews and Gloor, 1995; Misra and Rio,

1990; Rasmusson et al., 1993; Robertson and Engels, 1989).  The KP protein is

also a repressor in vitro (Lee et al., 1998).

1.9. Structure of the P element

A key to understanding the mechanism of P element transposition lies in the

structure, function, and biochemical activities of the P element transposase.

Parts of the P element primary structure/function relationship have been

determined (Fig. 1C).  All P elements contain approximately 150 bp of sequence

at their termini that are required for transposition.  Within these cis-acting

sequences are the 10 bp consensus transposase binding sites located 52 bp or

40 bp away from the left and right ends of the P element termini, respectively

(Fig. 1C) (Kaufman et al., 1989), which are required for transposition in vivo

(Mullins et al., 1989) and in vitro (Kaufman and Rio, 1992).  In addition, 11bp

inverted repeats approximately 140 bp within the P element end sequences are

enhancers of transposition in vivo (Mullins et al., 1989).  The 31 bp inverted

repeats (IR) sequences on both sides of the element are thought to interact with

the Drosophila-encoded protein IRBP (inverted Repeat Binding Protein) which
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could be required for or simply enhance transposition (Rio et al., 1986).  P

element transposase requires both 5’ and 3’ P-element termini for efficient DNA

cleavage to occur, suggesting that a synaptic complex forms prior to cleavage

(Beall and Rio, 1997).  Transposase makes a staggered cleavage at the P

element termini in which the 3’ cleavage site is at the end of the P element,

whereas the 5’ cleavage site is 17 bp within the P element 31 bp inverted

repeats, directly adjacent to the IRBP-binding site (Beall and Rio, 1997).  P

element termini were shown by LMPCR (Ligation Mediated Polymerase Chain

Reaction) to be protected from exonucleolytic degradation following the cleavage

reaction, suggesting that a stable protein complex remains bound to the element

termini after cleavage.

In addition to the cis-acting structures at the DNA ends of the transposable

element, essential for functional transposition, several domains within the P

element transposase protein’s amino acid sequence have been identified

(Fig.1C, lower part of diagram): The site-specific DNA-binding domain has been

mapped to the amino terminal 88 amino acids of the transposase protein, to a

region that contains a potential zinc-binding motif (Lee et al., 1998).   Studies by

Mul and Rio showed that P element transposase is a GTP-binding protein whose

nucleotide-binding region has several conserved sequence motifs know to also

be specifically required for GTP binding in other proteins (Mul and Rio, 1997).

Amino acids 260-415 were found to be required for GTP binding.  In addition,

there are three different potential leucine zipper motifs in the transposase coding

sequence (amino acids 101-122, 283-311, and 497- 525) which could mediate

multimerization of the transposase protein (Rio et. al., 1986; O'Hare and Rubin,

1983).  The amino-terminal leucine zipper motif spanning amino acids 101-122

mediates dimerization of the KP repressor protein in vitro (Lee et al., 1996).  Both

dimers and tetramers of the transposase protein have been detected in vitro (Mul

and Rio, unpublished).  However, the active oligomeric form of the transposase

protein has yet to be determined.  Within the N-terminus of the transposase

protein are several potential sites of phosphorylation by the DNA–dependent
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Figure 1C.  Schematic diagram of left (5') and right (3') end of the
Drosophila P-element and its catalytic domains.  The P-element transposon
contains several sequence elements at its termini that are essential in cis for
transposition: The transposase-binding site contains a 10-bp consensus
sequence located internally at each end of the P-element.  Interaction between
this site and the transposase protein is essential for transposition.  A terminal 31-
bp inverted repeat located at each end of the transposon is also necessary for
mobilization and is recognized by the Drosophila inverted repeat binding protein
(IRBP).  Finally, there is an internal 11-bp inverted repeat that has been shown to
act as a transpositional enhancer in vivo.  The lower part of the diagram depicts
the functional domains of the transposase protein: The DNA binding domain
(purple box) and the DNA-PK phosphorylation domain (red box) are located in
the N-terminal region.  The leucine zipper motif for dimerization (light blue box)
and the GTP binding domain (dark blue box) are positioned in the central region
of the protein.  The catalytic D(3)E(15)D motif (pink box) of transposase is
located in the C-terminal half of the protein.

protein kinase (DNA-PK) directly adjacent to the site-specific DNA binding

domain (Fig. 1C).  The catalytic component, DNA-PKcs is thought to be targeted

to DNA in mammalian cells by its cofactor, the Ku heterodimer.  P element

transposition is thought to be regulated throughout the cell cycle, occurring

predominantly in G2 (Engels et al., 1990).  DNA-PK activity has been detected in

Drosophila extracts (Finnie et al., 1995).  Moreover, in mammalian cells, there is

5-to 10-fold more DNA-PK activity in the G2 phase of the cell cycle (Jin et al.,

1997).  Therefore, phosphorylation by DNA-PK may be one way that the P

element transposase activity is regulated throughout the cell cycle.

1.10. P element transposition mechanism

P elements move via a non-replicative cut-and past mechanism that is

catalyzed by an 87 kD P element encoded transposase protein (Engels, 1989).

Transposase binds specifically to internal sequences at both ends of the

transposon (Kaufman et al., 1989) and is believed to excise the donor P element

as a double-strand DNA intermediate.  Following excision, the free 3’ OH groups

of the released P element DNA are thought to make a nucleophilic attack on

transposase-activated 5’ phosphoryl groups at the target sequence (Kaufman
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and Rio, 1992).  After insertion of the P element, host proteins presumably repair

the single-stranded gaps flanking the element (Engels, 1989) and the double-

strand breaks at the donor sites (Beall and Rio, 1996) (see Fig. 1A). In vitro

studies using circular plasmids as donor and target DNAs indicated that optimal

transposition efficiency requires GTP as well as Mg++ (Kaufman and Rio, 1992);

(Mul and Rio, 1997).  When the GTP requirement was switched to XTP in vivo by

changing one amino acid within the transposase protein that recognizes the

guanine ring to an amino acid that recognizes the xanthine ring, the mutant

transposase protein was only active in vivo when xanthosine or xanthine were

added exogenously to the cell culture media.  This validated that GTP is a

required cofactor for the transposase protein (Mul and Rio, 1997).

1.11. Catalytic DDE  Motif

That retroviral integrases/transposases from different organisms are

indeed fundamentally related is especially apparent considering the signature

array of conserved acidic amino acids, the DD(35)E motif.  These conserved

amino acids are critical for the 3’ end processing reactions, suggesting that they

are part of (or at least closely related to) the active sites of the enzymes (Craig,

1995).

Alignments of the DDE motifs of various retroviruses, retrotransposons

and IS (insertion) elements and transposable elements have been performed by

several groups (Baker and Luo, 1994; Capy et al., 1996; Kulkosky et al., 1992),

which clearly demonstrated a relationship between most of these transposable

elements by their DD(35)E signature amino acid array.  In a study by Capy et al.,

1996, retroviral integrases and four main groups of transposases, namely the

mariner-Tc1 superfamily (Emmons et al., 1983; Jacobson et al., 1986), the IS

family (Galas and Chandler, 1989; Rezsohazy et al., 1993), the hAT superfamily

(including the elements hobo of Drosophila melanogaster, Ac of Zea mays, and

Tam3 of Antirrhinum majus ) (Calvi et al., 1991), and P elements, were

compared.  Resulting from this alignment and comparison of catalytic motifs by
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Capy et al., some similarities between ISs (insertion elements) and members of

the mariner-Tc1 superfamily were found, but the two remaining groups of

elements, the hAT and P superfamilies, showed no similarities neither between

themselves nor with the other groups (Capy et al., 1996).  It appears therefore,

that P element transposase protein is different from other recombinase proteins

in that no obvious candidate(s) for a catalytic DDE motif can be found in a

primary amino acid sequence alignment neither with other members of its family

nor with other groups of recombinases.  Therefore, the putative DD(35)E motif of

the P element transposase protein has to be determined experimentally.

1.12. Aim of this work

In the work presented here, the identification of the catalytic motif of the

Drosphila P element transposase protein was attempted.  Since the approach of

aligning P element transposase with other known recombinase proteins did not

result in any significant homologies, an attempt to further narrow down possible

candidates for this motif by comparing conserved, hydrophobic amino acids

adjacent to the DD(35)E motif from retroviral integrases with the P element

transposase was made.  A selection of glutamate and aspartate residues in the

protein’s C-terminus were mutated to alanine, and the mutant proteins’ activity

tested in an in vivo excision assay.  Three residues (D528, E531, and D545)

were identified in this manner, all of which almost completely abolished in vivo

excision activity.   The involvement of these residues in P element catalytic

transposase activity was further confirmed employing three in vitro assays: in

vitro strand-transfer, in vitro cleavage, and in vitro LMPCR.  In the in vitro strand

transfer assay, mutations of the D528 and E531 to both alanine or cysteine

respectively, greatly reduced activity and significantly altered metal-binding

specificity.  However, activity of D545Atnp and D545Ctnp was only slightly

altered in in vitro strand transfer assays.  To elucidate which step of the P

element transposition reaction D545Atnp  inhibited, the single mutant protein was

tested in in vitro cleavage and LMPCR assays, along with the wild-type and the
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triple mutant protein. Both the single and the triple mutant completely abolished

in vitro cleavage and LMPCR activity.

It was concluded that the residues D528, E531, and D545 are, or are a part of,

the Drosophila P element catalytic DDE, in this case DED, motif.
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 2. Materials

2.1. Chemicals and Other Materials

Chemicals were obtained from Fisher Scientific

the following companies: (Fair Lawn, NJ, USA),

Sigma (St. Louis, MO, USA),

Difco Laboratories (Detroit,

MI, USA),

Bio-Rad Laboratories

(Hercules, CA, USA)

Streptavidin Agarose Pierce (Rockford, IL, USA)

Heparin Agarose Sigma

Acrylamide powder, 

Dowex affinity resin Bio-Rad

Heparin-Agarose Sigma

Ni++-NTA superflow affinity resin, Qiagen (Chatsworth, CA

Qiaex Gel Extraction Kit and USA)

Qiagen Maxi Prep Kit

Sequenase Version 2.0 Kit USB (Cleveland,

OH, USA)

Phenol Gibco, BRL (Gaithersburg,

MD, USA)

Chemiluminescence Western Amersham (Arlington

Blotting Reagents Heights,IL, USA)

Hybond N+ Nitrocellulose

Pure Nitrocellulose Transfer Schleicher + Schuell

and Immobilization Membrane, (Keene, NH, USA)
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Gel Blot Paper

3 MM Chromatography Paper Whatman

(Maidstone, U.K.)

(α
35

S) ATP (3000 Ci/mM), Amersham

(α
32

P) dCTP(3000Ci/mM) (Arlington Heights, IL, 

USA)

(γ 32P)ATP (7000Ci/mM) ICN (Costa Mesa

CA, USA)

Kodak XAR Films Eastman Kodak

Company

(New Haven, CT, USA)

A Sorvall RC 5B Superspeed Refrigerated Centrifuge with either a GS3  (for 100-

500 ml samples) or an SS34 (for 10-40 ml samples) rotor was used for all large

scale centrifugations up to 12 000 rpm.  A Beckman L8-80 Ultracentrifuge with

either a Vti65.2 rotor, Vti 45 or Vti 80 rotor was used for centrifugations between

30 000 and 60 000 rpm.

For 1500-4000rpm tissue-culture spins (L2 Schneider, and Sf9 insect cell lines),

a Beckman GS-6R centrifuge, an ICE Clinical Centrifuge, and a Sorvall RC-3B

were used.

2.2. Enzymes

T4-Ligase, T7-polymerase,T4-DNA polymerase,  alkaline phosphatase,

proteinase K, Taq -polymerase, Pfu-polymerase, lysozyme, bovine serum

albumin (BSA), RNAse (DNAse free), DNAse (RNAse free), molecular weight

standards for protein gels, molecular size standards for DNA, nucleotides and

desoxynucleotides, and restriction endonucleases were purchased from

Boehringer Mannheim (Indianapolis, IN, USA), New England Biolabs (Beverly,

MA, USA),  Gibco BRL (Life Technologies, Inc.; Gaithersburg, MD, USA), or
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Amersham Pharmacia Biotech (Arlington Heights, IL, USA).

2.3. Antibodies

α KH (anti-rabbit) generous gifts from the

αRD6 (anti-mouse) members of the Rio lab

αHR2 (anti-rabbit)

αPG4 (anti-mouse)

α20G2 (anti-mouse)

αRC8 (anti-mouse)

Blotting Grade Goat-Anti-Mouse IgG Bio-Rad

(H+L) or Goat-Anti-Rabbit IgG

Horseradish Peroxidase Conjugate

2.4. Plasmids and E.coli strains

pBluescript (=pBSK(+)) Stratagene

pBSK(+)pAC-TnpD486A/E531A, generous gifts of Y.Mul

pBSK(+)pAC-TnpD478A/E444A, (for description, see 3.1.6.)

pBSK(+)pAC-TnpD528A/E628A,

pBSK(+)pAC-TnpD545A/E580A,

pBSK(+)pAC-TnpD586A/E621A,

pBSK(+)pAC-TnpD620A/E621A,

pBSK(+)pAC-TnpD620A/E655A,

pBSK(+)pAC-TnpE600A,

pBSK(+)pAC-TnpE605A,

pBSK(+)pAC-TnpD615A,

pBSK(+)pAC-TnpE689A,

pBSK(+)pAC-TnpD642A
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pISP-2/Km derived from pISP-2

(Rio et al., 1986)

pFastBac Gibco, BRL

DH5α Gibco BRL

MC1061 recA- Invitrogen (Carlsbad, CA,

USA).

single-stranded DNA template generous gift of

for M13 mutagenesis E.Beall

2.5. Tissue culture

2.5.1. Cell lines

Sf9 (Spodoptera frugiperda) ATCC,USA

Schneider L2 (Drosophila) (Summers & Smith)

2.5.2. Chemicals for tissue culture medium

TMN-FH, amino acids for M3 medium Sigma

Bactopeptone, Yeast extract Difco

NaH2P04
.H20 Malinckrodt

Antibiotics:

Penicillin, Streptomycin, Hygromycin Gibco, BRL

Fetal Calf Serum Gibco, BRL
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3. Methods

3.1. Molecular Techniques with Recombinant DNA

3.1.1. Synthesis and pre paration of oligonucleotides

All oligonucleotides were synthesized on an ABI model 392 DNA synthesizer.

After deprotection, acetyl groups were removed by a one hour incubation in

ammonium hydroxide at 650 C.  To remove the ammonium hydroxide, the

samples were centrifuged under vacuum until dry, and either resuspended in 200

µl dH20 for immediate use, or further purified by denaturing urea polyacrylamide

gel electrophoresis.

3.1.2. Gel purification of oligonucleotides

Lyophilized oligonucleotides were resuspended in 50 µl of 0.1 M NaOH/

1 mM EDTA, after which 100 µl formamide dye (1 ml deionized formamide

containing 250 mM EDTA, pH 8.0, and 1% each of xylene cyanol and

bromophenol blue) were added, the samples heated to 900 C for 5 min, and

subsequently loaded onto a denaturing polyacrylamide gel.  The percentage of

acrylamide used depended upon the length of the oligonucleotide.   For the

length of 25-40 nucleotides, a 15% gel was made as follows: 60g Urea, 45 ml

40% acrylamide stock (19% to 1%), 24.6 ml dH20, 6 ml 20XTBE, 1.2 ml 10%

APS, and 75 µl TEMED.  Gels were run at 30 V for approx. 2 hours in 1X TBE

buffer (0.09 M Tris-borate, 0.002 M EDTA at pH 8.0).  The oligonucleotide bands

were then visualized by shadowing with a short wave UV lamp, and the full-

length oligonucleotide band (usually the slowest migration and most intense band

of the ladder) cut out with a scalpel.  DNA was extracted from the gel pieces by

three incubations with 3 ml TE each at 370 C, 2 x 3-4 h, and 1 x overnight,

squeezing the eluate through a 10 ml syringe for each extraction.   Flow-throughs
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were combined and extracted with n-butanol to concentrate.  Each butanol-

extraction was done with an equal volume to that of the aqueous layer, and

solutions were spun in a tabletop centrifuge for 1 minute at 1600 xg to separate

the two layers.  When the volume was about 400 µl, the purified oligonucleotide

suspension was phenol/chloroform extracted and ethanol precipitated by adding

MgCl2 to 10 mM final concentration, Na(OAc)2 to 0.3 M final concentration, and

2.5 volumes 100% ethanol.  The DNA pellet was washed with 95% ethanol, dried

in a speed vacuum centrifuge for 15 min, and resuspended in 200 µl dH20.  OD260

readings were taken to determine DNA concentration.

3.1.3. DNA Preparation

3.1.3.1. Preparation and Transformation of E.coli electrocompetent

cells

Two liters of LB (1% tryptone (w/vol), 0.5% yeast extract (w/vol), 150 mM

NaCl, pH 7.4) containing 50 µg/ml streptomycin were inoculated with 1/100

volume of a fresh overnight culture of E.coli mc1061.  Cells were grown with

vigorous shaking at 370 C to an OD600 between 0.5 and 1.0.  Flasks were chilled

on ice for 30 min and then centrifuged at 8000 rpm in a Sorvall GSA rotor for 10

min at 40 C.  All subsequent steps were carried out on ice.  Cell pellets were

resuspended in a total of 1 liter cold wash media (1 mM HEPES-NaOH, pH 7.0),

and re-centrifuged as above.  This washing process was repeated twice more,

after which cell pellets were resuspended in 40 ml cold, sterile 10% glycerol, and

centrifuged in a Sorvall SS34 rotor at 8000 rpm for 15 min at 40 C.  Ensuing, the

cell pellet was resuspended in 2.5 ml 10% glycerol total volume so that the final

volume of this 50% slurry was about 5.0 ml.  Cells were frozen in 40 µl aliquots in

a dry ice/ethanol bath, and aliquots stored at -800 C.

For electroporation, DNA in a volume less than 2 µl was added to a cell aliquot,

electropulsed at 2.5 V, 250Ω, and 25 µF and immediately resuspended in 1 ml
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LB + 10 mM MgSO4 + 0.4% glucose.  Culture tubes were incubated for 1 h

shaking at 370 C, and plated on selective media.

3.1.3.2. Preparation and Transformation of E. coli CaCl2 competent

cells

400 ml of LB containing the appropriate antibiotics were inoculated with 10

ml of an overnight culture of the desired bacterial strain (DH5α), and incubated

shaking vigorously at 370 C.  When the OD600 was 0.4-0.5, flasks were chilled on

ice for 30 min, and then spun at 4000 rpm for 10 min at 40 C.  The supernatant

was discarded, and the pellet resuspended in 20 ml of ice-cold 0.1 M CaCl2.

After 30 min incubation on ice, cells were again centrifuged as above, the pellet

resuspended in 16 ml of ice-cold CaCl2 and incubated on ice for 2 hours.  To

store competent cells, glycerol was added to a final concentration of 20%, and

aliquots frozen in liquid nitrogen and stored at -800C.

For transformation, plasmid DNA was incubated with 50-100 µl competent cells

for 20 min on ice, followed by a 90 sec. heat-shock at 420 C, 2 min on ice, and

incubation with 1 ml of LB for 1 h at 37 0 C.  Transformed cells were plated on

selective media.

3.1.3.3. Plasmid DNA minipreparations

A 5 ml overnight culture from a single colony was grown in LB containing

50 µg/ml ampicillin and/or the appropriate antibiotic. 1.5 ml of the culture was

pelleted by a 2 min centrifugation in a tabletop microcentrifuge.  The medium was

withdrawn by aspiration and the remaining pellet resuspended in 300 µ l P1

Buffer (Qiagen) containing 100 µg/ml RNAse A.  Bacterial cells were lysed by the

addition of 300 µ l P2 (Qiagen), incubated 5 min at room temperature, and

neutralized by adding 300 µl of chilled P3 (Qiagen), after which the bacterial

lysates were incubated on ice for 5 min.  They were then spun for 10 min in a
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tabletop centrifuge, and the supernatant precipitated with 750 µl isopropanol.

After another centrifugation for 10 min in a tabletop centrifuge, the supernatant

was aspirated, the pellet resuspended in 200 µl TE, and phenol/chloroform

extracted.  The plasmid DNA was further concentrated by ethanol precipitation,

and redissolved in 20 µl of TE (10 mM Tris, HCl, pH 8.0, 1 mM EDTA).  DNA

prepared in this fashion was pure enough to be used for DNA sequencing.

3.1.3.4. Plasmid preparation by CsCl gradients or Qiagen Maxi Prep Kit

Overnight cultures of transformed E.coli DH5α cells were grown on a

shaker at 370 C in 5 ml LB containing the appropriate antibiotic(s).  Each

overnight culture was then diluted 1:100 into 500 ml of medium, and again grown

overnight at 370 C on a shaker.  The cultures were spun down at 6000 rpm for 10

min in a Sorvall GSA rotor, and the cell pellet resuspended in 8 ml Solution I (50

mM glucose, 25 mM Tris-HCl, pH 8.0, 10 mM EDTA) containing 1 ml of fresh

lysozyme (40 mg/ml).  After 30 min incubation at room temperature, cells were

lysed by treatment with 18 ml of freshly made solution II (1% SDS, 0.2 M NaOH),

and incubated on ice for 5 min.  The lysed bacterial solution was neutralized with

9 ml of solution III (2M  H(OAc)2, 3M K(OAc)2, pH 5.6), and incubated on ice

again for 10 min, after which it was centrifuged at 8000 rpm in a Sorvall GSA

rotor.  The supernatant was filtered through a  cheesecloth into a 50 ml tube, and

the tube filled with isopropanol, inverted to mix, and incubated on ice for 10 min.

After a 10 min centrifugation in a Sorvall GSA rotor, the supernatant was

discarded, the pellet air dried, and resuspended in 3 ml TE.  The resuspended

DNA pellet was transferred to a 15 ml Corex tube containing 3 ml 5M LiCl (chilled

at -200 C) and spun for 5 min in a Sorvall SS34 rotor at 8000 rpm, after which the

resulting supernatant was transferred to a 30 ml Corex tube containing 6 ml

isopropanol and spun again at 8000 rpm for 10 min.  The supernatant was

discarded, and the pellets air dried.  After resuspending the DNA pellets in 4 ml

TE, 4 g of CsCl and 320 µg/µl ethidium bromide were added to the DNA mix, the
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solution transferred into heat seal tubes and spun in a Beckman Ultracentrifuge

Vti65.2 rotor at 55 000rpm for 12-24 hours at 180 C.  The DNA plasmid bands

were dripped using a 16 Gauge needle syringe under longwave UV light for

detection.  To remove the ethidium bromide, dripped DNA bands were put over

1.5 ml Dowex columns, washed in 1/2 volumes TE/1M NaCl, and the resulting

clear flow-through dialyzed against 1 l TE at 40 C in the coldroom.  Samples were

stored at –200 C.

Concentration of the DNA was measured by taking OD readings at 260 nm.

One A260 unit equals 50 µg/ml DNA dsDNA.

Plasmid preparation using the Qiagen Maxi Prep Kit

Overnight cultures of transformed E.coli DH5α cells were grown on a

shaker at 370 C in 5 ml LB containing the appropriate antibiotic(s).  Each

overnight culture was then diluted 1:100 into 500 ml of medium, and again grown

overnight at 370 C on a shaker.  The cultures were spun down at 6000 rpm for 10

min in a Sorvall GSA rotor, and the purification of the plasmids done according to

the Qiagen plasmid maxi protocol distributed by the manufacturer with the

Purification Kit.

3.1.3.5. Amplification of DNA fragments by the polymerase chain

reaction (PCR) and DpnI mutagenesis

The PCR amplification reactions were performed employing both the

Perkin Elmer Cetus DNA Thermal Cycler and the PTC-100 Programmable

Thermal Controller by MJ Research, Inc.  Standard reactions were prepared in

sterile 0.5 ml tubes as follows: 5 µl of 10X reaction buffer, 75-100 ng of double-

stranded DNA template, 40 pmol of oligonucleotide primer #1, 40 pmol of

oligonucleotide primer #2, 5 µl of  dNTP mix (1.25 mM), 1 µl Taq /Pfu polymerase

(2.5 U/µl) and dH20 to a final volume of 50 µl.  Cycling parameters depended on
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the size of the template DNA and on the stringency of the oligonucleotide-

primer/DNA match.  For DpnI mutagenesis employing a 7.1 kb DNA template,

parameters were as follows: One cycle (950 C for 3 min, 450 C for 2 min, 720 C for

16 min), and 17 cycles (940 C for 1 min, 500 C for 2 min, 700 C for 16 min).

Finally, reactions were incubated at 720 C for 4 min to allow for complete

extension.  After cooling down to room temperature, the PCR-products were

purified by phenol/chloroform extraction and ethanol precipitation, and a small

aliquot was run on an agarose gel as a control for amplification efficiency.  For

DpnI mutagenesis, the PCR amplified DNA was digested with DpnI  restriction

enzyme, and directly transformed into CaCl2-competent DH5α cells and plated

on selective media together with a control of undigested DNA. All point-mutated

plasmids were confirmed by DNA sequencing.

3.1.4. Modification and purification of DNA fragments

3.1.4.1. Restriction Endonuclease digestion and restriction analysis

Restriction endonuclease cleavage was accomplished by incubating the

enzyme(s) with the DNA under the conditions described by the supplier.  Usually,

the enzyme and buffer were diluted tenfold into the reaction, and the DNA was

digested for 2 h at 370C.  For restriction analysis, the DNA of interest was cleaved

with a variety of restriction endonucleases, either individually or in combination using

the conditions as stated above.

To check proper digestion, an aliquot was run on a 1% agarose gel containing

ethidium bromide (0.5 µg/ml) in 1XTAE (0.04 M Tris-acetate, 0.001 M EDTA pH 8.0)

or 1XTBE (0.09 M Tris-borate, 0.002 M EDTA pH 8.0) buffer, and visualized by UV-

transillumination.

To ensure proper activity of other enzymes after the treatment with restriction

endonucleases, the latter had to be inactivated. This was done either by heat-

inactivation for 20 min in a 650 C waterbath, or by phenol/chloroform extraction and
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ethanol precipitation.

3.1.4.2. Dephosphorylat ion

In order for the digested vector not to religate with itself in a subsequent

ligation reaction, it had to be dephosphorylated prior to ligation.  This was done

by adding 2-3 volumes of TE-buffer and 2 µl alkaline phosphatase and incubating

for 30 min at 370 C.  After dephosphorylation, the phosphatase was removed by

phenol/chloroform extraction and the vector was precipitated with ethanol.

3.2.4.3.  Ligation of DNA

To ligate insert- and vector DNA, they were mixed in 1:5 ratio (between 20

and 30 ng vector, and 100-150 ng insert), adding 1 µl 10X ligation buffer (0.66 M

Tris-HCl, pH 7.6, 100 mM MgCl2, 150 mM DTT, 10 mM ATP, 10 mM spermidine),

1 µl BSA (2 mg/ml), 1 µl T4-Ligase (1 U), and dH
2
O to a final reaction volume of

10 µl and incubated overnight at 160C.

3.1.4.4. Agarose gel electrophoresis

Analytical agarose gels were run in horizontal gels (13 x 14 cm or 5 x 7.5

cm) using 1X TBE as a running buffer.  Preparative gels were run only on 13 x 14

cm gels using 1X TAE as a running buffer.  Depending on the size of the DNA

fragments to be separated, the agarose-concentration was varied between 0.8

and 1.8%.   Ethidium bromide (0.5 µg/ml) was added to the gels before pouring

them.  The samples were mixed with 1/5 volumes of 6x gel loading buffer (0.25%

bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol), before loading the

gel.  The gels were run at voltages between 50V and 200V, and then

photographed by UV illumination (302 nm).
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3.1.4.5. Purification of DNA

Phenol/chloroform extraction  (Sambrook et al., 1989)

For phenol extraction of proteins, DNA-solutions were mixed with 0.5 vol

phenol (Tris-buffered, pH 8) and 0.5 vol. chloroform/ isoamylalcohol (24:1),

vortexed and incubated 5 min at room temperature to form an emulsion.  The

mixture was then centrifuged at 12000 xg for 5 min in a microcentrifuge and the

upper, aqueous phase re-extracted with chloroform/ isoamylalcohol (24:1).

DNA precipitation with ethanol

To precipitate DNA, 2.5 vol of ice-cold 100% Ethanol and 1/10 vol. of 3 M

sodium acetate were added to the DNA-solution, mixed and incubated on ice for

5 min.  The solution was then centrifuged at 40 C at 12000 xg for 20 min, washed

twice with 70% Ethanol, dried in a vacuum centrifuge, and resuspended in dH20

or TE-buffer (10 mM Tris HCl pH 8.0, 1 mM EDTA pH 8.0).

Elution of DNA from agarosegels using the Qiaex Gel
Extraction Kit

The DNA band of interest was excised in a minimum gel slice, solubilized,

washed, and eluted from the Qiaex beads according to the manufacturer's

protocol.

3.1.5. DNA sequencing

To verify accurately synthesized PCR products and the correct orientation

of inserts in the ligation, the plasmids were sequenced using the Sequenase

Version 2.0 Kit (USB).  Template DNA (3-5 µg) was denatured by incubation at

370C for 30 min with 0.2 M NaOH, and 0.2 mM EDTA.  After ethanol
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precipitation, the DNA was resuspended in dH20 and 1.5 pmol oligonucleotide

primer and 2 µl 5X sequencing buffer (USB) per reaction were added to a total

reaction volume of 10 µl.  The primer was annealed to the DNA by incubation at

650 C for 2 min and then allowed to cool at room temperature for approx. 30 min.

DNA sequencing was then carried out in two steps: In the first (labeling) step, 1

µl DTT (0.1 M), 2 µl labeling mix (diluted 1:5 in dH20), 1 µl α -
35

S-ATP (3000

Ci/mmol), and 2 µl Sequenase (diluted 1:8 in enzyme dilution buffer) were added

to the reaction and incubated 2-5 min at 200 C.  This step incorporated labeled

nucleotides into DNA chains of variable length.  In the second (termination) step,

3.5 µl aliquots of the sequencing reaction were pipetted into 2.5 µl aliquots of

ddNTPs, and the reaction incubated at 400 C for 5 min.  Processive DNA

synthesis eventually stopped after growing chains had been terminated by a

dideoxynucleotide.  Finally, all reactions were stopped by the addition of 4 µl

EDTA/formamide stop solution.  The DNA was denatured by heating for 2 min at

950 C and run on a high-resolution denaturing polyacrylamide gel (6% (vol/vol)

acrylamide (20:1 acrylamide:bis), 6% 10X TBE (vol/vol), 8 M urea) designed to

resolve radiolabeled extension products on the basis of size. Gels were run at

approx. 1500 Volts to insure denaturing conditions.  The gel was transferred onto

3 MM Whatman Chromatography Paper and dried on a BIO RAD vacuum gel

dryer.  DNA bands were visualized by autoradiography at RT on a Kodak X-AR

film.

3.1.6.  Cloning of pBSK and pUChyg vectors for tissue culture transfections

P Bluescript plasmid pBSK(+)PAC-Tnp was derived from pBSK(+)

(Stratagene), the 2.6 kb actin 5C fragment from pAC (Ashburner, 1989), and the

transposase cDNA with 25% of the N-terminus chemically resynthesized to alter

the codon usage to the most frequently occurring codons in Drosophila (Lee et

al., 1996). pBSK(+)pAC-TnpD486A/E531A, pBSK(+)pAC-TnpD478A/E444A,
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pBSK(+)pAC-TnpD528A/E628A, pBSK(+)pAC-TnpD545A/E580A, pBSK(+) pAC-

TnpD586A/E621A, pBSK(+)pAC-TnpD620A/E621A, pBSK(+)pAC-TnpD620A/

E655A, pBSK(+)pAC-TnpE600A, pBSK(+)pAC-TnpE605A, pBSK(+)pAC-

TnpD615A, pBSK(+)pAC-TnpE689A, pBSK(+)pAC-Tnp D642A (gifts of Yvonne

Mul), and pBSK(+)pAC-TnpD486A, pBSK(+)pAC-TnpD528A, pBSK(+)pAC-

TnpE531A and the pBSK(+)pAC-Tnp double-and triple-mutants were generated

by M13 single strand mutagenesis as described in section 2.1.8.  pBSK(+)pAC-

TnpD545A, pBSK(+)pAC-TnpE580A, and pBSK(+)pAC-TnpE628A were made

by DpnI mutagenesis as described in the QuikChange Site-Directed Mutagenesis

Kit  (Stratagene) and in section 2.1.3.5.  Mutations were introduced by annealing

oligonucleotides containing the desired nucleotide changes to the single-or

double stranded DNA in a PCR amplification reaction.  Incorporation of the

desired mutation was confirmed by DNA sequence analysis using Sequenase

2.0 as described by the manufacturer (US Biochemical) and the following

primers: 5’-TATTT ATACAAGCCATCAAGCG-3’ (1528-1508) for D486A, 5’-

TGATGG CTTGTATAAATATTTGCAAGA-3’ (1513-1527) for D528A, E531A, and

D545A, 5’-CTCATCATCGACAGGCTCATCATC-3’ (1815-1792) for  E580A, and

5’ –GATGATGAGCCTGTCGATGAGATG-3’ (1807-1830) for E628A.  Mutant

DNA was subcloned using NheI and NotI restriction sites.  pUChygMT-tnp was

derived from the same transposase cDNA as pUChygMT (generous gift from C.

Thummel, University of Utah).  pUChygMT-tnp tDED and pUChygMT-tnp D545A

were generated by subcloning fragments from respective pBSK(+)pAC-Tnp

clones using NheI and B a m H I restriction sites, and confirmed by DNA

sequencing.   pISP-2/Km contains a 0.6 kb non-autonomous P-element derived

from pISP-2 (Rio et al., 1986) and the kanamycin resistance fragment form

plasmid pKm109-9 (Reiss et al,. 1984).
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3.1.7. Site-directed mutagenesis using a single-stranded template
(Kunkel et al., 1987), modified

For phosphorylation of the mutagenic oligonucleotide, 200 pmol DNA

oligo, 2 µl 10X Kinase Buffer (660 mM Tris-HCl, pH 7.6), 100 mM MgCl2, 10 mM

Spermidine, 150 mM DTT), 1 µl 10 mM ATP, and 1 µl T4 Polynucleotide Kinase

were mixed and dH20 added to a final volume of 20 µl.  The reaction was

incubated at 370 C for 1 hour, and subsequently at 650 C for 10 min.  To anneal

the phosphorylated, mutagenic oligonucleotide to the single-stranded template,

0.5 pmol of single-stranded DNA template was mixed with 10 pmol of

phosphorylated oligo and 1 µl 10X annealing buffer (200 mM Tris-HCl, pH 7.5,

100 mM MgCl2, 500 mM NaCl, 10 mM DTT) and H20 to a final volume of 10 µl.

The reaction mixture was heated for 5 min at 750 C and cooled over 30 min to

room temperature.  For the extension reaction, 10 µl of annealed ssDNA/oligo

mixture was incubated with 1 µl 10 X extension buffer (200 mM Tris-HCl, pH 7.5,

100 mM MgCl2, 100 mM DTT), 4 µl dNTPs (500 µM final), 1 µl ATP (500 µM

final), 1 U T4 DNA ligase , 0.5 U T4 DNA polymerase and 2.5 µl dH2O on ice for

5 min.  The extension reaction was then placed at room temperature for 5 min,

and subsequently incubated at 300 C for 2 h, and for 10 min on ice.  The reaction

was phenol/chloroform extracted in a final volume of 100 µl, ethanol precipitated,

washed with 70% ethanol, dried and resuspended in 20 µl TE.  5 µl were

transformed into a dut+, ung+ strain (like DH5α), and plated on media containing

selective antibiotics.

3.1.8. Cloning of Baculovirus constructs 

Transposase cDNA containing a C-terminal His-tag was cloned into

pFastBac (Gibco) using BamHI/NotI restriction sites.  Point mutations of the tnp

DED motif were generated by DpnI mutagenesis with oligonucleotides containing

the desired nucleotide changes as described above, and clones verified by
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sequencing.  pFastBac clones containing the point mutations D528Atnp,

E531Atnp, D545Atnp, D528A/E531A/D545 tnp, D528Ctnp, E531Ctnp, D545Ctnp

and wt tnp were used for generating high titer Baculovirus stocks using the Bac-

to-Bac Baculovirus Expression System  (Gibco BRL) as described by the

manufacturer.  In brief, the recombinant plasmids were transformed into

DH10Bac competent cells.  Colonies containing recombinant bacmids were

identified by disruption of the lacZα gene, i.e. by blue and white screening.  High

molecular weight mini-prep DNA was prepared from selected E. coli colonies

containing the recombinant bacmid, and this DNA was used to transfect Sf9

insect cells using CellFectin as described by the manufacturer.

3.2. Molecular Techniques with Recombinant Proteins

3.2.1. SDS polyacrylamide gel electrophoresis (SDS-PAGE)
(Laemmli, 1970), modified

One-dimensional gel electrophoresis under denaturing conditions (in the

presence of 0.1% SDS) separates proteins according to their molecular weight

as they move through the polyacrylamide gel matrix towards the anode.

Glass plates (10 x 8 cm) were used and assembled with spacers as

described by the manufacturer. The gels were prepared as follows: For a 7.5%

gel, 5 ml dH2O was mixed with 2.5 ml 30% acrylamide (30% acrylamide, 0.8%

bis) and 2.5 ml lower Tris-buffer (to make 500 ml 4X buffer, 90.85 g Tris base,

and 20 ml 10% SDS were mixed, the pH adjusted to 8.8 with HCl, and filled to

500 ml with dH2O).  To polymerize the gel, 50 µl of 10% APS and 15 µl of

TEMED were added, and the resolving gel was poured to approx. 4/5 of the total

gel size and covered with 1 ml of isoamylalcohol.  After polymerization the

isoamylalcohol was removed by aspiration and the stacking gel was poured: 1.5

ml dH2O was mixed with 0.63 ml of 4X upper Tris-buffer (for 100 ml 4X, 6.06 g

Tris base and 4 ml 10% SDS were mixed, the pH adjusted to 6.8 with HCl, and
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filled up to 100 ml with dH2O) and 0.38 ml 30% acrylamide, and polymerized by

addition of 15 µl of 10% APS and 7 µl TEMED.   A teflon comb was inserted into

the stacking gel. After polymerization, the comb was removed and the gel

assembled in the gel apparatus, adding approx. 200 ml of 1X SDS running buffer

(250 mM Tris, 2.5 M glycine, 1% SDS) to each of the gel chambers.

An aliquot of the protein to be analyzed was diluted 1:1 (vol/vol) with 2X

SDS-sample buffer (100 mM Tris HCl (pH 6.8), 200 mM DTT, 4% SDS, 0.2%

bromophenol blue, 20% glycerol), boiled 5 min at 100 0C, spun down briefly in a

microcentrifuge, and loaded onto the gel.  The gel was run at 15 A until the

protein(s) had migrated through the stacking gel, and the voltage was then

increased to 20 A until the bromophenol blue had reached the end of the

resolving gel.

3.2.2. Staining with Coomassie Brilliant Blue
(Sambrook et al., 1989)

The detection of protein bands in the gel with Coomassie Brilliant Blue

staining depends on nonspecific binding of a dye, Coomassie Brilliant Blue R, to

proteins. The detection limit is 0.3-1 µg/protein band.

To stain a gel, it was placed in 250 ml of staining solution (0.25% Brilliant

Blue, 25% isopropanol, 10% acetic acid) for 1 h at room temperature with

shaking.  The gel was then washed with destaining solution (25% isopropanol,

10% acetic acid) until the background stain was negligible, rinsed in dH
2
O twice

for 10 min each, and dried between cellophane paper.

3.2.3. Silver staining
(Heukeshoven and Dernick, 1988)

After electrophoresis, the gel was fixed twice for 10 min in 50% methanol,

and twice for 10 min in 5% methanol on an orbital shaker.  After fixing, the gel

was incubated 20 min in 0.03 M DTT to reduce the proteins and then incubated
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with agitation for 30 min in staining solution (0.1% AgNo3 , 0.02% formaldehyde),

after which the gel was developed with 2.6% NaCO3 , and 0.01% formaldehyde

until the protein bands of interest appeared as intense as desired.  The reaction

was stopped by the addition 5 g of solid citric acid.  After 15 min of incubation,

the gel was washed three times in dH20 and dried on cellophane paper.

3.2.4.  Western blotting

For Western Blotting, the proteins were separated by standard techniques

on SDS PAGE.  After electrophoresis, the gel was placed on two sheets of Gel

Blot filter paper, previously soaked in transfer buffer (48 mM Tris Base, 39 mM

glycine, 20% methanol, 0.037% SDS).  The uncovered side of the gel was

overlaid with prewet nitrocellulose, precut to match the gel size, and the

nitrocellulose was overlaid with additional two sheets of pre-soaked filter papers.

The filter paper containing the gel and nitrocellulose was sandwiched between

sponge pads and placed in a plastic support, and the entire assembly was placed

in a tank containing transfer buffer. The proteins were transferred

electrophoretically from the gel onto the nitrocellulose membrane at 500 mA.

After protein transfer, the filter was blocked with 3% non-fat dry milk in

TBS (20 mM Tris pH 7.4, 150 mM NaCl) for 30 min on an orbital shaker.  The

blocking solution was decanted and the first antibody was added in a solution

containing 3% non-fat dry milk in TBS.  The filter was incubated at room

temperature  for 1 h with shaking, and then washed twice in TBS containing

0.05% Tween 80 and once in TBS for 15 min each.  A 1/3000 dilution of the BIO-

RAD Goat anti-Mouse or anti-Rabbit IgG (H+L) Horseradish Peroxidase

conjugate in TBS with 3% non-fat dry milk was then added, and the filter was

incubated at room temperature for 1 h on an orbital shaker, and subsequently

washed twice in TBS containing 0.05% Tween 80, and once in TBS for 10 min

each.  The peroxidase detection was done using the Boehringer Mannheim

Chemiluminescence Western Blotting Reagents or the Renaissance Western
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Blotting Kit (NEN DuPont) and Kodak XAR films according to the manufacturer's

protocol.

3.2.5. Preparation of biotinylated DNA-Streptavidin agarose DNA affinity
columns

For 1 ml settled resin, 0.54 mg biotinylated oligo (Bio TdT3:

5’bGATCCAGGTGGTGTCGGATCCAGGTGGTGTCGGATCCAGGTGGTGTCG,

b=biotinylation site) and 0.57 mg of non-biotinylated oligo (TdT 3 bot.:

5’ GATCCGACACCACCTGGATCCGACACCACCTGGATCCGAC

ACCACCTG) were combined in a final volume of 100 µl (or larger if necessary)

containing 10 mM MgCl2 and 100 mM NaCl.  The mixture was placed in a beaker

with boiling water and allowed to slow cool for 4-5 hours.   The oligo mix was

then filled up to a total volume of 1 ml with TE/100 mM NaCl and a small aliquot

taken to measure the OD260 pre-binding.  1 ml of streptavidin resin was washed

thoroughly with excess TE/100 mM NaCl and added to the rest of the oligo

mixture, rotating overnight at 40 C.  A sample of the supernatant post-binding was

taken to measure OD260 to estimate capacity.  The resin was then washed

extensively with TE/100mM NaCl and stored at 40 C.  For longer periods of

storage time, 0.02% sodium azide was added.

3.2.6. Purification of transposase from Schneider L2 cells

Wildtype and mutant P-element transposase (tDED and D545A) were

purified from the Drosophila Schneider L2 stable cell line pUChygMT-Tnp,

pUChygMT-Tnp tDED, and pUChygMT-Tnp D545A as described (Mul and Rio,

1997).  pUChygMT-Tnp and the respective pUChygMT-Tnp tDED, and

pUChygMT-Tnp D545A  mutant Schneider L2 cell lines were generated by



38

transfection with calcium phosphate co-precipitation using pUChyg plasmid,

followed by selection with 200 µg/ml hygromycin (Rio and Rubin, 1985).  At 20-

22h after induction of the metallothionein promoter with 0.7 mM CuS04, the cells

were harvested by centrifugation, washed with phosphate-buffered saline (PBS)

+ 1g/l MgCl2, spun at 2500 rpm for 5 min and the resuspended in Buffer A (15

mM KCl, 10 mM Hepes-KOH, pH 7.6, 2 mM MgCl2, 1 mM EDTA, 1 mM EGTA,

50 MM NaF, 0.2 mM PMSF, and 0.5 mM DTT) on ice.  All the following steps

were carried out on ice, and centrifugations performed at 4 OC.  Cells were then

dounce-homogenized, and 1/10 volume of Buffer B (1M KCl, 50 mM Hepes-

KOH, pH 7.6, 30 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 0.2 mM PMSF, and 0.5

mM DTT) added before centrifugation for 10 min at 8000 rpm.  The nuclear pellet

was resuspended in isotonic buffer (9A:1B) and 1/10 volume of saturated

(NH4)2SO4, pH 7.6 added, and subsequently incubated for 30 min at 4 OC.  The

nuclear lysate was then spun at 35 000 rpm for 1h in a Beckman 45 Ti rotor, after

which the supernatant was saturated with finely ground (NH4)2SO4  to 70% over

the course of one hour.  The ammonium sulfate precipitated nuclear extract was

then spun at 12 000 rpm for 10 min, after which the resulting pellet was

resuspended in HGKED buffer (25 mM HEPES-KOH, pH 7.6, 10% glycerol, 0.04

m KCl, 1 mM EDTA, 1 mM EGTA, 50 mM NaF) containing 0.04 M KCl, and

dialyzed twice against 2 liters of HGKED (containing 0.04 M KCl) for 6-7 hours

total.  After dialysis, the extract was spun briefly at 12000 rpm for 10 min, and

the supernatant extract frozen in liquid nitrogen and stored at –80 OC.  The

nuclear extract was chromatographed on heparin-agarose (Kaufman et al.,

1989).  The flow-through (H0.1FT) contained highly active transposase, as

determined by a genetic base plasmid assay (Kaufman and Rio, 1992).  The

H0.1FT transposase containing fractions were chromatographed on a

nonspecific DNA affinity resin (TdT) as described (Kaufman et al., 1989; Beall

and Rio, 1997).  The transposase protein was eluted with increasing KCl, and the

0.3 M KCl peak fraction (T0.6) was used in the cleavage and subsequent

ligation-mediated PCR (LMPCR) assays.  TdT-transposase-fractions contained
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approx. 5 ng/µl transposase protein as judged by silver-stained-SDS-

polyacrylamid gels containing known amounts of bovine serum albumin.

3.2.7. Brad ford Protein Assay

To measure total protein concentration, the BIORAD Bradford colorimetric

assay was used.  A standard curve was made with bovine serum albumin (1-10

µg/ml BSA) according to the manufacturer's protocol, and concentration of the

assayed protein was made based on this curve.

3.2.8. Purification of Baculovirus protein from Sf9 cells

Sf9 insect cells were grown in well-aerated suspension flasks using TNM-

FH medium with 10 % fetal calf serum.  2x108 cells were infected at an M.O.I.

(multiplicity of infection) of 10 with Baculovirus containing the different

transposase point mutations described above.  Cells were grown stirring at 27oC

for 60 hours, harvested by centrifugation, washed once with PBS and the pellets

frozen in liquid nitrogen.  For extract preparation, pellets were thawed on ice and

resuspended in Lysis Buffer (50 mM NaH2PO4 , pH 8.0, 300 mM NaCl, 10 mM

imidazole, 0.2 mM PMSF and 7 mM ß-mercaptoethanol).  The suspensions were

sonicated four times for 20 seconds each at highest setting, and then spun in a

Beckman Ti70 rotor at 35000 rpm for 30 min at 20 C.  The resulting supernatant

was incubated with 1ml of Ni++-NTA-superflow beads for 2 h rotating at 40 C.

Beads were washed extensively in wash buffer (50 mM NaH2PO4 , pH 8.0 ; 300

mM NaCl; 20 mM imidazole, 0.2 mM PMSF and 7 mM ß-mercaptoethanol) after

which proteins were eluted with elution buffer (50 mM NaH2PO4 , pH 8.0 ; 300

mM NaCl; 250 mM imidazole, 0.2 mM PMSF and 7 mM ß-mercaptoethanol) in

four elution steps of 15 min each, rotating at 40 C.  Elutions were pooled and

dialyzed against HGKED buffer (25 mM HEPES-KOH (pH 7.6), 10% glycerol, 1

mM EDTA, 1 mM EGTA, 1 mM DTT, 0.2 mM PMSF) containing 0.1 M KCl, for six
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hours, changing buffer once.  Extracts were either used for in vitro strand transfer

at this point, or the supernatant was further incubated with TdT-streptavidin

beads for 2 hours rotating at 4oC.  After incubation, beads were washed

extensively in HGKED (containing 0.1 M KCl), and subsequently the protein was

eluted stepwise with HGKED buffer containing increasing KCl concentrations (0.3

M KCl, 0.6 M KCl,1 M KCl).  The 0.3 M KCl eluate (T0.3-2) was used for the in

vitro strand transfer assay.

3.3. Tissue culture

3.3.1. Maintenance of Schneider L2 cells

3.3.1.1. Thawing cells

Vials containing ca 6x106 cells were quick-thawed in a 370 C waterbath,

and taken up in 7 ml of M3 medium containing 5% fetal calf serum (for a 20 liter

prep of M3, the following components were dissolved in 15 liter of dH20: 30 g a-

alanine, 5 g b-alanine, 12.08 g arginine, 6 g anhydrous asparagine, 6 g aspartic

acid, 4 g cysteine-HCL, 12 g glutamine, 143 g K-glutamate (L-glutamic acid

monopotassium salt), 130.6 g Sodium glutamate (L-glutamic acid monosodim

salt),  10 g glycine, 11 g histidine, 5 g isoleucin, 8 g leucine, 17 g lysine-HCl, 5 g

methionine, 5 g oxaloacetic acid, 5 g phenylalanine, 8 g proline, 7 g serine, 10 g

threonine, 5 g tyrosine, (free base), 2 g tryptophan, 8 g valine, 200 g glucose, 50

g bactopeptone, 40 g Yeast Extract, 15.2 g CaCl2 (anhydrous), 43 g MgSO4

(anhydrous), 15.6 g NaH2PO4
.H20, 21 g BIS-Tris, 1 g choline, 10 g KHCO3, and 1

g streptomycin sulfate.  The solution was brought to near volume and adjusted to

pH to 6.8 with 50% NaOH, requiring ca 15-20 ml of 50% NaOH.  The medium

was brought to its final volume of 20 l, filter-sterilized, and stored at 40 C.)

Cells were spun down for 5 min at 1500 rpm, the supernatant aspirated, and cells
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taken up in 10 ml M3+FCS into a 25 cm2 Tissue-culture flask (T-flask).  Cells

were grown at 250 C.  After reaching confluency, cells were split and grown in 75

cm2  T-flasks.

3.3.1.2. Splitting L2 cells

Cells were split 1:5 every 2-3 days, depending on when they had reached

confluency, meaning that cells had grown to a density of approx.  4-6x106

cells/ml.  To split cells, they were pipetted up and down in the medium contained

in the flask with a 5 ml pipette until more than 80% had become detached from

the flask bottom.  Cells were then pipetted into a fresh 75 cm2 or 150 cm2 T-flask

containing enough M3 medium to insure 1:5 dilution and placed at 250 C.

3.3.1.3. Growing L2 Cells in spinner flasks

Since large amounts of cells (15-30 l of 6x106 cells/ml) were needed for

protein preparations, L2 cells were expanded into 2-4 150 cm2  T-flasks until they

reached confluency 4-6 x106 cells/ml.  They were then split into sterile 1 l bottles

and media added to a density of 3.5 x106 cells/ml, not to exceed 300 ml.  After

reaching confluency, they were split into 6  l spinner flasks, and split 1:1 when

cell density was between 6 -8 x106 cells/ml.

3.3.1.4. Freezing cells

A large culture of the cells to be frozen down was grown in a 150 cm2 T-

flask.  After reaching confluency, cells were resuspended and spun down at 1500

rpm for 5 min, after which they were taken up in 1.5 ml freezing medium, which

consists of the medium the cells are normally grown in supplemented with 20%

FCS and 10% DMSO.  For L2 cells this medium thus consisted of M3+20%



42

FCS+10% DMSO.  0.5 ml cell aliquots were made and stored in a foam box at

–800 C overnight, after which they were transferred to liquid nitrogen.

3.3.1.5. Stable transfection of Schneider L2 cells

For stable transfection of Schneider L2 cells, cells were transfected with

pUChygMT-Tnp or a derivative thereof by CaCl2/HEBS precipitation as described

in section 2.3.3.  After DNA had been successfully transfected, cells were

incubated overnight at 250 C, and split 1:4 into fresh medium in a 25 cm2 T-flask

the next day.  Cells were incubated overnight at 250 C again, and then

hygromycin added to the medium (M3 +5% FCS) to a final concentration of 200

µg/ml.  Cells were split 1:4 into medium containing 200 µg/ml hygromycin every

3-4 days for 1-2 weeks.  The hygromycin concentration was then lowered to 50-

100 µg/ml, and hygromycin was omitted when cultures were expanded beyond 1

l for large scale protein preparations.

3.3.2. Maintenance of Sf9 insect cells

Sf9 insects cells were grown in 200 ml spinner flasks at 270 C in TNM-FH

medium + 10% FCS (to make 10 l of TNM-FH medium, a packet of TNM-FH

powder (Sigma) was dissolved into 9 l of dH20, after which 3.5 g of sodium

bicarbonate, 0.5 g streptomycin sulfate, and 0.32 g penicillin were added.  The

pH was adjusted to 6.2 with 1M HCl or 1M NaOH, the volume brought up to 10 l

and the medium filtered immediately.  TNM-FH was stored at 40 C.)  When cells

reached confluency, i.e. a density of 106 cells/ml they were split 1:4 by removing

cells from the spinner flask and adding new medium to a density of 25x105.  Cells

were split every two days.
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3.3.2.1. Baculovirus transfection-lipofection of Sf9 cells

Transfection

To transfect Sf9 cells for baculovirus production, 1x106 Sf9 cells were

seeded in a 30 mm well of a 6-well dish in TNM-FH + 10% FCS.  Cells were

allowed to attach for 1 hour at 270 C, after which the medium was aspirated off

and 4 ml of serum-free TMN-FH medium was added.  Plates were rocked for 5

min at room temperature and transfection mixtures (per well) prepared as

follows: Mix A (1.7 µl Baculo-Gold DNA (0.1 µg/µl Pharmagen), 1.3 µg

recombinant plasmid carrying foreign gene, e.g. a pVL1392/1393 derivative), Mix

B (12 µl Lipofectin (Gibco), 28 µl serum free medium).  Mix A was added to mix B

and incubated at room temperature for 15 min, after which 430 µl of serum–free

medium was added.  Medium was aspirated off the cells, and transfection

mixture spread over the well dropwise.  Transfections were rocked at room

temperature for 12 h, and subsequently the supernatant was aspirated off and 3

ml of complete TMN-FH medium containing 10% FCS added.  The 6-well dish

was sealed with Parafilm-foil, and the transfections incubated for 4 days at 27

inside a large zip-lock bag.  The supernatant was then pipetted off, and spun at

1500 rpm for 5 min to be used for further amplification.

Primary amplification

In this procedure virus titer was increased prior to plaque purification.

7x106 cells were plated per 10 cm dish and allowed to attach for 1 h at 270 C.  1-

10 10 cm dishes were plated per recombinant virus.  After cells had attached, the

medium was aspirated off, and 1.5 ml transfection supernatant (from step I) and

1.5 ml complete TMN-FH medium added to the cells, which were thereafter
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rocked for 1h at room temperature.  8 ml of complete TMN-FH medium were

added, and the dishes placed at 270 C in a zip-lock bag for 4 days.  Ensuing, the

supernatant was pipetted off again, spun for 5 min at 1500 rpm and then used for

plaque purification.  The stock was stored wrapped in aluminum foil (protected

from light) at 40 C.

3.3.2.2. Baculovirus plaque assay with neutral  red staining

(O'Reilly et al., 1997)

To determine the titer of a baculovirus stock, plaque assays were

performed.  Four 60 mm dishes with 2x106 cells/dish were seeded per virus stock

to be titered.  Cells were incubated at 270 C for 1 h to attach to the dish.  In that

time, virus stocks were diluted 10-3, 10-4, 10-5, 10-6, 10-7 into 1 ml serum-free TMN-

FH each.  After cells had attached, the medium was aspirated off the cells and 1

ml of dilutions put onto each labeled plate.  Plaque assays were rocked at room

temperature for 1 hr, after which the virus inoculum was removed completely and

5 ml TMN-FH + 0.5% agarose overlay added onto each plate.  After the overlay

had hardened, plates were incubated at 27 0 C in a zip-lock bag for 4 days.   To

prepare the neutral red overlay, a 0.5% melting agarose/200 µg/ml neutral red

mix was prepared, and 2 ml overlay added to each plate.  After overlay had

hardened, plates were placed at 27 0 C in a zip-lock bag overnight.  The next

morning plaques were counted, which appeared as light, whitish areas

surrounded by the live neutral red staining cells, and the virus stock titer

calculated taking the mean of the individual dilutions.
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3.3.2.3. Amplification of  Baculovirus plaques and preparation of high

titer virus stocks

Primary amplification

After performing a neutral red plaque assay on the primary amplification

after transfection, two plaques were picked to amplify for each virus.  Several

well-separated plaques were picket using a short, cotton-plugged pasteur pipette

by pipetting the agarose plug into 1 ml complete TMN-FH medium.  The

plaque(s) were allowed to diffuse into the medium overnight at 4 0 C, and 0.5 ml

used to infect 1x106 attached cells in one well of a 6-well tissue culture plate

each.  Infected cells were rocked for 1 h at room temperature, after which the

individual 6-well plates were sealed with Parafilm and placed at 27 0 C in a zip-

lock bag for 4 days.  The supernatant was then removed and freed of remaining

cells by centrifugation at 1500 rpm for 5 min, and the virus stock stored at 40 C

protected from light.  The cell pellets were saved for western blotting in order to

confirm proper, full-length expression of the desired protein by the newly created

baculovirus.

Secondary amplification

Four 10 cm dishes were seeded at 5x106 cells per plate, cells were left to

attach for 1 h at room temperature, and then infected with 1 ml of the primary

plaque amplification with 3 ml complete TMN-FH as described above.  After

incubation with virus inoculum, 9 ml of complete TMN-FH medium were added

and plates incubated for 4-5 days at 270 C in a zip-lock bag.  Virus supernatant

was harvested by centrifugation for 5 min at 1500 rpm, and virus stock titered

and stored as described above.
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3.4. Activity assays for Drosophila P element transposase

3.4.1. InVivo P-element excision assay

Drosophila Schneider L2 cells were transfected by calcium phosphate co-

precipitation with pBSK(+)pAC-Tnp, or the respective pBSK(+)pAC-Tnp-mutant

for expression of transposase under control of the Drosophila actin 5C promoter

and with pISP-2/Km as a reporter plasmid.  For transfection, 1x106 cells per well

were plated out in a 6-well dish and allowed to attach overnight at 250 C.  10 µg

of transposase-expressing plasmid and 10 µg reporter plasmid were added to

0.35 ml 0.25 M CaCl2, and this mixture was added dropwise into 0.35 ml 2X

HEBS.  After precipitating for 20 min at RT the mixture was then added to the

cells and incubated 24 h at 250 C.  To recover plasmid DNA from the Schneider

L2 cells 24h after transfection, the cells were harvested, washed four times with

PBS and incubated in lysis buffer (10 mM Tris-HCl, pH 8.0, 10 mM EDTA, pH

8.0, 0.6% SDS) for 5 min at room temperature.  Chromosomal DNA was

precipitated with one-fourth volume 5 M NaCl overnight at 40 C.  The plasmid

DNA in the supernatant was extracted with phenol and chloroform, ethanol-

precipitated, resuspended in water, electroporated into E.coli strain MC1061 and

selected for kanamycin resistance by plating on selective media.  The excision

frequency was calculated as [N(Amp+Kan)/N(Amp) in which N(Amp+Kan) and Namp represent

the number of bacterial colonies resistant to both kanamycin (Kan) and ampicillin

(Amp) or to ampicillin only, respectively.  Thus, the results are corrected for the

recovery of the plasmid DNA from the L2 cells.  The wild-type transposase

activity for each individual assay is set at 100%, which equals a frequency of 38

± 6.5 x 106.  For the various transposase mutants, activity is given as the

percentage of wild-type activity.  Typically, the number of AmpR colonies was 83

± 31 x 106 per 106 L2 cells, and the amount of DNA recovered form 2-4 x 106

cells was analyzed.
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10XHEBS:  8 g NaCl, 1.08 g dextrose, 0.373 g KCl, 0.1 g Na2HPO4, 4.766g

HEPES, pH to 7.1 with 4M NaOH, add dH20 to 100 ml.  Store at –20 oC.

10XPBS:  40 g NaCl, 1 g KCl, 4.6 g Na2HPO4, 1 g KH2PO4, add dH20 to 500 ml,

autoclave, store at room temperature.

3.4.2. In vitro strand transfer assay:

The DNA oligonucleotides used for the strand transfer assays are as

follows:

P1: 5’-CGTTAAGTGGATGTCTCTTGCCGACGGGACCACCTTATGTTATTTCA

TCATG-3’

P2-17: 5’- AGGTGGTCCCGTCGGCAAGAGACATCCACTTAACG-3’

The oligonucleotides were gel purified and 11.6 pmol of P1 radiolabeled at the 5’

end using 1 µl T4 polynucloetide kinase (USB), 3 µl [γ 32-P] ATP (7000Ci/mmol,

ICN), 2 µl 10X Kinase buffer (0.66 M Tris-HCl, pH 7.6, 100 mM MgCl2, 10 mM

Spermidine, 0.15 M DTT) and 2 µl BSA (2 mg/ml) in a total volume of 20 µl made

up with dH2O .  The kinasing reaction was incubated at 370 C for 1 h, heated at

1000 C for 5 min, and then chilled on ice.  Subsequently, 11.6 pmol of P2 was

annealed to the radiolabeled P1 oligonucleotide in a reaction buffer containing

0.1 M NaCl .  The reaction was again heated to 900 C for 5 min, and then slow

cooled to room temperature, after which the duplex DNA strand transfer

substrate were removed from the unincorporated [γ 32-P] using MicroBiospin 30

Chromatography columns (Bio Rad).

Reaction conditions for the standard strand transfer assay were as

follows: 0.5 pmol of radiolabeled strand transfer substrate was incubated with 50-

100 ng TO.3-2 transposase-containing Baculovirus protein fractions (wildtype,

D528A, E531A, D545A, tDED, and D528C, E531C, and D545C) or Ni++-NTA-

superflow fractions (wt, D528C, E531C, D545C, Sf9-mock) in a volume of 6 µl in

chromatography buffer (HGKED: 20 mM Hepes-KOH, pH 7.6, 20% glycerol,
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100mM KCl, 0.5 mM EGTA, 0.5 mM EDTA, 0.2 mM PMSF, 0.5 mM DTT), with

the addition of 100 µg/ml bovine serum albumin.  If reactions were preincubated

with Mg(OAc)2 and GTP, they contained 5 mM Mg(OAc)2  and 2 mM GTP.

Binding was carried out on ice for 15 min.  The reaction was initiated by addition

of: 0.35X HGKED (0M KCl), 200ng Bluescript tetramer target DNA, and, if not

already present in the preincubation mix, 5 mM Mg(OAc)2, 2 mM GTP to a total

volume of 20 µl, and [KCl ≤ 35 mM]. MgCl2, MnCl2, and CaCl2 were added to a

final concentration of 20 mM.  Reactions were performed at 300 C for 2 hours,

terminated by the additions of 125 µl of stop solution (50 mM Tris-HCl, pH 7.5, 10

mM EDTA, 0.3 M NaCl, 1% SDS, 250 µg/ml yeast RNA), and incubated at 370 C

for 30 min with 0.1 mg/ml proteinase K.  The reactions were extracted with

25:24:1 phenol:chloroform:isoamylalcohol and ethanol precipitated.  The pellets

were resuspended in 15 µl TE containing 100 µg/ml RNAse A and analyzed by

agarose gel electrophoresis.  Strand transfer of the free substrate oligonucleotide

to the plasmid DNA target results in both relaxed circular single-ended (SET) or

linearized double-ended transfer (DET) products.

3.4.3. In vitro cleavage and LMPCR assays

For DNA cleavage, transposase-containing fractions (~2 µg) were incubated with

100 ng circular plasmid pISP2/Km as the substrate DNA in HGKED reaction

buffer containing 0.1 M KCl for 15 min on ice. The cleavage reaction was initiated

by adding 2 mM GTP, 10mM MgCl2, and HGED buffer (containing no KCl) to a

total volume of 20 µl and incubated at 270 C for 1 hour, after which reactions were

stopped by addition of 125 µl footprinting stop solution (1% SDS, 0.2M NaCl, 20

mM EDTA, 250 µg/ml yeast RNA) and incubated at 370 C for 30 min with 0.1

mg/ml proteinase K.  The reactions were then phenol/chloroform extracted,

precipitated with 100%ethanol, washed with 70% ethanol, and dried in a speed

vacuum centrifuge.  The pellets were resuspended in 10 µl TE containing 100

µg/ml RNAse A.  Half of the reaction products were analyzed by agarose gel
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electrophoresis and standard DNA southern blot hybridization (described in

section 2.4.3.) following capillary transfer to Hybond N+ membrane (Amersham).

Products were detected with a α-32P random-hexamer labeled EcoRI/EagI

pISP2/Km restriction fragment (described in section 2.4.4.).

For LMPCR analysis, large scale cleavage reactions were performed (fivefold

increase), and 1/6 of the total cleaved substrate ligated to either FM25-2+4E or

FM25-2+3F oligonucleotides, which anneal specifically to either four basepairs of

the 3’ P-element overhang or to three basepairs of the 5’ substrate overhang

generated by DNA cleavage, respectively. Reaction mixtures were as follows:

1.5µl  5X cleavage reaction DNA, 1 µl 10X ligase buffer ( 0.66M Tris-HCl, pH 7.6,

0.1 M MgCl2, 0.1 M spermidine, 0.15 M DTT, 0.01 M ATP), 1 µl  50 pmol/µl  oligo

(Fm25-2+4E or FM25-2+3F), 1 µl BSA (2 mg/ml), 1 µl  T4 DNA ligase (1 U/ml)

and filled up with dH
2
O to 10 µl .  Reactions were incubated at 150 C overnight,

and then heat-treated at 650 C for 5 min.  90 µl of dH20), 10 µg glycogen and 100

µl phenol/chloroform were added subsequently, and after phenol extraction the

reaction were precipitated with ethanol, washed, dried and resuspended in 30 µl

dH20.  1/6 of the reaction mixture (5µ l) was used for LMPCR, adding the

following: 2.5 µl 10X PCR buffer as supplied by the manufacturer (Gibco BRL), 2

µl 2.5 mM dNTPs, 1 µl 25 pmol/µl ligated oligo, 1 µl 25 pmol/µl specific oligo

(2778-2804 or 2946-2972), 0.5 µl Taq polymerase (5 U/µl) and the reaction filled

to a total volume of 25 µl with dH20.  PCR cycling parameters were as follows: 1

cycle (950 C for 3 min), 25 cycles (950 C for 30 sec, 500 C for 30 sec., 720 C for 1

min), and 5 min at 720 C, after which the PCR reaction was slow cooled to room

temperature, and 10 µl of each reaction were run on an 8% native acrylamide gel

using pBR322-MspI as used as a size marker.   LMPCR products were

visualized by ethidium bromide staining.

PCR primer pairs and product sizes :

FM25-2+4E: GCGGTGACTCGGGAGATCTGAGATGCATA  and 2778-2804 :

ATCGCTGTCTCACTCAGACTCAATACG generate a 135bp product.



50

FM25-2+3F: GCGGTGACTCGGGAGATCTGAGATGATG and

2946-2972: AACCTGCGTGCAATCCATCTTGTTCAA  generate a 99 bp product.

3.4.4. Southern transfer and hybridization

Agarose gels with samples and size- markers were run at 120 V for 2

hours, bands visualized by ethidium bromide staining, and the gel prepared for

Southern transfer by incubating 45 min each in 500 ml denaturing solution (0.5 M

NaOH, 1.5 M NaCl) followed by incubation in 500 ml neutralizing solution (1 M

Tris-HCl, pH 7.4, 3 M NaCl).  The gel was placed into a dish filled with 20 x SSC

with a sponge topped by three pieces of soaked Whatman 3 MM onto the

Whatman filter paper.   It was covered with one piece of Hybond-N+ paper the

size of the gel and 3 additional pieces of Whatman paper.  The DNA bands were

transferred to the Hybond-N+ paper overnight by capillary action and then UV

crosslinked onto the filter paper (1200x102 µJ).  The filter was then prehybridized

in a bottle with 30 ml aqueous hybridization buffer (15ml 20 X SSCP, 2.4 ml (5

mg/ml) herring sperm DNA, 6 ml 100 X Denhardt’s, 3ml 10% SDS, 36 ml dH20)

for 4 hours rotating at 650  C , and the hybridized in 15 ml of preheated buffer with

ca 1x106 cpm/ml denatured probe overnight at 650 C .  Subsequently, the filter

was washed 2x20 min in preheated 0.1 X SSC/0.5% SDS, air dried and exposed

to film.

20X SSCP:

For 2 l: 800 ml 1 M sodium phosphate, pH 6.8, 176.4 g sodium citrate, 280.5 g

NaCl, to 2 l with dH2O

20X SSC:

For 5L: 876.5 g NaCl, 441.25 g Na citrate, to 5 l with dH2O

100X Denhardt’s Solution:

For 1L: 20 g polyvinyl pyrrolidone, 20 g BSA, 20 g ficoll 400, 10 ml 0.25 M EDTA,

add dH2O to 1l.
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3.4.5.  α-32P random-hexamer labeling of small DNA fragments

To make radiolabeled probe for use in Southern Blot assays, 1 µl of 1:100

diluted random hexamers (Boehringer) and 100 ng of the EcoRI/EagI pISP2/Km

restriction fragment were filled up to a total reaction volume of 3 µl with dH20.

The reaction was covered with 50 µl mineral oil and heated at 1000 C for 3 min,

after which it was immediately placed on ice.  The following was added to the

reaction: 2 µl 10 X random hexamer buffer (900 mM Hepes-NaOH, pH 6.6, 100

mM MgCl2), 2 µl (2 mM dNTPs –dCTP), 3 µl α32P-dCTP (3000 Ci/mMol), 2 µl

Klenow  (2 U/µl labeling grade), 0.4 µl DTT (0.5 M), and 7.6 µl dH20.  The

labeling reaction was allowed to proceed for 3-12 h at room temperature, after

which the reaction was stopped by addition of 90 µl stop buffer (0.1% SDS, 10

mM EDTA), vortexed, spun down, and the aqueous phase pipetted into a new

tube for immediate use, or frozen at –20 0 C.



52

4. Results

4.1. Identification of amino acid residues involved in the catalytic

activity of P element transposase using point-mutational analysis

P-element transposition occurs by a cut-and-paste mechanism: once

transposase is positioned at the transposon termini and assembled into an active

complex, it executes the DNA breakage reactions that cut the transposon away

from flanking DNA at the donor site, and then joins the exposed ends to the

target DNA (see Introduction Fig. 1A) (Kaufman and Rio, 1992).  This pathway of

transposition is used by other elements such as bacterial Tn10, Mu, Tn7, and the

eukaryotic Tc1/mariner elements (Craig, 1997). The catalytic residues for many

recombinases have been identified by point-mutational analysis and sequence

alignments.  The catalytic core consists of a triad of acidic amino acids, the

DD(35)E motif, which is thought to coordinate metal ion-binding required for

catalysis (Baker and Luo, 1994; Bolland and Kleckner, 1996; Katz et al., 1992;

Kulkosky et al., 1992; Sarnovsky et al., 1996).  Even conservative substitutions at

these positions have a drastic effect on cleavage and strand transfer activity

(Baker et al., 1994; Kim et al., 1995; Kulkosky et al., 1992).

Drosophila P element transposase shows no similarities with the DDE signature

of other transposable elements.  However, aligments of the catalytic core

structures of transposition proteins do not always show strong homologies, yet

they can be fundamentally related to one another as has been spectaculary

demonstrated by the structures of the catalytic domain of bacteriophage Mu and

HIV at the atomic level (Craig, 1995).

The aim of this work was to identify and characterize the catalytic residues

constituting the DD(35)E motif of the Drosophila P element transposase.  In order

to analyze the amino acid sequence of P element transposase for potential,

catalytic aspartic acid (D) and glutamic acid (E) residues, searching was

narrowed to the C-terminal half of the protein.  It appeared likely that the residues
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important for catalytic activity should be present in this region, since the C-

terminally truncated repressor proteins 66K and KP were shown to be defective

in P element transposition (Lee et al., 1998) (see Introduction Fig. 1B).

Interestingly, this region of primary sequence of transposase was found to

contain a relatively high density of D and E residues (Fig. 1A).  As a first round of

selection, sequence alignments and comparisons with the catalytic domains of

retroviral integrases were performed.  This approach did not yield any distinctive

catalytic core structure, due to the lack of primary sequence homologies in

general (data not shown).  Subsequently, a series of transposase double

mutations were generated, changing both a D and an E residue located in close

proximity to each other, not necessarily being part of the same, putative D-D-E

combination, into alanine (Fig. 1A, aspartates and glutamates boxed in blue, red

and green) (Y. Mul, umpublished).  Particular residues were picked on the basis

of homologies to hydrophobic residues surrounding the HIV integrase DDE motif,

and by partial alignment to a recombinase DDE alignment scheme made by

Baker and Luo, 1994.
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   1   MKYKFCCKAVTGVKLIHVPKCAIKRKLWEQSLGCS   36

 37 LGENSQICDTHFNDSQWKAAPAKGQTFKRRRLNADA   72

 73 VPSKVIEPEPEKIKEGYTSGSTQTESCSLFNENKSL   108

109 REKIRTLEYEMRRLEQQLRESQQLEESLRKIFTDTQ   144

145 IRILKNGGQRATFNSDDISTAICLHTAGPRAYNHLY   180

 181    KKGFPLPSRTTLYRWLSDVDIKRGCLDVVIDLMDSD     216

217 GVDDADKLCVLAFDEMKVAAAFEYDSSADIVYEPSD   252

253 YVQLAIVRGLKKSWKQPVFFDFNTRMDPDTLNNILR   288

 289    KLHRKGYLVVAIVSDLGTGNQKLWTELGISESKTWF     324

 325    SHPADDHLKIFVFSDTPHLIKLVRNHYVDSGLTING     360

361 KKLTKKTIQEALHLCNKSDLSILFKINENHINVRSL   396

397 AKQKVKLATQLFSNTTASSIRRCYSLGYDIENATET   432

433 ADFFKLMNdWFdIFNSKLSTSNCIECSQPYGKQLDI   468

469 QPDILNRMSeIMRTGILdKPKRLPFQKGIIVNNASL   504

505 DGLYKYLQENFSMQYILTSRLNQdIVeHFFGSMRSR   540

541 GGQFdHPTPLQFKYRLRKYIIARNTEMLRNSGNIEE   576

577 DNSeSWLNLdFSSKENENKSKDDePVDDePVDEMLS    612

613 NIdFTEMdeLTEDAMeYIAGYVIKKLRISdKVKENL    648

649 TFTYVDeVSHGGLIKPSEKFQEKLKELECIFLHYTN   684

 685 NNNFeITNNVKEKLILAARNVDVDKQVKSFYFKIRI   720

 721     YFRIKYFNKKIEIKNQKQKLIGNSKLLKIKL         751



55

Figure 1A. Primary amino acid sequence of the P element transposase
protein.  Potential catalytic D and E residues which were mutated to alanine are
marked with blue, red and green boxes. Amino acid residues boxed in green or
blue had little or no effect on in vivo excision activity.  Amino acids boxed in red
almost completely abolished in vivo excision activity as described in the text.

4.2. Mutations in potential catalytic amino acid residues affect in vivo

activity of transposase 

A genetic assay was used as previously described by Mul and Rio (1997) to test

the mutant proteins for in vivo activity relative to wild-type activity (Fig. 1B).  The

in vivo assay is based on transient transfection of Drosophila Schneider L2 cells

with a plasmid that expresses either wild-type or mutant transposase protein.  In

addition, a reporter plasmid is introduced in order to monitor the transposase-

induced P element excision frequency (Fig. 1B).  The reporter DNA contains a

non-autonomous P element inserted directly downstream of the start codon for

the bacterial kanamycin (Kan) resistance gene.  Excision of the P element and

processing of the DNA ends places the translation start codon in frame with the

rest of the kanamycin resistance coding sequence.  Following recovery of

plasmid DNA from the L2 cells, the DNA is introduced into Escherichia coli and

excision events are measured by genetic selection for kanamycin resistance.

This assay was used for quantitative measurement of transposase activity in vivo

in order to compare the catalytic activities of the wild-type and mutant

transposase proteins. However, only a fraction of the plasmids that have

undergone excision are detected due to the requirement for the restoration of the

kanamycin open reading frame in this assay.  As a result, the determined

excision frequency is an underestimate of the actual activity of the transposase

proteins being examined.  As expected from previous data (Mul and Rio, 1997), it

was found that in Drosphila cells expressing wild-type transposase resulted in

excision of the P element at a frequency of 4 x 10-5, while in the absence of

transposase, no excision products were recovered.
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Figure 1B.  Schematic diagram of the Drosophila cell culture transposase
assay.   Drosophila Schneider L2 cells were transfected with a plasmid encoding
either wild type or mutant transposase proteins under the control of the
constitutive Drosophila actin promoter (left) and a reporter plasmid, pISP-2Km
(right), which contains the kanamycin resistance gene open reading frame
interrupted by a 0.6 kb nonautonomous P element.  Transposase activity was
detected following excision of the P element by the gain in kanamycin resistance
following plasmid recovery from the transfected cells and electroporation into E.
coli cells. The excision frequency was determined by comparing the total amount
of DNA recovered (ampicillin resistant colonies) to the number of plasmids that
had undergone excision (ampicillin and kanamycin resistant colonies).

All alanine substitution mutants shown in Fig. 1A, boxed in blue, red, and green

were tested in the assay described in Fig. 1B.  Figure 2B shows a selection of

the mutants tested.  (Single or double mutants which had no significant effect on

the in vivo activity were omitted in Fig. 2 for clarity.)  From these double-D/E-A

substitution mutants, three (D486A/E531A, D528A/D628A, and D545A/E580A0

completely or almost completely abolished transposase activity in vivo  (Fig. 2B).

In contrast, the transposase mutants D487A/E444A, D586A/E621A, and

D620A/E621A were still partially active in the in vivo excision assay.

Interestingly, transposase D620A/E655A was more active than the wild-type

protein (Fig. 2B.).  More active forms of transposase may have been eliminated

during evolution due to excessive damage to the Drosophila host genome. It was

concluded from these results that a subset of the amino acids D486, D528, E531,

D545, E580, and D628 could be the essential residues for catalytic activity of

Drosophila P element transposase protein.

In order to demonstrate that the differences in transposase activity were

not due to lower expression and/or stability of the mutant proteins, western blot

analysis of the L2 cell extracts after transfection (Fig. 2A) was performed and

equal levels of protein expression were confirmed. To locate the specific single

substitution mutants responsible for the loss of catalytic activity in vivo, single
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Figure 2.  Comparison of wild-type and double-mutant transposase activity
in vivo.   A.  Western Blot using anti-KP antibody of wildtype (lane 1), and
double mutants D486A/E531A (lane 2), D528A/E628A (lane 3), and
D545A/E580A (lane 4) of transposase protein crude cell extracts after L2 cell
transfection.  Equal amounts of protein were detected for wildtype and mutant
transposase.  Transposase is indicated by an arrow.  Approximately 400 ng of
protein were loaded in each lane.  B.   Bar graph depicting in vivo excision
activity.  Each of the indicated mutant transposase proteins was tested for activity
four individual times in the assay described in Fig. 1B.  Shown are the mean
activity values and standard deviations.  The wild-type transposase activity for
each individual assay is set at 100%, which equals an excision frequency of 38 ±
6.5 x 10- 6.  For the various transposase mutants, activity is given as the
percentage of wild-type activity: D486A/E531A [0.0 ± 0.0], D528A/E628A
[0.3±0.4], D545A/E580A [0.7±0.9], D586A/E621A [27±13]. D620A/E62A [53±22],
D620A/E655A [155 ±14] (numbers following ± are indicative of the standard
deviation).

mutants of the double mutant pairs D486A/E531A, D528A/D628A, and

D545A/E580A were generated.   The six single mutants were then tested in the

in vivo assay as described in Fig. 1B, and the excision events scored for by

genetic selection as described.  Substitution mutants D528Atnp, E531Atnp,

D545Atnp and the combined triple mutant tDED tnp were all found to be inactive

in vivo  (Fig. 3B).  Western Blot analysis of L2 cell extracts showed that

expression levels of all of the single mutants were equal to wild-type levels (Fig.

3A, lanes 1-7), however, the levels for the triple DED (D528A/E531A/D545A)

mutant were consistently lower than those of the wild type and of the single

mutants (Fig.3A, lane 8).

These results led to the conjecture that the above three residues, D528,

E531, and D545, although in slightly different order (D-E-D), possibly constitute,

or form part of the Drosophila P element catalytic DDE triad found in most

recombinase proteins.  To further confirm this hypothesis, wild-type and mutant

transposase proteins were purified using the Baculovirus system and Sf9 cells,

and stable transfections of L2 insect cells, and the purified protein(s) tested in

three different in vitro activity assays.
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Figure 3.  Comparison of wild-type and single-mutant transposase activity in
vivo.   A.  Western Blot using anti-KP antibody of wild-type (lane 1), and single
mutants D486A (lane 2), D528A (lane3), E531A (lane 4), D545A (lane 5), E580A
(lane 6), E628A (lane 7), and tDED (lane 8) of the transposase proteins crude cell
extracts after L2 cell transfection. Equal amounts of protein were detected for
wild-type and single-mutant transposases.  The triple mutant (tDED) showed a
slightly lower level of protein expression.  Transposase is indicated by an arrow.
Approx. 400 ng of protein extracts were  loaded in each lane.  B.  Bar graph
representing the in vivo activity of transposase alanine substitution mutants. Each
of the indicated mutant transposase proteins was tested for activity four times in
the assay described in Fig. 1B.   Wild-type (wt) transposase activity is set at
100%, and activity of the mutants is shown as percent of wt.  Alanine substitution
mutants tnpD528A [1.6±2.7], tnpE531A [1.8±2.4], and tnpD545A [0.03±0.06], as
well as the combined triple mutant tDED [0.7±0.3] severely reduced or abolished
activity in vivo.  Alanine substitution mutations D486A [65±28], E580A [142.4±46],
and E628A [96.2±37] had little or no effect on in vivo activity.  Standard deviations
are indicated as thin vertical lines.

4.3. Mutations in the potential catalytic motif of P element transposase

affect in vitro activity

4.3.1. In vitro strand transfer assay

The P element transposition reaction can be divided into two steps: donor

DNA cleavage and strand transfer into a target DNA.  To determine which step of

the transposition reaction the D528A/E531A/D545A mutants were affecting, the

mutant transposase proteins were first tested for in vitro strand transfer activity.

Following excision of a P element from the donor DNA, the transposase protein

catalyzes the integration of the P element into a new target site by a reaction

termed strand transfer (Fig. 4A).  Strand transfer can be performed in vitro using

short, radiolabeled, double-stranded DNA oligonucleotide substrates carrying a 31

bp terminal inverted repeat and a transposase-binding site along with the

authentic 17 bp staggered cleavage site (Beall and Rio, 1998).  Transposase

activity is measured by the transfer of either one or two oligonucleotide substrates

to a circular plasmid target as determined by a shift in the radioactivity from the
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Figure 4A.  Schematic diagram of in vitro strand transfer assay.
Oligonucleotides derived from the right (3’) P element end that contain the
transposase binding site (light gray box) and the 31 bp inverted repeat (dark gray
box) were annealed to produce substrates that mimic a cleaved P element
terminus.  Transposase-containing fractions were incubated with radiolabeled
(asterisk) substrate DNA on ice, and the strand transfer reaction initiated by
adding GTP, Mg++ and the plasmid DNA target.  Reaction products were run on a
0.7% TAE agarosegel, and visualized by autoradiography.  Strand transfer of the
free substrate oligonucleotide to the plasmid DNA target results in both relaxed
circular, single-ended (SET) or linearized, double-ended (DET) transfer products
as shown in the diagram.

free substrate to the plasmid target DNA following agarose gel electrophoresis.

The reaction products are classified as either single-end transfer product (SET) or

double-end transfer product (DET) (see Fig. 4A).

The DDE motif is thought to provide a binding site for a divalent metal at

or near an active site(s) for DNA hydrolysis and strand transfer (Craig, 1997).

Mg++ is a critical cofactor in P element transposition in vitro; no transposition is

observed in the absence of divalent metal (Kaufman and Rio, 1992).  Since the

homology between the P element transposase DED motif and the usual DD(35)E

triad found in other recombinases is only limited, establishing that the DED is

indeed the metal-dependent active site required additional evidence.

Before testing the mutant transposase proteins in in vitro strand transfer,

reaction conditions for this assay were optimized by a series of control

experiments with the wild-type protein only (Fig. 4B).  The following variables

were examined: The preincubation mix (see Materials and Methods) either

contained 5 mM Mg(OAc)2 and 2 mM GTP (Fig. 4B, lanes 1-4 and 6-8), only 1

mM GTP and 5 mM Mg(OAc)2 (lanes 9-12), or did not contain Mg(OAc)2 and GTP

at all (Fig. 4B, lanes 12-18).  The latter conditions will be referred to as ‘standard’.

Also, the reactions were allowed to proceed either with additional metal ions in the

form of MgCl2, MnCl2, and CaCl2 added into the preincubation mix (Fig. 4B, lanes

6-8 and 16-18), or added after preincubation (Fig. 4B, lanes 1-3, 9-11, and 12-14).

The most prominent effects on in vitro strand transfer activity were seen when
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Figure 4B. Autoradiogram of strand transfer reactions with wildtype
transposase protein.  Baculovirus-expressed wildtype transposase protein with
a C-terminal His-tag was tested in the strand transfer assay as described in Fig.
4A. Shown is an autoradiogram from an experiment in which different reaction
conditions were tested.  All reactions contained 2 mM GTP and 5 mM Mg(OAc)2

in the preincubation mix (PI) (lanes 1-4, and 6-8), or incubation mix (GTP
postinc.) (lanes 12-18 ), unless preincubation was performed with only 1 mM
GTP (lanes 9-11).  Preincubation with additional metal ions (lanes 6-8 and 16-18)
and postincubation with additional metal ions (lanes 1-3 and 9-14) were all done
at a final Me++ concentration of 20 mM each.  For Me++ preincubation, Mg++ (lane
6 and 16), Mn++  (lane 7 and 17), and Ca++ (lane 8 and 18) were added to the
preincubation reaction on ice. For metal postincubation, Mg++ (lanes1, 9 and 12),
Mn++ (lanes 2,10 and 13), and Ca++ (lanes 3,11 and 14) were added to the
reaction after preincubation on ice, together with the plasmid DNA target.  Lanes
4, 5, and 15 do not contain any extra metal in the standard reaction mix, lane 5 is
the –GTP strand transfer control reaction.  After completion of the strand transfer
reaction, 1/2 of the total reaction was loaded on a 0.7% TAE gel.  Single-end
transfer (SET) and double-end transfer (DET) products are indicated by arrows.
For each reaction, 0.5 pmol of radiolabeled substrate DNA and approx. 100 ng of
wildtype transposase protein (as estimated by silver staining) were used.

a) the protein was or was not preincubated with Mg(OAc)2 and GTP, and b) when

additional metal ions were added after preincubation.  Lowering of the GTP

concentration and preincubation with metal ions did not show any significant

effects, so these reaction conditions were omitted in future experiments.

4.4. Alanine substitution mutations D528Atnp, E531Atnp, and D545Atnp

change the metal-ion specificity of the in vitro strand transfer

reaction

To determine whether the mutant proteins would inhibit transposase-

mediated strand transfer, and whether specific metal ions were capable of

rescuing strand transfer activity in vitro, strand transfer reactions were performed

using Mg++, Mn++, and Ca++ -ions (20 mM final concentration).   C-terminally His-
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Figure 4C.  Transposase-containing protein fractions used to study
in vitro activities.  Analysis of the purified P element transposase-
containing fractions by SDS-PAGE on a 7.5% acrylamide gel stained with
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the left of the panel.  5 µl of highly purified protein after Ni++-NTA super-
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each lane: lane 1, wt tnp; lane 2, triple DED tnp; lane 3, tnpD528A; lane 4,
tnpE531A; lane 5, tnpD545A.  Transposase is indicated by an arrow.
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tagged transposase protein expressed using the Baculovirus system, and the

respective mutant proteins D528Atnp, E531Atnp, and D545Atnp were purified via

Ni++-NTA-Superflow and DNA-Streptavidin affinity chromatography, and the 0.3 M

KCl fractions used in the activity assay.  Equal protein concentration and purity

was demonstrated by SDS-PAGE followed by silver staining (Fig 4C, lanes 1-5).

As expected, the level of wild-type in vitro strand transfer activity was

consistently higher than that of any of the mutants, as seen by the strong strand

transfer activity of the wild-type protein in Fig. 5A, lanes 1-9 after only 4 hours of

exposure, as compared to the absence of any visible band for D528Atnp in the

same figure.  Even after a 7 day exposure of the respective strand transfer gels,

activities of D528A tnp (Fig. 5B, lanes 1-8), E531A tnp (Fig. 5B, lanes 9-16),

D545A tnp (Fig. 5B, lanes 17-24), and tDED (Fig. 5B, lanes 25-27) were notably

lower than that of the wild-type protein, as seen by the weaker band intensity of

the reactions containing mutant proteins versus wild-type.

The addition of metal ions to the strand transfer reactions had different

effects on wildype versus mutant protein activity: Additional MgCl2 had a slightly

reducing effect on the levels of wild-type strand-transfer activity compared to

standard conditions (Fig. 4B, lanes 1 and 4; Fig. 5A, lanes 1-2 and 6-7), however

it failed to stimulate D528Atnp at all (Fig. 5B, lanes 2 and 6), and only slightly

stimulated E531 tnp activity (Fig. 5B, lanes 10 and 14).  Addition of any of the

three metal ions to reactions containing D545 tnp appeared to have little overall

effect, since this mutant already showed strand transfer activity, albeit reduced

compared that of the wild-type, under standard reaction conditions (Fig. 5B, lanes

17-24).  Interestingly, MnCl2 inhibited wild-type strand transfer activity (Fig. 5A,

lanes 3 and 8), yet was able to stimulate activity of D528Atnp (Fig. 5B, lanes 3

and 7), E531 tnp (Fig. 5B. lanes 11 and 15), and even tDED (Fig. 5B, lane 26),

although stimulation of triple mutant activity was very weak.  Conversely, where

CaCl2 seemed to reduce wild-type activity compared to levels under standard

conditions (Fig. 5A, lane 4) it greatly stimulated E531Atnp activity in conditions
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Figure 5.  Autoradiogram of strand transfer assays performed with wild-
type and D528A, E531A, D545A and tDED transposase mutant proteins.  C-
terminally His-tagged, Baculovirus-expressed transposase proteins D528A,
E531A, D545A, tDED and wild-type were tested in the strand transfer assay as
described in Fig. 4A. Shown are autoradiograms from an experiment in which
transposase-containing fraction were either preincubated (PI) with reaction buffer
containing 2 mM GTP and 5 mM Mg(OAc)2 , (Fig. 5A, lanes 6-9, and 14-17, Fig.
5B, lanes 5-8, 13-16, 21-27) or where 2 mM GTP and 5 mM Mg(OAc)2 were
added after preincubation (Fig.5A, lanes 1-4, 10-13, Fig. 5B, lanes 1-4, 9-12, and
17-20).  Reactions containing 20 mM final concentration of MgCl2, MnCl2, and
CaCl2 are indicated in the panel above the autoradiograms with a + sign.   Lane 5
in Fig. 5A. is the –GTP control reaction.  A.   Autoradiogram of wt and D528A
reactions electrophoresed on a 0.7% TAE agarose gel, after 4 h exposure of the
gel to X-ray film.  B.   Autoradiogram of D528A, E531A, D545A and tDED
reactions after 7 days exposure to X-ray film.  Single-end transfer (SET) and
double-end transfer (DET) products are indicated by arrows.  For each reaction,
0.5 pmol of radiolabeled substrate DNA and ~ 100 ng of respective wt or mutant
transposase proteins were used.

without Mg(OAc)2 and GTP preincubation (Fig. 5B, lane 12).  This metal did not,

however, stimulate D528A tnp (Fig. 5B, lanes 4 and 8) nor E531Atnp activity

when preincubated with Mg(OAc)2 and GTP.

Taken together, these results demonstrate that the alanine substitution

mutations D528Atnp, E531Atnp, D545Atnp and tDEDtnp have a marked effect on

protein’s loss of catalytic activity under standard conditions, and by the metal-ion

 induced rescue of their in vitro strand transfer activity.  Thus, it  is very likely that

the amino acids D528, E531, and D545 in fact represent the metal binding, i.e.

catalytic motif, or parts of the latter, in the Drosophila P-element transposase

protein.

4.5. Cysteine substitution mutations D528Ctnp, E531Ctnp, and D545Ctnp

alter metal ion specificity in in vitro strand transfer

To establish that the D528/E531/D545 amino acid motif is indeed the

metal-dependent active site of the P element transposase protein, the differential
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chemistry of metal-sulfur and metal-oxygen interactions was used in an attempt

to provide further evidence that an essential metal acts in close proximity to the

tDED motif.  Similar metal ion specificity experiments have been done with

ribozymes in which the metal requirements of thiol-containing substrates were

explored (Piccirilli et al., 1993; Sontheimer et al., 1997; Weinstein et al., 1997).

The finding that Mn2+ was able to support the cleavage of the thiol-substituted

RNA substrate far better than could Mg2+, i.e. that a change in metal ion

specificity was observed suggested an interaction between the metal and the

substrate in the active sites of these enzymes.

Inference that the aspartates (D) and glutamates (E) of the DDE triad

function in catalysis by binding a divalent metal ion(s) comes from metal ion

substitution experiments with mutant Mu, Tn7 and Tn10 transposase proteins;

when the D or E residues are mutated to cysteine, the thiophilic divalent metal

ion Mn++ rescues the strand transfer (and cleavage) defects (Junop and Haniford,

1997; Sarnovsky et al., 1996).  To test whether a similar shift in metal-ion

specificity also occurs with P element transposase, cysteine-substitution

mutations of the D528/E531/D545 motif were used in our in vitro strand transfer

assay, supplemented with different metal ions.  C-terminally His-tagged proteins,

expressed in the Baculovirus system, of mutants D528Ctnp, E53Ctnp, and

D545Ctnp were purified via Ni++-NTA-Superflow and DNA-Streptavidin affinity

chromatography, and the 0.3 M KCl  fractions used for in vitro strand transfer.

The D528Ctnp, E53Ctnp, and D545Ctnp-fractions had very low in vitro strand

transfer activity ensuing this mode of purification however (data not shown),

therefore the protein used for the assays presented in this work were solely

purified using Ni-NTA-Superflow chromatography, without the succeeding DNA-

Streptavidin affinity chromatography step.  To ascertain that indeed transposase

and/or the respective mutants were responsible for strand transfer activity, and

activity was not due to other contaminating proteins still left in the relatively crude

fractions, uninfected Sf9 cell extracts were also purified via Ni++-NTA-Superflow,

and used as a negative control.  Figure 6A, lanes 1-5 shows a western blot of the
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study in vitro strand transfer activity.  Western Blot with anti-Kp
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kD are indicated on the left of the panel.  Transposase protein is indi-
cated by an arrow. Approx. 300 ng of protein were loaded in each
lane.
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proteins after Ni++-NTA-Superflow chromatography used for the in vitro strand

transfer assay, demonstrating comparable expression levels.

Conditions for in vitro strand transfer of the cysteine substitution mutants

were kept exactly as for the alanine substitution mutants, and uninfected Sf9 cell

extracts were used as a mock control extract.

Similar to the observations in the experiments using the alanine

substitution mutations, levels of wild-type strand transfer activity (Fig. 6B, lanes

1-9) were higher than those of D528Ctnp (Fig. 6B, lanes 10-18 after overnight

exposure, and Fig. 6C, lanes 1-8 after 3 day exposure) and E531Ctnp (Fig. 6C,

lanes 9-15).  In fact, E531Ctnp showed no activity at all under any of the

conditions tested.  However, levels of strand transfer activity in reactions

containing D545Ctnp were almost as high as wild-type levels under standard

conditions (Fig. 6C, 17), and in reactions preincubated with Mg(OAc)2 and GTP

(Fig. 6B, lane 21).  Additional MgCl2 in reactions containing D545Ctnp seemed to

slightly reduce strand transfer activity with and/or without Mg(OAc)2 and GTP pre-

incubation (Fig. 6C, lanes 18 and 22).  The same effect of MgCl2 was also

observed for the wild-type protein (Fig. 6B, lanes 2 and 7).  MnCl2 reduced strand

transfer activity for both D545Ctnp (Fig. 6C, lanes 19 and 23) and the wild-type

protein (Fig. 6B, lanes 3 and 8).  (Compare also to Fig. 5A, lanes 3 and 8).

Activity for D528Ctnp was seen most prominently without the addition of extra

metal ions, but with or without Mg(OAc)2 and GTP pre-incubation (Fig. 6C, lanes

1 and 5). MgCl2 strongly reduced strand transfer activity for the D528C

transposase mutant, and both MnCl2 and CaCl2 abolished its activity completely

(Fig. 6C, lanes 3-4 and 7-8).   No activity was seen under any conditions for the

uninfected Sf9 cell extract, making it very likely that indeed the transposase

protein was responsible for the strand transfer activity observed in this assay and

not a residual contaminant within the Sf9 cell extracts.
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Figure 6.  Autoradiogram of strand transfer assays performed with wildtype
and D528C, E531C, and D545C transposase extracts.
C-terminally His-tagged Baculovirus-expressed proteins D528C, E531C, D545C
transposase and uninfected Sf9 cell extract were tested in the strand transfer
assay under the same conditions as described in Figure 5 (A and B).  B.
Autoradiogram of wild-type and D528C reactions after 4 h exposure to X-ray film.
Lane 5 is the –GTP control reaction.  C.  Autoradiogram of D528C, E531C,
D545C and mock infected Sf9 cell extract reactions after 3 days exposure to X-
ray film.  Single-end transfer (SET) and double-end transfer (DET) products are
indicated by arrows.  For each reaction, 0.5 pmol of radiolabeled substrate DNA
and approx. 100 ng of respective wt or mutant transposase protein extract were
used for each reaction.

4.6. In vitro DNA cleavage activity is abolished by mutations in P element

transposase DED-motif

Since it was intriguing that D545Atnp, although inactive in vivo, could still

perform strand transfer in vitro, identification of the step at which the mutant

protein inhibited the P element transposition reaction was attempted.  D545Atnp,

tDEDtnp, and wt tnp purified from Drosophila Schneider L2 cells (Fig. 7B). The

detection level for wildtype transposase was consistently 3-5 fold higher than that

of the transposase mutant proteins in the western blots (Fig. 7B).  This could be

due to subpotimal expression of the mutant proteins in Schneider L2 cells, or a

less stringent interaction of the transposase mutant proteins with the antibodies

used for western blotting (anti-KP, anti-RD6, anti-HR2) due to folding defects.

HO.1 fractions of wt, D545A, and tDED were tested in an in vitro cleavage assay

(Fig. 7A).  In the DNA cleavage assay, a plasmid containing a 628 bp P element

is used as the cleavage substrate by the transposase protein in a reaction

containing GTP and Mg++ (Fig. 7A).  Cleavage products, including the excised P

element, were then either run on agarose gels and detected by southern blotting

(Fig. 7C), or used in an LMPCR reaction with primers specific for the excised P

element end (Fig. 8B).  Wild-type transposase yielded a 628 bp fragment in the
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 Figure 7A.  Schematic diagram of in vitro cleavage assay.  Wildtype or
mutant transposase-fractions were incubated for 15 min on ice with pISP-2/Km
indicator plasmid, which contains a non-autonomous 628 bp P element.  The
cleavage reaction was started by the addition of 2mM GTP and 10mM MgCl2 in
HGED reaction buffer, and allowed to proceed for 1 h at 27 0C.  After the reaction
was stopped, the DNA transposition reaction products were extracted and
isolated as described in methods section 3.4.3.  The DNA was electrophoresed
on a 1%TBE agarose gel and transferred to a nitrocellulose membrane.  The
excised P element DNA was detected by probing the membrane with a
radioactive probe corresponding to a portion of the transposon DNA.

cleavage assay with and without the addition of DNA bending HMG1 and 2

proteins (Fig. 7C, lanes 1-5). Neither tDEDtnp nor D545Atnp yielded any

cleavage products (Fig. 7C, lanes 6-9 and 10-13), not even in the presence of

HMG1 and 2, which have been shown in other systems to facilitate the formation

of higher-order nucleoprotein complexes (Grosschedl et al., 1994).

To confirm these observations, the products of the cleavage reaction were used

in an LMPCR assay, which has previously been shown to be a more sensitive

method for the detection of excision products than the Southern Blot technique.

In the LMPCR reactions, two primer pairs specific for the 3’ P element ends

termed A (specific for the free DNA plasmid-ends generated by P element

excision), and B (specific for the excised P element ends) were used (Fig. 8A).

Wild-type transposase yielded LMPCR products for both primer pairs (Fig. 8B,

lane 1 and 6) in the presence of GTP.  It also showed some residual activity in

the –GTP control reaction for primer pair B (lane 7).  This finding could be

explained by the fact that some GTP remains in the transposase fractions after

purification, which can then give a low amount of cleavage activity.  Also, P

element ends yielding LMPCR products detected with primer pairs B might be

more stable because they are bound by transposase and thus protected from

nuclease degradation (lane 2), which is not so in the case of the free DNA

backbone ends, i.e. with primer pair A.  Products in lane 7 appear to run slightly

slower than those in lane 6.  This is a technical imperfection within the native
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Figure 7B.  Western Blot of Schneider L2 cell extract of wildtype tnp, tDED
tnp, and D545Atnp used for the in vitro cleavage assay.  Western Blot of
transposase protein purified from Drosophila cell culture nuclear extract using
heparin agarose chromatography.  Approximately 10 µl of the 0.1 M KCL fraction
(HO.1) is loaded in each lane. Lane 1, wt tnp; lane 2, tDED (D528A/
E531A/D545A) tnp; lane 3, D545A tnp.  Transposase protein is indicated by an
arrow.  C.  Autoradiogram of in vitro cleavage assay.  Heparin-agarose 0.1 M
KCl fractions of wildtype, tDED, and D545A transposase were tested in the
cleavage assay as described above.  Highly purified HMG1(a and b) and HMG2
were added to the reactions as indicated by the panel above the figure.  DNA
from the cleavage assay was electrophoresed, blotted onto nitrocellulose
membrane and probed with a α-32P random-hexamer labeled EcoRI/EagI
pISP2/Km restriction fragment.  Bands were visualized by autoradiography.   The
molecular weight markers are indicated in kilobases on the left side of the panel.
Lane1-5, wildtype tnp; lanes 6-9, tDED (528A/E531A/D545A) tnp; lanes 10-13,
D545A tnp. Lane 2 is the –GTP control reaction.  The 628 bp  excised P element
is indicated by an arrow.

acrylamide gel and has no significance.  Cleavage activity and subsequent ability

to yield LMPCR products was completely abolished for the triple alanine mutant

(tDEDtnp) (lanes 3 and 8), and for D545Atnp (lanes 4 and 9).  This implies that in

the case of the single and triple mutant no overhangs by element excision were

created to which the site-specific PCR primers could have ligated, in other words,

no DNA cleavage has taken place.
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Figure 8A.  Schematic diagram of LMPCR assay .  For the LMPCR (ligation-
mediated polymerase chain reaction) assay, large scale cleavage reactions were
performed (fivefold increase) as described in Fig. 7A., and 1/6 of the total
cleaved substrate ligated to either FM25-2+4E or FM25-2+3F oligonucleotides,
which anneal specifically to either four basepairs of the 3’ P-element overhang or
to three basepairs of the 5’ substrate overhang generated by DNA cleavage,
respectively (Beall and Rio, 1997).  Ligation was allowed to proceed overnight at
160 C, and 1/6 of the reactions then used for PCR with the following primer pairs:
FM25-2+3F and 2946-2972 (A) to generate a 99 bp product, or (B) FM25-2+4E
and 2778-2804 to generate a 135 bp product.  LMPCR products were run on an
8% native acrylamide gel and visualized by ethidium bromide staining.
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Figure 8B.  8% native acrylamide gel of LMPCR products stained with
ethidium bromide .  Only wild-type transposase yields LMPCR products with
both primer pairs A and B as described in Fig. 8A, indicative of functional DNA
cleavage.  Lanes 1, 2, 6, and 7 are the LMPCR reactions performed with wt tnp,
lanes 2 and 7 are (–GTP) control reactions, as indicated by the minus sign
above the lanes.  Lanes 5 and 10 are (– transposase) control reactions of the
LMPCR reaction mix.  Lanes 3 and 8 are reactions performed with the tDED
mutant protein, lanes 4 and 9 those of the D545A single mutant.  Both single
and double mutant protein show no DNA-cleavage-dependent LMPCR activity.



81

 5. Discussion

P elements move via a non-replicative cut-and-paste mechanism that is

catalyzed by an 87 kD P element-encoded transposase protein (Berg and Howe,

1989).  Transposase binds specifically to sequences internal to both ends of the

transposon (Kaufman et al., 1989), and is believed to excise the donor P element

as a double-strand DNA intermediate, and to create an 8-bp target site

duplication upon insertion into its target DNA (Engels et al., 1990; Kaufman and

Rio, 1992; O'Hare and Rubin, 1983).  The P element is unique in that GTP is

required as a cofactor, in addition to magnesium, for activity (Kaufman and Rio,

1992; Mul and Rio, 1997).

The aim of this work was to identify the residues involved in the catalytic

activity of the P element transposase protein. This so-called DDE motif is thought

to coordinate divalent metal ion binding for catalysis of DNA transposition. P

element transposase shows no similarities with the DDE signature of other

transposable elements.

5.1. Identification and characterization of catalytic amino acid residues in

the Drosophila P element transposase protein

Since no region in the Drosophila P element transposase primary amino

acid sequence shows any similarity to other recombinase proteins’ catalytic

motifs (Capy et al., 1996), identification of putative members of the P element

DD(35)E motif was difficult.  In addition, the protein’s C-terminus contains an

especially high density of aspartate and glutamate residues, so no “obvious”

candidates for the motif could be assigned.  Alignments were proposed on the

basis of hydrophobic residues found around the DD(35)E motif in retroviral

integrases, and these residues among with others identified by partial sequence

homology with a DDE motif alignment by Baker and Luo, 1994, employed for
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point mutational analysis.

A series of seven transposase double mutants and five transposase single

mutants was generated, changing either an aspartate (D) or a glutamate (E)

residue, or both into alanine (A), and these mutants were tested for in vivo

excision activity (Fig. 1A).  All alanine substitution mutants shown in, Fig. 1A

boxed in blue, red and green were tested for in vivo excision activity as described

in Fig.1B.  (All figures referred to in the discussion section are pertaining to

section III. unless otherwise noted). The in vivo excision assay was performed

four independent times with each mutant or mutant pair.

There were three double mutants among the mutants tested that severely

reduced in vivo activity (Fig. 2B).  When singled out, residues D528, E531, and

D545, when mutated to alanine, almost completely abolished in vivo excision

activity (activity less than 1% as compared to wild-type activity set at 100%).  In

addition, the double mutant D444A/E478A also severely reduced activity to 5.8±

2.0 % of wild-type activity (data not shown).  These two residues were not

considered for the P element catalytic motif however, since all catalytic

aspartates and glutamates previously identified (Baker and Luo, 1994; Bolland

and Kleckner, 1996; Engelman and Craigie, 1992) resulted in complete or almost

complete abrogation of in vivo activity (less than 1% of wild-type activity).

5.2. In vitro strand transfer activity is greatly reduced by mutations

D528A, E531A, and D545A in the potential catalytic motif of P

element transposase

In order to test whether the loss of in vivo activity by the substitution

mutations D528Atnp, E531Atnp, and D545Atnp could be assigned to a specific

step in the in vitro activity assays, in vitro strand transfer and DNA cleavage

assays were performed with wild-type and mutant transposase proteins.  Equal

amounts of Baculovirus-expressed proteins were used for in vitro strand transfer,

and protein purified from stable L2 Schneider cell lines for in vitro cleavage.
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Unexpectedly, wild-type transposase showed slightly less in vitro strand

transfer activity when standard reactions were supplemented with extra MgCl2

(Fig. 4B, compare lanes 1 and 4).  A possible explanation for this finding could be

that excess salt from the MgCl2 confines normal (unsupplemented) levels of

strand transfer activity.  Transposase mutants D528A and E531A abolished in

vitro strand transfer activity under standard conditions, i.e. when no additional

metals were added to the reactions (Fig. 5B, lanes 1 and 9).  Surprisingly,

D545Atnp still showed in vitro strand transfer activity under standard conditions,

albeit at reduced levels when compared to wild-type (Fig. 5B, lane 17, compare

to Fig. 5A, lane 1).  When Mg++, Mn++, and/or Ca++ (20 mM final concentration)

were added to the reaction mixtures containing wild-type or mutant transposase

protein, the most prominent effect was seen in the case of Mn++ addition: when

MnCl2 was present in the strand transfer reaction, wild-type activity was

completely abolished (Fig, 5A, lane 3). However, D528Atnp and E531Atnp

activity were partially restored (Fig. 5B, lanes 3,7,11, and 15) under these

conditions.  Similar observations have been made by Baker and Luo, 1994,

where elevated levels of Mn++ (5-40 mM) were capable of restoring activity to

asparagine substitution mutants of the MuA catalytic DDE motif.   A plausible

explanation for the strand transfer defect of the alanine substitution mutants of P

element  transposase could be that the loss of a negative charge at each position

compromises the interaction of the protein with the divalent cation essential for

catalysis, and could alter the shape of the metal binding-pocket or cleft.  The

ability of Mn++ to activate mutant protein activity suggests that the absence of

activity seen under standard conditions (i.e. 5 mM Mg++) may be due to poor

association between P element transposase and this divalent metal ion, and that

this situation can be partially reversed by substituting for a different metal with a

better “fit” into the catalytic pocket, i.e. a different, in this case bigger hydrated

ionic radius (hydrated ionic radius of Mn++ is 0.80; that of Mg++ is 0.66) (Hecht,

1996).

Manganese-ion addition seemed to slightly reduce D545A strand transfer
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activity when compared to activity of the standard reaction conditions without

metal addition (Fig. 5B, compare lanes 19 and 17, 23 and 21).  The “behavior” of

the D545A mutants with or without metal addition more closely resembled that of

the wild-type than that of the other two mutant proteins discussed above.

A very prominent effect was also seen with the E531A mutant when

reactions were supplemented with CaCl2 (Fig. 5B, lane 12), which increased

overall levels of strand transfer, especially those of single-ended strand transfer.

Analogous to the reasoning adapted for Mn++ activation of the mutant

transposase proteins above, the change from an acidic to a neutral amino acid

(E→A) at position E531 might induce a change in the protein’s conformation, so

as to enable CaCl2 to bind more efficiently.  Contrarily, CaCl2  is unable to bind to

the protein in its wild-type configuration (Fig. 5A, lane 4).  Again, the difference in

metal-binding could be caused by access limitations posed by the transposase

protein’s catalytic pocket on the metal-ion size: Ca++ has a bigger hydrated metal

ion radius (0.99) than Mg++ (0.66) (Hecht, 1996). Conceivably, CaCl2 can only

access the catalytic pocket of the mutant E531A, but not that of the wild-type

transposase protein.  Likewise, Mg++ can no longer activate strand transfer of

E531A (Fig.5B, lane 10), because of its suboptimal fit into the mutant protein’s

metal binding cleft.  Moreover, the observation that CaCl2 activates strand

transfer of the E531A mutant to a greater extent without GTP preincubation (Fig.

5B, lane 12) than with GTP preincubation (Fig. 5B, lane 16), further argues for a

conformational change within the mutant transposase protein.

These results strongly suggest that the amino acids D528, E531, and D545

in fact are, or are part of, the catalytic metal binding domain of the P element

transposase protein, since the alanine substitution mutants of this motif show a

profound effect on metal-binding and subsequent ability to activate in vitro strand

transfer.
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5.3. Mutations D528Ctnp, E531Ctnp, and D545Ctnp alter metal ion

specificity in in vitro strand transfer

In an attempt to provide further evidence that an essential metal acts in

close proximity to the tDED motif, the differential chemistry of metal-sulfur and

metal-oxygen interaction was used.  Baculovirus-expressed transposase

substitution mutants D528C, E531C, and D545C were tested in in vitro strand

transfer assays for possible metal-induced restoration of activity.  It has been

demonstrated previously in studies on metal ion catalysis during splicing of pre-

messenger RNA that substitution of an oxygen leaving group by sulfur provides a

means to test metal ion-leaving group interactions because various metals differ

in their ability to coordinate sulfur (Piccirilli et al., 1993; Sontheimer et al., 1997;

Weinstein et al., 1997).  Mn++ readily accepts sulfur as a ligand, whereas Mg++

does not.  Thus, a switch in metal specificity from Mg++ to Mn++ following sulfur

substitution was seen as evidence of a direct metal ion-leaving group interaction.

Transposase substitution mutants D528C, E531C, and D545C showed no

restoration of strand transfer activity when standard reaction mixtures were

supplemented with Mn++ (Fig. 6B).  In fact, addition of any extra metal inhibited

catalytic activity of D528Ctnp (Fig. 6B, lanes 2-4 and 6-8), and no activity at all

was seen for E531Ctnp under any conditions.  Cysteine substitutions at these

two amino acid residues could have caused a conformational change in the

protein’s catalytic metal binding pocket as discussed above for the alanine

substitution mutants, resulting in a configurational size restriction of the pocket.

Conceivably, the smaller size of the metal binding pocket could then enable

some Mg++ binding with D528Ctnp (Fig. 6B, lanes 1 and 5), but no metal-ion

access at all with E531Ctnp (Fig. 6b, lanes 9-16).  A further explanation for the

substantial difference between the ability to rescue strand transfer of the E531A

mutant (Fig.5B, lanes 11-16) and the inability to do so of the E531C mutant

under any conditions (Fig. 6B, lanes 9-16) could be that this residue, in addition

to its function in catalytic metal-ion binding, could play a substantial role in the
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overall formation and stabilization of the protein’s tertiary structure.  In the wild-

type protein, the negatively charged E531 residue could thus constitute a pivotal

amino acid for appropriate folding of the transposase protein into its active

conformation.  It could also be important for the stabilization of the adjacent

leucine-zipper motif (amino acids 497-525), which is potentially involved in

mediating multimerization of the transposase protein.  Thus, if E531 is mutated to

cysteine, it is no longer able to stabilize the protein’s active configuration or, even

more erroneously, possibly contacts random amino acids within the protein and

stabilizes an inactive configuration and/or multimer.

D545Ctnp showed highest levels of activity under standard conditions,

without extra metal (Fig. 6B lanes 17 and 21).  Addition of Mg++ slightly reduced

strand transfer activity, however, addition of Mn++ completely abolished strand

transfer when reactions were preincubated with Mg(OAc)2  and GTP, and

severely reduced activity when Mg(OAc)2  and GTP were added after

preincubation (Fig. 6B, lanes 23 and 19).  Mg++ in form of Mg(OAc)2 had to be

added to all reaction mixtures to ensure accurate GTP activity, which relies on

the presence of Mg++.

A possible explanation for the inability of Mn++ to rescue strand transfer

activity as anticipated could be, that the thio-substituted catalytic site still binds

Mg++, but the bound metal ion is no longer effective in catalysis.  Similar

observations have been made by Weinstein et al.,1997, in experiments where 3’-

(thioinosylyl) -(3’→5’)-uridine substrates were used in a reaction that emulates

exon ligation: Under conditions were MgCl2 was used as a competitor in

reactions with the thio-substituted catalytic site, the Mn+ +-enhanced

transesterification reaction was inhibited by Mg++.

To sample a range of thiophilic metals (and Lewis acids), strand transfer

reactions with the transposase cysteine substitution mutants were also

conducted preincubating with Co++, Cd++, and Zn++ in combination with 5 mM

Mg(OAc)2 .  In vitro strand transfer reactions were performed in buffer containing

20 mM HEPES-KOH at pH 7.6 with 20 mM and 10 mM final metal concentration.
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No restoration of strand transfer activity was seen with Co++, Cd++, and Zn++ under

these conditions (data not shown).

In concordance with experiments by Weinstein et al.,1997, who had tested

different pH conditions in order to optimize their assays, in vitro strand transfer

with the transposase cysteine substitution mutants was carried out at different pH

ranges:  reaction buffer containing 20 mM MOPS at pH 6.5, and buffer containing

20 mM Tris at pH 8.5, respectively, were used, and reaction mixtures of both

buffer conditions supplemented with 10 mM final concentration of Mg++, Mn++,

Ca++, Co++, Cd++, and Zn++ in the preincubation mixture.  No rescue of strand

transfer was observed under these conditions.  Strand transfer reactions were

also carried out at different DTT concentrations (5 – 20mM final concentration) to

rule out the possibility that proteins were not in a reduced state, which is very

likely to be necessary for their respective activities.   Different DTT

concentrations had no effect on overall activity levels, however (data not shown).

Since the strand transfer reaction is performed at ≤ 35 mM KCl, and all

supplementary metals had been used in form of chloride salts, i.e. MgCl2, MnCl2,

CaCl2, CoCl2, CdCl2, and ZnCl2, inhibition of strand transfer activity by excess salt

was considered.  In vitro strand transfer reactions were therefore carried out

supplemented with 20 mM Mg(OAc)2, Mn(OAc)2, and Ca(OAc)2  , however, no

rescue of activity was observed other than that previously seen with D545Ctnp

and Mg++ (data not show).

Thus, activity of substitution mutants D528C, E531C, and D545C could

not be rescued by addition of thiophilic metal ions under any of the conditions

tested.  However, successful rescue by Mn++ of a cysteine substitution mutation

in recombinase catalytic motifs has only been reported once in the literature by

Sarnovsky et al., 1996: Cysteine-substitution at the D114 position of TnsA of the

Tn7 transposon showed Mn++--specific rescue of 5’ cleavage activity.  A weak

case is also made by Junop and Haniford, 1997, who mention Mn++-specific

rescue of cysteine substitution mutations of the putative DD(35)E motif of Tn10,

however, these observations are quoted as unpublished.   Therefore Mn++-rescue
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of point-mutated cysteine residues in a putative DDE motif can not be considered

the unconditional test for the identification of a recombinase catalytic triad.

A possible explanation for the inability of the cysteine substitution mutants

to rescue strand transfer activity could be that there might not be an essential

interaction between a metal ion and the catalytic domain in the strand transfer

step of transposition: metal binding might only be crucial for the target capture

and cleavage steps of the transposition reaction, but not substantial for the

ensuing strand transfer step.  To elucidate this hypothesis, cysteine substitution

mutants could be tested for restoration of in vivo excision, or in vitro cleavage

activity in reactions supplemented with Mn++ or other thiophilic metals.

A further method to identify and/or confirm metal binding sites within the

transposase protein would be the utilization of Fenton-chemistry.  This technique

makes use of the ability of Fe++ to functionally or structurally replace Mg++ at ion-

binding sites and to generate short-lived and highly reactive hydroxyl radicals

that can cleave nucleic acid and protein backbones in spatial proximity of these

ion-binding sites (Berens et al., 1998; Tullius et al., 1987).  Such cleavage was

demonstrated previously for malic enzyme from pigeon liver (Chou et al., 1995;

Wei et al., 1995; Wei et al., 1994), glutamine synthetase from E. coli (Farber and

Levine, 1986), and the Tet repressor (Ettner et al., 1995).  This method was also

successfully employed to map the catalytic residues in the active center of the

RNA polymerase β’- subunit (Zaychikov et al., 1996).  The β’- subunit was found

to be cleaved at the conserved motif (NADFDGD), and substitution of the three

aspartate residues in this motif created a catalytically inactive mutant that failed

to support Fe++-induced cleavage of DNA or proteins, although it could still bind

promoters and form open complexes (Zaychikov et al., 1996).

5.4. Transposase mutants tDED (D528A/E531A/D545A) and D545A

abolish in vitro DNA cleavage activity

Since it was intriguing that D545Atnp, although inactive in vivo, could still
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perform strand transfer in vitro, identification of the step at which the mutant

protein inhibited the P element transposition reaction was attempted.  A likely

hypothesis was that D545A blocked the DNA cleavage step, but given an

artificial oligonucleotide mimicking an excised P element end, could still perform

strand transfer with reduced levels in vitro.  0.1 M KCl heparin-agarose fractions

of wild-type and mutant (D545Atnp, tDEDtnp) transposase protein purified from

Drosophila cells L2 was tested in in vitro cleavage.  As expected, only the wild-

type protein showed cleavage activity (Fig. 7C), and not even the addition of

DNA-bending HMG1 and 2 protein to the reactions containing mutant (D545Atnp,

tDEDtnp) transposase protein enabled cleavage activity to the single or the triple

mutant. HMG 1 and 2 (high mobility group proteins 1 and 2) have been shown to

enhance cleavage activity in other recombination systems by their ability to bend

and to modulate DNA (Sawchuk et al., 1997; Van Gent et al., 1997).

To further confirm these results, LMPCR reactions were performed.

Cleavage activity and subsequent ability to yield LMPCR products was abolished

for the triple alanine mutant (tDEDtnp) (Fig. 8B, lanes 3 and 8) and for D545Atnp

(Fig. 8B, lanes 4 and 9).  Thus, it seems probable that the alanine substitution

mutation D545A abolishes or severely reduces cleavage activity, which leads to

a complete loss of activity in vivo.  Given an artificial P element end in an in vitro

reaction, however, it can still perform some, albeit reduced, strand transfer.

5.5. Conclusion

Unlike most of the transposase and integrase proteins in which the

catalytic triad conforms to the DD(35)E consensus, the P element catalytic motif

as determined thus far appears to be DE(15)D.  Hence, the spacing between

D528 and E531 is very narrow, which is not observed in any other recombinases

analyzed so far.  However, in the caboxylate-chelated two-metal-ion catalytic

mechnism originally proposed for the 3’ to 5’ exonuclease of Klenow fragment

(Beese and Steitz, 1991; Beese and Steitz, 1993) and later extended to the
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ribozymes (Steitz and Steitz, 1993), and RNAse H (Davies et al., 1991; Yang et

al., 1990a), the metal-ion coordinating motif (D355, E357, D424, D501) of the 3’

to 5’ exonuclease activity of E.coli DNA polymerase (Beese and Steitz,1991) also

contains an aspartate and a glutamate in very close proximity to each other

(D355 and 357).  Similar mechanisms of metal-ion coordination would be feasible

for the hydrolysis as well as the polynucleotidyl transfer on both RNAs and

DNAs.

A further discrepancy between the putative P element catalytic DE(15)D

and the “normal” DD(35)E motif is the amino acid spacing between the middle

and last catalytic residue of the triad.  However, the perfect DD(35)E spacing

originally identified in retroviral integrases is, in fact, not always entirely

conserved in other recombinational systems:  where TnsA (D114, E149) and

TnsB (D273, D361, E396) transposase proteins of the Tn7 system do comply to

the DD(35)E spacing (Sarnovsky et al., 1996), transposases of Tn10 (D97, D161,

E292) (Kennedy and Haniford, 1996), and Mu (D269, D336, E396) (Baker and

Luo, 1994; Krementsova et al., 1998) do not.  As discussed previously, P

element transposase also fails to show any significant homologies in putative

alignments with other recombinase-family members.  Therefore a divergence

from the common, catalytic motif spacing would almost be anticipated for this

protein.

It was also surprising that the three catalytic residues for the transposase

protein are all present in exon 3, which is present in the catalytically inactive 66

kD transpositional repressor protein (see Introduction, Fig. 1C).  The C-terminus

(exon 4) must contribute to the catalytic function of transposase by a yet

unidentified mechanism.  Exon 4 could be necessary for complex assembly of

transposase, conceivably providing bridging interactions between the different

monomers required to assemble the active multimeric form of the protein.

Moreover, the protein’s C-terminus could be needed for appropriate protein

folding into its active configuration, or could be involved in positioning of the

active protein multimer on the DNA substrate, providing essential binding sites
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for accurate DNA-protein interactions.  Similar observations have been made

with bacteriophage Mu transposase, where the core domain alone is catalytically

inactive.  This was shown to be due at least in part to the fact that MuA is only

active when it is assembled into a higher order protein-DNA complex (Lavoie and

Chaconas, 1996; Mizuuchi, 1992b).  The C-terminal domain of MuA appears to

contain an additional component of the active site: a short peptide corresponding

to amino acids 575-600 has been shown to possess nonspecific endonuclease

activity in the presence of Mg++ (Wu and Chaconas, 1995).  This part of the

protein was shown to be critical for the chemical steps of the normal reaction,

and it apparently functions in concert with the acidic residues in the core domain

of another MuA monomer in the active higher order protein-DNA complex (Aldaz

et al., 1996; Yang et al., 1996).

5.6. Outlook

After completion of the in vivo and in vitro experiments with the

D528/E531/D545 residues described in this thesis, additional in vivo experiments

were performed using the D444A and the E478A mutants previously disregarded

as being putative members of the catalytic motif of P element transposase.  Very

surprisingly, it was demonstrated that the D444A mutant almost completely

abolished in vivo excision activity [3.1±2.1], whereas excision levels of the E478A

mutant were equal to, or higher than those of the wild-type protein.  This led to

the hypothesis that D444 could also be a part the metal-coordinating, catalytic

motif of the P element transposase. Together with the previously identified

D528/E531/D545 triad, this acidic residue would constitute an uncommon, four-

member type catalytic transposase motif D(84)D(3)E(15)D .  Four member

catalytic metal binding motifs have been identified in E.coli DNA polymerase

(Beese et al., 1993), and in the E.coli RuvC resolvase (Ariyoshi et al., 1994) of

the polynucleotidyl superfamily, but not any transposase protein investigated to
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date.

Whether D444 is a member of the metal-coordinating motif or not, the

catalytic residues of the P element transposase determined in this thesis seem to

diverge from the usual spacing and/or number of catalytic residues constituting

the metal-binding motifs of other known transposases.

Final evidence for the composition and organization of the P element

catalytic core will require determination of the protein’s 3-D structure.  This poses

a complex task, however, since sufficient amounts of the 87 kD protein are

difficult to purify, especially because P element transposase is believed to exist in

diverse phoshorylation forms, each of which would have to be separated from

one another prior to any crystallization attempts.

Once crystallization of P element transposase is successful, it will be very

interesting to determine the proteins precise metal-coordination mechanism, as

well as its evolutionary relationship to other recombinases.
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7. Summary

Drosophila 2.9 kb P element contains four exons that encode several

products: the full length 87 kD transposase, the 66 kD repressor protein, and a

heterogeneous class of internally deleted elements, some of which appear to

encode truncated proteins with distinct biological activities, such as the KP

element.  P elements move via a non-replicative cut-and-paste mechanism that

is catalyzed by the 87 kD P element-encoded transposase, which is expressed

solely in the germ line.

The goal of this thesis was to identify the amino acid residues that make up

the catalytic motif of the Drosophila transposase protein.  This work describes the

isolation of P element transposase mutants and the characterization of single-

amino acid substitution mutations that render P element transposase specifically

defective in donor cleavage and strand transfer.

Three residues (D528, E531, and D545) were identified in an in vivo excision

assay, all of which almost completely abolished transposase activity.   The

involvement of these residues in transposase catalytic activity was further

confirmed in three independent activity assays: in vitro strand-transfer, in vitro

cleavage, and in vitro LMPCR.  In the in vitro strand transfer assay, mutations of

the D528 and E531 to either alanine or cysteine respectively, greatly reduced

activity and significantly altered metal-binding specificity.  Mutations D545Atnp

and D545Ctnp only slightly altered in in vitro strand transfer activity, however.  To

elucidate which step of the P element transposition reaction D545Atnp inhibited,

the single mutant protein was tested in in vitro cleavage and LMPCR assays,

together with the wild-type and the triple mutant protein (tDED). Both the single

and the triple mutant completely abolished in vitro cleavage and LMPCR activity.

It was concluded that the residues D528, E531, and D545 are, or are a part of,

the Drosophila P element catalytic motif and presumably participate in

coordinating the divalent metal ion required for catalysis.
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7.1. Zusammenfassung

Das mobile P Element der Fruchtfliege Drosophila enthält vier Exons, die

zur Kodierung dessen verschiedener Genprodukte notwendig sind: dem

vollständigen 87 kD Transposase Protein, dem 66 kD Repressor Protein, sowie

einer heterogene Subklasse von Proteinen mit internen Deletionen.  P Elemente

verändern ihre Position im Genom durch einen “cut-and-paste’” Mechanismus,

indem das DNA Element an einer Stelle des Genoms ausgeschnitten (Exzision),

und and einer anderen Stelle wieder integriert (Integration) wird.  Sowohl Exzion

als auch Integration werden durch das nur in Keimzellen exprimierte

Transposase Protein katalysiert.

Ziel der vorliegenden Arbeit war die Isolierung und Charakterisierung von

Transposase-Punktmutanten, die einen spezifischen Defekt in der Exzisions-und

Integrations-Aktivität des Transposase Proteins aufweisen.  Mit Hilfe eines in vivo

Aktivitäts-Tests wurden drei Aminosäurereste (D528, E531 und D545)

identifiziert, deren Mutation jeweils eine Inaktivierung des Proteins bewirkten.

Die Wichtigkeit dieser Mutanten für die katalytische Aktivität des Transposase

Proteins wurde anhand von drei weiteren in vitro Aktivitäts-Tests, dem “strand

transfer-”, dem “cleavage-” und dem “LMPCR-assay” bestätigt.  Dabei konnte

gezeigt werden, daß Mutationen der Aminosäurereste D528 und E531 zu Alanin

oder Cystein die in vitro Strand Transfer-Aktivität (Integrationsaktivität) im

Vergleich zum Wildtyp deutlich verringerten, und die Metallbindungsspezifität

stark veränderten.  Mutationen des Aminosäurerrestes D545 zu Alanin oder

Cystein hatten nur einen schwachen Einfluß auf die Aktivität und die

Metallbindungsspezifität im “strand transfer” Aktivitäts-Test.  Um festzustellen,

welchen Schritt im Exzision/ Integrationsmechanismus des P Elements die

D545A Mutante beeinflusste, wurde das gereinigte Protein dieser

Einfachmutante neben den Proteinen des Wildtyps und der Dreifach-Mutante

tDED (D528A/E531A/D535A) in zwei in vitro DNA-Exzisions Aktivitäts-Test

getestet.  Sowohl die Einfach- als auch die Dreifach-Mutante zeigten eine völlige
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Inaktivierung der in vitro DNA Exzisions-Aktivität.

Aus diesen Ergebnissen wurde gefolgert, daß die Aminosäuerereste D528,

E531 und D545 entweder das vollständige katalytische Motiv des P Element

Transposase Proteins, oder zumindest Teile davon ausmachen, und folglich an

der Koordinierung der zur Katalyse notwendigen, divalenten Metallionen beteiligt

sind.



107

8. Addendum

Abbreviations

A Ampère
APS Ammoniumpersulfate
ATP Adenosine-Triphosphate
BSA Bovine Serum Albumin
bp Basepairs
cpm Counts per minute
dH20 Double distilled H20
ds DNA Double-stranded DNA
ss DNA Single-stranded DNA
dNTP Desoxynucleotidetriphosphate
DTT Dithiothreitol
h Hours
HIV Human Immunodeficiency Virus
HEPES N-(2-Hydroxyethyl)-Perazine-N’-2-

ethane-sulfonic acid
IRBP Inverted repeat binding protein
kbp Kilobasepairs
kDa Kilodaltons
lac operon Lactose operon
LTR Long terminal repeat
mcs Multiple cloning site
min Minutes
µl Microliter
MLV Murine Leukemia Virus
MOPS Morpholinopropanesulfonic acid
PMSF Phenylmethylsulfonylfluoride
Mr Relative Mass
PBS Phosphate-buffered Saline
RNA Ribonucleic Acid
RSS Recombination signal sequence
RSV Rous Sarcoma Virus
rpm Rotations per Minute
SDS Sodium Dodecyl Sulfate
sec Seconds
TBS Tris-buffered Saline
TdT Terminal desoxytransferase
TEMED N-N-N'-N'-Tetramethylethylene-diamine
tnp Transposase
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tDED Triple transposase mutant
(D528A/E531A/D545)

U Unit (of enzyme activity)
V Volt
vol Volume
w Weight
wt Wild-type
xg Relative Centrifugal Force
3-D Three dimensional
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