
SERVER-SIDE NAVIGATION SERVICE BENCHMARKING
TOOL

Martin Golasowski, Kateřina Slaninová, Jǐŕı Ševč́ık, Vı́t Ptošek, David Vojtek

IT4Innovations
VŠB - Technical University of Ostrava, Ostrava, Czech Republic

martin.golasowski@vsb.cz, katerina.slaninova@vsb.cz, jiri.sevcik@vsb.cz,

vit.ptosek@vsb.cz, david.vojtek@vsb.cz

Abstract: Convenient access to a complex benchmarking and monitoring tool was the main
motivation for implementation of the proposed benchmarking tool. This paper provides a
brief summary of its design and implementation. Its main purpose is to test an experimental
server-side navigation service which has to comply to a multi-criteria service level agreement.
The service is deployed on a heterogenous high performance computing infrastructure which
is monitored by the tool. Consistent test environment is provided by the tool for transparent
analysis and optimization of the service performance.

Keywords: navigation, routing, benchmark, high performance computing

1 Introduction

There is a significant demand for new forms of vehicle routing algorithms. For example, Prob-
abilistic time-dependent vehicle routing problem which could use precise route computation as
an input was proposed in [1]. In the context of smart city, large number of routing requests
can be issued in a very short time while there can be periods with very low or nonexistent
traffic. Service which provides such functionality has to be flexible enough in order to satisfy
the dynamic load while maintaining a given service level agreement (SLA).

These services are usually deployed on a heterogenous architecture consisting for example
of both virtual machines and high performance computing (HPC) nodes. The SLA therefore
consists of multiple criteria, such as response time or resources budget. These criteria can
change over time. Maintaining the SLA over time is possible by using technologies from the
ANTAREX project [10], such as the autotuning framework and a domain specific language.

In order to design and develop such a service a proper benchmarking and monitoring tool has
to be provided. The goal of the tool is to provide users a way how to test the mentioned multi-
criteria SLA against a given set of parameters of the service and its underlying technologies.
The tool should provide a consistent and robust benchmarking environment which should be
used in a transparent way for optimizing the service. Simultaneously, the tested service is
provided as a black box and the tool only exposes only a subset of the service parameters
which are relevant for testing. The tool can be used to obtain unified presentation of the test
results, which is convenient for comparison of different parameter settings of the service.

The service provides navigation on a graph representation of the road network. It finds a
path between a pair of two nodes or between a set of waypoints according to a selected criteria
(speed, road/vehicle type, etc.). The performance metric of the service in our case is request
throughput per second and average time per request. The input data set consists of a set of
origin/destination pairs and parameters of the routing pipeline (PTDR, sample count, routing
algorithm type, etc.). The service implements a subset of the HTTP communication protocol
and uses simple JSON-based data structures.

1.1 Related work

There is an increased demand for architectures following the Anything as a Service (XaaS)
paradigm [4]. Even though there are many robust and complicated protocols for providing
such services; APIs based on top of the HTTP protocol are quite popular these days.

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

This is the post peer-review accepted manuscript of: GOLASOWSKI, Martin, Kate ina SLANINOVÁ, Ji í ŠEV ÍK, Vít PTOŠEK a
David VOJTEK. Server-side navigation service benchmarking tool. Slovenian Society Informatika, 2017.
The published version is available online at: http://fgg-web.fgg.uni-lj.si/~/sdrobne/sor/SOR'17%20-%20Proceedings.pdf
© 2017 Lidija Zadnik Stirn – Mirjana Kljaji Borštnar – Janez Žerovnik – Samo Drobne

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/161968048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Any service provided over a computer network needs to be properly tested in order to
determine possible performance bottlenecks in the architecture or possible errors in its output.
Obtaining an energy efficient operating mode of the service is also a significant factor in testing,
especially in big data centres [2, 3]. Demand for energy efficient adaption of this paradigm on
powerful computing nodes is getting more significant with the overlap of cloud and traditional
high-performance computing.

There are many benchmarking tools for HTTP-based services implemented for various
platforms. They are usually implemented as a stand-alone terminal applications [5, 6]. Input
specification is often realised by a template of the request or by a set of pre-defined requests
to be sent. Some of the benchmarks provide more comprehensive statistical evaluation of the
test, however, the output is often in plain text form, which is harder to parse and prone to
errors. On the other hand, there are comprehensive tools, such as Locust [7], which provides
all-in-one solution together with the analysis and visualisation front-end and result database.
Such tools offer many features, which are unnecessary for our use-case and can be hard to
alter and optimise. Therefore, we propose a custom light-weight solution which is designed for
services running on heterogenous HPC infrastructure.

Next Section 2 is focused the benchmarking process including an example of the server-
side navigation service benchmark used within the ANTAREX project [10]. The benchmark
implementation is described in Section 3 and the asynchronous back-end which provides an
execution and management of large number of small tasks follows in Section 3.2. Section 4
then concludes the paper.

2 Benchmarking Process

Benchmarking can be described as a process in which performance of a system is evaluated on
a set of its parameters and input data. Performance of the system is then evaluated by relevant
set of metrics (throughput, load, energy consumption, etc.). Subject of the testing is a relation
between the parameter values and the selected metrics. Tested parameters can be for example
I/O strategy, memory access pattern or various source code optimizations. The system is tested
against a set of the parameter values while input data and run-time environment remain static.

Crucial property of a good benchmark is consistency. Individual tests share the same
conditions through the entire test. It is often hard to assure completely consistent conditions
for all the tests in real-world scenarios (for example in multi-task operating systems), therefore
influence of the external factors should be kept to a sane minimum. For example, unnecessary
services should be turned off as well as scheduling of maintenance tasks (backup, logging, etc.),
in order to minimise performance fluctuation of the target hardware platform.

2.1 Server-side Navigation Benchmark

In our case, the subject for benchmarking is the server-side navigation service. Core of the
service is the navigation pipeline which is deployed on a HPC cluster. This design allows flexible
optimization of the pipeline according to various criteria to correspond with the current SLA.

Parameters of the benchmark are divided into three parts.

1. Data sets - type, size

2. Static routing - routing algorithm, route type

3. Probabilistic time-dependent routing - enabled, number of samples, autotuning

strategy

The data set of origin-destination point pairs is sent to the service from a large number of
concurrent processes. This approach allows us to simulate a large number of concurrent users

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

Figure 1: HPC Routing Benchmark Dataset

of the service. The service then logs each individual requests. A benchmark is defined by the
time-frame between sending the first pair of the input data to handling reception of a response
for the last pair of the input data. The metrics are computed from the service log within the
time-frame. Total amount of the requests sent is controlled by initial size of the selected data
set and its size parameter, which can be used to artificially inflate the number of sent requests
and to create specialized use case (such as smart city).

2.2 Data Sets

The points in current version of the benchmark are selected from the region of the Czech
Republic, see Figure 1. The region is divided to 77 units according to the LAU1 (Local
Administrative Units Level 1) division, which corresponds to individual districts of the Czech
Republic. Each district has its administrative center which usually corresponds to its biggest
city. There are 72 district towns as some of districts share one district town. There are 10
randomly selected points, that correspond to nodes of a routing graph, inside each of the 72
district cities. The resulting point data set is stored in a PostgreSQL database with a spatial
extension PostGIS as a basic data set. Source data for the basic dataset are obtained from the
Open Street Map project (OSM)[11].

Since the source data for the routing graph are updated regularly, the IDs of the graph nodes
(the selected points of the basic dataset), can change. Therefore, it is practical to generate
derived data sets only by a database query stored as a procedure or materialized view. The
data sets are versioned according to the current processed OSM data.

In the current version of the benchmark, there are three data sets, defined by their size and
type of the location:

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

Figure 2: Overview of the application architecture

• Smart city - points within single LAU (city, 90 points)

• Transit - points between three main cities (Praha, Brno, Ostrava, 300 points)

• All - all 72 LAU1 regions (250 000 points)

3 Benchmark Application

The application design is roughly divided into several parts. The monitoring and benchmark-
ing front-end is the first part while the asynchronous task and database back-end is the second
part. Overview of the application architecture is in the Figure 2. Web applications are in-
herently synchronous and stateless which makes them unsuitable for our purposes. The user
front-end should only serve as a tool for control and monitoring of the benchmarking process.
Therefore, an asynchronous approach has to be implemented, such that the process execution
is independent on the user requests to the application front-end.

3.1 Implementation

The frontend is implemented in a popular Python web framework Flask [8]. In the context
of benchmarking, it provides an user interface for setup, execution and presentation of the
benchmark results. The main page contains a form for submitting the benchmark task and
a table of results of the past runs. Detail of a particular benchmark run can be accessed
from the results table (Figure 3). The detail presented in Figure 4 contains information about
parameters of the viewed run and its results. In this particular case, the presentation of the
results is split into data about the run itself and several metrics computed from the service log.
Content of the entire page is generated on the server side directly from the service logs. This
approach allows fairly easy extension of the analysis with new types of metrics.

3.2 Backend

The asynchronous back-end of the application is implemented with the help of the Celery
framework [9]. It provides a convenient way of execution and management of large number of
small tasks asynchronously and in a distributed fashion. The client part of the framework is

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

Figure 3: Interface for parameter specification

Figure 4: Visualisation of the benchmark result

used by the front-end to create the benchmarking task and pass the parameters. The Celery
then uses a type of in-memory concurrent storage (such as REDIS or RabbitMQ) to distribute
the task across available worker processes. The worker processes communicate with the client
through the in-memory storage, which is also used for storing the intermediate results. This
mechanism is very useful in our case as it can be used to launch a large number of tasks
which are processed by a pool of workers running on a HPC cluster. Celery takes care of the
task scheduling itself and the benchmarking pipeline is implemented using the available task
synchronization constructs.

The individual service requests are executed in a celery worker tasks. Each request is sent
to the service in a blocking call to HTTP requests library and the result of the call is stored in
the in-memory database.After all requests are sent, all results are passed to a finalization task,
which computes aggregated statistics and stores them in the SQL database for presentation on
the front-end.

The worker processes are deployed on a HPC cluster to ensure proper saturation of the
service in order to maintain consistency of the benchmark.

4 Conclusion and future work

The authors presented benchmarking application which is used for transparent testing and
further optimization of a server-side navigation service. The application implements an initial
version of a consistent benchmarking environment. It can be further extended for testing other
network-based services. Current version is used for testing of the autotuning framework and
other tools developed within the H2020 project ANTAREX as well as for performing acceptance

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

tests of the navigation service. It will be also used for testing of various types of navigation
algorithms for development of vehicle routing problem algorithm.

In the next version, we plan to implement another type of the test, which will bypass the
network connection handling layer of the service and test only the routing pipeline running on
the cluster.

5 Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the Na-
tional Programme of Sustainability (NPU II) project ”IT4Innovations excellence in science
- LQ1602”, by the IT4Innovations infrastructure which is supported from the Large Infras-
tructures for Research, Experimental Development and Innovations project ”IT4Innovations
National Supercomputing Center LM2015070”, and by ANTAREX, a project supported by
the EU H2020 FET-HPC program under grant 671623.

References

[1] Režnar, T., Martinovič, J., Slaninová, K., Grakova, E., Vondrák, V.: Probabilistic time-dependent
vehicle routing problem (2016). Central European Journal of Operations Research, pp. 1–16.

[2] Yichao Jin and Yonggang Wen and Qinghua Chen: Energy efficiency and server virtualization in
data centers: An empirical investigation (2012). In 2012 Proceedings IEEE INFOCOM Workshops,
pp. 133–138.

[3] K. Le and R. Bianchini and T. D. Nguyen and O. Bilgir and M. Martonosi: Capping the brown
energy consumption of Internet services at low cost (2010). In International Conference on Green
Computing, pp. 3–14.

[4] Y. Duan and G. Fu and N. Zhou and X. Sun and N. C. Narendra and B. Hu: Everything as
a Service (XaaS) on the Cloud: Origins, Current and Future Trends (2015). In 2015 IEEE 8th
International Conference on Cloud Computing, pp. 621–628.

[5] The Apache Benchmark. (2017) The Apache Software Foundation
https://httpd.apache.org/docs/2.4/programs/ab.html [Accessed 20/05/2017].

[6] Siege (2012) Jeffrey Fulmer at al.
https://www.joedog.org/siege-home/ [Accessed 20/05/2017].

[7] Locust (2016). Locust
http://locust.io/ [Accessed 20/05/2017].

[8] Flask (2010). Armin Ronacher
http://flask.pocoo.org/ [Accessed 20/05/2017].

[9] Celery - Distributed Task Queue (2017). Ask Solem
http://docs.celeryproject.org/en/latest/index.html [Accessed 20/05/2017].

[10] Silvano, C., Agosta, G., Cherubin, S., Gadioli, D., Palermo, G., Bartolini, A., Bispo, J., et. al.
(2016). The ANTAREX approach to autotuning and adaptivity for energy efficient HPC systems.
In Proceedings of the ACM International Conference on Computing Frontiers (pp. 288–293). ACM.

[11] Haklay, M., Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Com-
puting, 7(4), pp. 12-18.

DSpace VŠB - TUO http://hdl.handle.net/10084/133448 December 2018

