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Abstract. We have developed HyperLoom - a platform for defining and
executing scientific workflows in large-scale HPC systems. The compu-
tational tasks in such workflows often have non-trivial dependency pat-
terns, unknown execution time and unknown sizes of generated outputs.
HyperLoom enables to efficiently execute the workflows respecting task
requirements and cluster resources agnostically to the shape or size of the
workflow. Although HPC infrastructures provide an unbeatable perfor-
mance, they may be unavailable or too expensive especially for small to
medium workloads. Moreover, for some workloads, due to HPCs not very
flexible resource allocation policy, the system energy efficiency may not
be optimal at some stages of the execution. In contrast, current public
cloud providers such as Amazon, Google or Exoscale allow users a com-
fortable and elastic way of deploying, scaling and disposing a virtualized
cluster of almost any size. In this paper, we describe HyperLoom virtual-
ization and evaluate its performance in a virtualized environment using
workflows of various shapes and sizes. Finally, we discuss the Hyperloom
potential for its expansion to cloud environments.

Keywords: cloud, virtualization, distributed environments, scientific work-
flows, hpc

1 Introduction

The rapid growth of resource demanding workloads such as machine learning ap-
plications which take advantage of large-scale infrastructures is being reflected in
service offerings of major public cloud providers. For example, Amazon’s AWS [1]
offers instance types with up to 16 CPUs (64 vCPUs) and hundreds GB of RAM,
similarly Exoscale [4] offers instance types with up to 16 CPUs and 128GB RAM.
The performance of the compute instances with such specifications is directly
comparable with compute nodes in HPC systems. But unlike the HPC systems,
these can be deployed on demand in just a few seconds in seemingly any imag-
inable scale. As the gap between HPC systems and other virtualized distributed
environments such as clouds decreases, more HPC solutions are being ported to
the cloud.
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Although the trend in Cloud Computing is to shift workloads to lighter virtu-
alization solutions such as containers, the virtualization overhead is still present.
Nonetheless, for many use cases is the overhead either acceptable, insignificant
or compensated by other factors.

In this paper, we describe a virtualization of HyperLoom - originally an
HPC solution for defining and executing scientific workflows and compare the
performance of the virtualized HyperLoom to the performance of the bare metal
deployment.

The paper is organized as follows. Section 2 describes important properties
of scientific workflows. Section 3 introduces HyperLoom - an HPC solution for
defining and executing such workflows. In Section 4, we overview standard virtu-
alization solutions and discuss their suitability for virtualization of HyperLoom’s
components. We evaluate HyperLoom performance in Section 5. Finally, we con-
clude in Section 6.

2 Scientific workflows

Many scientific workloads are composed of several consecutive computational
phases. These are then often chained into more complex flows, such as, for exam-
ple, model cross-validation combined with hyper-parameter search, which results
in pipelines in a shape of large directed acyclic computational graphs - plans,
whose nodes represent computational units - tasks. Figure 1 shows an example
of such a graph.

Fig. 1: Example of a scientific pipeline visualized as a directed acyclic graph.
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2.1 Workflow properties

We have identified a set of properties which, we believe, apply to the most of the
scientific workflows. Different scientific workloads are defined by plans of various
shapes and sizes. Plans may contain millions of tasks of the various types with
non-trivial inter-task dependencies. Generally, a plan can take the shape of any
directed acyclic graph. Furthermore, the execution time of individual tasks is
typically not known before the execution finishes and may vary from millisec-
onds (short-running tasks) to days (long-running tasks). Similarly, the size of
the outputs produced by the tasks may not be known in advance. Distributed
environments, namely HPC clusters, may contain thousands of computational
nodes. Moreover, different computational nodes may provide various resource
types with different capacities. All of the listed properties have a significant im-
pact on the workflow execution. Ideally, we look for a solution that minimizes
the execution time agnostically to those properties.

3 HyperLoom

HyperLoom is a platform for defining and executing scientific workflows in dis-
tributed environments designed for HPC systems. The ultimate goal of Hyper-
Loom is to minimize the overall plan execution time respecting tasks’ and envi-
ronment’s resource constraints.

Other tools for scheduling tasks in distributed environments exist such as
Spark [16], HTCondor [11] or Hadoop [14]. If we only consider solutions that
allow defining inter-task dependencies, we name SciLuigi [12], DAGman [8], Pe-
gasus [9] and Dask/Distributed [13]. The first three are designed for more coarse-
grain tasks. Moreover, in these tools, the inter-task data transfer is done through
a shared file system which introduces another performance bottleneck for some
use cases, namely in the scenarios with a large number of tasks where a large
number of files to be created imposes a significant load on the distributed file
system. Also, in all of the cases, the tools do not provide an easy way of chaining
third party applications and provide so an arbitrary functionality.

To mitigate the limitations of the competing solutions while respecting the
properties listed in Section 2.1, HyperLoom contains the following design fea-
tures. The core of HyperLoom is implemented in C++. Plans can be easily
defined and executed using the client application implemented in Python. Since
the execution time of individual tasks is not known in advance, Hyperlooom
implements an optimized dynamic scheduler that schedules the tasks reactively
with a low overhead. Moreover, the scheduler respects task dependencies and
prioritizes placements that induce the smallest possible inter-node data transfer.
The data produced by tasks are by default kept directly in memory and can
be accessed by any other task from any other node directly with no additional
overhead imposed on the server or the underlying file system. HyperLoom allows
chaining and execution of third-party applications in the same manner as any
other native task type. It is also possible to define custom task types.
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3.1 Architecture

Figure 2 illustrates the main components of HyperLoom. HyperLoom consists
of a server process that manages worker processes that run on computational
nodes and a client component providing an user interface to HyperLoom.

Client allows users to programmatically chain computational tasks into a
plan and submit the plan to server. It also provides a functionality to gather
results of the submitted tasks after computation finishes. Server receives and
decomposes a plan and reactively schedules tasks to run on available computa-
tional resources provided by workers. Workers execute and run tasks as sched-
uled by server and inform the server about the state of task execution. This
modular architecture allows connecting an arbitrary number of workers which is
the keystone for HyperLoom scalability.

serverclient

Worker

Worker

Worker

Plan

Results

Fig. 2: HyperLoom architecture.

4 Virtualization

In this section, we introduce the main motivation for the virtualization of the
HyperLoom infrastructure, overview well-known virtualization solutions and dis-
cuss the potential of their usage in the HyperLoom context.

4.1 Motivation for HyperLoom virtualization

HyperLoom has been designed as a high-performance solution in the context of
HPC systems. Nonetheless, we realize some of the disadvantages of such systems
such as inflexible resource management, limited offerings and high administration
overhead comparing to the cloud solutions. We foresee that the HyperLoom
virtualization is a key step for its expansion to the cloud world that will allow
on-demand and flexible deployment of HyperLoom at infrastructures other than
HPC which may be easier to access for some of the potential users.
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Fig. 3: Virtualization solution: (a) virtual machines, (b) Docker containers, (c)
Singularity containers.

4.2 Virtualization solutions

One of the best-known virtualization solutions used nowadays is the concept of
virtual machines (VMs) powered by various hypervisors. While the VMs domi-
nated the market not so many years ago, many workloads are being shifted to
lighter virtualization platforms such as containers. The adoption of container
platforms such as Docker [2] is reportingly increasing. Containers, in contrast to
heavier VMs, allow almost an instant execution of a containerized application or
a service while still providing a certain level of isolation from the host machine.
This shift allows developers to build and ship more flexible and scalable applica-
tions available as-a-service. Although Docker has been proven numerous times
to work well in cloud environments and provide a centralized catalog - Docker
Hub [3] containing many ready-to-run Docker images, the Docker daemon pro-
cess requires a privileged user (root) to run which makes it unlikely to be widely
adopted by HPC centers. Singularity [5], in contrast to Docker, is a container-
ization solution that does not require the daemon process being owned by root
which makes it a containerization solution of choice for many HPC systems.
Moreover, Singularity is compatible with existing Docker images including those
in Docker Hub. Figure 3 illustrates the main architectural differences between
(a) a standard virtual machine, (b) a Docker container and (c) a Singularity
container.

4.3 HyperLoom virtualization

We have virtualized the key components of HyperLoom - server and worker using
Ubuntu 16.04 as the base Docker image for creating a container with HyperLoom
binaries and the underlying library stack. Although we have only containerized
HyperLoom using Docker image, we don’t foresee any potential issues creating
a HyperLoom virtual machine which would provide the same functionality with
higher virtualization overhead. We have decided to use containers mainly due
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to the lighter virtualization layer sacrificing the full process isolation in favor of
higher performance and also due to their increasing popularity in the community.

5 Performance evaluation

In this section, we discuss HyperLoom performance. Concretely, we compare
plan execution time with and without virtualization scaling the environments
up to 64 compute nodes on which we execute various synthetic and a real test
case scenarios.

5.1 Testbed description

We have carried out all the experiments on a testbed with up to 64 identi-
cal physical computational nodes, each with two 12-core Intel Xeon E5-2680v3
processors (2.5GHz) [6] and 128 GB of physical memory. All the nodes are inter-
connected by an InfiniBand[15] network (56 Gbps). All nodes run Red Hat En-
terprise Linux [10] 6.5 OS. As a virtualization layer, we use Singularity Launcher
with HyperLoom components containerized using a Docker container based on
Ubuntu 16.04 image. The virtualized deployment is depicted in Figure 4.
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Fig. 4: Virtualized HyperLoom infrastructure.

5.2 Methodology and metrics

We measure the total execution time (execution duration) from the time when
a plan is submitted to the server to the time when the computation finishes. To
illustrate the virtualization overhead, we also compute and plot the relative ex-
ecution time by normalizing the plan execution time in virtualized environment
by the execution time of the native execution. The test scenarios are described
more in detail in Section 5.3 below. All experiments were replicated three times
and the total execution time averaged to moderate potential unforeseen system
deviation which might affect the performance.
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5.3 Test scenarios
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Fig. 5: Visualization of the (a) 50kh and (b) gridcat test case scenarios.

We have designed several test case scenarios devoted to evaluate different
corner cases as well as to evaluate HyperLoom performance and scalability for
workflows used in practice. As an example of real-world scenario, we demonstrate
a performance of a scientific workflow derived from a pipeline used for novel drug
discovery. Below, we briefly describe our test cases more in detail.

50kh - a synthetic test case designed to benchmark scheduling overhead. As
depicted in Figure 5a, the assembled plan contains 50k independent and identical
short running tasks - h-nodes (running hostname command) followed by a task
that merges outputs from all of them - m-node.

gridcat - a synthetic test case designed to simulate more complex workflows.
The assembled plan contains tasks of various sizes chained together, so it in-
duces a significant inter-worker data transfer when scheduled inappropriately.
Concretely, as visualized in Figure 5b, we create 40 tasks which each generate a
200MB output, followed by tasks representing a concatenation of every possible
pair from the first layer resulting in 1600 tasks (each 400MB of output), the last
layer of tasks then computes the md5 hash of the concatenated data.

mlchemo - a real-world test case derived from an existing scientific workflow
which performs a nested cross-validation (5×5) with hyperparameter search to
find an optimal parametrization of machine-learning based models used for com-
pound activity prediction. The plan contains a mix of long-running tasks such
as modeling and validation done by LibSVM [7] - a widely used support vec-
tor machine implementation, short running tasks for supporting tasks such us
averaging values and others. The shape of this plan is very similar to the plan
depicted in Figure 1.

5.4 Experiments

Table 1 contains total execution time values [s] for each of the test case scenarios
using both, the virtualized (sing.) and the native (native) HyperLoom deploy-
ment. The total execution time for both of the synthetic test cases (50kh, gridcat)
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Table 1: Comparison of the plan execution time [s] using native and virtualized
HyperLoom deployment (50kh, gridcat mlchemo).

50kh gridcat mlchemo

# nodes native sing. native sing. native sing.

1 48.84 44.37 112.08 115.03 28,796.97 31257.13
2 23.41 20.97 76.00 83.53 14123.65 15,279.46
4 12.19 10.56 49.05 48.80 7,025.58 7,599.67
8 7.48 6.38 35.37 35.75 3,547.31 3,851.36
16 10.09 9.89 34.85 42.49 1,815.60 1,989.85
24 13.59 14.53 31.94 48.78 1,255.27 1,370.00
32 18.11 16.80 38.96 37.01 956.81 1,053.71
64 34.28 33.99 50.68 43.59 559.27 595.12

varies from seconds to minutes depending on the cluster size. We remind that
these test cases were designed to artificially stress HyperLoom components with
the increasing cluster size and thus we do not observe the inverse proportionality
between the cluster size and the total execution time values. The scalability of
Loom is more evident in the mlchemo test case, where the total execution time
steadily decreases with the increasing cluster size.

Figure 6 visualizes the virtualization overhead by plotting the relative exe-
cution time for the respective test case scenarios.

None of the synthetic test cases - 50kh (Figure 6a) nor gridcat have confi-
dently confirmed the expected performance degradation caused by the virtualiza-
tion layer. On the contrary, for the gridcat test case, the virtualized deployment
of HyperLoom performed slightly better than the native deployment in 7 out
of 8 cases (1, 2, 4, 8, 16, 32, 64 workers) with σ = 0.069. The gridcat test case
(Figure 6b) introduces significantly higher variance (σ = 0.193) in the relative
execution time of the virtualized deployment with varying cluster size. In this
test case, the virtualized infrastructure performed slightly better in 3 out of 8
cases (4, 32, 64 workers).

A representative of real-world HyperLoom usage - the mlchemo test case
(Figure 6c) uniformly confirmed the expected performance degradation caused
by the added virtualization layer. The virtualized deployment of HyperLoom is
in this case in average 9% slower than the native alternative. Notably, in this
case, we observe a very low variation (σ = 0.01) in the relative execution time
values with varying cluster size.

Considering the non-trivial size and complexity of the mlchemo test case,
whose execution time varied from more than 8 hours (1 worker) to less than 20
minutes (64 workers), we argue that these results may be generalized to other
large-scale real-world workloads more objectively than the results obtained using
the synthetic test cases.

Complex, intelligent, and software intensive systems, 2017. New York, NY: Springer Berlin Heidelberg. ISBN 978-3-319-61565-3.

DSpace VŠB - TUO   https://dspace.vsb.cz/handle/10084/133293   November 2018



1 2 4 8 16 24 32 64

0.5

1

1.5

0.91 0.9 0.87 0.85

0.98
1.07

0.93
0.991 1

# workers

R
el
a
ti
v
e
ex
ec
u
ti
o
n
ti
m
e
[s
]

singularity native

(a) 50kh

1 2 4 8 16 24 32 64

0.5

1

1.5

1.03

1.73

0.99 1.01

1.22

1.53

0.95
0.86

1 1

# workers

R
el
a
ti
v
e
ex
ec
u
ti
o
n
ti
m
e
[s
]

singularity native

(b) gridcat

1 2 4 8 16 24 32 64

0.5

1

1.5

1.09 1.08 1.08 1.09 1.1 1.09 1.1 1.06
1 1

# workers

R
el
a
ti
v
e
ex
ec
u
ti
o
n
ti
m
e
[s
]

singularity native

(c) mlhemo

Fig. 6: Relative execution time of the (a) 50kh, (b) gridcat and (c) mlchemo

test cases executed on virtualized infrastructure (singularity) normalized to the
execution time of the test cases executed on native HyperLoom infrastructure
(native baseline) using up to 64 nodes (24 CPUs each).

6 Conclusion

We have successfully virtualized HyperLoom components using Docker images
with Singularity Launcher and compared the performance of such a virtualized
infrastructure to native HyperLoom deployment in an HPC environment.

Despite the fact that HyperLoom was initially designed for HPC systems, we
have shown its potential of being used in a cloud or other virtualized environ-
ments which brings HyperLoom closer to a much broader audience. Although
cloud providers offer a flexible lease of machines which performance is compara-
ble to those in HPC systems, the network solutions used in HPC systems offer
incomparably higher inter-node throughput and latency.

We have shown that the degradation of HyperLoom performance caused by
the virtualization layer is in average ∼9% for the test case designed to simulate
real-world scenarios. Nevertheless, some of the synthetic test cases in virtualized
environment slightly outperformed the performance of the bare metal Hyper-
Loom deployment. This suggests that advantages of virtualization such as the
availability of the newest versions of application dependencies may outweigh the
overhead of virtualization layer itself.

Although we have virtualized HyperLoom so it can find its audience outside
the HPC community, we believe that virtualization is also beneficial for HPC
systems as it has the potential to enable more applications on such systems
without the need for the applications themselves being directly compatible with
the underlying operating systems.

Although we have only discussed fix-sized HyperLoom deployments, in elas-
tic cloud environments, we foresee a potential for HyperLoom to become signif-
icantly much more energy efficient by scaling the deployment up/down (poten-
tially in/out) based on current workers utilization which is one of the subjects
for future work.
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