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In this article we propose a strategy for the validation and improvement of expert systems in analytical chemistry. An application 
of this approach in two-dimensional NMR spectrum interpretation is shown, and the results indicate that significant performance 

improvements can he achieved in this domain. 

INTRODUCTION 

Expert systems have become increasingly im- 
portant in the field of analytical chemistry and are 
applied in different fields of interest such as high- 
performance liquid chromatography (HPLC) [l] 
and others [2-41. In the past few years expert 
system technology has matured and real-world 
applications have begun to appear. In view of 
increasing demands from regulatory offices and 
GLP norms a proper validation of expert system 
performance is necessary. This validation should, 
in the ideal case, consist of a short-term and a 
long-term component. The short-term component 
should make sure the expert system satisfies the 
original requirements of the experts, whereas the 
long-term component should continually validate 

the system during the field work so that the sys- 
tem remains up to date over a longer period of 
time. This long-term validation requires a kind of 
flexibility of the expert system that will allow 
gradual changes to be incorporated in a simple 
way. However, the question of the programmatic 
validation of expert systems has only been ad- 
dressed in the artificial intelligence (AI) literature. 
In most expert system applications conventional 
software validation techniques are used for the 
validation and verification of expert system per- 
formance, and the specific difficulties related to 
expert system technology are largely neglected. 
Because expert system problem solving is essen- 
tially non-algorithmic in nature, each problem may 
require a different solution path, and in most 
cases there is no way to validate completeness and 
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consistency of a knowledge base a priori. For 
example, in analytical chemistry there are numer- 
ous problems for which there are an infinite num- 
ber of possible solutions, so that it is impossible to 
scan the whole problem space. Another source of 
problems lies in the knowledge acquisition phase; 
the transfer of knowledge of a human expert to a 
knowledge base is generally regarded as the bot- 
tleneck in expert system building. Methodologies 
[5] and knowledge acquisition tools ([6], and refer- 
ences therein) have been developed to overcome 
this problem. Despite these methodologies it ap- 
pears that there are areas in which experts have 
difficulties in formulating their knowledge, which 
is essentially heuristic in nature, in an implement- 
able form. This is especially the case when experts 
have to estimate uncertain quantities [7], and can 
result in erroneous knowledge bases and incorrect 
expert system performance. Several domain-inde- 
pendent validation techniques have been devel- 
oped to detect logical errors in the domain knowl- 
edge of expert systems [S-lo], but none of them 
have really addressed the kind of ‘heuristic’ errors 
in a knowledge base mentioned above. It seems 
that the validation of the knowledge of an expert 
system should also be checked with domain-de- 
pendent methods for it to be reliable. For expert 
systems in chemistry this means that chemical 
‘meta-knowledge’ should be added to the system. 

An approach that can be used to validate the 
knowledge base of an expert system is the so-called 
refinement strategy [l&12]. In this approach, the 
model of the knowledge is believed to be essen- 
tially correct, and the refinement strategy is there- 
fore only meant to provide a ‘fine-tuning’ of the 
system. The results of the expert system are com- 
pared with a database of solved cases provided by 
the expert, and in case of incorrect results the 
knowledge base is checked for the rules that are 
responsible for them. Meta-knowledge is used to 
propose small refinements to those rules in order 
to improve performance. This was successfully 
implemented in the programs SEEK and its suc- 
cessor, SEEK2 [11,12]. These expert systems oper- 
ate in the field of medical diagnosis. Since an 
appropriate model exists in most problem do- 
mains in analytical chemistry, we believe this ap- 
proach is very suitable for the validation of expert 

systems operating in this field. In this article we 
show an application of the refinement approach in 
NMR spectrum interpretation. This is an example 
of a classification task that is typical for expert 
system problem solving in analytical chemistry. 
Other possibilities of this approach could be men- 
tioned. The long-term validation mentioned above 
is easily integrated by allowing the expert system 
to be continually refined during the field work. 
Eventually, no further refinements will be found, 
provided that no changes in conditions and en- 
vironment take place. If they do occur, the refine- 
ment approach provides a way to adapt the expert 
system to the new circumstances. Another possi- 
bility of this approach is a system that would 
allow the user to install his or her own preferences 
after several cases of ‘conflicting opinions’, or a 
system that could be adapted to another or a 
broader class of problems. The last application is 
an example of the possibilities of the refinement 
approach in a learning expert system. 

In the next section a more detailed account will 
be given on the refinement strategy, and after that 
a brief description of the test expert system will be 
given. 

The refinement approach 

In most expert systems, heuristic knowledge is 
captured in so-called ‘situation-action rules’. Such 
a rule consists of two parts: the premise part, 
which contains the conditions that must be satis- 
fied for the rule to fire, and the conclusion part, 
which contains the actions that should be taken if 
the conditions are satisfied. Thus, if the situation 
at hand matches the conditions in the premises 
then the actions in the conclusions are carried out. 
As a (simple) example: 

IF the polarity of ?compound is high 
THEN the solubility-in-water of ?compound is 
good. 

The refinement approach provides a way for the 
fine-tuning of a set of rules in an expert system by 
comparing the results of the expert system with a 
database of known cases (the solutions of the 
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human expert) to determine what results of the 
expert system are incorrect. The rules responsible 
for these misinterpreted cases are then traced, and 
refinements are considered, possibly correcting the 
errors. After applying one or more refinements, 
the expert system is consulted again, using the 
refined rule set, and the new results are evaluated. 
This cycle continues until no further improve- 
ments in performance are possible. 

In general, two types of errors can be found: 
false negative results (hereafter: FN) are results 
the expert system failed to conclude, and false 
positive (FP) results are results that are concluded 
incorrectly by the expert system. FP results are 
caused by rules that fire too fast or with too great 
an impact. A way to correct this is to make the 
premises more difficult to satisfy, so that the rule 
succeeds in fewer cases. This can be done, for 
example, by adding another premise, raising 
thresholds in the premises, etc. Another way of 
correcting a rule responsible for an FP result is to 
reduce the strength of its conclusion(s), so that it 
may be overruled by another rule concluding the 
correct result. These refinements are called spe- 

cializations, since they narrow the range in which 
the rule can be applied or its effect. 

The opposite of a specialization is a generaliza- 
tion; this refinement is feasible in case of FN 
results. Examples of generalization are: making 
premises easier to satisfy or deleting premises and 
increasing the effect of conclusions. The rule will 
then succeed more often or have a larger effect on 
the eventual outcome. 

In general, the refinements applied should pre- 
serve the knowledge originally given by the expert, 
so far as possible. This conservative approach 
should guarantee that the rules continue to make 
sense after several rounds of training, and is a 
result of the assumption that the knowledge of the 
expert system is essentially correct. 

The refinement approach in classification tasks 

In a classification expert system, a normal 
strategy is first to collect support for all hypothe- 
ses, to combine the support in some way, and 
finally to accept or reject hypotheses on the basis 
of the combined support. In general, certain 

EVIDENCE-l 

I 
EVIDENCE-2 ----+t HYPOTHESIS-l 

WITH EVIDENCE-123 

EVIDENCE-3 

EVIDENCE-4 - t 
HYPOTHESIS-2 

EVIDENCE-5 + WITH EVIDENCE-45 

EVIDENCE-6 --*HYPOTHESIS-3 

WITH EVIDENCE-6 

STAGE 1: STAGE 2: 

EVIDENCE EVIDENCE 

GATHERING COMBINATION 

- 

- 

- 

ACCEPT ALL 

THAT SATISFY 

THRESHOLD 

STAGE 3: 

SELECTION 

Fig. 1. The separate stages in a classification prom. At the left, the supports for the individual hypotheses, pictured in the middle 
box, are given. All hypotheses satisfying a certain criterion then are accepted (right box). 
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thresholds must be satisfied to accept a hypothe- 
sis. These three stages are depicted in Fig. 1. In 
hierarchical classification, several schemes like the 
one in Fig. 1 are nested. In the second stage, the 
combination of evidence, no refinements are al- 
lowed because the knowledge in this stage is in 
fact control knowledge. On the numerical combi- 
nation of support a vast amount of literature 
exists (see, e.g., refs. 13-15), and also symbolic 
types of support have been used [16]. The ad- 
vantage of symbolic support is that experts typi- 
cally have less difficulty in expressing their knowl- 
edge in linguistic, ‘fuzzy’ terms, such as ‘big’, 
‘small’, ‘major’, etc., whereas estimating a numeri- 
cal confidence value, for instance, often provides 
difficulties. Choosing a strategy to combine sup- 
port largely depends on the knowledge representa- 
tion and, because it falls somewhat beyond the 
scope of this article, we will not go into it any 
further. 

At the level of the first and third stages refine- 
ments can be used to optimize the knowledge 
base; the importance of the individual items of 
evidence can be refined, and also thresholds that 
decide whether a hypothesis, based on its collected 
support, should be accepted or rejected. Allowing 
only a limited set of refinements will ensure that 
the proposed refinements will remain sensible from 
a chemical point of view. An additional advantage 
is the greater efficiency of a small set of refine- 
ments. During the knowledge acquisition stage it 
should be born in mind what parameters and what 
rules will be subject to refinements, so that no 
effort will have to be put in identifying the precise 
values for them in an early stage. It is, however, 
very important to note that the expert should 
always be the one who decides which of the pro- 
posed refinements is valid. 

TWO-DIMENSIONAL NMR OF PROTEINS 

In this section we briefly review the domain of 
the test expert system. Only those aspects that are 
necessary to an understanding of the results of the 
refinement approach will be discussed here. More 
information can be found in the references section 
and in the NMR literature. Two-dimensional ‘H 

NMR is now the most important technique for 
determining the structure of small and medium- 
sired proteins in solution. In such a spectrum the 
ordinary one-dimensional spectrum is more or less 
present on the diagonal, and the off-diagonal cross 
peaks give additional information, depending on 
the kind of spectrum. So called NOESY (Nuclear 
Overhauser Enhancement Spectroscopy) [17] spec- 
tra give information about the distance between 
protons: a cross peak between the two diagonal 
resonance positions is present if two protons are 
less than 5 A apart. In order to obtain this geo- 
metrical information one must know what diago- 
nal position belongs to which proton. Several other 
kinds of spectra are used to facilitate the mapping 
of peaks to protons (the interpretation), and an 
example is the COSY spectrum in which cross 
peaks can appear between two diagonal resonance 
positions if the corresponding protons are sep- 
arated by two or three chemical bonds. When all 
resonances in a NOESY spectrum are assigned to 
specific protons in the chemical structure, distance 
constraints can be set up and these can be used to 
construct a three-dimensional model of the pro- 
tein, e.g. using the distance constraint algorithm 
[18]. The interpretation of the spectra, however, is 
a tedious task that can take months. It is clear that 
computer methods could greatly facilitate the task 
of the expert, if not by completely solving the 
spectra, then by interpreting large parts of them so 
that the expert can concentrate on the remainder. 

The expert system described below is a reimple- 
mentation in KEE * of an expert system named 
CINS, that was developed earlier in our depart- 
ment in collaboration with the department of Bio- 
physical Chemistry of the University of Nijmegen. 
This expert system serves as a means of testing the 
refinement approach in classification expert sys- 
tems in analytical chemistry. For the NMR inter- 
pretation problem, several ‘brute force’ methods 
have been reported [19-221. The expert system 
described in this article uses essentially the same 
approach as the program described in ref. 19, but 

l Trademark of Intellico~, Inc. 
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additional knowledge is used to limit the number 
of possibilities in the search tree. 

The interpretation of NMR spectra 

The approach used is known as the ‘sequential 
assignment’ strategy [17]. Its input consists of 
peak positions in seven types of NMR spectra, 
COSY (both in H,O and in 40) NOESY (idem), 
RCT (idem) and DQSY spectra. No information 
on peak shapes and intensities is used, and peak 
positions are used with an uncertainty of 0.01 
ppm. The amino acid sequence is also known. The 
result of the interpretation gives the assignment of 
each peak in the NMR spectrum, i.e. a mapping of 
each proton in the chemical structure to a reso- 
nance position in the spectrum. 

The first step in the spectrum interpretation 
comprises the identification of sets of peaks, be- 
longing to protons in the same amino acid. Such a 
set of peaks will hereafter be denoted as ‘pattern’. 
As an example, the pattern belonging to the 
threonine depicted in Fig. 2 is (schematically) 
represented in Fig. 3. A simplified version of the 
internal computer representation of the pattern in 
Fig. 3 is given in Table 1. 

H 0 

I II 
-N-CC,C- 

HO- Co-H 
I 

C,H3 
Fig. 2. An example of an amino acid, in tbis case a threonine. 
Carbon atoms are indexed with greek letters, and the protons 
attached to them will be indicated likewise in the text. 

In the second step of the spectrum interpreta- 
tion each pattern found in the first part is classi- 
fied as belonging to a type of amino acid, some- 
times a specific type like glycine, sometimes a 
group of amino acids, like aromatic amino acids. 
Finally, data from NOESY spectra are used, to- 
gether with the results of the previous assignment 
part, to establish a list of all patterns that are 
possible neighbours in the sequence. So, for a 
combination of two patterns to be valid for e.g. 
the amino acid combination valine alanine, the 
first pattern should have positive support for being 
a valine; likewise the second for alanine. Ad- 
ditionally, NOE cross peaks between the two pat- 
terns should be present to make sure the patterns 
can be neighbours. These pairs of neighbours are 

TABLE 1 

The computer representation of the threonine pattern in Fig. 3 

PATl-ERN-1 

ALPHA-BETA-PEAK(S) 
VALUES 
COMMENT 

ALPHA-GAMMA 
VALUES 
COMMENT 

BETA-GAMMA-PEAK(S) 
VALUES 
COMMENT 

N-BETA 
VALUES 
COMMENT 

N-GAMMA 
VALUES 
COMMENT 

START PEAK 
VALUES 
COMMENT 

(4.55 4.07) 
The cross peak(s) between the (I and p resonance positions 

(4.55 1.4) 
The cross peak(s) between the a and y resonance positions 

(4.07 1.4) 
The cross peak(s) between the /3 and y resonance positions 

(8.74 4.07) 
The cross peak(s) between the amide and j3 resonance positions 

(8.74 1.4) 
The cross peak(s) between the amide and y resonance positions 

(8.74 4.55) 
The cross peak between the amide and a resonance positions 
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Fig. 3. The pattern of threonine-11 in the protein BFTI (see 
text). The letters in the pattern indicate the resonance positions 
of the protons in the amino acid of Fig. 2. Part of the computer 
representation of the pattern depicted here is shown in Table 1. 

then chained to each other to obtain a complete 
sequence of patterns that can be mapped onto the 
amino acid sequence, As there are in most cases a 
lot of pattern candidates for separate amino acids, 
the search tree grows very rapidly in the begin- 
ning, but as the chain grows possibilities start to 
exclude each other because of the fact that a 
pattern may only appear once in a chain. 

The implementation of the pattern search expert 
system 

In this section we discuss the implementation 
of the first part of the expert system, in which 
patterns are found in the spectra; the subsequent 
part, in which the patterns are mapped to amino 
acids, has not yet been implemented. The input of 
this part of the expert system consists of the 
positions of the peaks in the NMR spectra, taken 
from the literature. The output consists of a list of 
patterns discovered, where each pattern contains 
resonance positions of protons in one amino acid. 
After the expert system is finished, the refinement 
module is activated automatically and compares 

the patterns found by the expert system with the 
patterns found by the human expert (i.e. the origi- 
nal articles cited). The latter are stored in a sep- 
arate database. Refinements are then proposed by 
the system, if necessary, and after incorporation of 
these refinements a new consultation can begin 
with, one hopes, a better performance. At the end 
of a refining session several rounds of training 
have been performed, and the expert system should 
be able to reproduce the patterns found by human 
experts as closely as possible. The refinement 
strategy will be explained in greater detail below. 

First of all, a list of so-called start peaks is set 
up; this list contains all peak positions that fall 
within the region of the spectrum that normally 
contains resonances due to interactions between 
the amide and C, protons. These start peaks serve 
as the starting point from which the remainder of 
the individual patterns are sought. It is of course 
possible that a peak in the start peak region is not 
an amide-C, cross peak; the pattern derived from 
such a start peak is then of no significance but will 
be taken into account because there is no way of 
telling beforehand which peaks in the start peak 
region are genuine start peaks and which are not. 
It is also possible that no start peak can be found 
belonging to an amino acid (as is the case for 
proline, for instance, since this amino acid does 
not have an amide proton); in that case no pattern 
will be found which can be mapped to that amino 
acid. After the patterns are initialized all peaks 
that have one coordinate in common with the 
a-position of the start peak are considered as 
possible p-peaks. The amount of support for each 
of these possible a-&peaks is then determined. 
This can be done in a number of ways, and in the 
past numerical values were often used to indicate 
the level of support of (or belief in) a hypothesis 
(i.e. a /%position). In our case linguistic entities 
were used, like ‘major’, ‘medium’ and ‘minor’, 
since these are easier to estimate than numerical 
certainty factors. If, for example, a cross peaks is 
found between a possible @-position and the amide 
position of the start peak, this is considered to be 
a major piece of support that the P-position is 
correct. If a cross peak is found between the 
a-position and twice the value of another p-posi- 
tion in the DQSY spectrum, this is considered 
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TABLE 2 

The default types of evidence in the a-/3 and /3-y search 

The two leftmost columns contain the cross peaks that can be 
considered as evidence in the a-/3 search; the second column 

gives the relative importance of finding the given cross peak in 

a spectrum. Cross peaks a-& + & and a-2* p are found in 
DQSY spectra (see ref. 17). The cross peaks looked for in the 

8-v search are gathered in the two rightmost cohrmns. The 
same evidence may be found in more than one spectrum and 

may then be considered to have different importance. See, e.g. 
a-y; this peak can be found in RCT and in NOESY spectra, 

but because of the much larger number of peaks in the latter, 

finding a peak in that spectrum is considered to be of less 
importance. 

a-/3 search b-7 search 

Cross peaks Importance Cross peaks Importance 

N-8 major a-y (in RCT) major 

a-& + Is, medium a-y (in NO&W) medium 

a-2*B medium N-Y medium 

t%-I% minor Ii-u2 minor 

only of medium importance, and the former peak 
position will be preferred above the latter for the 
fl peak in the pattern. Thus, different cross peaks 
support a hypothesis (a peak position for the /I 
proton) to a different extent. Supporting cross 
peaks, together with their relative importances, are 
gathered in Table 2. According to the quantity of 
support each P-candidate has collected, the 
candidates are classified into the classes PROB- 
ABLE& POSSIBLES, IMPROBABLES and IM- 
POSSIBLES. Rules that decide .in what class a 
candidate is classified use three thresholds: 
‘major-limit’, ‘medium-limit’ and ‘minor-limit’. 
For example if the number of major supports of a 
candidate is larger than the ‘major-limit’, a peak is 
classified as PROBABLE, regardless of the other 
support it has gathered. For each pattern the 
P-candidate(s) with the best classification is (are) 
selected. In Fig. 4 we give an example in which 
there are three candidates for a fi position; 
searching from the (Y position (4.55) three cross 
peaks are found: (4.55 4.07), (4.55 3.11) and (4.55 
2.98). The best one (4.07) is classified as ‘PROB- 
ABLE’ because of the amount of support it has 
gathered (one major and one medium); the other 
two candidates are classified as ‘IMPROBABLE 
(only one piece of ‘minor’ importance) and are 

rejected, because a better alternative is at hand. It 
may be that an incorrect /3 peak has, by chance, 
gathered more support than the correct one, either 
because some supporting cross peaks are absent in 
the spectrum or because cross peaks are found at 
positions that are thought to support the incorrect 
candidates. Overlapping patterns occur when two 
patterns share the same /3 resonance position, for 
example, and then the expert system will probably 
also find identical y-positions, while this is very 
likely to be untrue. This kind of error cannot be 
prevented, and therefore a 100% performance is 
not possible. 

After this search for a-/3 peaks the search for 
y-methyl protons can proceed in the same way, 
starting from the /3-position(s) found in the previ- 
ous step. No attempt is made to find other y-peaks 
or 6- and e-peaks because of the crowded regions 
in the spectra in which they normally appear. 
Different types of support can also be gathered in 
the search for 8-y peaks; they, too, are collected in 
Table 2. Now the pattern search part of the expert 
system is finished and the patterns discovered can 
be assigned to types of amino acids. 

In the remainder of this article we will discuss 
the effects of the refinement approach on the 
performance of the pattern search part of the 

N-P: (8.74 4.07) 

major 

m-2*/3: (8.14 4.55) 

medium 

fi,-& (2.98 3.11) 

?ltiTlOT 

p,-02: (2.98 3.11) 

minor 

stage 1: 

support 

- 

- 

- 

a = 4.07 * -9 

* fj = 3.11 

p = 2.98 

- 

- 

- 

PROBABLE 

* IMPROBABLE 

* 
1 

-9 [MPROBABLE 

Stage 2: Stage 3: 

hypothesis classificakm 

Fig. 4. Classification of candidates for the &xxition, starting 
from start peak (8.74 4.55). only B = 4.07 will be selected. 
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Refinable limits in the patternsearch expert system: 1 
SPECIALIZABLE LIMITS: 

m= 

GENERALIZABLE LIMITS: 

Fig. 5. The refinement screen. 

NMR expert system. The results published in the 
literature are stored in a separate database and the 
results of the expert system are compared with 
them. As only the pattern search part will be 
discussed here in relation to refinements, only 
peak positions in found patterns have to be com- 
pared with peak positions in assigned amino acids. 
Only incorrect a-/3 and p-y peaks are considered 
to be FP or FN; other peaks are supporting peaks 
and should therefore always be present if the 
correct a-/? and p-y peaks are found. The refin- 
able parameters in the expert system described 
above are the importances of the individual sup- 
porting cross peaks and the thresholds (major-, 
medium- and minor-limit) that decide in what 
class a /3- or y-candidate is classified (PROB- 
ABLE, POSSIBLE, IMPROBABLE or IMPOSSI- 
BLE). By modifying the above parameters the 
results of the expert system can be changed, so 
that an optimal setting can be found. 

In Fig. 5 we give an example of the screen that 
is shown to the user after validation of the results 
and calculation of the proposed refinements. The 
small boxes in the center give the suggestions of 
the refinement system for changes to be made in 

the knowledge base. If the user agrees to one or 
more of these refinements, clicking in one of the 
small boxes in the center will cause the given 
refinement to be incorporated in the knowledge 
base. For example, clicking in the upper left box 
causes the major-limit to be raised by 1, and five 
incorrect cases may be corrected by this refine- 
ment. Lowering the major-limit by 1, however, has 
a chance of correcting four other misinterpreted 
cases. Combinations of refinements may also be 
selected; in that case another box appears indicat- 
ing the effect of the combined refinement. After 
all refinements are incorporated, clicking in the 
‘DONE’ box causes the system to consult the 
refined rules again. The estimated numbers of 
corrected cases are based on the cases in which the 
given limit is responsible for the misinterpreted 
cases; the actual number of corrected cases will be 
lower because previously correct cases may be- 
come incorrect because of the refinement, and also 
other limits may be responsible for the misinter- 
preted case. The numbers thus represent upper 
bounds of the numbers of corrected cases after 
refinements. 

RESULTS AND DISCUSSION 

In this section we discuss the results of the 
NMR expert system and the effect of the refine- 
ment strategy on its performance. Three test cases 
are considered: the spectra of the proteins BPTI 
(Bovine Pancreatic Trypsine Inhibitor), E-L30, and 
Tendamistat. The spectra of E-L30 were measured 
at the laboratory of Biophysical Chemistry of the 
University of Nijmegen [23,24]; the data of BPTI 
and Tendamistat were adapted from the literature 
[25,26] (see ref. 19 for more details). 

Refinement results for protein BPTI 

The protein BPTI consists of 58 amino acids, 
and the NMR spectra contain 56 start peaks. Six 
amino acids do not have start peaks (the N- 
terminus, four prolines and a glycine), whereas 
four glycines have two start peaks. Thus, 52 cor- 
rect patterns should be found by the expert sys- 
tem; if more patterns are found the incorrect ones 
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TABLE 3 

Refinement session for BPTI 

In case of the proteins E-L30 and Tendamistat, the best results 
in the 8-v search are obtained with major-, medium-, and 

minor-limits of 1, 2 and 2, respectively. 

Major-limit Medium-limit Minor-limit Weights No. incorrects 

w/3 search 
1 1 1 default 5 
1 1 2 default 3 
1 2 1 default 5 

1 2 1 81-l% 2 
medium 

fi - y search 

1 1 1 default 4 
1 2 2 default 4 

2 1 2 default 3 

will be filtered out in the assignment phase. ‘Cor- 
rect’ in this case means the finding of all a-/3 and 
/3-y peaks given in the literature, together with the 
support they have gathered. With the original set- 
tings of the refinable parameters mentioned above, 
as given by the expert, the expert system deduced 
43 of the 52 patterns correctly, and after refine- 
ments this increased to 47 out of 52 patterns. 
These figures correspond to performances of 83% 
and 908, respectively. Table 3 presents an exam- 
ple of a refinement run in which the expert tries 
several settings, until the best one is found. 

Refinement results for protein E-L30 

E-L30 is a ribosomal protein from E. cob, 
containing 58 amino acids. For six of the 58 
amino acids no start peak could be found while 
two glycines gave rise to two start peaks. This 
yielded 54 start peaks, corresponding with 52 
amino acids in the sequence. The expert system 
found 41 correct patterns, a performance of 79%. 
After refinement, 2 additional patterns were de- 
duced correctly, a performance improvement of 
4%. The optimal settings differed slightly from the 
ones found in the case of BPTI. We will return to 
this in the Discussion section, below. 

Refinement results for protein Tendamistat 

Tendamistat is a larger protein than the previ- 
ous two, consisting of 74 amino acids. Three pro- 

lines do not have start peaks and seven glycines 
have two start peaks. Thus, 71 patterns should be 
mapped to amino acids. Before refinement 40 out 
of 71 patterns were found correctly (56%); after 
refinement this was increased to 45 patterns, a 
performance of 64%. This is significantly lower 
than the performance in the other two proteins 
because of extensively overlapping patterns. In 
most cases, however, this leads to FP peaks, which 
in the following assignment parts should be filtered 
out. The figure of 64% thus represents a very 
pessimistic view of the performance of the expert 
system. The optimal settings were equal to the 
ones found in the case of E-L30. 

Discussion 

The overall performance of the expert system is 
comparable to the performance of a human ex- 
pert, even before refinements; because of the ex- 
tensive feedback from the next steps in the inter- 
pretation (global and sequential assignments of 
patterns to amino acids), the eventual perfor- 
mance will be much higher. It should also be 
noted that an incorrect result does not mean that 
the next steps in the interpretation are bound to 
fail. It may very well be that a pattern with, e.g., 
an extra cu-/3 peak will be classified correctly and 
can be incorporated in the sequence of patterns at 
just the right place. Only one peak will then be 
interpreted falsely instead of a whole set of peaks. 
After this assignment phase the patterns will be 
checked if they are still consistent (at that stage, a 
peak may in principle appear only once in all 
patterns), and errors due to the pattern search part 
may be filtered out. 

The results of the three proteins given in the 
above sections indicate that the refinement ap- 
proach can help to improve expert system perfor- 
mance, even in a relatively simple system as the 
one described above. In the proteins E-L30, BPTI 
and Tendamistat performance improvements of 4, 
9 and 8% are reached, respectively, where it should 
be noted that the knowledge used in the initial 
implementation was already extensively tested in 
the expert system CINS mentioned earlier. In 
Table 4 the results for the three proteins are 
gathered using the thresholds and weights of sup- 
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TABLE 4 

Results for the three proteins 

Protein No. of amino acids Incorrect Incorrect 
patterns patterns 

(initial) (optima0 
- - 
No. ‘A, No. % 

E-L30 52 11 21 9 17 

BPTI 52 9 17 6 12 

Tendamistat 71 31 44 26 37 

Total 175 51 29 41 23 

TABLE 5 

Final and optimal settings for refinable parameters 

The weights of the individual pieces of evidence in the initial 
configuration are given in Table 2. In the optimal configura- 

tion, the weight of the &-& supporting cross peak has been 
changed to medium. 

a-/3 parameters 8-y parameters 

Parameter Initial Optimal Parameter InitiaI Optimal 

Major-limit 1 1 Major-limit 1 1 

Medium-limit 1 2 Medium-limit 1 2 

Minor-limit 1 1 Minor-limit 1 2 

ports that are considered best. These optimal set- 
tings are gathered in Table 5, together with the 
settings originally given by the expert. In different 
trainings sets (in this case each protein was used 
as a separate trainings set) different settings may 
lead to optimal results, but then some kind of 
compromise will have to be found. In this case, 
the ‘optimal’ settings found for E-L30 and 
Tendamistat were equal, but the BPTI settings 
differed somewhat. Using the E-L30/Tendamistat 
optimal settings resulted in one extra misinterpret- 
ed case in BETI, which is considered to be accep- 
table. 

CONCLUSIONS AND OTHER APPLICATIONS 

We have demonstrated an application of the 
refinement approach in analytical chemistry. It 
appeared that the test expert system for the inter- 
pretation of two-dimensional NMR spectra of 
proteins yielded better results after several rounds 

of training using the aforementioned approach. 
With larger knowledge bases in particular it is 
likely that the gain of such an approach will be 
considerable. Other aspects deserve attention, too. 
In the case of the NMR expert system more or 
less ideal spectra were used, read from the litera- 
ture. If the expert system were to work for experi- 
mental spectra, it is very well possible that other 
values for certain parameters will yield better re- 
sults. The refinement approach gives an opportun- 
ity to smoothly adjust the knowledge base to the 
new and more difficult situation. In other fields, 
too, where it may be hard to find experimental 
data-sets the expert system may initially be trained 
using an available set, followed by fine-tuning 
during the field work. The flexibility thus obtained 
may also be used to apply expert systems to 
problems for which they were not originally de- 
signed: as an example, it may be possible to 
rewrite, with a minimum of effort, an expert sys- 
tem that is meant to classify a specific class of 
chemicals so that it also is able to classify a 
different (but related) class of chemicals. This 
advantage of the refinement approach may very 
well become an even more important aspect than 
the performance improvements obtained, and re- 
search is going on in our department on this 
subject. Another advantage of the above approach 
is that internal consistency can be maintained and 
if a new piece of evidence or a new rule is added, 
then the knowledge base can easily be trained to 
adjust to the new situation. Finally, the consider- 
able debugging capacities of using the refinement 
approach in the implementation phase of an ex- 
pert system must be mentioned. 
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