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Abstract 

Van Leeuwen, J.A., Buydens, L.M.C., Vandeginste, B.G.M., Kateman, G., Schoenmakers, P.J. and Mulholland, M. 1991. RES, an 

expert system for the set-up and inte~retation of a ruggedness test in HPLC method validation. Part 1: The ruggedness test in HPLC 

method validation. Chemomeirics and Intelligent Lnboratory Systems, 10: 331-347. 

In method validation, an intralaboratory repeatability study and an interlaboratory reproducibility study can be performed as 

part of a precision test. In HPLC, an intralaborato~ ruggedness test can be performed to detect problems that would otherwise be 

encountered in a reproducibility study. In a ruggedness test, variations in ambient factors that are expected to occur in practice, are 

simulated. Several steps determine the success of a ruggedness test. The complexity and lack of standard procedures for some of these 

steps is the main reason why ruggedness testing is still not widely accepted. 

INTRODUCTION 

Considering the widespread use of routine 
high-performance liquid chromatographic (HPLC) 

l Present address: Unilever Research Laboratory, Vlaardin- 

gen, The Netherlands. 

0169-7439/91/%03.50 0 1991 - Elsevier Science Publishers B.V. 

analyses in the analytical laboratory, it is very 
important that HPLC methods are thoroughly 
validated. Much time and effort are involved in 
validating an HPLC method. It is therefore im- 
portant that any possible problems with a method 
are detected at an early stage during the method’s 
validation. In particular, interlaboratory repro- 
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TABLE 1 

Tests in a normal method validation procedure 

Method validation 

Specificity: interference 

peak purity 

Accuracy: recovery 

linearity 

Sensitivity: 

Precision: 

detection limit 

repeatability 

ruggedness 

reproducibility 

ducibility tests or collaborative studies in the final 
stage of method validation can be very costly and 
should only be undertaken if there is a reasonable 
chance that the method will be accepted [l-3]. 
Moreover, method validation can frustate the work 
done in method development and the sooner prob- 
lems with a method are identified, the easier it is 
to modify the method because the information 
from the method development process is still 

available. 
In a typical method validation procedure a 

number of tests must be performed on the method: 
e.g. tests to quantify the method’s accuracy, sensi- 
tivity, specificity, precision etc. (see Table 1). The 
level of testing depends on the later use of the 
method. If the method is only to be used occasion- 
ally, a relatively limited method validation proce- 
dure will suffice. If the method is to be submitted 
to a regulatory body, extensive testing is required. 

Should the method be submitted to a regu- 

latory body, thorough testing of the method, in 
the laboratory where it was developed, is usually 
followed by an interlaboratory study. To avoid 
problems in an interlaboratory test, a method can 
first be tested in the laboratory to an extent that it 
is expected to pass interlaboratory testing. If prob- 
lems occur with the method during an interlabora- 
tory test it is often difficult to trace the cause of 
the problems because relevant factors are not 
tested in a controlled way and will vary at ran- 
dom. It is therefore advisable to perform an in- 
tralaboratory test on factors that will be tested in 
an interlaboratory reproducibility study. For that 
purpose the newly developed method can be sub- 
mitted to a ruggedness test [4,5]. 

In the present paper the principles of rugged- 
ness testing in HPLC are outlined and the proce- 
dures are described that are part of a typical 
ruggedness test. In part 2 of this paper an expert 
system is described that guides a user through a 
ruggedness test in HPLC method validation [6]. 
The expert system is based on the theory pre- 
sented in this part. The purpose of the expert 
system is to demonstrate the use of expert system 
technology in HPLC method validation [7]. 

RUGGEDNESS TESTING 

In a ruggedness test one tests the effect of small 
changes in the operating conditions of a method. 
The changes reflect the possible changes in cir- 
cumstances when a method is transferred from 
one laboratory to another. A ruggedness test can 
be defined as: “an intralaboratory experimental 
plan, used before undertaking an interlaboratory 
study, to examine the behaviour of an analytical 
process when small changes in the environmental 
and/or operating conditions are made, akin to 
those likely to arise in different laboratories” [8]. 

A ruggedness test is advisable for every analyti- 
cal method that will be submitted to an inter- 

laboratory study. Also, a ruggedness test can be 
applied to any method which has been optimised, 
in order to test whether the optimisation process 
has not led to an unstable method. In HPLC, a 
rugedness test is particularly useful, because the 
number of factors that may affect the perfor- 
mance of the method is very large. Such factors 
can be found in every part of the HPLC method, 
ranging from the preparation of the sample to the 
detection. For instance, an HPLC method can be 
particularly sensitive to changes in the column 
(e.g. from one batch to another) or it can be 
sensitive to small changes in the wavelength of the 
detector. Applications of the ruggedness test to 
HPLC methods have been described recently [9- 
11]. 

In a ruggedness test, a number of essential 
steps can be identified (Fig. 1). Roughly speaking, 
a ruggedness test consists of a pre-experimental 
phase, an experimental phase and a post-experi- 
mental phase. In the pre-experimental phase, the 
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Fig. 1. Steps in ruggedness test set-up and interpretation. 

ruggedness test is set up. This phase consists of 
two important steps: the selection of factors to 
test, and the selection of an appropriate experi- 
mental design. In the experimental phase the ex- 
periments are carried out. In the post-experimen- 
tal phase, the experimental results are interpreted 
in three steps. The first is to combine information 
about the factors and the experimental design 
with the experimental data to evaluate the results 
statistically. In the next step these results are 
translated into chemically relevant results. Finally, 
in some cases, advice can be given on improve- 
ments to either the method or the testing proce- 

dure. 
Each step has its own characteristics and can 

be seen as a subtask of the ruggedness testing 
procedure. They differ, for instance, in required 
knowledge and experience, mode of operation, etc. 
An outline of each step is given below. 

FACTOR CHOICE 

Many factors can affect the performance of a 
method when it is transferred to other laborato- 

ries, particularly when the method is complicated. 
In chromatography, and especially in HPLC the 
number of factors can be very large (approx. 50, 
see Table 2). Examples of factors that will un- 
doubtedly vary are temperature, column parame- 
ters, the analyst’s skill, status of equipment used, 
etc. Many of these factors will not affect method 
performance to an extent that the results become 
unacceptable, because the factor levels vary only 
moderately in practice. Therefore, in a ruggedness 

test, only the relevant factors must be tested and 
testing must take place at relevant levels. For 
instance, if an operation procedure specifies that a 
certain step should be carried out at 45O C, it is 
useful to test this step at 40°C and 50°C but not 

TABLE 2 
. 

Examples of some possible 

and steps 

factors with variation percentages 

Sample preparation factors: 

sample weight 

shake time 

sonicate time 

heat temperature 

wash volume 

extraction volume 

centrifuge minutes 

pore size 1 

pore size 2 

extraction 1 

extraction 2 

dilution 

Chromatograph factors: 

PH 
temperature 

solvent 8 

flow-rate 

buffer concentration 

additive concentration 

Column factors: 

manufacturer 

batch 

Detector factors: 

wavelength 

ri-range 

filter 

time constant 

Data-handling factors: 

user selected factor 

1% 

20% 

20% 

5°C 

30% 

30% 

208 

5nm 

5nm 

1 

5OC 

0.1-38 

0.1 ml/mm 

1% 

0.5% 

5nm 

5 
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at 100°C. Deviations of up to 5 “C may be found 
in practice but deviations of 50 o C will not, unless 

great errors are made. Such errors will almost 
invariably cause obvious malfunctioning of the 
method. 

The level of testing also depends on the pur- 
pose of the method. In general, ruggedness testing 
is performed on methods that will eventually also 
be used in laboratories other than the one in 
which they have been developed. Otherwise, the 
level of testing will be less stringent, usually result- 
ing in the testing of fewer factors. 

Choosing the right factors to test is an essential 
step in setting up a ruggedness test. It largely 
depends on the expertise and experience of the 
person selecting the factors whether or not an 
acceptable set of factors is selected. However, 
experienced analysts may also overlook important 

factors. An expert system may rationalise this 
process, making it consistent and reproducible 

[121. 

SELECTING THE DESIGN 

If the factors to be tested have been identified, 
an experimental design must be chosen on the 
basis of which the effects of the factors can be 
tested. The experimental design gives the combi- 
nations of factors governing the way in which the 
experiments are carried out. It is important to 
keep the number of experiments in a ruggedness 
test as low as possible. Each HPLC experiment 
requires a considerable amount of time, especially 
when conditions are varied after each experiment. 
In a ruggedness test much time is needed between 
the experiments for establishing the factors at the 
specified levels. As a consequence, if a test is 
extended over a long period of time (e.g. a few 
weeks), time effects, such as column deterioration, 
may become important. These factors are then 
implicitly tested in the test. 

Several types of experimental designs can be 
used in a ruggedness test. However, only a few are 
applicable. Factorial designs best fit the purpose 
of ruggedness tests, establishing which of the fac- 
tors affect method performance and estimating 
some of the interactions. When using factorial 

TABLE 3 

Placket-Burman design to test 7 factors 

A Plackett-Burman design for 7 factors at two levels: 0 = factor 

at nominal level; 1 = factor at extreme level. 

Factor Experiment 

1 2 3 4 5 6 7 8 

1 0 0 0 0 1 1 1 1 

2 0 0 1 1 0 0 1 1 

3 0 1 0 1 0 1 0 1 

4 0 0 1 1 1 1 0 0 

5 0 1 0 1 1 0 1 0 

6 0 1 1 0 0 1 1 0 

7 0 1 1 0 1 0 0 1 

designs a choice must be made between full and 
(saturated) fractional factorial designs. 

The number of factors to test in an HPLC 
ruggedness test is usually between 3 and 11 [12]. 

Occasionally, up to 15 factors can be tested [13]. 
The common type of design for this kind of test is 
a (saturated) fractional factorial design. With such 
designs the factors are tested efficiently using a 
small number of experiments. If, for instance, a so 
called Plackett-Burmann design is used, seven 
factors can be tested with only eight experiments 
[14] (Table 3). These designs assume that all inter- 
actions between factors are negligible and provide 
only the effect of single factors. The extent to 
which a factor affects the performance of the 
method is called a main effect. The possibilities 
for estimating first order interactions in fractional 
factorial designs are limited because the interac- 

Fig. 2. Factorial design with three factors tested at two levels. 
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tions are confounded with the main effects. If the 
number of factors to be tested is low (e.g. 3 or 4), 
then a full factorial design can be considered (Fig. 
2). When using full factorial designs, interaction 
effects are estimated without increasing the num- 
ber of experiments to an unacceptable number, 
provided the number of factors is low. 

PERFORMING THE EXPERIMENTS 

When the factors have been chosen and a de- 
sign has been selected, the experimental work can 
be started. This involves performing the experi- 
ments as specified in the design and obtaining the 
required information from the chromatogram. 

In HPLC a number of parameters can be mea- 
sured (Table 4). The most relevant of these are the 
concentration calculated from the peak area or 
from the peak height. These parameters are 
evaluated to decide on the ruggedness of the 
method. Other parameters such as the retention 
time, the resolution or the plate number are also 
of interest. They indicate whether the method is 
very sensitive to a certain factor. For instance, a 
decrease in the plate number indicates that the 
method deteriorates if it is not performed under 
the specified conditions. Resolution is a special 
parameter because, in certain cases, it can cause a 
method to be non-rugged when the resolution falls 
below a specified value. 

Effects on peak height and peak area should 
warn the user. If, for instance, a factor affects the 
peak area or height considerably, the limit of 
detection may be increased. In general it is im- 
portant to measure as many parameters as possi- 
ble. The more information about the method that 

TABLE 4 

List of possible parameters 

1 Concentration calculated with peak area 

2 Concentration calculated with peak height 

3 Peak area 

4 Peak height 

5 Retention time 
6 Resolution 

7 Plate count 

is collected, the more accurately can possible 
problems be identified. 

CALCULATING THE STATISTICAL RESULTS 

After carrying out the experiments, statistical 
information must be derived from the experimen- 
tal results. Performing the experiments according 
to the experimental design leads to a data matrix 
with four dimensions: 
_ the number of experiments NeXp 
- the number of parameters N,,,,, 
- the number of components in the sample Ncomp 
- the number of duplicates (usually 2) 

From this data matrix, the main effect for every 
component and parameter can be calculated for 
every factor. Because all measurements are usually 
performed in duplicate, the standard errors can 
also be calculated for each component and for 
each parameter (Table 5). 

The calculation of the main effects and the 
standard errors results in two matrices. The main 
effect is calculated for each parameter, for each 
component and for each factor, so that the data 
matrix of the main effects has three dimensions 

1 ~fiw &Gml9 %mp ] with N,, being the number 
of factors tested. The main effects indicate whether 

a factor affects the response of the method. 
The standard errors are calculated for every 

component, for every parameter and form a two 
dimensional data matrix [Ncomp, N,,,,,,]. The 
standard errors reflect the repeatability of the 
method at the extreme levels. Normally, a repeata- 
bility test under nominal method conditions has 
already been performed. The repeatability at the 
extreme levels is investigated because if large er- 
rors are found, the main effects become unreli- 

able. 

PRODUCING CHEMICALLY RELEVANT RESULTS 

The next step is the translation of the statistical 
results into information on the method. In order 
to identify significant factors, the main effects and 
standard errors are compared to critical levels. 
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TABLE 5 

Calculation of main effects and standard errors 

Data matrix: 
_ For every parameter [N,,, 1, for every peak [NC_,,,]: 

inj. 1 inj. 2 

experiment 1 

experiment 2 

experiment 3 

x1.1 x1.2 

x2.1 x2,2 

x3.1 x3,2 

experiment NeXP XN.1 

- Experimental design [NC.+,, N&: 

xN,2 

fat A fat B fat . . . fat &, 

experiment 1 

experiment 2 

experiment 3 

- _ _ _ 

+ _ _ + 

+ + _ + 

experiment NeXP - _ 

_ Divisor (div): the number of times an effect can be measured in the design 

Cakutations: 

+ + 

- Main effects for every factor [?I,,], for every parameter [N,,,,,], for every peak [ Ncomp]: 

M.E. = 100 * 
(-x1 +E2+x3...-~N,,,) 

X, * div 

- Standard errors for every parameter [N,,,,,], for every peak [ Ncomp]: 

%p 
C Diff: 

S.E. = 100 * + 
1 dupl 

Diff, = x,,inj I - Xr,inl2 

The critical levels differ depending on the param- 
eter for which the effect or error was measured. 

The order in which the errors and effects are 
interpreted is important. If the method shows a 
problem with the ruggedness of the concentration, 
the method fails the ruggedness test and other 
parameters, such as resolution, become irrelevant. 

The standard errors must be checked first (Fig. 
3). Standard errors are expressed in percentages of 
the nominal level. The nominal level is the level at 
which the method is specified in the operational 
procedure. In practice it appears that a standard 

error, found in a ruggedness test in HPLC, of less 
than 1% is acceptable. If standard errors larger 
than 1% are found, repeatability is too low. In 
principle a standard error larger than 1% calls for 
a diagnosis. However, before diagnosing prob- 
lems, possible outliers are flagged, having a dif- 
ference between duplicate measurements larger 
than 2%. The outlying experiment must be re- 
peated and the standard error is recalculated. If 
the problem persists, the standard error is listed 
for diagnosis. 

Depending on the size of the standard error, 
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standard errors 

Diagnose 

main effects 

Fig. 3. The diagnosis process for the standard errors. 

various actions can be recommended after diagno- 
sis. If the standard error is between 1 and 2%, 
repeatability is too low. It is then advisable to 
repeat the repeatability test. If standard errors are 
larger then 256, another ruggedness test should 
follow, the levels of the factors being specified 
within a narrower range. However, if sample pre- 
paration factors are tested, this part of the method 
must be modified before starting a new rugged- 

ness test. Sample preparation problems are likely 
to recur if this is omitted. Also, if resolution is a 
problem, it is suggested that the method should be 
improved at this point before a new ruggedness 
test is initiated. 

If the standard errors are within the specifica- 
tion, basically the same procedure is applied to the 
main effects. In statistical terms, a main effect is 
significant when it is significantly larger than the 
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standard error for the same component and 
parameter. This can be tested using an F-test. 
However, comparison of the main effect and the 
standard error is not enough. If a main effect is 
smaller than the corresponding standard error, no 
effect is found for that factor. If the main effect is 
significantly larger than the standard error a stat- 
istically significant main effect exists, but this 
does not mean that the main effect is relevant 
from the chromatographic point of view. There- 
fore, the main effects are also checked against 
predefined limits. These limits represent accepta- 
ble variations in practice. Critical levels for main 
effects are specific for every parameter (Table 6). 

For instance, if any main effect found for the 
concentration is larger than l%, a problem is 
revealed that should be subjected to diagnosis. For 
the other parameters the limits may be less tight. 
Exceeding these limits is not automatically inter- 
preted as a problem with the method. However, 
such incidents may be considered in the diagnosis, 
to see if any warning to the user is appropriate. 

All main effects that are subjected to diagnosis 
can now be related to the factors causing the 
problems. This list of factors can serve as a basis 
for the diagnostic process. The factors are identi- 

fied by the component and the parameter that 
showed the problem and by the value of the 
established main effect. 

It may be necessary to warn the user that 
certain factors may affect method performance, 
without their being critical (Table 7). Such a wam- 
ing could, for instance, be that changes in temper- 
ature may cause a loss of resolution. This is not 
necessarily critical for the method, but it must be 

checked regularly. 

TABLE 6 

List of some critical levels 

Parameter 

Cont. peak area 

Cont. peak height 

Plate count 

Retention time 

Peak area 

Peak height 
Resolution 

Critical level 

1% 

1% 

50% 

10% 

2% 

2% 

50% or < 2.5 

TABLE I 

List of possible diagnoses 

Problem * Factor Parameter Diagnosis 

S.E. 

M.E. 

S.E. 

M.E. 

S.E. 

M.E. 

M.E. 

M.E. 

M.E. 

M.E. 

all 

all 

all 

all 

all 

all 

drift 

all 

drift 

all 

all 

all 

all 

area 

height 

all 

resolution 

all 

cont. area 

cont. height 

height 

resolution 

ret. time 

height 

p. count 

height 

area 

height 

Redevelop sample 

preparation 

Improve method 

(resolution) 

Respecify factor levels 

Recalibrate regularly 

Deterioration in 

performance 

Reduction of limit 

of detection 

Peak runs off scale 

* M.E. = Main effect; S.E. = standard error. 

Main effects on retention time can be due to 
the effect of drigt in one of the so-called drifting 
factors, such as temperature or solvent composi- 
tion. Drift can occur when the laboratory temper- 
ature is not controlled or when evaporation of one 
of the solvent components occurs. The user should 
be warned, so that the problem can be avoided. 

Main effects on the peak area and height can 
indicate problems in the sample preparation, af- 
fecting the recovery. If any factor stemming from 
sample preparation causes an effect in peak height 
or area larger than a certain value (default 2%) 
then the sample preparation is not rugged and 
must be modified. In addition, main effects on the 

peak height can indicate if drift factors tend to 
affect quantification. If this happens, the user 
should recalibrate regularly. If the effect is too 
large, the conclusion should be that the method is 
not rugged. 

If no errors or effects are found, system suita- 
bility criteria can be calculated. These criteria take 
the form of upper and lower limits for the resolu- 

tion, retention time, plate count, etc. A test run of 
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TABLE 8 

System suitability criteria 

In a two component system the lowest resolution is found in 

exp 1. The highest resolution for that component pair is found 

in exp 5. The system suitability criteria then are, for instance, 

as given below. 

RS 

Rt 

N 

Experiment 1 

camp 1 camp 2 

2.8 4.5 

1.5 3.6 

2000 4000 

Experiment 5 

camp 1 camp 2 

4.0 6.5 

2.5 5.9 

2500 5600 

the method, which can be performed at the start 
of every day, must give results within these limits 
(Table 8). The system suitability criteria can be 
found from the extreme values for the parameters 
obtained during the ruggedness test. First the 
lowest resolution observed in any experiment is 
found. This is matched with the m~mum resolu- 
tion for the same component pair. This gives two 
experiments: one giving the lowest resolution 
overall and one giving the m~mum resolution for 
the same component pair showing the lowest over- 
all resolution. The results of these two experi- 
ments are listed as system suitability criteria. 

IMPROVING THE METHOD OR THE TESTING PROCE- 

DURE 

Interpretation of the main effects can lead to 
suggestions for changes in the HPLC method. 
Because any change in the method will cause 
much additional experimental work, such as the 
repetition of previous steps of the method valida- 
tion process, it is advisable to follow a conserva- 
tive strategy in implementing such changes. An 
example of this is the solution of problems with 
the resolution of the method by changing the 
flow-rate. In many cases such a problem can also 
be solved by changing the column dimensions, but 
this may cause much more dramatic effects than 
just changing the flow-rate, thus necessitating a 
great deal of additional testing. 

If a method produces significant main effects 

or standard errors, it may be possible to remedy 
the problem with a minimum of changes. In par- 
ticular, in cases where the resolution is the param- 
eter that is affected, a simple adaption of the 
method may solve the problem. 

Resolution is the only parameter in the rugged- 
ness test that not only causes problems if main 
effects or standard errors are produced: resolution 
can also cause problems if its value falls below a 
certain critical value. For instance, a main effect 
of 5% for resolution will not be listed as a problem 
(Table 6). However, if the normal resolution is 
below 3 (e.g. 2.6) and the required resolution for 
the method is 2.5 it may occur that the resolution 
becomes 2.6 - 0.05 * 2.6 = 2.47 which is smaller 
than the required resolution of 2.5. In such as case 
a simple solution can be to increase the initial 
resolution to (for instance) 2.7 by reducing the 
flow-rate. 

A conservative approach to reducing main ef- 
fects may be to keep factors which failed the 
ruggedness test under more rigid control. The 
respecified factors are then tested anew in a sec- 
ond ruggedness test. This can, for instance, hap- 
pen if the method temperature is fixed at 45O C 
and the method is initially tested at 40°C and 
50 o C. If the main effect for one of the concentra- 
tion parameters is too large upon such changes, 
the test can be respecified to test temperatures of 
43” C and 47 o C. The ruggedness test is repeated 
and the method is now more likely to pass the test. 
The tighter boundary conditions for the tempera- 
ture should be included in the description of the 
method, stating that special attention should be 
paid to controlling the temperature. The tighter 
control of factors may also be of benefit if there is 
a standard error larger than 2%. The experiment 
at which this occurs and the factors that are at the 
extreme level in this experiment must be identi- 
fied. The test may be redefined with the factors at 
a different level. If the method still fails the test 
after respecification of the levels, then the conclu- 
sion should be that it is not rugged. 

For some of the factors, resp~ification of the 
levels is not appropriate. For instance, if a change 
of column manufacturer leads to a failure of the 
test, the method should simply be specified with 
only one possible manufacturer. 
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