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Ahstract 

Smits, J.R.M., Melssen, W.J., Buydens, L.M.C. and Kateman, G., 1994. Using artificial neural networks for solving chemical 
problems. Part I. Multi-layer feed-forward networks. Chemomettics and Intelligent Laboratory Systems, 22: 165-189. 

This tutorial focuses on the practical issues concerning applications of different types of neural networks. The tutorial is divided 
into two parts. In the first part, an overview of the general appearance of neural networks is given and the multi-layer feed-fonuard 
neural network is described. In the second part, the Kohonen self-organising feature map and the Hopfield network are discussed. 
Since the multi-layer feed-forward neural network is one of the most popular networks, the theory concerning this network can 
easily be found in other references (B.J. Wythoff, Chemom. Intel/. Lab. Syst., 18 (1993) 115-155) and is therefore only described 
superficially in this paper. Much attention is paid to the practical issues concerning applications of the networks. For each network, 
a description is given of the types of problems which can be tackled by the specific neural network, followed by a protocol for the 
development of the system. It is seen that different neural networks are suited for different kinds of problems. Application of the 
networks is not always straightforward; a lot of constraints and conditions have to be fulfilled when using neural networks properly. 
They appear to be powerful techniques, but often a lot of experience is needed. In this paper some guidelines are given to avoid the 
most common difficulties in applying neural networks to chemical problems. 
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1. INTRODUCTION 

Chemometrics is the subdiscipline of analytical Traditionally, mathematical and statistical 

chemistry which concerns the design and selec- methods are used for data processing and inter- 

tion of optimal measurement procedures and ex- pretation. Standard numerical techniques, how- 

periments and the extraction of as much relevant ever, are incapable of solving some of the more 

information as possible from chemical data. The complex problems. For such complex problems 

fast development of analytical chemical instru- nowadays other methods are also used such as 

mentation together with the need for more qual- expert systems [1,21. Expert systems combine by 

ity control leads to more and more data and to means of an inference process the theory underly- 

the demand for advanced data interpretation 
methods. 
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ing a specific problem and available human ex- 
pertise, e.g. heuristics. Unfortunately human ex- 
pert knowledge often is very hard to acquire and 
expert systems are also still limited to restricted 
domains. Another method which has recently 
gained interest is the genetic algorithm technique 
[3-S]. This is a powerful optimisation technique, 
but it can only handle limited, though complex, 
problems and a lot of experience is needed to 
apply it. 

Artificial neural networks have been devel- 
oped initially as models for their biological coun- 
terparts. The computerised version of this model 
is well suited for performing typically human 
tasks, such as memorising objects, recognising 
(symbolic) patterns, generalising, estimating pa- 
rameters and making decisions. These properties 
seem promising for overcoming some of the 
shortcomings of the more ‘traditional’ data inter- 
pretation techniques. For these reasons neural 
networks are being more frequently used by re- 
searchers as well as practitioners [61. 

Probably one of the earliest descriptions of 
some of the main ideas of (biological) neural 
networks is found as far back as 1890, in a psy- 
chology book written by James 171, and the foun- 
dations of artificial neural networks are perhaps 
given by McCulloch and Pitts [8] in their paper of 
1943. These authors tried to understand the func- 
tioning of the nervous system by defining primi- 
tive information processing elements, which were 
based on mathematical logic, that form abstrac- 
tions of the functional properties of biological 
neurons and their connections. In 1949 Hebb [9] 
described a learning rule which was derived from 
observations done in neurophysiological experi- 
ments on biological neural networks. Remark- 
ably, the learning rule embedded in the bulk of 
the current artificial neural networks is based on 
this so-called Hebbian learning rule. 

At that time research was still theoretical be- 
cause there was no sophisticated computer tech- 
nology available. With the increasing availability 
of computers, the neural network models could 
be simulated and tested ‘in practice’. A famous 
example is the Perceptron, developed by Rosen- 
blatt [lo]. It was the first precisely specified, 
computationally oriented neural network and it 

was an impetus for the growth of research on 
(artificial) neural networks. Increasingly more sci- 
entists devoted their time to neural network re- 
search and the capabilities of neural networks 
were believed to be tremendous. This rather ex- 
aggerated expectation, together with the scientific 
anxiety proclaimed in newspapers l , created an 
atmosphere in which the book of Minsky and 
Papert [ll] could flourish. In this book the au- 
thors show the severe shortcomings of Percep- 
trons. The book, which predicts the uselessness of 
neural networks, has had a very negative impact 
on neural network research, which caused loss of 
research funding. 

Fortunately, a few scientists were not discour- 
aged and their persistency resulted in a final 
breakthrough: the development of a learning rule, 
i.e., back-propagation, for more complex net- 
works which were capable of dealing with more 
complex (non-linear) problems than was the Per- 
ceptron. This learning rule was developed almost 
simultaneously in three places. A detailed de- 
scription of the rule and parallel distributed pro- 
cessing (PDP) is given in a two-volume book by 
Rumelhart, McClelland and the PDP research 
group [12]. This revival has led to an expansion of 
the research on artificial neural networks and, as 
a consequence, these networks are being more 
frequently applied to chemical problems. How- 
ever, the appearance of present artificial neural 
networks has very little in common with the origi- 
nal biological neural networks. 

Research has led to the development of differ- 
ent types of neural networks. They are all com- 
posed of units, neurons, and connections between 
them. These units act in parallel and locally, and 
together they determine the global behaviour of 
the network. Most networks are trained or ini- 
tialised with examples. Once a network has been 
trained, it may be used if it fulfills the require- 
ments specified in advance. The latter may be 
verified by presenting a set of test examples to 
the network and monitoring the network’s perfor- 
mance. 

l Frankenstein Monster designed by Navy Robot that Thinks, 
headline in an Oklahoma newspaper, 1962. 
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2. PROBLEM DOMAINS 

Neural networks may be used for different 
kinds of problems. Basically, there are four main 
types of problems/ applications where neural 
networks could be useful: (auto-lassociative mem- 
ory, generalisation, optimisation and data reduc- 
tion. In the following discussion, the terms prob- 
lem and solution are used to refer to the overall, 
abstract problem and solution. The terms input 
object and output object are used to refer to a 
specific instance of the problem and its associ- 
ated solution, respectively. The terms input pat- 
tern/vector and output pattern/vector are used 
to refer to the numerical representations of the 
input and output object, respectively. 

2.1. Memory 

A neural network may be used as a memory, 
i.e., to recall stored patterns. If a data set with 
examples (input patterns together with their asso- 
ciated output patterns) is memorised, the net- 
work should be capable of recalling the correct 
output pattern when the corresponding input pat- 
tern is presented again. If the input pattern and 
the associated output pattern are identical, the 
memory is called auto-associative. A noisy or 
incomplete pattern is presented to the network to 
obtain a noise-free or complete pattern. 

Usually such an associative network is ini- 
tialised or trained with a set of examples taken 
from the data base. After this procedure, the 
network reflects or models the association be- 
tween each input-output pattern combination. 
The complexity of the model is not important. It 
does not matter whether each specific association 
is memorised or whether a more abstract relation 
is built that is valid for more input-output pat- 
tern pairs. Neural networks suitable for this task 
are perceptron-like networks (Section 4 and Part 
II, Section 3) and Hopfield-like networks (Part II, 
Sections 2 and 31. 

2.2. Generalisa tion 

If the network can not only recall output pat- 
terns previously stored during a training or initial- 

isation phase, but can also predict output pat- 
terns associated with input patterns it has never 
seen before, the network is said to generalise. In 
this case the model that the network has built 
based on the training examples has to be more 
general. It should not only memorise the relation 
between specific input-output pattern pairs, as in 
an associative memory, but it should model such 
a relation for an entire domain. This is a much 
more difficult task and it imposes constraints on 
the design of the network and the composition of 
the training set. Neural networks which can per- 
form these tasks are perceptron-like (Section 4 
and Part II, Section 3) and Kohonen-like net- 
works (Part II, Sections 1 and 3). 

2.3. Optimisation 

Another class of neural networks is capable of 
optimising non-optimal situations, given some 
constraints and a measure, i.e., a cost or energy 
function, to express the quality of the solutions. 
Neural networks suitable for this task are Hop- 
field-like networks (Part II, Sections 2 and 3). 

2.4. Data reduction 

A pattern (representing some object) consists 
of a number of variables. This number may be 
high and for various reasons it may be desirable 
to reduce it, e.g., variables may be relatively 
unimportant or highly correlated. Neural net- 
works suitable for this task are perceptron-like 
(Section 4 and Part II, Section 3) and Kohonen- 
like networks (Part II, Sections 1 and 3). 

3. TYPES OF NEURAL NETWORKS 

Since the foundation of artificial neural net- 
works, a variety of different types has been devel- 
oped. The choice of the network type depends on 
the particular problem to be solved. Before dis- 
cussing different types of networks, some basic 
building blocks will be listed. 
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3.1. Basic ingredients Not every neural network contains all of these 
building blocks. 

In general, artificial neural networks are com- 
posed of the following basic building blocks: 3.2. Overview 

- Units (neurons or processing elements). 
Units may be associated with some objects in 
different ways. Each object may be associated 
with exactly one unit or with a set of units to- 
gether. The last possibility is termed parallel dis- 
tribution. The way the units are organised, e.g., in 
layers or other configurations, is important. 

- Pattern of network connections. The units 
are connected with each other by network con- 
nections. Units and their connections together 
determine the structure of the network. Via these 
connections the units are able to send/receive 
signals to/from each other or the outside world. 

In Section 2 several problem domains were 
mentioned in which neural networks could be 
applicable. There are many different networks, 
each with its own capabilities and limitations. In 
this overview a description is given of the basic 
types of neural networks. Globally, neural net- 
works may be subdivided into three basic types, 
suited for modeling, self-organisation, and opti- 
misation, respectively. 

3.2.1. Modeling 

- Weights of connections. Every connection 
is associated with a connectivity strength, a weight. 
These weights play an important role in the prop- 
agation of signals through the network. Every 
signal passing a connection is multiplied by the 
weight associated with this connection. The 
weights contain information, in a distributed 
sense, on the relation between the ensemble of 
input and output patterns. 

- Activity of units. The activity of a unit 
depends on the signals the unit receives and 
influences the final signal the unit will send. 

If a neural network is used for modeling, it has 
to build a model of the relation between the 
given problem and solution, i.e., it has to be able 
to transform an input pattern to the associated 
output pattern (pattern association). These types 
of networks are trained in a supervised way. They 
are provided with input-output pattern pairs and 
extract the model from these examples. Once the 
network has built this model, it may be used, 
after some validation procedure, to predict out- 
put patterns for new input patterns. An example 
of this type of network is the multi-layer feed-for- 
ward neural network (Section 4). 

- Activity function. In each unit the incom- 
ing signals are processed to form a net input. This 
net input, together with the actual activity, deter- 
mines the new activity of the unit via the activity 
function. 

3.2.2. Self-organisation 

- Transfer function (output function). The 
output signal of a unit is determined by appIying 
the transfer function to the activity of that unit. 
The pattern of outputs of all units which emerges 
determines which object is involved. 

- Learning rule. Optimal weight values must 
be found for the network to function properly. 
These values are achieved by training the net- 
work, i.e., by adapting the weights according to 
some learning rule. 

If only examples of input patterns without 
their output patterns are available, so-called self- 
organising neural networks may be applied which 
are able to organise themselves by the presented 
training data. Such neural networks will reflect 
the structure present in the training set. The 
network is not forced to give a specific solution, 
since this solution is not known. The networks 
are trained in an unsupervised way. An example 
of this type of neural network is the Kohonen 
self-organising feature map (Part II, Section 1). 

3.2.3. Optimisa tion 
- Environment. The environment of a neural A third type of neural network may be used to 

network is made up of the problem and the solve optimisation problems. Such a network may 
solution. Both problem and solution impose con- be initialised with a far from optimal situation 
straints on the structure of the network. and the network will optimise the given situation 
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by itself, provided that the network has some 
measure for the quality of the solutions. An ex- 
ample of such a network is the Hopfield network 
(Part II, Section 2). 

4. MULTI-LAYER FEED-FORWARD NETWORKS 

4.1. Introduction 

The multi-layer feed-forward (MLF) neural 
networks, also called multi-layer perceptron or 
back-propagation neural networks, are presently 
popular and are used more than other types, for 
a wide variety of problems. If a solution for a 
problem cannot be derived directly, e.g., mathe- 
matically or numerically, from a description of a 
problem, an indirect path has to be found to 
model the relation between the problem and its 
solution. The application of a neural network is 
based on the assumption that such a relation 
indeed does exist. 

A relation between problem and solution may 
be quite general, e.g., the simulation of a produc- 
tion process (where the problem is defined by the 
process parameters and the solution by a descrip- 
tion of the product) or the prediction of chemical 

or physical properties of a chemical compound. A 
MLF neural network is a powerful system, often 
capable of modeling such (complex) relations. 
This enables the use of a MLF network for pre- 
dicting an output object for a given input object. 
The network builds a model based on examples 
with known outputs, a process which is referred 
to as supervised learning. No information about 
the relation to be modeled is given explicitly to 
the network. It must extract this relation solely 
from the presented examples, which together are 
assumed to contain implicitly the necessary infor- 
mation for this relation. 

4.2. Theory 

4.2.1. Structure 
A multi-layer feed-forward neural network 

(Fig. 1) consists of three or more layers of units: 
one input layer, one output layer and one or 
more intermediate (hidden) layers. All the units 
in one layer are connected with all the units in 
the next layer (feed-forward). The number of 
input and output units depends on the represen- 
tations of the input and the output objects, re- 
spectively. Notwithstanding these and other re- 
strictions, much variety in the network structure 
is possible. 

input layer 

hidden layer 

output layer 

Fig. 1. A MLF network with one input layer, one hidden layer and one output layer. 
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Fig. 2. Basic processing element of a neural network. See 
Section 4.22 for an explanation of the different phases. 

1 
1 .oo 

4.2.2. Signal propagation 
Units and their connections form the back- 

bone of a neural network. The general appear- 
ance of a unit with its connections is shown in 
Fig. 2. In this figure, three phases can be distin- 
guished: 

1. A unit receives and sends signals from and 
to other units or the outside world via the con- 
nections. Every signal is weighted by a weight 
factor that is associated with the connection. 

2. The received weighted signals together de- 
termine the net input to the unit. For the units in 
a layer the net input of unit j is given by 

netj = C WjiOi 

i 

in which the index i refers to the units in the 
previous layer, wji is the weight from unit i to 
unit j, and oi indicates the output of unit i. This 
net input then determines the activity of a unit 
via the activity function. However, in most net- 
works the activity of unit j is given by 

actj = netj (2) 

and in the following nerj is used to denote the 
activity of unit j. 

3. The activity of the unit determines the 
transmitted signal (output) of the unit via a trans- 
fer function. Many transfer functions may be 
used, e.g., a linear function, a threshold function 
or a sigmoid function (Fig. 3). A sigmoid function 
that is used often is given by 

1 
oj = f( neti) = 

l+exp[-(nefj+8,)] (3) 

in which Oj is a bias term which influences the 
horizontal offset of the function. The bias, flj, 

I+- 
- 0.80 

- 0.60 

- 0.20 / 

- 0.40 

I_-- 
-6 -4 -2 0 2 4 6 

sigmoid 

Fig. 3. Different transfer functions. “The actual ‘intelligence’ 
exhibited by the most sophisticated artificial neural network is 
below the level of a tapeworm” [13]. 

may be treated as the weight from an extra input 
unit to unit j. This extra input unit has a fixed 
output value of 1, and Oj may be trained as a 
regular weight. 

The weights play an important role in the 
propagation of the signals through the network. 
They establish a link between the input pattern 
and its associated output pattern and are said to 
contain the knowledge of the neural network 
about the problem-solution relation. 

4.2.3. Representation of problem and solution 
Since the network has to extract the relation 

between problem and solution from examples, 
the representation is a very important issue (Fig. 
4). As much information as possible has to be 
retained both upon translation of the input object 
to an input pattern for the network and upon 
translation of the output pattern to the output 
object. Both the input object and its associated 
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representation 

unknown relation neural network model 

representation 

Fig. 4. Relation between problem and solution. 

output object are represented by an array of 
variables (a pattern or vector). An example thus 
consists of an input and an output pattern, a 
pattern pair. Every variable is associated with a 
unit. Since each unit is defined to have a specific 
meaning, the number of variables and their 
meaning have to be the same for each pattern 
pair. 

Different applications of neural networks of- 
ten require different representations. When a 
neural network is used for classification, each 
output unit may be defined to be associated with 
a specific class. In this case the representation of 
the output objects (classes) may be a binary one. 
If the network is used for calibration, however, a 
continuous output representation is usually re- 
quired. The input pattern is presented to the 
input units of the neural network (one variable 
value per input unit). The signal is propagated 
through the network to the output units, which 
give the output pattern. 

4.2.4. Training the network 
As was stressed before, the functioning of a 

neural network is highly dependent on the way 
the signals are propagated through the network. 
This signal propagation, in turn, is determined by 
the weights of the unit-to-unit connections. In 
general, the weight setting is not known before- 
hand and, therefore, initially the weights are given 
a random value. The process of updating the 
weights to a correct set of values is called training 
or learning. 

A correct weight set usually is achieved by 
means of supervised learning. During training, 
examples consisting of input-output pattern pairs 
are forced iteratively upon the initially untrained 

network. Each time an input pattern is presented, 
the output pattern given by the network is com- 
pared to the known, desired, output pattern, and 
the difference is used to adjust the weights in 
small steps. The presentation of patterns from 
the training set continues until the network gives 
the correct answer for each input pattern of the 
training set, possibly within some predefined al- 
lowed error, or after a predefined number of 
presentations of all the examples. 

This training procedure is called the back- 
propagation learning rule [12]. The difference 
between the desired output pattern and the ac- 
tual output pattern (the error) is a function of the 
weights (Fig. 5). The back-propagation learning 
rule tries to locate the minimum error in this 
weight space, by including a gradient descent 
approach. This error is given by 

E=$C(d,-Oj)’ (4) 
i 

in which the fraction i is included for mathemati- 
cal reasons, and dj and oj are the desired output 
and the actual output of unit j, respectively. 

The adaptation of the weights is done in a 
backward fashion. According to the back-propa- 
gation learning rule, first the weights to the out- 
put layer are adapted, next the weights between 
units in two consecutive intermediate layers are 
adjusted, and finally, the weights of the input 
layer to the second layer in the network are 
modified. The adaptations are given by 

Awji = qajoi (5) 

in which Awji denotes the adaptation of the 
weight from unit i to unit j in the next layer, oi is 
the output of unit i and n is the learning rate. 
The error correction term, Sj, depends on the 

E“; 
I 

Fig. 5. Error surface as function of a weight. 
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layer index. If the layer is the output layer, Sj is 
given by 

sj = ( dj - dj)fj’( netj) (6) 

in which dj and oj represent the desired output 
and the actual output of unit j, respectively, and 
fj’(netj) is the derivative of the transfer function, 
fj(netj) (Eqn. 31, with respect to its argument. If 
the layer is a hidden layer, Sj is given by 

sj =fi'(netj)CS W 

k k ki (7) 

in which k refers to the units in the next layer. 
The learning rate is an important network 

parameter because it strongly determines the 
progress of the training procedure. If it is chosen 
too small, the convergence of the weight set to an 
optimum is accurate, but very slow, and the net- 
work might get stuck in a local optimum. If the 
learning rate is high, on the other hand, the 
system might oscillate. To damp possible oscilla- 
tions, often a momentum term, (Y, is invoked. In 
that case Awji is 

Awji( n + 1) = n6joi + ‘yAwji( n) (8) 

The training set must have enough examples to 
be representative for the overall problem. The 
training phase can be time consuming depending 
on, amongst other things, the network structure, 
the number of examples in the training set, and 
the number of iterations. However, it only has to 
be done once for a particular problem. 

4.2.5. Testing the network 
After training, the performance of the network 

must be tested. This is done with a test set 
consisting of examples other than the training set, 
taken from the original data set. In the testing 
phase the input patterns are fed to the network 
and the desired output patterns are compared 
with those given by the neural network. The 
(disjagreement of the two output pattern sets 
gives an indication of the performance of the 
trained network. Often the performance of such 
systems is expressed in two percentages: Recogni- 
tion and Prediction. Recognition and Prediction 
are the number of correct output patterns divided 
by the total number of pattern pairs present in 

the set. In the case of Recognition the set of 
pattern pairs comes from the training set. In the 
case of Prediction the pattern pairs do not come 
from the training set. When the performance 
meets the requirements specified in advance, the 
network is ready for real analysis purposes. 

4.3. Aspects of use 

Developing a neural network system is said to 
be an art. Many parameters have to be set and 
this is often done based to some extent on heuris- 
tics. In the following paragraphs, some of these 
heuristics are discussed. This Section is not meant 
to give an overview of all possible situations one 
might encounter during the development of a 
neural network system, nor to solve all problems 
that may occur. It it is merely meant to be a 
guideline to avoid many of the typical traps. 

4.3.1. Types of problems 
Although the characteristics of the MLF neu- 

ral networks impose certain restrictions on their 
use, they still have enough diversity to be useful 
for solving many different kinds of problems. 
Depending on the chosen representation of the 
output objects, different types of network appli- 
cations may be defined. The output of the net- 
work may consist of binary or continuous values, 
each suited for different fields of applications. 
Qualification requires binary outputs and quan- 
tification requires continuous outputs. If some- 
what more complex networks are used, combina- 
tions of these types of outputs may be used. 
However, these are not discussed in this paper. 

4.3.1.1. Binary outputs. The input pattern of the 
network consists of variables which together char- 
acterise the input object. The output pattern of 
the network consists of binary values. To obtain 
the binary values, some sort of threshold transfer 
function is necessary for the output units, e.g., a 
sigmoid function. 

If the network is used for feature detection, it 
is requested to indicate the presence or absence 
of specific features of an object. The output pat- 
tern indicates the presence/absence of the fea- 
tures, e.g., in the case of three features an output 
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of (10 0) indicates the presence of the first fea- 
ture and absence of the second and third, (110) 
indicates the presence of the first and second 
feature and absence of the third, and so on. More 
output values may be equal to 1 simultaneously, 
thus indicating the presence of a combination of 
features. An example of the use of MLF net- 
works for qualification is given in ref. 14 where 
the interpretation of infrared spectra with neural 
networks is described. The network is requested 
to indicate the presence/absence of different 
functional groups in a molecule, based on in- 
frared spectra. 

If binary outputs are used, the network may 
also be used for classification tasks. For such 
tasks, the network is requested to distinguish 
between different classes of objects. The output 
pattern of the network gives the class of the 
object. To indicate a class, different representa- 
tions may be used. Often each output unit is 
associated with one class and binary values are 
used to indicate to which class the object belongs, 
i.e., in the case of four classes an output of 
(10 0 0) indicates the first class, (0 10 0) the sec- 
ond, etc. Since an object is designated to belong 
to precisely one class, only one output unit is 
supposed to have a unitary value. 

If it is desirable that the number of units is less 
than the number of classes, gray coding [5] or 
binary coding may be used, e.g., (00 11, (0 lo>, 
(0 11) etc., indicating class one, two, three, etc., 
respectively. Even one continuous output unit 
may be used to indicate the classes, e.g., the value 
1, 2, or 3 indicating class one, two, or three, 
respectively. However, using the last mentioned 
output representation, it is implicitly assumed 
that there exists some sort of ordering of the 
object classes. Moreover, the network might mix 
up different classes more easily and the interpre- 
tation of the network output would be less 
straightforward. Usually, one output unit per class 
is the best choice. An example of the use of MLF 
networks for classification is given in ref. 15. In 
this paper algae, characterised by flow cytometer 
data, are classified. 

Classification tasks occur quite often. If each 
class is associated with only one unit, the inter- 
pretation of the network output is simplified. In 

the following the term classification refers to this 
specific combination of task and representation. 
The term qualification will be used to refer to all 
other tasks performed by networks with binary 
outputs. 

4.3.1.2. Continuous outputs. Again, the input 
pattern of the network consists of a number of 
variables which characterise the object. The out- 
put pattern now consists of one or more continu- 
ous values. This means a threshold is not re- 
quired (no distinction between binary values) so 
the transfer function of the output units may be a 
linear one. The transfer function of the units in 
the hidden layer is still a sigmoid to enable the 
network to model non-linear relations. 

If continuous outputs are used, not only the 
presence/absence of specific features may be 
indicated, but also quantitative information on 
these features. The interpretation of the output is 
straightforward: the output values of the output 
units provide the (scaled) quantitative informa- 
tion. An example of such an application is given 
in ref. 16. If the solution domain is the same as 
the problem domain, the network may be used 
for data reduction or as an associative memory. 
For these networks, during training the input and 
the output patterns are identical. If the network 
is used for data reduction, the number of hidden 
units is smaller than the number of input and 
output units in order to achieve a reduction of 
the number of variables. Since the input may be 
transformed or encoded to values for the hidden 
units, and since these values in turn may again be 
transformed or decoded to the output values, the 
outputs of the hidden units may be used as a 
reduced representation for the input pattern. The 
network may also be used as an associative mem- 
ory, which gives the correct pattern if a distorted 
(e.g., noisy) or incomplete pattern is presented. 

In the following, the term auto-association is 
reserved for the case where the input and output 
of the network are identical. The term quantifica- 
tion refers to all other tasks performed by net- 
works with continuous output values. 

4.3.2. Other methods 
As described above, MLF neural networks are 

used to perform classification, calibration, and 
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data reduction tasks that can also be tackled by a 
broad scale of chemometrical techniques includ- 
ing discriminant analysis, multivariate regression, 
and principal component analysis. Research on 
artificial neural networks includes the investiga- 
tion of the relationship between these networks 
and other techniques. This will make it possible 
to position neural networks properly within the 
field of other more established statistical and 
numerical techniques. Since neural networks are 
based on different principles, this relationship is 
not easy to find. 

The following discusses some similarities and 
differences between MLF neural networks and 
some widely accepted chemometrical techniques. 
This is not an exhaustive overview and is in- 
tended to provide the reader with a feeling of the 
difference in problem-solving strategies followed 
by these techniques. 

4.3.2,l. Neural networks and linear discriminant 
analysis. A well-established technique to per- 
form supervised classification is statistical linear 
discriminant analysis (LDA) [17]. From a set of 
examples, each characterised by a number of 
variables, LDA tries to divide the object space, 
spanned by the variables, into two or more dis- 
tinct classes. Fig. 6 depicts a two-class problem in 
which the objects are characterised by two vari- 
ables, say x1 and x2. The goal of LDA is to find 
the weight vector as drawn in Fig. 6. The projec- 
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Fig. 6. Division of objects in two classes by linear discriminant 

analysis. 

tions of the objects on the weight vector are also 
shown. LDA tries to find the weight vector for 
which the within-class variance of the projections 
is minimal and the between-class variance of the 
projections is maximal. The decision boundary, 
i.e., the discriminant line, is defined to be per- 
pendicular to this weight vector. Unknown ob- 
jects can then be classified in one of the two 
classes according to this decision boundary. 

Fig. 7a shows a neural network that is used for 
classification. It can be envisaged that the neural 

Fig. 7. (a) A two-layer neural network. (b) Division of objects in two classes by the neural network. (a) The two input units are 

flow-through units, the transfer function of the output unit is a threshold function. The net input for the output unit is given by 

net = w,n, + w2x2. The output of the output unit, y, is given by y =f(net) = 1 if net > t, and 0 if net < t, in which t denotes the 

threshold. The value of y indicates to which class (represented by ‘0’ and ‘1’) the object belongs. The equation for the decision 
. . 

boundary ts gtven by w,xt + w2x2 = t. Two possible decision boundaries that might be revealed from the neural network are 

depicted in (b). 
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network also defines a weight vector and a de- 
rived decision boundary from a set of known 
objects. The difference between LDA and the 
network lies in the criterion that is used to select 
the weight vector. The neural network tries to 
find that weight vector for which the error (Eqn. 
4) is a minimum. Initially the weight vector is 
randomly chosen. During the training phase the 
weight vector is modified, according to the back- 
propagation learning rule, in order to minimise 
the network output error. Depending on the ini- 
tial position of the weight vector, different deci- 
sion lines may be revealed. In Fig. 7b some deci- 
sion boundaries are drawn that are equally prob- 
able regarding the criterion of the neural net- 
work. 

The difference in strategy between the neural 
network and LDA might result in different per- 
formances in some situations. LDA is a paramet- 
ric technique that is based on the assumption that 
all classes possess equal variances. When this is 
not the case, LDA does not perform optimally. 
The MLF network is, on the other hand, a non- 
parametric method and does not require such an 
assumption. Its performance is not influenced by 
unbalanced variances in the classes. When the 
assumptions of LDA are met, then the solution 
produced by LDA is the optimal one. However, 
the actual solution of the network and, hence, its 
performance, depends on the initial random set- 
tings of the weights. This is a disadvantage of the 
neural network in comparison with LDA. 

Another non-ideal situation is the presence of 
outliers in one or more classes. This is illustrated 
in Fig. 8. LDA is not able to cope with these 
outliers while the network is flexible enough to 
find a weight vector as shown in the figure. The 
reason behind this difference in performance lies 
in the fact that the network, at the end of the 
training phase, focuses solely on boundary objects 
to find the discriminant line while LDA focuses 
on the ‘mean object’ of each class. Hence, objects 
deviating too much from the ‘mean object’ deteri- 
orate the performance of the LDA technique. 
Neural networks are not hampered as much in 
this situation. This explains why MLF neural net- 
works usually perform better with ‘difficult’ data 
sets. If, however, all assumptions of LDA are 

0 
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x x x 

xl 

decision boundary LDA 

possible decision boundary NN 

Fig. 8. Presence of outliers in the data set. Shown are decision 

lines obtained with linear discriminant analysis and the two- 

layer neural network of Fig. 7, respectively. Bold symbols 

nearby the ordinate indicate outliers of both classes. 

met, this technique is to be preferred because it 
yields a unique, optimal solution. Table 1 sum- 
marises the comparison of both techniques. 

4.3.2.2, Neural networks and principal component 
analysis. Data reduction is another major appli- 
cation field for neural networks. It is therefore 
interesting to see how this is related to principal 
component analysis (PCA), the best known data 
reduction technique in chemometrics. In Fig. 9 an 
auto-associative network is depicted schemati- 
cally. The desired output pattern equals the input 
pattern. In the hidden layer a number of hidden 
units is chosen that is smaller than the number of 
input and output units. The network has to 
squeeze its input through the bottleneck formed 
by the hidden layer to the output layer in such a 
way that each input pattern is reproduced as best 
as possible. If an appropriate number of hidden 

TABLE 1 

Comparison of LDA and MLF 

LDA MLF 

Parametric 

Assumptions: 
Distribution 

Variances 

Focuses on 

‘mean object’ 

Non-parametric 
No assumptions 

Focuses on 

boundary objects 
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Fig. 9. An auto-associative network. The data set consists of p 
input patterns with each n variables. Since it is an auto-as- 
sociative problem, the desired output patterns equal the input 
patterns: YP” = Xp”. The neural network has n input units, n 
output units and m hidden units, with m < n. For the set of 
input patterns the resulting set of hidden unit outputs is given 
by H pm = XpnWnm, whereas the set of outputs of units in the 1 
output layer are expressed as Yp” = HpmW2mn. 

units is chosen, the hidden layer forms an optimal 
reduced representation of the input, allowing a 
nearly perfect retransformation of the input pat- 
tern. The criterion of the back-propagation learn- 
ing rule to set the weights of the network is to 
minimise the output error given in Eqn. 4. 

When we compare this with PCA, the equiva- 
lence is immediately clear. PCA decomposes the 
X matrix, in which the rows comprise the input 
patterns, into a matrix, S, of scores and a matrix, 
L, of loadings. This is done so that an m-dimen- 
sional reproduction of the X matrix, denoted by 
X(m), is the best possible one, according to the 
criterion that [X(m) - Xl2 is minimised. This may 
be summarised by 

X = SP”L”” 

and 

X(m) = SPrnLrn” 

where p and n denote the number of objects and 
variables, respectively. Compared with the equa- 
tion of the neural network output 

yPn=HPmWmn 
2 

problem 1 _______---_------ solution 
I I I 

j data acquisition 

+, j output interpretation 

j data selection 

I 

i data preprocessing 
;<___________________________ I 

; training and testing i / 

~,_________~~~~~~~~~-~~~~~~~~~~, 

Fig. 10. General protocol for developing MLF networks. 
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this demonstrates that a neural network with m 
hidden units should produce an m-dimensional 
PCA solution, except for a rotation matrix T. This 
can be expressed as 

YP” = X(m) 

and 

HPmWm"=SPmm-lL"m 
2 

where the property of rotation matrices, i.e., 
‘IT-’ = 1, is used. In ref. 18 it is demonstrated 
that a network that is initialised with the PCA 
solution cannot improve this solution. Special 
network architectures have been developed to 
produce exactly the PCA solution [19-211. These 
networks are beyond the scope of this Tutorial. 

4.3.2.3. Neural networks and standard modeling 
techniques. Artificial neural networks have been 
proven to be able to model complex non-linear 
input-output relations, where other techniques 
fail. Different studies have compared the perfor- 
mance of neural networks with partial least 
squares (PLS) and principal component regres- 
sion (PCR) [22]. When a highly non-linear rela- 
tion underlies the examined problem, usually 
neural networks outperform these classical tech- 
niques. This fact initiated or stimulated research 
on other non-linear techniques, e.g., non-linear 
PLS. The comparison and the relationship be- 
tween them is still under investigation and it is 
expected that in the near future the first results 
will be published. 

4.3.3. Protocol 
MLF neural networks may be used for many 

kinds of problems for which several approaches 
exist. Nevertheless, a general protocol may be 
given, consisting of a sequence of actions and 
stages. This protocol is depicted schematically in 
Fig. 10. The actions are described in more detail 
in the following paragraphs. Since some of the 
situations described below occur in different parts 
of the protocol, some redundancy is inevitable. 

4.3.3.1. Data acquisition. Since the networks are 
trained under supervision, examples have to be 
available. Before gathering any data, a good rep- 

absorbance 

a lo:/ 
1 

A 

mean absorbance 

100 
- 

b 

o- . < 

C ( lo, 14, 36, 72, 95, 70, 32, 20, 23, 25, 61, 3% 16J3) 

Fig. 11. Example of a representation of a spectrum. (a) The 
input object (a spectrum). (b) Division in intervals. Intervals 
too small: too many variables (noise); intervals too broad: loss 
of information. (c) The resulting (unscaled) input pattern. 

resentation for the input and output objects has 
to be found. The input and the output patterns of 
a neural network consist of variables (one per 
unit) and thus both the problem and the solution 
have to be translated (see paragraph 4.2.3). The 
representations depend on the given problem and 
the desired solution (Fig. 11). 

Often the decision concerning the representa- 
tions is based on knowledge about the problem 
and experience with neural networks. Finding 
good representations may be a tedious task. A 
choice must be made about the number of vari- 
ables that is used to represent the input and the 
output object. Usually a compromise has to be 
made: not too few variables (units) to retain as 
much information as possible and not too many 
to prevent the loss of the network’s capability to 
generalise. The latter situation might occur espe- 
cially if there are only a few examples available. 

Once the representations are decided, data 
may be collected. Since the network has to ex- 
tract the relation between problem and solution 
from examples, the data set must be as represen- 
tative as possible. A good strategy for obtaining 
the data is desirable, but often this phase is not 
controlled by the designer of the network. Usu- 
ally some data are already available and collect- 
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ing more or other data often is too expensive or 
time-consuming. Despite the requirements men- 
tioned earlier, in most cases one must make do 
with what one has. 

4.3.3.2. Data selection. If an abundant amount 
of raw data is available, a selection has to be 
made. The data must be representative and there 
should be enough data available to prevent the 
network from overtraining. Also there must be 
enough data to allow subdivision of the data set 
into different sets for training and testing. 

Distribution of the data. First of all, the exam- 
ples with which the network will be trained have 
to be ‘representative’. This does not mean ‘repre- 
sentative for the real world’, but ‘representative 
for the problem’. The data have to encompass as 
much as possible the complete domain on which 
the model has to be built, so that the network 
interpolates instead of extrapolates. Not only the 
distribution of the data points is of importance, 
but also their ratio of appearance. For example, if 
the network has to distinguish between two classes 
of objects, in the ‘real world’ these two classes 
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Fig. 12. Learning the function y = --x with an unbalanced training set. (a) Composition of (0) training set and (0) test set. (b) Line 
given by network at different stages (1 to 5) of the training phase. 
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Fig. 13. Learning the function y = --x with a balanced training set. (a) Composition of (0) training set and (0) test set. (b) Line 

given by network at different stages (1 to 5) of the training phase. 

may appear in different amounts, say 1: 50. If the 
network is trained with a data set which contains 
examples of both classes in this same ratio, i.e., 
representative for the real world, the network will 
have problems learning to recognise the class 
with only a few examples. If both classes have to 
be learned equally well, balancing of the training 
set is a prerequisite. The same problem might 
arise if the network is being used for other types 
of problems, like quantitative analysis. 

one input, two hidden l and one output unit. The 
output unit is equipped with a linear transfer 
function. The training and test set both consist of 
pairs of (x, y) values. In Fig. 12a an unbalanced 
training set and the test set are given. If the 
network is trained with this unbalanced training 
set, it has more difficulties learning the left part 
of the line than the right part of the line. In Fig. 

A simple example will be given to illustrate the 
effect of using a data set that is not representa- 
tive for the problem. If the function y = --x has 
to be trained, a simple network may be used with 

l To solve this linear problem, a neural network without a 
hidden layer, or even another method, could have been used 

as well. However, for illustration purposes a hidden layer was 

added. 
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12b five test set results are presented, obtained 
after one, two, three, four and five iterations of 
the training set, respectively. It is seen that the 
network indeed is biased towards the right part of 
the line. If the training set is balanced, like the 
one presented in Fig. 13a, the network exhibits 
less problems (Fig. 13b). Of course, for this sim- 
ple problem the line will also be learned with the 
unbalanced training set after only a few iterations 
more. However, in real-world situations it is not 
always possible to recover from performance 
problems arising from unbalanced training sets by 
just taking more iterations. The part of the model 
where many examples were present in the train- 
ing set might already be overfitted while other 
parts are still not trained well enough. 

Overtraining of the network. If a network is 
overfitted (overtrained), it acts like a memory. In 
such cases, the network will not learn the general 
features inherently present in the training set 

l training 

example 

A test 
example 

during training, but it will learn more and more 
of the specific details of the particular examples. 
Thus the network gradually looses its capability 
to generalise. This can happen only when the 
training set exhibits specific features which are 
not to be included in the model. Such a situation 
often occurs if only a few noisy examples are 
available, especially if there are many units. The 
risk of overtraining then is high. To give an 
example, a model has been built with the training 
set presented in both Fig. 14a and b. The same 
network structure given in the previous example 
has been used. In Fig. 14c the curve that is 
learned by the network is shown at different 
stages in the training process. It is seen that, 
during training, the model changes from an al- 
most straight line (~1) to a relatively strongly 
curved line (~4). If the test set presented in Fig. 
14a is used, this network is said to be overtrained. 
It tries to reproduce the specific training set as 
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Fig. 14. (a) and (b) Two different data sets with the same training examples. (cl Model built by a network at different stages (sl to 
~4) during the training. 
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Fig. 15. (a) Training set. (b) Model built by a network at different stages (sl to ~4) during the training. 

best as possible by learning the noise too. How- 
ever, if another test set, presented in Fig. 14b, is 
used, the fume network model is not overtrained, 
but for this combination of training and test set it 
is a good model. Overtraining happens when the 
network is able to build a more complex model 
based on the training set alone than the model 
the training and test set together appear to de- 
fine. For the training set presented in Fig. 15a a 
network with the same structure as used in the 
previous example is not able to build a very 
complex model (Fig. 15b). Although this training 
set contains an equal amount of noise as the 
previous one, it leads less easy to overtraining. 
The situation of overtraining is comparable to 
fitting a curve with a polynomial of too high an 
order. 

Subdivision of the data. Another decision that 
must be made is the subdivision of the data set 
into different sub-sets which are used for training 
and testing. If enough examples are available, the 

. . . 

*ji[ 1, 

data set N diierent divisions 

Fig. 16. The cross-validation technique. 

data set may be split by some fraction (e.g. 
50/50% or 67/33%) into the training and test 
sets. The training set still has to be large enough 
to be representative of the problem and the test 
set has to be large enough to allow validation of 
the network. 

If there are not enough examples available to 
permit splitting of the data set into a representa- 
tive training and test set, other strategies (like 
cross-validation) may be used (see Fig. 16). In this 
case the data set is split in N different ways into 
a training set and a (usually smaller) test set, 
respectively. The same network structure may 
now be trained and tested N times with the N 
different pairs of training and test sets. Every 
pattern is thus used once as a test pattern in one 
of the N procedures. The results of these tests 
together enable determination of the perfor- 
mance of the network. If the test set consists of 
only one example, this strategy is called the leave- 
one-out method. Of course, more test data is 

w test set 

a training set 

i- 
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preferable, but the cross-validation method makes 
it possible to use smaller amounts of data. 

4.3.3.3. Duta preprocessing. After selection of the 
training and test sets, some data preprocessing 
might still be desirable. Often the data are scaled 
before use, especially if different variables have 
different ranges of values. If some of the vari- 
ables have relatively high values, these variables 
might dominate the model. If the input values are 
too large (especially in combination with large 
weights), the net input (Eqn. 1) for the units may 
end up in the tails of the sigmoid function, where 
the derivative is very small. Since according to the 
back-propagation learning rule the weights are 
adapted in proportion to this derivative, this may 
lead to a static situation, also called paralysis of 
the network. Scaling of the input brings the net 
input within the dynamical range of the sigmoid 
transfer function. One may scale the input, the 
output or both. Different preprocessing strategies 
exist for binary and continuous values. 

Binary ualues. If binary values are used, scaling 
is not necessary. Of course, one must always 
ensure that the desired output values are in the 
output domain of the transfer function used. If 0 
and 1 are the limits of the sigmoid transfer func- 
tion used, exhaustive training will be necessary to 
obtain output values close to 0 or 1. If 0.1 and 0.9 
are given as correct values instead of 0 and 1, the 
network can put more emphasis on training ‘dif- 
ficult’ examples where the output is still far from 
correct instead of bringing the almost correct 
ones to perfection. 

Continuous values. For scaling of the data dif- 
ferent methods may be used. The choice depends 
on the type of problem and the chosen represen- 
tation of the input and output objects. Methods 
which are often used with good results are auto- 
scaling and range-scaling. The data may be scaled 
per variable, but if the variables are highly corre- 
lated (as in a spectrum) scaling the values per 
object (spectrum) should be used. 

4.3.3.4. Network design. If the training and test 
sets are generated, a choice has to be made about 
the network structure and its parameters, e.g., 

the number of input, hidden and output units; 
the transfer function; the weight initialisation; the 
learning rate, 7; the momentum, cu; and the num- 
ber of iterations. Usually first a rough estimation 
is made for the different parameters to define 
some point from where the optimisation process 
starts. Several network parameters certainly are 
not independent of each other, but to some ex- 
tent a univariate optimisation procedure is suffi- 
cient to obtain an initial design. 

Number of units. The number of input and 
output units is of course equal to the number of 
variables with which the input and output objects, 
respectively, are represented. Many heuristic 
guidelines for the choice of the number of hidden 
units exist [231, ranging from 2 times the number 
of input units via 2/3 of the number of input or 
output units (whichever is less) to l/2 times the 
number of input plus output units. However, since 
the optimal number of hidden units depends so 
strongly on the nature of the problem and on the 
chosen representations for the input and output 
objects, the authors feel it is not safe to rely 
exclusively on heuristics. It is better to scan a 
range of possibilities. This will lead quickly to a 
good approximation of the number of hidden 
units. 

If the nature of the problem is linear, hidden 
units are not necessary and a network with no 
hidden layer at all will also do the job l . If the 
problem is non-linear, some minimal number of 
hidden units is required. If less hidden units are 
taken, the performance of the network drops 
sharply. If more hidden units are taken, the per- 
formance increases slightly to a limiting value or 
even decreases again. Usually, the number of 
hidden units is best chosen to be not too much 
above the minimum amount necessary, even if 
the performance does not deteriorate if more 
hidden units are used. If more hidden units are 
used, training does not only take more computing 
time, but also the performance might fluctuate 
more. If PCA is performed on the data set, the 
number of significant principal components often 

l For a linear problem, one of the standard (chemometrical) 
techniques might be favoured. 
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gives an indication of the minimum number of 
hidden units necessary. 

There is still an ongoing debate as to whether 
a three- or four-layer neural network, i.e., with 
one or two hidden layers, respectively, is able to 
model any arbitrary non-linear tranformation be- 
tween the input and output objects (see, e.g., refs. 
23 and 24). In our experience, a variety of chemi- 
cal problems (e.g., refs. 15 and 16) can be solved 
by a three-layer neural network. In some circum- 
stances application of a four-layer network re- 
sulted in a much faster convergence and there- 
fore might save a substantial amount of comput- 
ing time, However, in none of these cases did the 
four-layer network outperform the three-layer 
one. When a three-layer network appeared to be 
incapable of modeling a particular problem-solu- 
tion relation, a four-layer network failed to solve 
this problem as well. 

Transfer function. The input units are flow- 
through units meaning that the transfer function 
can be expressed as f(x) =x. For the hidden 
units usually a sigmoid transfer function is taken 
(Fig. 3). If a linear transfer function is used, the 
network will only be able to model linear rela- 
tions and a network with no hidden layer at all 
will also suffice. A hidden layer with units pos- 
sessing linear transfer functions therefore only 
makes sense if the network is used to perform 
data reduction. For the output units the choice of 
the transfer function depends on the type of 
problem for which the network is used, as de- 
scribed in Section 4.3.1. 

The weights. Initially, the weights are usually 
assigned random values within a certain range 
around zero (e.g., -0.3 to 0.3) in order to bring 
the net input of each unit in the network into the 
dynamical range of the sigrnoid function. This is 
to prevent the network from becoming paralysed. 

The learning rate and momentum. After the 
design of the network, values for the learning rate 
and the momentum still have to be chosen. If the 
transfer function of the output layer is a sigmoid, 
the output of a unit is limited by definition, no 
matter how extreme the input value. In this case 
a rather high value for n may be chosen: between 
0.7 and 0.9. If, however, the transfer function is 
linear, then there is no limit on the output of a 

unit and high values for 77 often cause the net- 
work to oscillate or, even worse, diverge. In this 
case n is typically chosen at least a factor of ten 
smaller, i.e., below 0.1. The operation of the 
network is also much more influenced by n when 
a linear transfer function is applied. 

Previous changes in the weights are taken into 
account with the momentum term, which 
smoothens to some degree the learning behaviour 
and thus limits the danger of oscillations or diver- 
gence. The momentum term is usually set be- 
tween 0.3 and 0.6. Its influence is not as predomi- 
nant as that of the learning rate. 

Number of iterations. A presentation of the 
entire training set, followed by a presentation of 
a test set, is defined as one iteration. The choice 
of the number of iterations that has to be per- 
formed is based on trial experiments, in which 
the performance of a network as function of the 
number of iterations is monitored. 

4.3.3.5. Training and testing. The initial network 
design described in the previous section is to 
some extent based on experience. A rough opti- 
misation is obtained by carrying out the small 
loop given in Fig. 10. When the initial network 
structure and parameter settings are chosen, a 
rough optimisation may be accomplished by mon- 
itoring the performance of networks having 
slightly different structures and parameters. Ob- 
viously, the best strategy is to perform an experi- 
mental design to obtain the behaviour of the 
network as a function of its structure and param- 
eter settings. This requires training and testing of 
a substantial number of networks, a procedure 
which might be very time consuming. 

The functioning of a network depends on the 
chosen network structure and parameters. The 
normalised standard error (NE) may serve as a 
measure of the performance of a network and 
facilitates the comparison of performances of dif- 
ferent networks. Based on this NSE, some typical 
phenomena will be discussed. 

The normaltied standard error. The normalised 
standard error is defined by 

NSE = ; c c (dpj - opj)’ (9) 
P i 
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in which P denotes the number of output pat- 
terns in the data set and J is the number of 
output units. The indices p and j refer to the 
pth output pattern, and jth output unit, respec- 
tively, whereas d, and oPj represent the desired 
and obtained output value, respectively, of unit j 
on pattern p. 

This NSE is not always the best indication of 
the performance of a network. An error which is 
very high for one pattern (e.g., an outlier), but 
almost zero for the other patterns, leads to the 
same NSE as a moderate error for all patterns. 
The first situation is preferable, but the NSE 
does not reflect this difference. Also, a relatively 
high NSE does not necessarily mean a bad per- 
formance. For example, if a unit is desired to give 
0 or 1, but this unit consistently gives output 
values around 0.3 for the 0 values and values 
around 0.7 for the 1 values, the NSE may be 
large. In that case, however, the performance of 

nse - training set --- test set nse 

the network is perfect when during the interpre- 
tation of the output (see below) a threshold of 0.5 
is chosen. In general, the trend of the NSE is of 
more importance than each of its individual val- 
ues. 

For a first optimisation, however, the NSE is 
sufficient. If a rough idea for a good network 
structure and parameter settings is obtained, an- 
other criterion than the NSE may be used for 
further optimisation. In this case the next two 
steps in Fig. 10, data analysis and interpretation, 
are included in this process (indicated by the 
large loop in the figure) to determine the perfor- 
mance and perhaps further optimise the network. 
This process is described later in Section 4.3.3.6. 

Some typical examples. In the remainder of this 
paragraph, some typical examples will be dis- 
cussed where the NSE is used as a first indica- 
tion of the network performance. The remedies 
that are presented for the problems considered in 

- training set 

number of iterations number of iterations 

nse - training set 

number of iterations 

Fig. 17. Training behaviour of a network, indicated by the progress of the NSE; effect of the learning rate on the training. See text 

for more details. 
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the following examples are mostly based on 
changes in the network structure and the parame- 
ter setting, since in this phase the data set is 
considered as fixed. Many problems may be 
avoided or solved by taking more and/or other 
data, but since this is often not possible one must 
make the best of it. 

A successful training session is shown in Fig. 
17a. Both the NSE for the training set and the 
test set converge to a minimum value. If the 
learning rate, 7, is chosen too large, a training 
session as shown in Fig. 17b may occur (the test 
set is omitted). The NSE more or less converges 
but fluctuates a lot as a function of the number of 
iterations. Here, the network wanders around a 
minimum, and the functioning of the network 
depends highly on the precise moment when 
training ends. In the worst case, the network 
might even diverge instead of converge. If, on the 
other hand, n is too small, too many iterations 
are necessary to achieve a convergence of the 
network (Fig. 17~). If enough time is available, 
this does not have to be a problem, but a small n 
increases the possibility of getting the network 
trapped in a local minimum. A good strategy is to 
decrease 77 as a function of the number of itera- 
tions: use a large 17 initially to enable the network 
to locate the neighbourhood of the minimum and 
a decreasing 71 to Iet the network settle down in 
the exact position of the minimum. In the neigh- 
bourhood of the minimum, usually the derivative 
is very small. Since the adaptation of the weights 

nse - training set .......- test set nse 

is proportional to this derivative, it would be 
advantageous to increase the value of 7) again if 
the network is close to the minimum, but unfortu- 
nately, often this reversal point is difficult to 
determine. 

A training session like that in Fig. 18a might 
indicate subsequently that the network is stuck in 
a local optimum, is moving across a relatively flat 
part of the hypersurface described by the NSE in 
the weight space, or is paralysed. The latter situa- 
tion may be avoided by taking smaller random 
weights and/or invoking another scaling proce- 
dure for the inputs. To prevent getting stuck in 
local optima, one may consider other learning 
algorithms than back-propagation. However, most 
learning algorithms have this risk of encountering 
local optima in common. Another remedy is given 
by increasing 7, or alternatively, starting the same 
training session multiple times, with different ini- 
tial random weights, hoping that in one of the 
runs a deeper minimum of the NSE is reached. 
Of course, one never knows whether the deepest 
minimum that is found is a local or a global one, 
unless the NSE of both the training and test set 
becomes negligibly small. However, if the net- 
work meets the requirements, it is ready for use. 

Even if the network converges to a local mini- 
mum, the question still remains as to whether the 
network would have been able to escape from it if 
more iterations were used. For instance, Fig. 18a 
might be just the left part of Fig. 18b, in which 
the network realises an escape from a local mini- 

- training set ....-.. test set 

a 
number of iterations number of iterations 

Fig. 18. Training behaviour of a network, indicated by the progress of the NSE; effect of paralyzation of the network or shapes of 
error surface on the training. See text for more details. 
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mum or reaches the edge of an elongated hyper- 
surface in weight space. 

Too many iterations or hidden units may cause 
overtraining of a network (Fig. 19a). Such a net- 
work acts more and more like a memory, capable 
of recalling the presented training examples (a 
decreasing NSE for the training set), but losing 
its capability to generalise (an increasing NSE for 
the test set after some minimum). Overtraining 
especially occurs when the training set contains 
too few examples. As a consequence, the noise 
present in the patterns of the training set is 
learned by the network. In this case the training 
has to be ended at the minimum of the NSE for 
the test set. If this minimum is not satisfactory, a 
remedy might be to use less hidden units. Of 
course, ending the training at the minimum is not 
an elegant solution. Using more or other data 
often is a better approach. 

Closely related to overtraining is the situation 
shown in Fig. 19b. In this case a gap appears 
between the NSE curves for the training and test 
set after just a few iterations. No minimum for 
the NSE for the test set can be observed and 
limitation of the number of iterations will not do 
any good. The gap between the two NSE curves 
indicates that apparently the training set repre- 
sents a different input-output relation than the 
test set. This happens, for instance, when the test 
set contains more outliers or noisy patterns than 

nse - training set ..-.--- test set i, \ 
‘:. 

‘i L ‘.. 
‘i. 

k. 
-.. 

-.. 

‘_ - .-- - .-... _ _ 

number of iterations number of iterations 

the training set. If the original data is split in 
another way into a training and test set this 
phenomenon might disappear. 

The gap between the two curves also appears 
if there are not enough data available to allow a 
meaningful subdivision into a training and a test 
set. Each individual set does not contain suffi- 
cient information to describe the input-output 
relation and in that circumstance merging of the 
data of both the training and test set might be 
necessary. A test set containing only a few pat- 
terns may be taken (e.g., according to the leave- 
one-out method) to see if more training examples 
helps to solve the problem. 

The gap may also appear when an oversized 
network together with an input and/or output 
representation of a too high dimension is chosen. 
For example, suppose that an arbitrary number of 
input patterns, each consisting of 200 variables, is 
presented to a three-layer network which pos- 
sesses twenty hidden units. After determination 
of the NSE curves it appears that a gap is mani- 
fest. Then a resizing of the network, e.g., taking 
ten hidden units, together with a lower dimen- 
sional input representation, e.g., 100 variables per 
input pattern, might solve this problem. 

It should be noticed that when the scales of 
the ordinates in the previously mentioned figures 
are changed, one figure might look like another 
indicating that it is not always straightforward to 

nse - training set - test set 

Fig. 19. Training behaviour of a network, indicated by the 
different relations. See text for more details. 

progress of the NSE; training set and test set appear to describe 
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discriminate between the aforementioned situa- 
tions. 

4.3.3.6. Output interpretation. In this stage of the 
protocol an optimal NSE that suffices is as- 
sumed. The training and test set are presented 
again to the trained network, but now without 
adapting the weights any further. The output 
produced by the network for each example of the 
training and test set is now available. If the 
output patterns have been scaled, these may be 
scaled back to their original values, in order to 
facilitate the interpretation of these outputs. Dif- 
ferent criteria may be used to interpret the out- 
put of the network, depending on the type of the 
problem and the chosen output representation. 

Classification. A large variety of classification 
criteria exists which depend among other things 
on the chosen output representation. If each out- 
put unit is associated with a single class, the 
following three classification criteria might be 
appropriate: 

1. The input pattern is said to belong to the 
class corresponding to the output unit with the 
highest value. This implies that each input pat- 
tern is assigned to a class and unknowns are not 
possible. 

2. The first criterion is extended with the con- 
dition that the highest value must exceed a pre- 
defined threshold, which may be different for 
each of the output units. If none of the output 
values exceeds this threshold, the input pattern is 
said to be unknown. 

3. The second criterion may be extended fur- 
ther with the requirement that each of the other 
output values has to be a predefined amount 
lower than the highest one. Unknowns may then 

be defined as patterns for which none of the 
output units exceeds the threshold. Doubtful cases 
may be defined as patterns for which a unit does 
exceed the threshold, but other outputs are not a 
predefined amount lower than the highest one. 

Qualification. If the network is used for qualifi- 
cation and binary outputs indicate the absence (0) 
or presence (1) of certain features, the output 
interpretation must be performed per unit. Obvi- 
ously, a ‘one-highest’ criterion cannot be used in 
this case. The outputs of a single unit for all 
patterns in the training or test set may be dis- 
tributed as in Fig. 20a. In this case only one 
threshold is necessary. The particular feature is 
defined to be absent if the output is lower than 
the threshold and present if the output exceeds 
this threshold. In this way, doubtful cases and 
unknowns are not defined. 

If the outputs are distributed according to Fig. 
2Ob, two thresholds may be used. If the output 
unit is below the lower threshold, the associated 
feature is said to be absent. If the output unit is 
above the higher threshold, the associated fea- 
ture is defined to be present. Values between 
these thresholds indicate a doubt with the spe- 
cific feature. Here, unknowns are not defined. In 
this kind of analysis, three different data sets may 
be used: a set to train the network, a first test set 
to determine the best positions of the two thresh- 
olds after examination of the output distribution 
obtained with this set, and a second test set 
(sometimes referred to as a generalisation set) to 
validate the performance of the network includ- 
ing the output interpretation step. The position 
of the thresholds may differ for different units. 

In both these cases, the output gives an indica- 
tion of the confidence one may have in the result 
from the network. If the value of an output unit is 

lmL__Jlfreq’m 
0 output 1 0 output 1 

Fig. 20. Two possible distributions of the outputs of a unit for all patterns in a set. 
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close to 1, one may trust this answer more than 
the case where the value exceeds the threshold 
only slightly. In fact, a more fuzzy criterion may 
be used. Outputs ranging from 0 to 1 may be 
interpreted as going from ‘feature certainly not 
present’ via ‘doubt’ to ‘feature certainly present’. 

Quantification. In the case of a neural network 
with continuous output values, no interpretation 
criterion is necessary. The value of an output unit 
itself ought to give quantitative information on 
the associated feature. The answer provides no 
clue concerning its certainty. 
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