
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/112314

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/112314

165

Chemometrics and Intelligent Laboratory Systems, 22 (1994) 16.5-189
Elsevier Science B.V., Amsterdam

m Tutorial

Using artificial neural networks
for solving chemical problems

Part I. Multi-layer feed-forward networks

J.R.M. Smits, W.J. Melssen, L.M.C. Buydens and G. Kateman

Laboratory for Analytical Chemistry, Faculty of Science, Catholic University of Nijmegen, Toemooiveld I,
6525 ED Nzjmegen (Netherlands)

(Received 25 January 1993; accepted 27 April 1993)

Ahstract

Smits, J.R.M., Melssen, W.J., Buydens, L.M.C. and Kateman, G., 1994. Using artificial neural networks for solving chemical
problems. Part I. Multi-layer feed-forward networks. Chemomettics and Intelligent Laboratory Systems, 22: 165-189.

This tutorial focuses on the practical issues concerning applications of different types of neural networks. The tutorial is divided
into two parts. In the first part, an overview of the general appearance of neural networks is given and the multi-layer feed-fonuard
neural network is described. In the second part, the Kohonen self-organising feature map and the Hopfield network are discussed.
Since the multi-layer feed-forward neural network is one of the most popular networks, the theory concerning this network can
easily be found in other references (B.J. Wythoff, Chemom. Intel/. Lab. Syst., 18 (1993) 115-155) and is therefore only described
superficially in this paper. Much attention is paid to the practical issues concerning applications of the networks. For each network,
a description is given of the types of problems which can be tackled by the specific neural network, followed by a protocol for the
development of the system. It is seen that different neural networks are suited for different kinds of problems. Application of the
networks is not always straightforward; a lot of constraints and conditions have to be fulfilled when using neural networks properly.
They appear to be powerful techniques, but often a lot of experience is needed. In this paper some guidelines are given to avoid the
most common difficulties in applying neural networks to chemical problems.

CONTENTS

1. Introduction ... I66

2. Problem domains .. 168
2 .I. Memory ... 168

Correspondence to: W.J. Melssen, Laboratory for Analytical Chemistry, Faculty of Science, Catholic University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen (Netherlands).

0169-7439/94/$07.00 0 1994 - Elsevier Science B.V. All rights reserved
SSOI 0169-7439(93)E0035-3

166 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

2.2. Generalisation .. 168
2.3. Optimisation .. 168

2.4. Data reduction .. 168
3. Types of neural networks .. 168

3.1. Basic ingredients ... 169

3.2. Overview .. 169
3.2.1. Modeling .. 169
3.2.2. Self-organisation .. 169
3.2.3. Optimisation ... 169

4. Multi-layer feed-forward networks .. 170
4.1. Introduction .. 170
4.2. Theory .. 170

4.2.1. Structure .. 170
4.2.2. Signal propagation ... 171
4.2.3. Representation of problem and solution 171
4.2.4. Training the network ... 172
4.2.5. Testing the network .. 173

4.3. Aspects of use ... 173
4.3.1. Types of problems ... 173

4.3.1.1. Binary outputs .. 173
4.3.1.2. Continuous outputs .. 174

4.3.2. Other methods. ... 174
4.3.2.1. Neural networks and linear discriminant analysis 175
4.3.2.2. Neural networks and principal component analysis 176
4.3.2.3. Neural networks and standard modeling techniques 178

4.3.3. Protocol .. 178
4.3.3.1. Data acquisition ... 178
4.3.3.2. Data selection .. 179
4.3.3.3. Data preprocessing ... 183
4.3.3.4. Network design ... 183
4.3.3.5. Training and testing .. 184
4.3.3.6. Output interpretation 188

Acknowledgement ... 189
References .. 189

1. INTRODUCTION

Chemometrics is the subdiscipline of analytical Traditionally, mathematical and statistical

chemistry which concerns the design and selec- methods are used for data processing and inter-

tion of optimal measurement procedures and ex- pretation. Standard numerical techniques, how-

periments and the extraction of as much relevant ever, are incapable of solving some of the more

information as possible from chemical data. The complex problems. For such complex problems

fast development of analytical chemical instru- nowadays other methods are also used such as

mentation together with the need for more qual- expert systems [1,21. Expert systems combine by

ity control leads to more and more data and to means of an inference process the theory underly-

the demand for advanced data interpretation
methods.

J.R.M. Smiis et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 167

ing a specific problem and available human ex-
pertise, e.g. heuristics. Unfortunately human ex-
pert knowledge often is very hard to acquire and
expert systems are also still limited to restricted
domains. Another method which has recently
gained interest is the genetic algorithm technique
[3-S]. This is a powerful optimisation technique,
but it can only handle limited, though complex,
problems and a lot of experience is needed to
apply it.

Artificial neural networks have been devel-
oped initially as models for their biological coun-
terparts. The computerised version of this model
is well suited for performing typically human
tasks, such as memorising objects, recognising
(symbolic) patterns, generalising, estimating pa-
rameters and making decisions. These properties
seem promising for overcoming some of the
shortcomings of the more ‘traditional’ data inter-
pretation techniques. For these reasons neural
networks are being more frequently used by re-
searchers as well as practitioners [61.

Probably one of the earliest descriptions of
some of the main ideas of (biological) neural
networks is found as far back as 1890, in a psy-
chology book written by James 171, and the foun-
dations of artificial neural networks are perhaps
given by McCulloch and Pitts [8] in their paper of
1943. These authors tried to understand the func-
tioning of the nervous system by defining primi-
tive information processing elements, which were
based on mathematical logic, that form abstrac-
tions of the functional properties of biological
neurons and their connections. In 1949 Hebb [9]
described a learning rule which was derived from
observations done in neurophysiological experi-
ments on biological neural networks. Remark-
ably, the learning rule embedded in the bulk of
the current artificial neural networks is based on
this so-called Hebbian learning rule.

At that time research was still theoretical be-
cause there was no sophisticated computer tech-
nology available. With the increasing availability
of computers, the neural network models could
be simulated and tested ‘in practice’. A famous
example is the Perceptron, developed by Rosen-
blatt [lo]. It was the first precisely specified,
computationally oriented neural network and it

was an impetus for the growth of research on
(artificial) neural networks. Increasingly more sci-
entists devoted their time to neural network re-
search and the capabilities of neural networks
were believed to be tremendous. This rather ex-
aggerated expectation, together with the scientific
anxiety proclaimed in newspapers l , created an
atmosphere in which the book of Minsky and
Papert [ll] could flourish. In this book the au-
thors show the severe shortcomings of Percep-
trons. The book, which predicts the uselessness of
neural networks, has had a very negative impact
on neural network research, which caused loss of
research funding.

Fortunately, a few scientists were not discour-
aged and their persistency resulted in a final
breakthrough: the development of a learning rule,
i.e., back-propagation, for more complex net-
works which were capable of dealing with more
complex (non-linear) problems than was the Per-
ceptron. This learning rule was developed almost
simultaneously in three places. A detailed de-
scription of the rule and parallel distributed pro-
cessing (PDP) is given in a two-volume book by
Rumelhart, McClelland and the PDP research
group [12]. This revival has led to an expansion of
the research on artificial neural networks and, as
a consequence, these networks are being more
frequently applied to chemical problems. How-
ever, the appearance of present artificial neural
networks has very little in common with the origi-
nal biological neural networks.

Research has led to the development of differ-
ent types of neural networks. They are all com-
posed of units, neurons, and connections between
them. These units act in parallel and locally, and
together they determine the global behaviour of
the network. Most networks are trained or ini-
tialised with examples. Once a network has been
trained, it may be used if it fulfills the require-
ments specified in advance. The latter may be
verified by presenting a set of test examples to
the network and monitoring the network’s perfor-
mance.

l Frankenstein Monster designed by Navy Robot that Thinks,
headline in an Oklahoma newspaper, 1962.

168 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

2. PROBLEM DOMAINS

Neural networks may be used for different
kinds of problems. Basically, there are four main
types of problems/ applications where neural
networks could be useful: (auto-lassociative mem-
ory, generalisation, optimisation and data reduc-
tion. In the following discussion, the terms prob-
lem and solution are used to refer to the overall,
abstract problem and solution. The terms input
object and output object are used to refer to a
specific instance of the problem and its associ-
ated solution, respectively. The terms input pat-
tern/vector and output pattern/vector are used
to refer to the numerical representations of the
input and output object, respectively.

2.1. Memory

A neural network may be used as a memory,
i.e., to recall stored patterns. If a data set with
examples (input patterns together with their asso-
ciated output patterns) is memorised, the net-
work should be capable of recalling the correct
output pattern when the corresponding input pat-
tern is presented again. If the input pattern and
the associated output pattern are identical, the
memory is called auto-associative. A noisy or
incomplete pattern is presented to the network to
obtain a noise-free or complete pattern.

Usually such an associative network is ini-
tialised or trained with a set of examples taken
from the data base. After this procedure, the
network reflects or models the association be-
tween each input-output pattern combination.
The complexity of the model is not important. It
does not matter whether each specific association
is memorised or whether a more abstract relation
is built that is valid for more input-output pat-
tern pairs. Neural networks suitable for this task
are perceptron-like networks (Section 4 and Part
II, Section 3) and Hopfield-like networks (Part II,
Sections 2 and 31.

2.2. Generalisa tion

If the network can not only recall output pat-
terns previously stored during a training or initial-

isation phase, but can also predict output pat-
terns associated with input patterns it has never
seen before, the network is said to generalise. In
this case the model that the network has built
based on the training examples has to be more
general. It should not only memorise the relation
between specific input-output pattern pairs, as in
an associative memory, but it should model such
a relation for an entire domain. This is a much
more difficult task and it imposes constraints on
the design of the network and the composition of
the training set. Neural networks which can per-
form these tasks are perceptron-like (Section 4
and Part II, Section 3) and Kohonen-like net-
works (Part II, Sections 1 and 3).

2.3. Optimisation

Another class of neural networks is capable of
optimising non-optimal situations, given some
constraints and a measure, i.e., a cost or energy
function, to express the quality of the solutions.
Neural networks suitable for this task are Hop-
field-like networks (Part II, Sections 2 and 3).

2.4. Data reduction

A pattern (representing some object) consists
of a number of variables. This number may be
high and for various reasons it may be desirable
to reduce it, e.g., variables may be relatively
unimportant or highly correlated. Neural net-
works suitable for this task are perceptron-like
(Section 4 and Part II, Section 3) and Kohonen-
like networks (Part II, Sections 1 and 3).

3. TYPES OF NEURAL NETWORKS

Since the foundation of artificial neural net-
works, a variety of different types has been devel-
oped. The choice of the network type depends on
the particular problem to be solved. Before dis-
cussing different types of networks, some basic
building blocks will be listed.

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 169

3.1. Basic ingredients Not every neural network contains all of these
building blocks.

In general, artificial neural networks are com-
posed of the following basic building blocks: 3.2. Overview

- Units (neurons or processing elements).
Units may be associated with some objects in
different ways. Each object may be associated
with exactly one unit or with a set of units to-
gether. The last possibility is termed parallel dis-
tribution. The way the units are organised, e.g., in
layers or other configurations, is important.

- Pattern of network connections. The units
are connected with each other by network con-
nections. Units and their connections together
determine the structure of the network. Via these
connections the units are able to send/receive
signals to/from each other or the outside world.

In Section 2 several problem domains were
mentioned in which neural networks could be
applicable. There are many different networks,
each with its own capabilities and limitations. In
this overview a description is given of the basic
types of neural networks. Globally, neural net-
works may be subdivided into three basic types,
suited for modeling, self-organisation, and opti-
misation, respectively.

3.2.1. Modeling

- Weights of connections. Every connection
is associated with a connectivity strength, a weight.
These weights play an important role in the prop-
agation of signals through the network. Every
signal passing a connection is multiplied by the
weight associated with this connection. The
weights contain information, in a distributed
sense, on the relation between the ensemble of
input and output patterns.

- Activity of units. The activity of a unit
depends on the signals the unit receives and
influences the final signal the unit will send.

If a neural network is used for modeling, it has
to build a model of the relation between the
given problem and solution, i.e., it has to be able
to transform an input pattern to the associated
output pattern (pattern association). These types
of networks are trained in a supervised way. They
are provided with input-output pattern pairs and
extract the model from these examples. Once the
network has built this model, it may be used,
after some validation procedure, to predict out-
put patterns for new input patterns. An example
of this type of network is the multi-layer feed-for-
ward neural network (Section 4).

- Activity function. In each unit the incom-
ing signals are processed to form a net input. This
net input, together with the actual activity, deter-
mines the new activity of the unit via the activity
function.

3.2.2. Self-organisation

- Transfer function (output function). The
output signal of a unit is determined by appIying
the transfer function to the activity of that unit.
The pattern of outputs of all units which emerges
determines which object is involved.

- Learning rule. Optimal weight values must
be found for the network to function properly.
These values are achieved by training the net-
work, i.e., by adapting the weights according to
some learning rule.

If only examples of input patterns without
their output patterns are available, so-called self-
organising neural networks may be applied which
are able to organise themselves by the presented
training data. Such neural networks will reflect
the structure present in the training set. The
network is not forced to give a specific solution,
since this solution is not known. The networks
are trained in an unsupervised way. An example
of this type of neural network is the Kohonen
self-organising feature map (Part II, Section 1).

3.2.3. Optimisa tion
- Environment. The environment of a neural A third type of neural network may be used to

network is made up of the problem and the solve optimisation problems. Such a network may
solution. Both problem and solution impose con- be initialised with a far from optimal situation
straints on the structure of the network. and the network will optimise the given situation

170 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

by itself, provided that the network has some
measure for the quality of the solutions. An ex-
ample of such a network is the Hopfield network
(Part II, Section 2).

4. MULTI-LAYER FEED-FORWARD NETWORKS

4.1. Introduction

The multi-layer feed-forward (MLF) neural
networks, also called multi-layer perceptron or
back-propagation neural networks, are presently
popular and are used more than other types, for
a wide variety of problems. If a solution for a
problem cannot be derived directly, e.g., mathe-
matically or numerically, from a description of a
problem, an indirect path has to be found to
model the relation between the problem and its
solution. The application of a neural network is
based on the assumption that such a relation
indeed does exist.

A relation between problem and solution may
be quite general, e.g., the simulation of a produc-
tion process (where the problem is defined by the
process parameters and the solution by a descrip-
tion of the product) or the prediction of chemical

or physical properties of a chemical compound. A
MLF neural network is a powerful system, often
capable of modeling such (complex) relations.
This enables the use of a MLF network for pre-
dicting an output object for a given input object.
The network builds a model based on examples
with known outputs, a process which is referred
to as supervised learning. No information about
the relation to be modeled is given explicitly to
the network. It must extract this relation solely
from the presented examples, which together are
assumed to contain implicitly the necessary infor-
mation for this relation.

4.2. Theory

4.2.1. Structure
A multi-layer feed-forward neural network

(Fig. 1) consists of three or more layers of units:
one input layer, one output layer and one or
more intermediate (hidden) layers. All the units
in one layer are connected with all the units in
the next layer (feed-forward). The number of
input and output units depends on the represen-
tations of the input and the output objects, re-
spectively. Notwithstanding these and other re-
strictions, much variety in the network structure
is possible.

input layer

hidden layer

output layer

Fig. 1. A MLF network with one input layer, one hidden layer and one output layer.

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

Fig. 2. Basic processing element of a neural network. See
Section 4.22 for an explanation of the different phases.

1
1 .oo

4.2.2. Signal propagation
Units and their connections form the back-

bone of a neural network. The general appear-
ance of a unit with its connections is shown in
Fig. 2. In this figure, three phases can be distin-
guished:

1. A unit receives and sends signals from and
to other units or the outside world via the con-
nections. Every signal is weighted by a weight
factor that is associated with the connection.

2. The received weighted signals together de-
termine the net input to the unit. For the units in
a layer the net input of unit j is given by

netj = C WjiOi

i

in which the index i refers to the units in the
previous layer, wji is the weight from unit i to
unit j, and oi indicates the output of unit i. This
net input then determines the activity of a unit
via the activity function. However, in most net-
works the activity of unit j is given by

actj = netj (2)

and in the following nerj is used to denote the
activity of unit j.

3. The activity of the unit determines the
transmitted signal (output) of the unit via a trans-
fer function. Many transfer functions may be
used, e.g., a linear function, a threshold function
or a sigmoid function (Fig. 3). A sigmoid function
that is used often is given by

1
oj = f(neti) =

l+exp[-(nefj+8,)] (3)

in which Oj is a bias term which influences the
horizontal offset of the function. The bias, flj,

I+-
- 0.80

- 0.60

- 0.20 /

- 0.40

I_--
-6 -4 -2 0 2 4 6

sigmoid

Fig. 3. Different transfer functions. “The actual ‘intelligence’
exhibited by the most sophisticated artificial neural network is
below the level of a tapeworm” [13].

may be treated as the weight from an extra input
unit to unit j. This extra input unit has a fixed
output value of 1, and Oj may be trained as a
regular weight.

The weights play an important role in the
propagation of the signals through the network.
They establish a link between the input pattern
and its associated output pattern and are said to
contain the knowledge of the neural network
about the problem-solution relation.

4.2.3. Representation of problem and solution
Since the network has to extract the relation

between problem and solution from examples,
the representation is a very important issue (Fig.
4). As much information as possible has to be
retained both upon translation of the input object
to an input pattern for the network and upon
translation of the output pattern to the output
object. Both the input object and its associated

172 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

representation

unknown relation neural network model

representation

Fig. 4. Relation between problem and solution.

output object are represented by an array of
variables (a pattern or vector). An example thus
consists of an input and an output pattern, a
pattern pair. Every variable is associated with a
unit. Since each unit is defined to have a specific
meaning, the number of variables and their
meaning have to be the same for each pattern
pair.

Different applications of neural networks of-
ten require different representations. When a
neural network is used for classification, each
output unit may be defined to be associated with
a specific class. In this case the representation of
the output objects (classes) may be a binary one.
If the network is used for calibration, however, a
continuous output representation is usually re-
quired. The input pattern is presented to the
input units of the neural network (one variable
value per input unit). The signal is propagated
through the network to the output units, which
give the output pattern.

4.2.4. Training the network
As was stressed before, the functioning of a

neural network is highly dependent on the way
the signals are propagated through the network.
This signal propagation, in turn, is determined by
the weights of the unit-to-unit connections. In
general, the weight setting is not known before-
hand and, therefore, initially the weights are given
a random value. The process of updating the
weights to a correct set of values is called training
or learning.

A correct weight set usually is achieved by
means of supervised learning. During training,
examples consisting of input-output pattern pairs
are forced iteratively upon the initially untrained

network. Each time an input pattern is presented,
the output pattern given by the network is com-
pared to the known, desired, output pattern, and
the difference is used to adjust the weights in
small steps. The presentation of patterns from
the training set continues until the network gives
the correct answer for each input pattern of the
training set, possibly within some predefined al-
lowed error, or after a predefined number of
presentations of all the examples.

This training procedure is called the back-
propagation learning rule [12]. The difference
between the desired output pattern and the ac-
tual output pattern (the error) is a function of the
weights (Fig. 5). The back-propagation learning
rule tries to locate the minimum error in this
weight space, by including a gradient descent
approach. This error is given by

E=$C(d,-Oj)’ (4)
i

in which the fraction i is included for mathemati-
cal reasons, and dj and oj are the desired output
and the actual output of unit j, respectively.

The adaptation of the weights is done in a
backward fashion. According to the back-propa-
gation learning rule, first the weights to the out-
put layer are adapted, next the weights between
units in two consecutive intermediate layers are
adjusted, and finally, the weights of the input
layer to the second layer in the network are
modified. The adaptations are given by

Awji = qajoi (5)

in which Awji denotes the adaptation of the
weight from unit i to unit j in the next layer, oi is
the output of unit i and n is the learning rate.
The error correction term, Sj, depends on the

E“;
I

Fig. 5. Error surface as function of a weight.

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 173

layer index. If the layer is the output layer, Sj is
given by

sj = (dj - dj)fj’(netj) (6)

in which dj and oj represent the desired output
and the actual output of unit j, respectively, and
fj’(netj) is the derivative of the transfer function,
fj(netj) (Eqn. 31, with respect to its argument. If
the layer is a hidden layer, Sj is given by

sj =fi'(netj)CS W

k k ki (7)

in which k refers to the units in the next layer.
The learning rate is an important network

parameter because it strongly determines the
progress of the training procedure. If it is chosen
too small, the convergence of the weight set to an
optimum is accurate, but very slow, and the net-
work might get stuck in a local optimum. If the
learning rate is high, on the other hand, the
system might oscillate. To damp possible oscilla-
tions, often a momentum term, (Y, is invoked. In
that case Awji is

Awji(n + 1) = n6joi + ‘yAwji(n) (8)

The training set must have enough examples to
be representative for the overall problem. The
training phase can be time consuming depending
on, amongst other things, the network structure,
the number of examples in the training set, and
the number of iterations. However, it only has to
be done once for a particular problem.

4.2.5. Testing the network
After training, the performance of the network

must be tested. This is done with a test set
consisting of examples other than the training set,
taken from the original data set. In the testing
phase the input patterns are fed to the network
and the desired output patterns are compared
with those given by the neural network. The
(disjagreement of the two output pattern sets
gives an indication of the performance of the
trained network. Often the performance of such
systems is expressed in two percentages: Recogni-
tion and Prediction. Recognition and Prediction
are the number of correct output patterns divided
by the total number of pattern pairs present in

the set. In the case of Recognition the set of
pattern pairs comes from the training set. In the
case of Prediction the pattern pairs do not come
from the training set. When the performance
meets the requirements specified in advance, the
network is ready for real analysis purposes.

4.3. Aspects of use

Developing a neural network system is said to
be an art. Many parameters have to be set and
this is often done based to some extent on heuris-
tics. In the following paragraphs, some of these
heuristics are discussed. This Section is not meant
to give an overview of all possible situations one
might encounter during the development of a
neural network system, nor to solve all problems
that may occur. It it is merely meant to be a
guideline to avoid many of the typical traps.

4.3.1. Types of problems
Although the characteristics of the MLF neu-

ral networks impose certain restrictions on their
use, they still have enough diversity to be useful
for solving many different kinds of problems.
Depending on the chosen representation of the
output objects, different types of network appli-
cations may be defined. The output of the net-
work may consist of binary or continuous values,
each suited for different fields of applications.
Qualification requires binary outputs and quan-
tification requires continuous outputs. If some-
what more complex networks are used, combina-
tions of these types of outputs may be used.
However, these are not discussed in this paper.

4.3.1.1. Binary outputs. The input pattern of the
network consists of variables which together char-
acterise the input object. The output pattern of
the network consists of binary values. To obtain
the binary values, some sort of threshold transfer
function is necessary for the output units, e.g., a
sigmoid function.

If the network is used for feature detection, it
is requested to indicate the presence or absence
of specific features of an object. The output pat-
tern indicates the presence/absence of the fea-
tures, e.g., in the case of three features an output

174 J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

of (10 0) indicates the presence of the first fea-
ture and absence of the second and third, (110)
indicates the presence of the first and second
feature and absence of the third, and so on. More
output values may be equal to 1 simultaneously,
thus indicating the presence of a combination of
features. An example of the use of MLF net-
works for qualification is given in ref. 14 where
the interpretation of infrared spectra with neural
networks is described. The network is requested
to indicate the presence/absence of different
functional groups in a molecule, based on in-
frared spectra.

If binary outputs are used, the network may
also be used for classification tasks. For such
tasks, the network is requested to distinguish
between different classes of objects. The output
pattern of the network gives the class of the
object. To indicate a class, different representa-
tions may be used. Often each output unit is
associated with one class and binary values are
used to indicate to which class the object belongs,
i.e., in the case of four classes an output of
(10 0 0) indicates the first class, (0 10 0) the sec-
ond, etc. Since an object is designated to belong
to precisely one class, only one output unit is
supposed to have a unitary value.

If it is desirable that the number of units is less
than the number of classes, gray coding [5] or
binary coding may be used, e.g., (00 11, (0 lo>,
(0 11) etc., indicating class one, two, three, etc.,
respectively. Even one continuous output unit
may be used to indicate the classes, e.g., the value
1, 2, or 3 indicating class one, two, or three,
respectively. However, using the last mentioned
output representation, it is implicitly assumed
that there exists some sort of ordering of the
object classes. Moreover, the network might mix
up different classes more easily and the interpre-
tation of the network output would be less
straightforward. Usually, one output unit per class
is the best choice. An example of the use of MLF
networks for classification is given in ref. 15. In
this paper algae, characterised by flow cytometer
data, are classified.

Classification tasks occur quite often. If each
class is associated with only one unit, the inter-
pretation of the network output is simplified. In

the following the term classification refers to this
specific combination of task and representation.
The term qualification will be used to refer to all
other tasks performed by networks with binary
outputs.

4.3.1.2. Continuous outputs. Again, the input
pattern of the network consists of a number of
variables which characterise the object. The out-
put pattern now consists of one or more continu-
ous values. This means a threshold is not re-
quired (no distinction between binary values) so
the transfer function of the output units may be a
linear one. The transfer function of the units in
the hidden layer is still a sigmoid to enable the
network to model non-linear relations.

If continuous outputs are used, not only the
presence/absence of specific features may be
indicated, but also quantitative information on
these features. The interpretation of the output is
straightforward: the output values of the output
units provide the (scaled) quantitative informa-
tion. An example of such an application is given
in ref. 16. If the solution domain is the same as
the problem domain, the network may be used
for data reduction or as an associative memory.
For these networks, during training the input and
the output patterns are identical. If the network
is used for data reduction, the number of hidden
units is smaller than the number of input and
output units in order to achieve a reduction of
the number of variables. Since the input may be
transformed or encoded to values for the hidden
units, and since these values in turn may again be
transformed or decoded to the output values, the
outputs of the hidden units may be used as a
reduced representation for the input pattern. The
network may also be used as an associative mem-
ory, which gives the correct pattern if a distorted
(e.g., noisy) or incomplete pattern is presented.

In the following, the term auto-association is
reserved for the case where the input and output
of the network are identical. The term quantifica-
tion refers to all other tasks performed by net-
works with continuous output values.

4.3.2. Other methods
As described above, MLF neural networks are

used to perform classification, calibration, and

J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 175

data reduction tasks that can also be tackled by a
broad scale of chemometrical techniques includ-
ing discriminant analysis, multivariate regression,
and principal component analysis. Research on
artificial neural networks includes the investiga-
tion of the relationship between these networks
and other techniques. This will make it possible
to position neural networks properly within the
field of other more established statistical and
numerical techniques. Since neural networks are
based on different principles, this relationship is
not easy to find.

The following discusses some similarities and
differences between MLF neural networks and
some widely accepted chemometrical techniques.
This is not an exhaustive overview and is in-
tended to provide the reader with a feeling of the
difference in problem-solving strategies followed
by these techniques.

4.3.2,l. Neural networks and linear discriminant
analysis. A well-established technique to per-
form supervised classification is statistical linear
discriminant analysis (LDA) [17]. From a set of
examples, each characterised by a number of
variables, LDA tries to divide the object space,
spanned by the variables, into two or more dis-
tinct classes. Fig. 6 depicts a two-class problem in
which the objects are characterised by two vari-
ables, say x1 and x2. The goal of LDA is to find
the weight vector as drawn in Fig. 6. The projec-

a b
X2

0

0-Y
C

decision boundary

decision boundary,

0

0 k 0

0 X

x x F X
Xl

X

decision boundary

I weight victor

Fig. 6. Division of objects in two classes by linear discriminant

analysis.

tions of the objects on the weight vector are also
shown. LDA tries to find the weight vector for
which the within-class variance of the projections
is minimal and the between-class variance of the
projections is maximal. The decision boundary,
i.e., the discriminant line, is defined to be per-
pendicular to this weight vector. Unknown ob-
jects can then be classified in one of the two
classes according to this decision boundary.

Fig. 7a shows a neural network that is used for
classification. It can be envisaged that the neural

Fig. 7. (a) A two-layer neural network. (b) Division of objects in two classes by the neural network. (a) The two input units are

flow-through units, the transfer function of the output unit is a threshold function. The net input for the output unit is given by

net = w,n, + w2x2. The output of the output unit, y, is given by y =f(net) = 1 if net > t, and 0 if net < t, in which t denotes the

threshold. The value of y indicates to which class (represented by ‘0’ and ‘1’) the object belongs. The equation for the decision
. .

boundary ts gtven by w,xt + w2x2 = t. Two possible decision boundaries that might be revealed from the neural network are

depicted in (b).

176 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

network also defines a weight vector and a de-
rived decision boundary from a set of known
objects. The difference between LDA and the
network lies in the criterion that is used to select
the weight vector. The neural network tries to
find that weight vector for which the error (Eqn.
4) is a minimum. Initially the weight vector is
randomly chosen. During the training phase the
weight vector is modified, according to the back-
propagation learning rule, in order to minimise
the network output error. Depending on the ini-
tial position of the weight vector, different deci-
sion lines may be revealed. In Fig. 7b some deci-
sion boundaries are drawn that are equally prob-
able regarding the criterion of the neural net-
work.

The difference in strategy between the neural
network and LDA might result in different per-
formances in some situations. LDA is a paramet-
ric technique that is based on the assumption that
all classes possess equal variances. When this is
not the case, LDA does not perform optimally.
The MLF network is, on the other hand, a non-
parametric method and does not require such an
assumption. Its performance is not influenced by
unbalanced variances in the classes. When the
assumptions of LDA are met, then the solution
produced by LDA is the optimal one. However,
the actual solution of the network and, hence, its
performance, depends on the initial random set-
tings of the weights. This is a disadvantage of the
neural network in comparison with LDA.

Another non-ideal situation is the presence of
outliers in one or more classes. This is illustrated
in Fig. 8. LDA is not able to cope with these
outliers while the network is flexible enough to
find a weight vector as shown in the figure. The
reason behind this difference in performance lies
in the fact that the network, at the end of the
training phase, focuses solely on boundary objects
to find the discriminant line while LDA focuses
on the ‘mean object’ of each class. Hence, objects
deviating too much from the ‘mean object’ deteri-
orate the performance of the LDA technique.
Neural networks are not hampered as much in
this situation. This explains why MLF neural net-
works usually perform better with ‘difficult’ data
sets. If, however, all assumptions of LDA are

0

0

0 X

x x x

xl

decision boundary LDA

possible decision boundary NN

Fig. 8. Presence of outliers in the data set. Shown are decision

lines obtained with linear discriminant analysis and the two-

layer neural network of Fig. 7, respectively. Bold symbols

nearby the ordinate indicate outliers of both classes.

met, this technique is to be preferred because it
yields a unique, optimal solution. Table 1 sum-
marises the comparison of both techniques.

4.3.2.2, Neural networks and principal component
analysis. Data reduction is another major appli-
cation field for neural networks. It is therefore
interesting to see how this is related to principal
component analysis (PCA), the best known data
reduction technique in chemometrics. In Fig. 9 an
auto-associative network is depicted schemati-
cally. The desired output pattern equals the input
pattern. In the hidden layer a number of hidden
units is chosen that is smaller than the number of
input and output units. The network has to
squeeze its input through the bottleneck formed
by the hidden layer to the output layer in such a
way that each input pattern is reproduced as best
as possible. If an appropriate number of hidden

TABLE 1

Comparison of LDA and MLF

LDA MLF

Parametric

Assumptions:
Distribution

Variances

Focuses on

‘mean object’

Non-parametric
No assumptions

Focuses on

boundary objects

JAM. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 177

3 Xpn

/

mn
w2 \ I

1/n J

i

E 1
Ypn

J
Fig. 9. An auto-associative network. The data set consists of p
input patterns with each n variables. Since it is an auto-as-
sociative problem, the desired output patterns equal the input
patterns: YP” = Xp”. The neural network has n input units, n
output units and m hidden units, with m < n. For the set of
input patterns the resulting set of hidden unit outputs is given
by H pm = XpnWnm, whereas the set of outputs of units in the 1
output layer are expressed as Yp” = HpmW2mn.

units is chosen, the hidden layer forms an optimal
reduced representation of the input, allowing a
nearly perfect retransformation of the input pat-
tern. The criterion of the back-propagation learn-
ing rule to set the weights of the network is to
minimise the output error given in Eqn. 4.

When we compare this with PCA, the equiva-
lence is immediately clear. PCA decomposes the
X matrix, in which the rows comprise the input
patterns, into a matrix, S, of scores and a matrix,
L, of loadings. This is done so that an m-dimen-
sional reproduction of the X matrix, denoted by
X(m), is the best possible one, according to the
criterion that [X(m) - Xl2 is minimised. This may
be summarised by

X = SP”L””

and

X(m) = SPrnLrn”

where p and n denote the number of objects and
variables, respectively. Compared with the equa-
tion of the neural network output

yPn=HPmWmn
2

problem 1 _______---_------ solution
I I I

j data acquisition

+, j output interpretation

j data selection

I

i data preprocessing
;<___________________________ I

; training and testing i /

~,_________~~~~~~~~~-~~~~~~~~~~,

Fig. 10. General protocol for developing MLF networks.

178 J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

this demonstrates that a neural network with m
hidden units should produce an m-dimensional
PCA solution, except for a rotation matrix T. This
can be expressed as

YP” = X(m)

and

HPmWm"=SPmm-lL"m
2

where the property of rotation matrices, i.e.,
‘IT-’ = 1, is used. In ref. 18 it is demonstrated
that a network that is initialised with the PCA
solution cannot improve this solution. Special
network architectures have been developed to
produce exactly the PCA solution [19-211. These
networks are beyond the scope of this Tutorial.

4.3.2.3. Neural networks and standard modeling
techniques. Artificial neural networks have been
proven to be able to model complex non-linear
input-output relations, where other techniques
fail. Different studies have compared the perfor-
mance of neural networks with partial least
squares (PLS) and principal component regres-
sion (PCR) [22]. When a highly non-linear rela-
tion underlies the examined problem, usually
neural networks outperform these classical tech-
niques. This fact initiated or stimulated research
on other non-linear techniques, e.g., non-linear
PLS. The comparison and the relationship be-
tween them is still under investigation and it is
expected that in the near future the first results
will be published.

4.3.3. Protocol
MLF neural networks may be used for many

kinds of problems for which several approaches
exist. Nevertheless, a general protocol may be
given, consisting of a sequence of actions and
stages. This protocol is depicted schematically in
Fig. 10. The actions are described in more detail
in the following paragraphs. Since some of the
situations described below occur in different parts
of the protocol, some redundancy is inevitable.

4.3.3.1. Data acquisition. Since the networks are
trained under supervision, examples have to be
available. Before gathering any data, a good rep-

absorbance

a lo:/
1

A

mean absorbance

100
-

b

o- . <

C (lo, 14, 36, 72, 95, 70, 32, 20, 23, 25, 61, 3% 16J3)

Fig. 11. Example of a representation of a spectrum. (a) The
input object (a spectrum). (b) Division in intervals. Intervals
too small: too many variables (noise); intervals too broad: loss
of information. (c) The resulting (unscaled) input pattern.

resentation for the input and output objects has
to be found. The input and the output patterns of
a neural network consist of variables (one per
unit) and thus both the problem and the solution
have to be translated (see paragraph 4.2.3). The
representations depend on the given problem and
the desired solution (Fig. 11).

Often the decision concerning the representa-
tions is based on knowledge about the problem
and experience with neural networks. Finding
good representations may be a tedious task. A
choice must be made about the number of vari-
ables that is used to represent the input and the
output object. Usually a compromise has to be
made: not too few variables (units) to retain as
much information as possible and not too many
to prevent the loss of the network’s capability to
generalise. The latter situation might occur espe-
cially if there are only a few examples available.

Once the representations are decided, data
may be collected. Since the network has to ex-
tract the relation between problem and solution
from examples, the data set must be as represen-
tative as possible. A good strategy for obtaining
the data is desirable, but often this phase is not
controlled by the designer of the network. Usu-
ally some data are already available and collect-

JAM. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 179

ing more or other data often is too expensive or
time-consuming. Despite the requirements men-
tioned earlier, in most cases one must make do
with what one has.

4.3.3.2. Data selection. If an abundant amount
of raw data is available, a selection has to be
made. The data must be representative and there
should be enough data available to prevent the
network from overtraining. Also there must be
enough data to allow subdivision of the data set
into different sets for training and testing.

Distribution of the data. First of all, the exam-
ples with which the network will be trained have
to be ‘representative’. This does not mean ‘repre-
sentative for the real world’, but ‘representative
for the problem’. The data have to encompass as
much as possible the complete domain on which
the model has to be built, so that the network
interpolates instead of extrapolates. Not only the
distribution of the data points is of importance,
but also their ratio of appearance. For example, if
the network has to distinguish between two classes
of objects, in the ‘real world’ these two classes

-1 ---__ 2 ___ 3 ____I 4 -.-._ 5

1 .oo

0.60

-0.60

-1.00 -0.80 -0.60 -0.40 -020 0.00 0.20 0.40 0.60 0.80 l.OCJ

X

- 1.00 -0.80 -0.60 -040 -0.20 000 0.20 0.40 0.60 0.80 1 .oo

X

Fig. 12. Learning the function y = --x with an unbalanced training set. (a) Composition of (0) training set and (0) test set. (b) Line
given by network at different stages (1 to 5) of the training phase.

180 J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

-1 _____ 2 ___ 3 _____ 4 -.-._ 5

0.60

-0.60

-1.00

b

-1.00 -0.80 -0.60 -0.40 -0.20 000 0.20 0.40 0.60 0.60 1.00

X

I

A

-1.00 -0.60 -0.60 -0.40 -0.20 000 0.20 0.40 0.60 0.80 1.00

X

Fig. 13. Learning the function y = --x with a balanced training set. (a) Composition of (0) training set and (0) test set. (b) Line

given by network at different stages (1 to 5) of the training phase.

may appear in different amounts, say 1: 50. If the
network is trained with a data set which contains
examples of both classes in this same ratio, i.e.,
representative for the real world, the network will
have problems learning to recognise the class
with only a few examples. If both classes have to
be learned equally well, balancing of the training
set is a prerequisite. The same problem might
arise if the network is being used for other types
of problems, like quantitative analysis.

one input, two hidden l and one output unit. The
output unit is equipped with a linear transfer
function. The training and test set both consist of
pairs of (x, y) values. In Fig. 12a an unbalanced
training set and the test set are given. If the
network is trained with this unbalanced training
set, it has more difficulties learning the left part
of the line than the right part of the line. In Fig.

A simple example will be given to illustrate the
effect of using a data set that is not representa-
tive for the problem. If the function y = --x has
to be trained, a simple network may be used with

l To solve this linear problem, a neural network without a
hidden layer, or even another method, could have been used

as well. However, for illustration purposes a hidden layer was

added.

JAM. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 181

12b five test set results are presented, obtained
after one, two, three, four and five iterations of
the training set, respectively. It is seen that the
network indeed is biased towards the right part of
the line. If the training set is balanced, like the
one presented in Fig. 13a, the network exhibits
less problems (Fig. 13b). Of course, for this sim-
ple problem the line will also be learned with the
unbalanced training set after only a few iterations
more. However, in real-world situations it is not
always possible to recover from performance
problems arising from unbalanced training sets by
just taking more iterations. The part of the model
where many examples were present in the train-
ing set might already be overfitted while other
parts are still not trained well enough.

Overtraining of the network. If a network is
overfitted (overtrained), it acts like a memory. In
such cases, the network will not learn the general
features inherently present in the training set

l training

example

A test
example

during training, but it will learn more and more
of the specific details of the particular examples.
Thus the network gradually looses its capability
to generalise. This can happen only when the
training set exhibits specific features which are
not to be included in the model. Such a situation
often occurs if only a few noisy examples are
available, especially if there are many units. The
risk of overtraining then is high. To give an
example, a model has been built with the training
set presented in both Fig. 14a and b. The same
network structure given in the previous example
has been used. In Fig. 14c the curve that is
learned by the network is shown at different
stages in the training process. It is seen that,
during training, the model changes from an al-
most straight line (~1) to a relatively strongly
curved line (~4). If the test set presented in Fig.
14a is used, this network is said to be overtrained.
It tries to reproduce the specific training set as

l training
example

A test

exarrple

1 .oo 1 .oo
a A

.
b

0.60 -
A

0.60 - . A
0 A A. A 0 .

0.20” l

.
A 0.20 ”

x
_A

-0.20 -
a

-0.20 -
. A .

-0.60 - -0.60 -

-1.00 -1.00 -I

-1.00 -0.60 -0.20 0.20 0.60 1.00 -1.00 -0.60 -0.20 0.20 0.60 1 .oo

x x

1 .oo

0.60

0.20

-0.20

1:::: -

- 1 .oo -0.60 -0.20 0.20 0.60 1 .oo

x

Fig. 14. (a) and (b) Two different data sets with the same training examples. (cl Model built by a network at different stages (sl to
~4) during the training.

182 J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

l traimng

example

1.00 * 1 .oo
a

0.60 - . 0.60
. .

0.20 ” 0.20
>.

-0.20 - -0.20
.

-0.60 - -0.60

-1.00 -1.00
-1.00 -0.60 -0.20 0.20 0.60 1.00 - 1.00 -0.60 -0.20 0.20 0.60 1 .oo

x
x

Fig. 15. (a) Training set. (b) Model built by a network at different stages (sl to ~4) during the training.

best as possible by learning the noise too. How-
ever, if another test set, presented in Fig. 14b, is
used, the fume network model is not overtrained,
but for this combination of training and test set it
is a good model. Overtraining happens when the
network is able to build a more complex model
based on the training set alone than the model
the training and test set together appear to de-
fine. For the training set presented in Fig. 15a a
network with the same structure as used in the
previous example is not able to build a very
complex model (Fig. 15b). Although this training
set contains an equal amount of noise as the
previous one, it leads less easy to overtraining.
The situation of overtraining is comparable to
fitting a curve with a polynomial of too high an
order.

Subdivision of the data. Another decision that
must be made is the subdivision of the data set
into different sub-sets which are used for training
and testing. If enough examples are available, the

. . .

*ji[1,

data set N diierent divisions

Fig. 16. The cross-validation technique.

data set may be split by some fraction (e.g.
50/50% or 67/33%) into the training and test
sets. The training set still has to be large enough
to be representative of the problem and the test
set has to be large enough to allow validation of
the network.

If there are not enough examples available to
permit splitting of the data set into a representa-
tive training and test set, other strategies (like
cross-validation) may be used (see Fig. 16). In this
case the data set is split in N different ways into
a training set and a (usually smaller) test set,
respectively. The same network structure may
now be trained and tested N times with the N
different pairs of training and test sets. Every
pattern is thus used once as a test pattern in one
of the N procedures. The results of these tests
together enable determination of the perfor-
mance of the network. If the test set consists of
only one example, this strategy is called the leave-
one-out method. Of course, more test data is

w test set

a training set

i-

J.R.M. Srnits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 183

preferable, but the cross-validation method makes
it possible to use smaller amounts of data.

4.3.3.3. Duta preprocessing. After selection of the
training and test sets, some data preprocessing
might still be desirable. Often the data are scaled
before use, especially if different variables have
different ranges of values. If some of the vari-
ables have relatively high values, these variables
might dominate the model. If the input values are
too large (especially in combination with large
weights), the net input (Eqn. 1) for the units may
end up in the tails of the sigmoid function, where
the derivative is very small. Since according to the
back-propagation learning rule the weights are
adapted in proportion to this derivative, this may
lead to a static situation, also called paralysis of
the network. Scaling of the input brings the net
input within the dynamical range of the sigmoid
transfer function. One may scale the input, the
output or both. Different preprocessing strategies
exist for binary and continuous values.

Binary ualues. If binary values are used, scaling
is not necessary. Of course, one must always
ensure that the desired output values are in the
output domain of the transfer function used. If 0
and 1 are the limits of the sigmoid transfer func-
tion used, exhaustive training will be necessary to
obtain output values close to 0 or 1. If 0.1 and 0.9
are given as correct values instead of 0 and 1, the
network can put more emphasis on training ‘dif-
ficult’ examples where the output is still far from
correct instead of bringing the almost correct
ones to perfection.

Continuous values. For scaling of the data dif-
ferent methods may be used. The choice depends
on the type of problem and the chosen represen-
tation of the input and output objects. Methods
which are often used with good results are auto-
scaling and range-scaling. The data may be scaled
per variable, but if the variables are highly corre-
lated (as in a spectrum) scaling the values per
object (spectrum) should be used.

4.3.3.4. Network design. If the training and test
sets are generated, a choice has to be made about
the network structure and its parameters, e.g.,

the number of input, hidden and output units;
the transfer function; the weight initialisation; the
learning rate, 7; the momentum, cu; and the num-
ber of iterations. Usually first a rough estimation
is made for the different parameters to define
some point from where the optimisation process
starts. Several network parameters certainly are
not independent of each other, but to some ex-
tent a univariate optimisation procedure is suffi-
cient to obtain an initial design.

Number of units. The number of input and
output units is of course equal to the number of
variables with which the input and output objects,
respectively, are represented. Many heuristic
guidelines for the choice of the number of hidden
units exist [231, ranging from 2 times the number
of input units via 2/3 of the number of input or
output units (whichever is less) to l/2 times the
number of input plus output units. However, since
the optimal number of hidden units depends so
strongly on the nature of the problem and on the
chosen representations for the input and output
objects, the authors feel it is not safe to rely
exclusively on heuristics. It is better to scan a
range of possibilities. This will lead quickly to a
good approximation of the number of hidden
units.

If the nature of the problem is linear, hidden
units are not necessary and a network with no
hidden layer at all will also do the job l . If the
problem is non-linear, some minimal number of
hidden units is required. If less hidden units are
taken, the performance of the network drops
sharply. If more hidden units are taken, the per-
formance increases slightly to a limiting value or
even decreases again. Usually, the number of
hidden units is best chosen to be not too much
above the minimum amount necessary, even if
the performance does not deteriorate if more
hidden units are used. If more hidden units are
used, training does not only take more computing
time, but also the performance might fluctuate
more. If PCA is performed on the data set, the
number of significant principal components often

l For a linear problem, one of the standard (chemometrical)
techniques might be favoured.

184 3.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

gives an indication of the minimum number of
hidden units necessary.

There is still an ongoing debate as to whether
a three- or four-layer neural network, i.e., with
one or two hidden layers, respectively, is able to
model any arbitrary non-linear tranformation be-
tween the input and output objects (see, e.g., refs.
23 and 24). In our experience, a variety of chemi-
cal problems (e.g., refs. 15 and 16) can be solved
by a three-layer neural network. In some circum-
stances application of a four-layer network re-
sulted in a much faster convergence and there-
fore might save a substantial amount of comput-
ing time, However, in none of these cases did the
four-layer network outperform the three-layer
one. When a three-layer network appeared to be
incapable of modeling a particular problem-solu-
tion relation, a four-layer network failed to solve
this problem as well.

Transfer function. The input units are flow-
through units meaning that the transfer function
can be expressed as f(x) =x. For the hidden
units usually a sigmoid transfer function is taken
(Fig. 3). If a linear transfer function is used, the
network will only be able to model linear rela-
tions and a network with no hidden layer at all
will also suffice. A hidden layer with units pos-
sessing linear transfer functions therefore only
makes sense if the network is used to perform
data reduction. For the output units the choice of
the transfer function depends on the type of
problem for which the network is used, as de-
scribed in Section 4.3.1.

The weights. Initially, the weights are usually
assigned random values within a certain range
around zero (e.g., -0.3 to 0.3) in order to bring
the net input of each unit in the network into the
dynamical range of the sigrnoid function. This is
to prevent the network from becoming paralysed.

The learning rate and momentum. After the
design of the network, values for the learning rate
and the momentum still have to be chosen. If the
transfer function of the output layer is a sigmoid,
the output of a unit is limited by definition, no
matter how extreme the input value. In this case
a rather high value for n may be chosen: between
0.7 and 0.9. If, however, the transfer function is
linear, then there is no limit on the output of a

unit and high values for 77 often cause the net-
work to oscillate or, even worse, diverge. In this
case n is typically chosen at least a factor of ten
smaller, i.e., below 0.1. The operation of the
network is also much more influenced by n when
a linear transfer function is applied.

Previous changes in the weights are taken into
account with the momentum term, which
smoothens to some degree the learning behaviour
and thus limits the danger of oscillations or diver-
gence. The momentum term is usually set be-
tween 0.3 and 0.6. Its influence is not as predomi-
nant as that of the learning rate.

Number of iterations. A presentation of the
entire training set, followed by a presentation of
a test set, is defined as one iteration. The choice
of the number of iterations that has to be per-
formed is based on trial experiments, in which
the performance of a network as function of the
number of iterations is monitored.

4.3.3.5. Training and testing. The initial network
design described in the previous section is to
some extent based on experience. A rough opti-
misation is obtained by carrying out the small
loop given in Fig. 10. When the initial network
structure and parameter settings are chosen, a
rough optimisation may be accomplished by mon-
itoring the performance of networks having
slightly different structures and parameters. Ob-
viously, the best strategy is to perform an experi-
mental design to obtain the behaviour of the
network as a function of its structure and param-
eter settings. This requires training and testing of
a substantial number of networks, a procedure
which might be very time consuming.

The functioning of a network depends on the
chosen network structure and parameters. The
normalised standard error (NE) may serve as a
measure of the performance of a network and
facilitates the comparison of performances of dif-
ferent networks. Based on this NSE, some typical
phenomena will be discussed.

The normaltied standard error. The normalised
standard error is defined by

NSE = ; c c (dpj - opj)’ (9)
P i

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 185

in which P denotes the number of output pat-
terns in the data set and J is the number of
output units. The indices p and j refer to the
pth output pattern, and jth output unit, respec-
tively, whereas d, and oPj represent the desired
and obtained output value, respectively, of unit j
on pattern p.

This NSE is not always the best indication of
the performance of a network. An error which is
very high for one pattern (e.g., an outlier), but
almost zero for the other patterns, leads to the
same NSE as a moderate error for all patterns.
The first situation is preferable, but the NSE
does not reflect this difference. Also, a relatively
high NSE does not necessarily mean a bad per-
formance. For example, if a unit is desired to give
0 or 1, but this unit consistently gives output
values around 0.3 for the 0 values and values
around 0.7 for the 1 values, the NSE may be
large. In that case, however, the performance of

nse - training set --- test set nse

the network is perfect when during the interpre-
tation of the output (see below) a threshold of 0.5
is chosen. In general, the trend of the NSE is of
more importance than each of its individual val-
ues.

For a first optimisation, however, the NSE is
sufficient. If a rough idea for a good network
structure and parameter settings is obtained, an-
other criterion than the NSE may be used for
further optimisation. In this case the next two
steps in Fig. 10, data analysis and interpretation,
are included in this process (indicated by the
large loop in the figure) to determine the perfor-
mance and perhaps further optimise the network.
This process is described later in Section 4.3.3.6.

Some typical examples. In the remainder of this
paragraph, some typical examples will be dis-
cussed where the NSE is used as a first indica-
tion of the network performance. The remedies
that are presented for the problems considered in

- training set

number of iterations number of iterations

nse - training set

number of iterations

Fig. 17. Training behaviour of a network, indicated by the progress of the NSE; effect of the learning rate on the training. See text

for more details.

186 J.R.M. Smits et al. / Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

the following examples are mostly based on
changes in the network structure and the parame-
ter setting, since in this phase the data set is
considered as fixed. Many problems may be
avoided or solved by taking more and/or other
data, but since this is often not possible one must
make the best of it.

A successful training session is shown in Fig.
17a. Both the NSE for the training set and the
test set converge to a minimum value. If the
learning rate, 7, is chosen too large, a training
session as shown in Fig. 17b may occur (the test
set is omitted). The NSE more or less converges
but fluctuates a lot as a function of the number of
iterations. Here, the network wanders around a
minimum, and the functioning of the network
depends highly on the precise moment when
training ends. In the worst case, the network
might even diverge instead of converge. If, on the
other hand, n is too small, too many iterations
are necessary to achieve a convergence of the
network (Fig. 17~). If enough time is available,
this does not have to be a problem, but a small n
increases the possibility of getting the network
trapped in a local minimum. A good strategy is to
decrease 77 as a function of the number of itera-
tions: use a large 17 initially to enable the network
to locate the neighbourhood of the minimum and
a decreasing 71 to Iet the network settle down in
the exact position of the minimum. In the neigh-
bourhood of the minimum, usually the derivative
is very small. Since the adaptation of the weights

nse - training set- test set nse

is proportional to this derivative, it would be
advantageous to increase the value of 7) again if
the network is close to the minimum, but unfortu-
nately, often this reversal point is difficult to
determine.

A training session like that in Fig. 18a might
indicate subsequently that the network is stuck in
a local optimum, is moving across a relatively flat
part of the hypersurface described by the NSE in
the weight space, or is paralysed. The latter situa-
tion may be avoided by taking smaller random
weights and/or invoking another scaling proce-
dure for the inputs. To prevent getting stuck in
local optima, one may consider other learning
algorithms than back-propagation. However, most
learning algorithms have this risk of encountering
local optima in common. Another remedy is given
by increasing 7, or alternatively, starting the same
training session multiple times, with different ini-
tial random weights, hoping that in one of the
runs a deeper minimum of the NSE is reached.
Of course, one never knows whether the deepest
minimum that is found is a local or a global one,
unless the NSE of both the training and test set
becomes negligibly small. However, if the net-
work meets the requirements, it is ready for use.

Even if the network converges to a local mini-
mum, the question still remains as to whether the
network would have been able to escape from it if
more iterations were used. For instance, Fig. 18a
might be just the left part of Fig. 18b, in which
the network realises an escape from a local mini-

- training set-.. test set

a
number of iterations number of iterations

Fig. 18. Training behaviour of a network, indicated by the progress of the NSE; effect of paralyzation of the network or shapes of
error surface on the training. See text for more details.

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 187

mum or reaches the edge of an elongated hyper-
surface in weight space.

Too many iterations or hidden units may cause
overtraining of a network (Fig. 19a). Such a net-
work acts more and more like a memory, capable
of recalling the presented training examples (a
decreasing NSE for the training set), but losing
its capability to generalise (an increasing NSE for
the test set after some minimum). Overtraining
especially occurs when the training set contains
too few examples. As a consequence, the noise
present in the patterns of the training set is
learned by the network. In this case the training
has to be ended at the minimum of the NSE for
the test set. If this minimum is not satisfactory, a
remedy might be to use less hidden units. Of
course, ending the training at the minimum is not
an elegant solution. Using more or other data
often is a better approach.

Closely related to overtraining is the situation
shown in Fig. 19b. In this case a gap appears
between the NSE curves for the training and test
set after just a few iterations. No minimum for
the NSE for the test set can be observed and
limitation of the number of iterations will not do
any good. The gap between the two NSE curves
indicates that apparently the training set repre-
sents a different input-output relation than the
test set. This happens, for instance, when the test
set contains more outliers or noisy patterns than

nse - training set ..-.--- test set i, \
‘:.

‘i L ‘..
‘i.

k.
-..

-..

‘_ - .-- - .-... _ _

number of iterations number of iterations

the training set. If the original data is split in
another way into a training and test set this
phenomenon might disappear.

The gap between the two curves also appears
if there are not enough data available to allow a
meaningful subdivision into a training and a test
set. Each individual set does not contain suffi-
cient information to describe the input-output
relation and in that circumstance merging of the
data of both the training and test set might be
necessary. A test set containing only a few pat-
terns may be taken (e.g., according to the leave-
one-out method) to see if more training examples
helps to solve the problem.

The gap may also appear when an oversized
network together with an input and/or output
representation of a too high dimension is chosen.
For example, suppose that an arbitrary number of
input patterns, each consisting of 200 variables, is
presented to a three-layer network which pos-
sesses twenty hidden units. After determination
of the NSE curves it appears that a gap is mani-
fest. Then a resizing of the network, e.g., taking
ten hidden units, together with a lower dimen-
sional input representation, e.g., 100 variables per
input pattern, might solve this problem.

It should be noticed that when the scales of
the ordinates in the previously mentioned figures
are changed, one figure might look like another
indicating that it is not always straightforward to

nse - training set - test set

Fig. 19. Training behaviour of a network, indicated by the
different relations. See text for more details.

progress of the NSE; training set and test set appear to describe

188 J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189

discriminate between the aforementioned situa-
tions.

4.3.3.6. Output interpretation. In this stage of the
protocol an optimal NSE that suffices is as-
sumed. The training and test set are presented
again to the trained network, but now without
adapting the weights any further. The output
produced by the network for each example of the
training and test set is now available. If the
output patterns have been scaled, these may be
scaled back to their original values, in order to
facilitate the interpretation of these outputs. Dif-
ferent criteria may be used to interpret the out-
put of the network, depending on the type of the
problem and the chosen output representation.

Classification. A large variety of classification
criteria exists which depend among other things
on the chosen output representation. If each out-
put unit is associated with a single class, the
following three classification criteria might be
appropriate:

1. The input pattern is said to belong to the
class corresponding to the output unit with the
highest value. This implies that each input pat-
tern is assigned to a class and unknowns are not
possible.

2. The first criterion is extended with the con-
dition that the highest value must exceed a pre-
defined threshold, which may be different for
each of the output units. If none of the output
values exceeds this threshold, the input pattern is
said to be unknown.

3. The second criterion may be extended fur-
ther with the requirement that each of the other
output values has to be a predefined amount
lower than the highest one. Unknowns may then

be defined as patterns for which none of the
output units exceeds the threshold. Doubtful cases
may be defined as patterns for which a unit does
exceed the threshold, but other outputs are not a
predefined amount lower than the highest one.

Qualification. If the network is used for qualifi-
cation and binary outputs indicate the absence (0)
or presence (1) of certain features, the output
interpretation must be performed per unit. Obvi-
ously, a ‘one-highest’ criterion cannot be used in
this case. The outputs of a single unit for all
patterns in the training or test set may be dis-
tributed as in Fig. 20a. In this case only one
threshold is necessary. The particular feature is
defined to be absent if the output is lower than
the threshold and present if the output exceeds
this threshold. In this way, doubtful cases and
unknowns are not defined.

If the outputs are distributed according to Fig.
2Ob, two thresholds may be used. If the output
unit is below the lower threshold, the associated
feature is said to be absent. If the output unit is
above the higher threshold, the associated fea-
ture is defined to be present. Values between
these thresholds indicate a doubt with the spe-
cific feature. Here, unknowns are not defined. In
this kind of analysis, three different data sets may
be used: a set to train the network, a first test set
to determine the best positions of the two thresh-
olds after examination of the output distribution
obtained with this set, and a second test set
(sometimes referred to as a generalisation set) to
validate the performance of the network includ-
ing the output interpretation step. The position
of the thresholds may differ for different units.

In both these cases, the output gives an indica-
tion of the confidence one may have in the result
from the network. If the value of an output unit is

lmL__Jlfreq’m
0 output 1 0 output 1

Fig. 20. Two possible distributions of the outputs of a unit for all patterns in a set.

J.R.M. Smits et al. /Chemometrics and Intelligent Laboratory Systems 22 (1994) 165-189 189

close to 1, one may trust this answer more than
the case where the value exceeds the threshold
only slightly. In fact, a more fuzzy criterion may
be used. Outputs ranging from 0 to 1 may be
interpreted as going from ‘feature certainly not
present’ via ‘doubt’ to ‘feature certainly present’.

Quantification. In the case of a neural network
with continuous output values, no interpretation
criterion is necessary. The value of an output unit
itself ought to give quantitative information on
the associated feature. The answer provides no
clue concerning its certainty.

ACKNOWLEDGEMENT

The authors would like to thank Marco Derk-
sen for his support and helpful discussions.

REFERENCES

1 L. Buydens and P. Schoenmakers (Editors), Intelligent
Software for ChemicalAnalysis, Elsevier, Amsterdam, 1993,
in preparation.

2 B.A. Hohne and T.H. Pierce, Expert System Applications
in Chemistry (ACS Symposium Series, Vol. 3061, American
Chemical Society, Washington, DC, 1989.

3 D.E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, Reading,
MA, 1989.

4 C.B. Lucasius and G. Kateman, Understanding and using
genetic algorithms. Part 1. Concepts, properties and con-
text, Chemometrics and Intelligent Laboratory Systems, 19
(1993) l-33.

5 C.B. Lucasius and G. Kateman, Understanding and using
genetic algorithms. Part 2. Representation, configuration
and hybridization, Chemometrics and Intelligent Laboratory
Systems, accepted.

6 J. Zupan and J. Gasteiger, Neural networks: A new method
for solving chemical problems or just a passing phase?,
Analytica Chimica Acta, 248 (1991) l-30.

7 W. James, Psychology (Briefer Course), Holt, New York,
1890, chap. XVI, pp. 253-279.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

W.S. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bulletin of Mathemati-
cal Biophysics, 5 (1943) 115-133.
D.O. Hebb, The Organization of Behauiour, Wiley, New
York, 1949.
F. Rosenblatt, The perceptron: a probabilistic model for
information storage and organisation in the brain, Psycho-
logical Review, 65 (1958) 386-408.
M.L. Minsky and S.A. Papert, Perceptrons, An Introduc-
tion to Computational Geometry (Expanded Edition), MIT
Press, Cambridge, MA, 1988.
D.E. Rumelhart and J.L. McClelland, Parallel Distributed
Processing, Explorations in the Microstmcture of Cognition,
Vols. 1 and 2, MIT Press, London, 1986.
P.D. Wasserman, Neural Computing. Theory and Practice,
Van Nostrand-Reinhold, New York, 1989.
J.R.M. Smits, P. Schoenmakers, A. Stehmann, F. Sijster-
mans and G. Kateman, Interpretation of infrared spectra
with modular neural-network systems, Chemometrics and
Intelligent Laboratory Systems, 18 (1993) 27-39.
J.R.M. Smits, H.W. Balfoort, L.W. Breedveld, J. Snoek,
J.W. Hofstraat, M.W.J. Derksen and G. Kateman, Pattern
classification with artificial neural networks: classification
of algae, based upon flow cytometer data, Analytica Chim-
ica Acta, 258 (1992) 11-25.
J.R. Long, V.G. Gregoriou and P.J. Gemperline, Spectro-
scopic calibration and quantitation using artificial neural
networks, Analytical Chemistry, 62 (1990) 1791-1797.
D.L. Massart, B.G.M. Vandeginste, S.N. Deming, Y. Mi-
chotte and L. Kaufman, Chemometrics: a Textbook, Else-
vier, Amsterdam, 1988.
P. Baldi and K. Hornik, Neural networks and principal
component analysis: learning from examples without local
minima, Neural Networks, 2 (1989) 53-58.
J. Rubner and P. Tavan, A self-organising network for
principal component analysis, Europhysics Letters, 10
(1989) 693-698.
H. Boulard and Y. Kamp, Auto-association by multi-layer
perceptrons and singular value decomposition, Biological
Cybernetics, 59 (1988) 291-294.
K.I. Diamantaras, Principal Component Learning Networks
and Apphcations, PhD Thesis, Princeton University, 1992.
S. Weld, Nonlinear partial least squares modelling. II.
Spline inner relation, Chemometrics and Intelligent Labora-
tory Systems, 14 (1992) 71-84.
R. Hecht-Nielsen, Neurocomputing, Addison-Wesley,
Reading, MA, 1990.
R.P. Lippmann, An introduction to computing with neural
nets, IEEE ASSP Magazine, 4(2) (1987) 22.

