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Quality Self-Monitoring of Intelligent Analyzers and Sensors 
Based on an Extended Kalman Filter: An Application to 
Graphite Furnace Atomic Absorption Spectroscopy 
Dletrlch Wlenke,’ Theo Vl/n,t and Lutgarde Buydens 
Catholic University of Ngmegen, Department of Analytical Chemism, Toernoolveld, 
6525 ED Ngmegen (The Netherlands) 

A method for on-line quality self-monitoring for automatical 
operating but drifting analytical sensors is presented. The 
method is based on an on-line state estimation by the Kalman 
filter extended by quality control (QC) sampling as known 
from process monitoring. A linear calibration model with linear 
drift parameters has been chosen. Compared to conventional 
approaches, the advantage of the proposed method is that it 
performs simultaneously calibration and recalibration, detection 
and correction of drift, and forecasting the expected drift 
situation, as well as outlier detection and repair. Compared 
to the existing Kalman filter algorithm, the presented one 
requires a minimal number of QC samples for updating its 
parameters. Thus, less recalibrations are necessary in variable 
time distances adapted to the actual situation in drift, analytical 
precision, and accuracy. The new procedure has been validated 
pseudo-on-line in a GF-AAS experiment with artifically 
enhanced drift. Approximately 1000 samples were analyzed 
using a continuously (45 h) running and independent working 
computer driven graphite furnace AAS/autosampler setup. 

If the results of an analytical method are not stable within 
a given time interval, this is often related to the term “drift”. 
Mclellandl defined drift as “a gradual change in a quantitative 
characteristic of a piece of equipment”. A similar definition 
is given by Webster:2 “a gradual change in the zero reading 
of an instrument or in any quantitative characteristic that is 
supposed to remain constant”. There are several fields in 
analytical chemistry such as flow injection analysisl~~ where 
drift can be a problem. In graphite furnace atomic absorption 
spectrometry (GF-AAS) drift can be caused, for example, by 
small changes of the optical and electrical parameters of the 
instrument caused by daily temperature changes in a labo- 
ratory. Drift can be introduced by the analyst via contam- 
ination of the instrument and of the samples. A large source 
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for drift in GF-AAS is the corrosion of the inner surface of 
the graphite tube caused by reactions during each new 
excitation. In this way drift can affect the accuracy of an 
analytical method. Thus, especially in routine analysis, there 
is a need for a technique that can automatically detect and 
eliminate drift. One possibility is the use of equally spaced 
and identically concentrated quality control (QC) standards 
as used in chemical process monitoring. It is assumed that 
the absorbance of a QC standard drifts in the same way as 
that of the sample itself. The obtained time series of 
absorbances of the QC standards can be evaluated off-line or 
on-line with several drift detection techniques. Probably the 
easiest way for drift control is the well-known Shewhart control 
chart.99’0 More advanced control charts are the Cusum charts 
and Trigg’s technique.IOJ2 The sign tests of Wallis and Moore, 
where values higher and lower than the median are counted 
as a criterion for a trend, are alternatives. Further classical 
trend tests useful for drift detection are the following: 
Spearman’s rank correlation, Cox and Stuart quick sign test, 
iteration test for randomness of the data, t-test of the slope 
of a fitted regression model, and the mean square successive 
difference test of Neumann and Moore.&Io An implemen- 
tation of all thesedrift detection techniques in an user-friendly 
expert system INTERLAB made for analytical chemists is 
given in Danzer et al.” However, Trigg’s technique is 
especially interesting because it is able to predict the next 
measurement. Implicitly, this method provides a forecast of 
the drift. This drift prediction is based on previous mea- 
surements and can be used to determine whether the future 
signal will be in control or not. 

However, a disadvantage of the methods described thus 
far is that they can only detect the drift but they do not correct 
for it. This deficiency can be overcome using the Kalman 
filter.13 This method is based on state space notation that 
allows recursive parameter estimation if ever the dynamics of 
the system under study causes the parameters to vary with 
time. Seelig and Blount first reported the use of the Kalman 
filter for applications of interest to analytical chemistry.l4 
Poulisse and Jansen15J6 applied the technique to variance 
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reduction in drifting processes in analytical clinical routine 
analysis. Thijssen et ala3J7-19 proposed a model for on-line 
drift detection and drift correction. Furthermore, they showed 
that the calibration and recalibration can be simultaneously 
performed by the Kalman filter. A limited memory filter was 
developed by Poulisse and Jansen20 tocorrect for the difficulties 
of abrupt changes in instrumental sensitivity. Reviews of the 
Kalman filter concerning further applications in analytical 
chemistry such as multivariate calibration and signal decon- 
volution have been published by Rutan2' and Brown.22 

The aim of the present work is to elucidate the Kalman 
filter method for the combined tasks of simultaneous (i) drift 
detection and drift correction, (ii) forecast of drift, and (iii) 
calibration and recalibration. In fully automated GF-AAS 
an additional difficulty arises under routine analysis condi- 
tions: Each measured sample or standard and the conditions 
of excitation cause a further erosion of the graphite tube's 
inner surface. This erosion determines duration and structure 
of the life cycle of a tube, causing a certain pattern of drift. 
However, in routine analysis it is desired to analyze a maximum 
number of samples before substituting the graphite tube by 
a new one. To achieve this goal, a special Kalman filter is 
needed that not only corrects on-line for drift but also minimizes 
the number of recalibration measurements. The present study 
proposes to use a few single QC standards in place of the 
entire set of recalibration standards. Further, it proposes to 
substitute the equidistant placement of recalibration standards 
by an optimal adapted nonequidistant placement of QC 
standards or recalibrations. This optimized placement of the 
standards in the space of time will be a task that has to be 
controlled and to decided by the Kalman filter. In contrast 
to the known Kalman filter versions, the proposed extended 
algorithm should be able to forecast on-line variable time 
intervals with as large as possible time distances between the 
QC standards. This information from the QC standards should 
be used to maximize the distance between the recalibrations. 
In other words: By means of the new algorithm we tried to 
maximize the number of analyzed samples between two 
recalibrations and/or two QC samples within the total life 
cycle of a graphite tube. The proposed extensions of the 
Kalman filter have been validated by a 45-h continuously 
running experiment with artificially enhanced drift. A fully 
automated computer-driven GF-AAS spectrometer/autosam- 
pler setup analyzed on-line Cd traces in aqueous H N 0 3  in - 1000 standards and samples. 

THEORETICAL SECTION 
Detailed explanations of the classical Kalman filter 

algorithm in connection with special applications to quality 
control were already given in refs 17-19. For the full 
mathematics of the Kalman Filter quality control algorithm, 
the reader is referred to Table 1 of ref 3. Citing this notation, 
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drift is coded in the state vector X(k) of the Kalman Filter 
quality control algorithm by 

where a! and j3 describe the drift in slope a and intercept b of 
a straight calibration line. k - 1 and k refer to the (k - 1)th 
and to the kth time point of measurement. This is different 
from Kalman filter applications in chemical multicomponent 
analysis where k refers to the wavelength index. 

The transition matrix F(k,k-l) is in this case 

L o  0 0 1 1  

r o  o o 01 

As structure for the covariance matrix3 follows from model 
1, then directly 

(3) 

For readers who are less familiar with the use of the Kalman 
filter in analytical drift contr013J7-2~ but who are familiar 
with its use for analytical multicomponent analysis (MCA) 
of mixtures, an additional explanation is given. In terms of 
MCA, the drift is implemented in the state space vector, in 
principle, as an "additional component". The time domain, 
k, plays a role in the drift approach comparable to the 
wavelength domain in the MCA approach. Thus, in the drift 
approach, the Kalman filter tries continuously over time k to 
improve its estimation of the calibration parameters a and b 
for a single analyte and of the parameters a and j3, describing 
the drift in a and b. In terms of MCA, this principle can be 
considered like a dynamical analysis of a "two-componenf* 
system. 

The linear calibration model 1 with linear drift can be 
extended, for example, to a nonlinear calibration model with 
linear drift expressed by an extended state vector 

al,(k) al,(k-l) 

x ( k ) [ i  - - F(kpk-l)  a!i,(k-*) w(k-l) (4) 

b(k-1) 

where a1 is the slope for the linear concentration term c and 
a2 is the corresponding slope for a second-order concentration 
term c2, for example. b corresponds again to the intercept. 
cq, a2, and j3 characterize the drift in the three regression 
parameters. However, the present study focuses on the case 
(1) of linear calibration and linear drift. This classical drift 
model forms a subpart of the present extended Kalman filter 
algorithm. Its flow chart (Figure I )  concerns seven main 
modules: (i) initialization, (ii) estimation of precision, (iii) 
check of precision, (iv) QC distance, (v) forecast of the 
calibration curve, (vi) QC sample measurement, and (vii) 
recalibration. 
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Figure 1. Flow chart for the algorithm of the extended Kalman fllter (see theoretical section for detailed explanatkm). 

I Absorption 

A1 

concentration 
Flgm 2. The chosen prkrclple of predefined precision as a comparison 
of the K a h n  fllter calculated quanttty S,, for the actual considered 
regression line with 8 by the spectroscopically defined quantity %. 
The quantity S- is estimated via eq 5 using the two widths at the end 
of confidence band for the calibration model. 

The principles of the new algorithm will be described briefly. 
This introductory overview then will be followed by a detailed 
explanation of our approach. 

The extended Kalman filter algorithm (Figure 1) has to 
be initialized with the measured absorbances of a set of 
calibration standards. Later on, the running algorithm is 
updated by the same set of standards (recalibration) that have 
been analyzed or by the measured absorbance of one QC 
standard. The algorithm itself decides which of both types 
of standards and at which time point k they have to be 
measured. Both decisions are based on the previously learned 
drifting signals of both types of standards and on the actual 
forecast of the expected drift situation one time unit (k + 1) 
ahead. The criterion is a predefined precision, Sw (Figure 
2) .  It is used for a decision threshold of whether a new QC 
sampling or a recalibration should be started or whether the 
analysis of samples can be continued. A second precision 
criterion, Sk,', is used as a stop criterion in an appended 
outlier detection and repair module. This module uses the 
method of least median of squares regression (LMS). The 
extended Kalman filter (Figure 1) uses this modified LMS 
procedure after measurement of the set of new recalibration 
standards and before the updating step (point 7 in Figure 1) 
to prevent an adaptation of its parameters to the outliers. In 
the following items, the algorithm is outlined more in detail. 

t 
7 

I '  I '  
! '  

1. The first step in the new algorithm (point 1 in Figure 
1) is the initialization of the Kalman filter. The measurement 
noise v(k) (Table 1 in ref 3), the system noise w(k) (Table 1 in 
ref 3), the number of possible repetitions for the measurement 
n,, and the number of standards n, have to be defined in the 
beginning. Initial estimations for v(k) and w(k) are available, 
for example, from previous experimental knowledge over the 
considered or similar analytical systems. The numerical 
choices for the predefined precision, S w ,  for the calibration 
graph, and for the outlier detection threshold, S s ,  are taken 
from realistic estimations over the reachable analytical overall 
precision for a given analytical method, including errors in 
intercept, slope, and model for standards as well as for samples. 
The number n, of possible repetitions is determined by 
constraints in time, costs, and amount of sample that is 
disposable. Then the first calibration line is calculated, and 
an estimation of the intercept a and slope 6 with their drift 
parameters a and 

2. After this initial calibration, the actual precision of the 
obtained calibration line, Salc, is estimated (solid line to point 
2 in Figure 1). According to Figure 2, Salc is based on a 
confidence band model with 

( 5 )  
expressing the overall precision of the calibration model as a 
percentage of the working range of the signal A. The widths 
A, and A2 of the confidence band at its left- and right-hand 
end sites were calculated with the corresponding least squares 
estimator based formula for straight regression lines, as can 
be found, for example, in refs 4 and 5. After this estimation, 
Salc is tested against its reference Sw (solid line to point 3 
in Figure 1). 

3. If the calculated precision Salc is better than the 
predefined reference value Sw, the maximal number of 
samples of unknown concentration that can be measured 
sequentially is determined (solid line to point 4 in Figure 2). 
That means an estimation of the actually valid distance 
between two QC standards in the time space. This maximal 

is obtained (point 1 in Figure 1). 

Salt = 100(A, + A2)/2(A- - Amin) 
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Tabla 1. Doflnltlon of the Expdmntalty Used Maxlmal Allowed 
QC D h t a w  as a Funotkn of the Actual ProcMon S, of the 
Kalman FMtr Prdlotd CaHkatlon Line’ 

size of SdJ % QC distance/time units 

0 I S d c I 1  
l l S d C I 2  
2 I Sdc I 3  
3 I SdC I 4  
4 5 Sdc 5 6 
Sdc > 5 

20 
12 

4 
2 
1 

a 

‘Numbere of analytical samples to be valyzed betweensthe 
measurement of two adjacent QC standards in the space of time. 

number of samples that can be analyzed sequentially between 
two QC samples depends on Salc. An example is given in 
Table 1. The number reflects, in principle, how far the Kalman 
filter can be trusted topredicta ando for future drift situations. 
To avoid too many samples of unknown concentration being 
measured, the maximum size of the QC standard distance 
was restricted (Table 1). The danger is that unexpected drift 
events can happen between two QC samples with time. Such 
events can be outliers or strong nonlinear drift that is 
unpredictable with the chosen linear drift model. 

4. The system is ready now to analyze samples. Before 
each sample analysis, a prediction is made of the calibration 
lineone time unit (k + 1) ahead (solid line to point 5 in Figure 
1) using the Kalman filter prediction formula (Table 1 in ref 
3). That means that the regression parameters a and b are 
corrected with the drift parameters, a and 6, that were 
predicted one time unit (k + 1) ahead. By this operation, the 
calibration line is set for time t(k+l),prcd. Each sample will be 
analyzed in this way by its “own” calibration line adapted to 
the predicted drift at that time point. A new experimental 
estimation of the line parameters, a and b, and of the drift 
parameters, a and 0, is received later (point 7 in Figure 1) 
with the recursive update equations as given, for example, in 
eqs 15-19 in ref 17 of the Kalman Filter algorithm. 

5 .  The precision, Salc, of each calibration line has been 
individually predicted in (point 5 in Figure 1) using the model 
(Figure 2, eq 5 ) .  ThenSalcis tested against Sprd (thickdotted 
line from point 5 to 2, 3 in Figure 1). If the precision Salc 
of the predicted individual calibration line is out of control 
(point 3 in Figure l) ,  an updating of the Kalman filter with 
one QC standard is tried (thick dotted line point 3 to 6 in 
Figure 1). If this update provides a precision, Salc, that is 
better than Sprd (thin dotted line point 6 via 2 to 3 in Figure 
l), then the next sample can be analyzed (thick dotted line 
point 3 to 5 in Figure 1). If not, then refer to item 7. 

6. After the analysis of all the samples according to the 
predicted QC distance, the next QC standard is measured 
(dotted line from thick dot to point in Figure 1). The Kalman 
filter is updated with the QC standard, and a new estimate 
of the parameters within the state vector is received. The 
precision, Salc, of the experimentally corrected calibration 
line is compared (thin dotted line from point 6 via 2 to 3 in 
Figure 1) with the predefined precision, Sprd. If Salc is in 
control, the next group of samples can be evaluated (solid line 
from point 3 via 4 to 5 in Figure 5 ) .  If not, refer to item 8. 

7. However, it happens that Salc is still out of control after 
theupdate of the Kalman filter by the scheduling QC standard 

(item 5 ) .  In practice, drift changes sometimes faster then 
predicted. The estimations of the old drift parameters and 
the QC distance are poor in such a situation and the last 
measured group of samples has to be analyzed again with a 
completely recalibrated Kalman filter (thin dotted line from 
point 3 via 7 to 4 and 5 in Figure 1). In this situation, the 
advantage of the variable QC distance becomes clear. In case 
of poor precision, Salc, followed by poor predictions for sample 
concentration and drift development, the QC distance will be 
small. In this way, the number of samples for a reevaluation 
stays small. This saves accuracy but also time and costs. 

8. A complete recalibration (thin dotted line from point 
3 via 7 to 4 and 5 in Figure 1) has to be performed in item 
6 if an update with a single QC standard (point 6 in Figure 
1 ) provided no significant improved precision Salc. The entire 
set of recalibration standards is used in place of a single QC 
standard to update the Kalman filter (eqs 15-19 in ref 17). 

The main difference from the previous developed Kalman 
algorithms is that the present extended algorithm uses in 
addition to the calibration standards so-called quality control 
standards for the updating of its parameters. In a traditional 
process monitoring system, these QC standards would be 
distributed equidistant in time over the samples. In contrast 
to that, the extended Kalman filter tries to use (i) a minimum 
number of QC standards, (ii) a minimum number of recal- 
ibration steps between the samples, and (iii) an optimum 
position of both types of standards in the space of time. In 
other words: Additionally to the dynamic estimation of the 
calibration model, a and b, for a single analyte and to the 
dynamic estimation of the drift by a and 8, the algorithm 
performs a self-control by placing a minimized number of QC 
standards at optimal positions between the recalibration 
standards and the samples in the space of time. 

Outliers versus Drift. Outliers during process monitoring 
are undesired discontinuous events. The adaptive Kalman 
filter algorithm cannot have strong outliers, especially during 
the recalibration step. Estimation of the line parameters a 
and b must not be inf luend  by outlier recalibration standards. 
Otherwise the extended Kalman filter would try to adapt a, 
b, a, and B to such events. Therefore, an outlier detection and 
outlier repair procedure has been incorporated as a submodule 
into the recalibration step of the extended Kalman filter 
algorithm. This submodule is based on the work of 
R o u s ~ e e u w ~ ~ * ~ ~  in least median squares regression and expe- 
riences reported by Massart et al.,25 Rutan and Carr,26 and 
Hu et al.27,28 about the use of this LMS for outlier detection 
and robust calibration. However, to find a suitable stop 
criterion of the LMS-based outlier rejection procedure, first 
the criteria proposed by Rutan and Carr (p 137 of ref 26) and 
Hu et al. (eqs 9 and 10 of ref 28) were applied. These criteria 
are statistically based, having the advantage of being inde- 
pendent from the individual calibration problem. Unfortu- 
~~ ~~ 
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nately, for most of the distribution of points along the 
calibration graph, the outlier selection procedure did not stop 
automatically as expected. For linear graphs with narrow 
confidence bands and for numerous experimental calibration 
graphs, this limitation has been observed also.29 However, in 
practice no reasons exist to eliminate more outliers then 
necessary, providing eventually a practically not reachable 
and too optimistically estimated overall precision of the 
calibration graph. That is why, as an alternative stop criterion, 
in the previous section the already used principle of predefined 
precision (Figure 2 and eq 5) was studied too, for the outlier 
rejection submodule. The user has to predefine S E  as a 
decision threshold before starting the drift control. The size 
of S s  depends, like the size of S p r ~ ,  on knowledge over the 
overall precision of the analytical procedure used. That means 
basically the introduction of additional chemical knowledge 
about the monitored calibration graph in contrast to a pure 
statistically based stop criterion. The size of a second criterion, Ss, of predefined precision as a vigilance parameter for 
LMS-based outlier rejection has to be chosen less strictly than 
for the previouslydescribedSpd. In this way "strong" outliers 
can be distinguished from drift that is considered more as a 
"soft outlier event". Together with this new stop criterion, 
Skzs, another modification has been introduced into the 
LMS procedure. The pure outlier detection and rejection 
procedure has been extended by an outlier repair step. Outlier 
repair means a single rejected outlier initiates an automatical 
remeasurement of three new replicates, averages the three 
measurements, and adds this new point to thecalibrationgraph. 
After this, the LMS outlier procedure is repeated until the 
calculated precision SkE;fs is better than the predefined 
precision s::'. 

EXPERIMENTAL SECTION 
The decisions of the extended Kalman filter in points 1 and 

5-7 (Figure 1) can be used in analytical practice to steer an 
autosampler or a laboratory robotic that introduces auto- 
matically samples or standards into the spectrometer or the 
chromatograph. To demonstrate the usefulness of the new 
algorithm for analytical practice, an experiment with enhanced 
drift has been set up. As an example, the determination of 
Cd traces in aqueous HNO3 using an independent running 
GF-AAS/autosampler setup has been chosen. The aim of 
the experiment was to generatea strong drifting Cd absorbance 
versus time and to test the extended Kalman filter with these 
data. 

To achieve artificial drift, the standard procedure of Cd 
determination in 1% H N 0 3  has been modified. The H N 0 3  
concentration has been increased to 10% in order to provide 
an artificial enhancement of chemical drift by increased 
chemical corrosion of the inner surface of the graphite tube. 
In this way, the extended Kalman filter has been tested in a 
worst case situation. A very often repeated analysis of exactly 
the same Cd solutions allowed us to follow drift versus time 
in a quantitative way. Thedrifting Cd absorbances were then 
used to test the prediction and calibration behavior of the 
extended Kalman filter algorithm off-line in several computer 
studies. 

(29) Vijn.T. Outlier Detectionand RepnirwithanExtmded KalmanFilter. Student 
Research Report, University of Nijmegen, Jan 1992. 

Chemicals. Aqueous solution of Cd(NO& (Merck) in 
10% H N 0 3  (Merck) was used. The calibration line consisted 
of a blank and four standards (0, 0.5, 1.0, 1.5, and 2.5 ppb 
Ca in 10% HN03) providing n, = 1 + 4 = 5. For quality 
control a QC standard of 2.0 ppb Ca in 10% HNO3 was 
prepared. A sample with known concentration (1.833 ppb in 
10% HNO3) was used to follow independently the accuracy 
and precision. 

Instrumentation. The analytical data for a pseudo-on-line 
evaluation of the extended Kalman filter strategy were 
produced by using a computer-controlled graphite furnace 
atomic absorption spectrometer (Philips Pye Unicam PU- 
9200X) linked with a furnace autosampler (type 9380X). An 
uncoated normal-type graphite tube (No. 9423,393,9003 1) 
was applied in this corrosion experiment. The Cd hollow 
cathode lamp operated at 7 mA. 

Procedure. The following standard temperature program 
was chosen: evaporation 110 OC/20 s, ash 300 OC/30 s, 
atomize 1200 OC/3 s, clean 2000 OC/3 s, cool 25 OC/lO s. 
The injection volume was 15 pL, and a deuterium baseline 
correction was used. The absorbance values were measured 
at 228.8 nm as the peak height for Cd. The peak area would 
be an alternative. However, the Cd peak shape did not change 
significantly in this drift experiment so that the height formed 
a representative choice. For each single sample the blank, 
the full set of the four calibration standards, and a QC standard 
were measured in a cyclic way. This was defined as one 
measurement cycle. Such a complete measurement cycle 
provides the best experimentally reachable drift compensation 
for the corresponding sample. In total, 47 samples, 235 
calibration standards, and 47 QC standards were analyzed. 
Each sample and each standard were analyzed as three 
replicates nr = 3 giving in total 3(47 + 47 + 235) = 987 
sequential measurements. According to the temperature 
program, the analysis of one sample or one standard took 66 
s. The preparation and injection of it from a master solution 
took - 100 s. This required a total of 2.7 min per measurement 
over a total period of 45 h in which the spectrometer and 
autosampler worked continuously, fully automatically, and 
independently. 

Computations and Software. The raw data were on-line 
saved to floppy disk by the computer of the running 
spectrometer/autosampler setup. Simultaneously the data 
were on-line transferred to a dedicated printer. Finally, the 
obtained experimental data set consisted of - 1000 Cd 
absorbances with their corresponding Cd concentration 
(alternatively 0.0, 0.5, 1.5, 2.5, 2.0, or 1.833 ppb Cd) and 
their corresponding time points of measurement (frequency 
1/2.7 min). These data set formed the input for the pseudo 
on-line evaluation of the extended Kalman filter strategy at 
an IBM-PC. Pseudo-on-line means in this case that for the 
Kalman filter algorithm, running in stand-alone mode on a 
PC, the experimental measurements were received from floppy 
disk in the same sequence in place of a direct sequential input 
from the GF-AAS. It means further that the control 
commands of the algorithm to the autosampler were translated 
to commands for reading the corresponding absorbances for 
recalibration or QC standards of samples from floppy disk. 
A randomization of the order of recalibration measurements 
avoids additional drift that could be introduced by a fixed 
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Flgure 3. Drmlng experlmsntal absorbances of all analyzed (a, top) 
Cd quality control standards (2 ppb Cd) and (b, bottom) blanks and 
cellbration standards versus Hme. 

sample order. Unfortunately, the current software for the 
autosampler control did not allow such a randomized mea- 
surement. However, randomization has been realized after- 
ward in the pseudo-on-line calculations by reading and 
processing the recalibration standards in random sequence 
from the file. The chosen pseudo-on-line validation of the 
new strategy does not influence future results. But it had 
some practical advantages for the research such as easier and 
faster data handling and independence from the slowly working 
spectrometer/autosampler setup. As predefined precisionSm 
of the Cd analysis, a value of S,,, = 7% was chosen in all 
calculations, based on literature studies about Cd standard 
analytical methods. The vigilance threshold for outlier 
rejection chosen was -2 times poorer with Siss = 15%. The 
extended Kalman filter approach as given in Figures 1 and 
2 was first tested with the experimental data using an in 
MATLAB programming language30 written version. Later 
on, the program was transferred to a Turbo-C (Borland- 
International) version. An executable demonstration version 
for IBM-PC (MS-DOS operating system) with VGA graphics 
is available from the authors. 

RESULTS AND DISCUSSION 
Measured Data. Drift with a positive slope happens in a 

first stage of the graphite tube's life cycle. This can be seen 
from the drifting raw Cd absorbances (Figure 3a,b). During 

(30) PC-MatlabY User's Guide, The Math-Worh Inc., Natick MA, 1990. 
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this first 5 h, the system is not stable. The reason for this 
positive drift is the thermal and chemical conditioning of the 
fresh graphite furnace. 

The first stage is followed by a stable time interval (6-30 
h, Figure 3a,b) where the absorbance of the QC standards 
does not vary much. Except in some few cases, outliers and 
discontinuities are observed. Examples are the absorbances 
for the standards of 2.5 and 1.5 ppb Cd (Figure 3b, time 5-10 
h). The strong outliers were caused by the robotic arm of the 
autosampler, which had slightly touched the edge of the tube 
inlet. However, these outliers were successful detected by the 
implemented modified LMS procedure for outlier detection 
using the decision threshold of Siss = 15%. The curve for 
the standard of 1.5 ppb (Figure 3b, time 37-43 h) contains 
an example of another type of discontinuity. For this steplike 
type of discontinuity, no obvious explanation was found up to 
now. Theevent occurred in the night, when nobody was present 
to observe the independently running spectrometer/autosam- 
pler setup. However, the parallel declination of the curve 
suggests also a deviating event comparable with that of the 
accident with the robotic arm and followed by a memory effect. 

The last stage of the graphite furnace's life cycle (31-45 
h, Figure 3a,b) is the aging phase with drift having a negative 
slope. This type of negative drift is caused by the rapid 
chemical erosion of the tube's inner surface. The end of the 
life cycle of the used graphite furnace can be seen from the 
deep trenches in the tube wall at the sample position (Figure 
4a,b). 

Selected calibration lines (Figure 5) taken within the time 
interval of 45 h were calculated from the raw data in Figure 
3b. The slope of the lines reaches a stable maximum with a 
width of nearly 25 h and declines again in the tube's aging 
phase. This illustrates mathematically the chemically caused 
drift of the GF-AAS system as already seen in Figure 3a,b. 
In the caption of Figure 5 is given quantitative values, and the 
t-test results in Table 2 show that the drift is statistically 
significant. The largest differences were found for the slopes 
for the initial (0 h) and the final phase (40 h) of the tube's 
life compared to the middle phase (8-32 h). It is interesting 
that the intercept of the lines does not drift. The explanation 
for this can be found in Figure 3b. The height of the Cd 
absorbance peaks is also a function of the generated drift. 
Quality Self-Monitoring with the Extended Kalman Filter 

Algorithm. The extended Kalman filter algorithm according 
Figures 1 and 2 has been sequentially and pseudo-on-line 
applied to the drifting 1000 sequential measurements as given 
in Figure 3a,b. The aim of the algorithm has been to predict 
whether a complete recalibration (rc) or a quality control 
sampling should be performed. In this way, the actual 
calibration line was adapted to any situation of drift with a 
minimum number of recalibrations and QC samples. Figure 
6 and Figure 7 summarize all the obtained results by graphical 
visualization of the behavior of the extended Kalman filter 
algorithm during the 45-h corrosion experiment. In Figure 
6, it can be seen that the algorithm recalibrated 4 times within 
the 45-h run after a first initial calibration. These four 
recalibration events happened with a flexible distance and at 
especially critical positions of the drift curve in Figure 6. That 
means that recalibrations were chosen by the algorithm 
automatically more frequently when theCd absorbanceshowed 



Figwe 4. (a, top) Light microscopic photograph (enlargement 25X) 
of the sample site in the fresh graphite furnace tube before its first 
useinthecorrosionexperimentforthegenerationofartificial~enhanoed 
drift. (b, bottom) The same sample site (a) after the drift generation 
experiment (Cd In 10% HN03, -1000 excitations within 45 h; also 
see text). 

stronger drift. Additionally it can be seen in Figure 6 that 
the algorithm sometimes decided to analyze only QC standards 
in place of a complete recalibration. The extended Kalman 
filter is able to handle the distance between two QC standards 
very flexibly according to the absence or the presence of strong 
drift. The correctness of the decisions, i.e., finally correct 
behavior of the extended Kalman filter in quality self- 
monitoring, can be seen in Figure 7. Good correction of the 
drifting absorbance and a high agreement with the experi- 
mentally best achievable curve were obtained. 

For detailed understanding of how the algorithm made its 
different decisions we look more quantitatively to the different 
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0.003 17; 81m = 0.125 70,9(81& = 0.003 36; 82*, = 0.121 78, 
= 0.003 21; 89% = 0.094 32, s(852h) = 0.002 50; % = 0.109 89, 

aooa 4.32 4.78 4.11 3.86 3.27 
aoeh 1.79 1.68 2.29 2.97 
al6h 2.32 2.47 3.14 
auh 2.38 2.74 
a3zh 2.68 

The calculated t vdum were obtained by tg = ab(m - q)/Sd 
whereby sd, the  variance^, is for the differen- a (e - aj). For the 
complete formula of 8d and more detaile of this t-test consult 143 
of ref 4. If t d  exceeds the tabled t-value t ~ 1 - r  = 2.06 wit% f = 
(& e n + )  + (k e n y )  - 4 = (3)(5) + (3)(5) - 4 = 26 degrees of freedom 
and statistid m k  of r = 0.06, then both calibration linea i and j are 
significantly different in their slope. 
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Flgue 6. Minimized number of sfngb aC standards and sets of 
calibratknVrecaWbration standards measured mquentlaly and non- 
eqddMantwlthin45haccordhgtotheco"andsghrenbytheextsnded 
Kalman filter aigorhhm in an optimal way over t)re total a " t  of - 1000 analyzed samples (cl, calibration; rc, recatbration). 

phases of the drift curve in Figure 6: After initialization with 
R = 0.02 and Q = lod, the first calibration c l  was measured. 
R and Q as intermediate computational variables of the, by 
its nature, recursive algorithm were chosen on the basis of 
previous experimental and computational experiences. A 
drifting first-order calibration graph was used for state 
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Flguro 7. (-) Drift of the concentration of the “unknown” sample of 
constant 1.833 ppm Cd calculated from the absorbances based on 
the linear regression model obtalned from the lnltlal calibration c l  (not 
drlft corrected). (- - -) Drift of the concentration of the same Cd sample 
corrected by theextended Kalman filter based on the few QC standards 
and the cailbratlons/recalibrations as shown in Figure 6. (- -) Best 
experimental dritt corrected concentration of the same Cd sample 
reached by uslng the total set of 47 X 3 QC standards and 235 X 3 
callbratlonslrecallbratlons. 

estimation. Then the precision, Salc, was determined (points 
2 and 3 in Figure 1; point c l  in Figure 6 ) .  In this stage of 
the process, Salc was significant poorer compared to Sprd. 
The algorithm decided on a QC distance of one sample using 
the user-defined limit as given in Table 1. This decision means 
that, within each measurement cycle, one QC standard (three 
replicates) had to be measured to update the Kalman filter. 
After three QC standards, the precision of the calibration 
line, Salc, is still poor if compared with S p r d .  Thus, the system 
needs to be recalibrated again (rcl in Figure 6). The entire 
set of previous measured samples had to be remeasured because 
there was more drift than predicted by the Kalman filter. 
Fortunately, in this case, only one sample had to be reevaluated 
because the Kalman filter was not in stable drift and did predict 
only a QC distance of one. The internal behavior of the 
extended Kalman filter can be followed by looking to the 
intermediate calculation results (Table 3). It is obvious that 
after the first recalibration (rcl in Figure 6;  see also Table 
3) the precision of the calibration line Salc became better 
than the predefined threshold of Spr& = 7%. There is no more 
need for a recalibration. The system started to analyze 
samples. However, the QC distance has to still be one sample. 
According to the limits for the QC distance is based on the 
actual value for Salc (Table 3 and Table 1) because the drift 
is strong. The Kalman filter monitored its own parameters 
by measuring one QC standard after each analyzed sample. 
In the first 5 h, the algorithm gives no confidence in the 
excitation stability of the fresh graphite tube. After measuring 
five QC standards and analyzing five samples, the system 
recalibrates again (rc2 in Figure 6 ) .  A limit of five samples 
maximum between two QC standards has been implemented 
as the upper limit to avoid an overweight of the increasing 
number of QC standards in the calibration line. The period 
of time before this maximum is dependent on the calculated 
precision Salc and on user-defined limits. In a system with 
fast-changing drift characteristics, this time will be relatively 

T a m  5. Kalman FIw cllculrtod Actual kacbbn S, md 
Stat. Vocton x(k) Contahhg th. Actual Slope a and Intempt 
b of th. Callbratlon Um am W 1  a# th. Corrmapondlng Drift 
Paramotom a and B’ 

action &J% a b a B 
rcl 8.30605 0.111 60 0.01090 O.OOO22 -0.OOO09 
qc3 5.89565 0.11933 0.01469 O.OOO66 O.OOO19 
qc4 6.06137 0.12128 0.01524 O.OOO66 O.OOO19 
qc5 6.10059 0.12230 0.01506 O.OOO55 0.OOO 13 
qc6 5.93192 0.12378 0.01533 O.OOO53 O.OOO12 
rc2 5.96032 0.121 12 0.01250 -0.OOO22 -0.OOOO9 

qc7 3.72091 0.12575 0.01739 O.OOO33 O.OOO25 
qc8 3.75931 0.12351 0.01643 -0.OOOO9 O.OOOO3 
qc9 3.72087 0.12560 0.01836 O.OO0 12 O.OOO13 
qcl0 3.64146 0.12274 0.01793 -0.OOO 16 -0.OOOO1 
qcl l  3.36036 0.12085 0.01788 -0.OO016 -0.OOOO1 
rc3 3.17662 0.11866 0.006 15 -0.OOO21 -0.OOO17 
qc12 2.59089 0.11667 0.00440 -0.OOOO6 -0.OOOO8 
qc13 3.53385 0.10986 O.OOO49 -0.OOO46 -0.OOO28 
qc14 5.25938 0.10984 O.OOO24 -0.OOO35 -0.OOO23 
rc4 6.01966 0.10878 -0.OOO44 -0.OOO35 -0.OOO23 

The 15 data seta out of -lo00 sequential measured data seta 
were selected at the inta of time when the K h a n  filter itself 
initiated an autosampcr action rc (measure recalibration standard) 
or an action qc (measure quality control standard). (Compare with 
Figure 6.) 

state vector XU) 

small. This is in fact exactly what is required because in a 
system with poor predictable drift more recalibrations are 
needed. 

If the drift stays linear, it can be seen how the Kalman 
filter increases the QC distance or how it tries to keep the QC 
distance at least constant. An example of this is thegoodSalc 
values (Table 3) for all QC samplings between the actions rc2 
and rc3 that stimulate the Kalman filter to extend carefully 
the distance between two QC standards in time (Figure 6 ) .  
The Kalman filter relies more on the estimated parameters 
a, b, a, and @, based on up to the moment learned data. Thus, 
the Kalman filter relies on a higher excitation stability of the 
graphite tube. That means that relatively more samples but 
less QC standards were analyzed within the 6-30-h time 
interval (Figure 6 )  compared to the other time ranges. 
Recalibration rc3 (Figure 6 )  happened after the block of 
maximally allowed five QC standards. However, the precision 
Salc of the calibration remained good enough (Table 3). Three 
QC standards later, it can be seen how the precision 
dramatically decreases. The graphite tube, which has been 
artificially etched by nitric acid, reaches the final phase of 
corrosion. After only three QC standards, the Kalman filter 
predicted this negative development and decided for a 
recalibration rc4 (Figure 6 )  to reach a better estimate for a, 
6,  a, and @. After 34 h, the QC distance becomes smaller 
again. The deterioration of the tube causes fast-changing 
nonlinear negative drift. At this point more QC standards 
are needed. The graphite tube should be replaced, in general, 
when the absorbance starts to decrease dramatically, giving 
a poorer limit of detection. The size of the slope a of the 
regression line, provided by the Kalman filter, can be used as 
a test criterion as to whether the tube has lost its sensitivity 
or not. However, the extended Kalman filter provides 
additional information about the time point when the graphite 
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tube should be replaced. If the drift changes rapidly, then the 
QC distance decreases rapidly to a value of one. Thus, the 
Kalman filter tends then to call a QC standard measurement 
with the same frequency as an analysis. The tube should then 
be replaced because the drift became unpredictable and 
uncorrectable. 

In total, the extended Kalman filter algorithm asked for 
1 calibration, 17 QC standards, and 4 recalibrations. In total, - 1000 measurements in 45 h were performed. The algorithm 
continuously adapted the calibration parameters a and b and 
the drift parameters a and 0. In this way, it was possible to 
evaluate each sample by an optimal adapted calibration line. 
However, from Figure 7 it can be seen that a limited amount 
of drift is still observed in the theoretical line and in the slightly 
different prediction line of the Kalman filter. It is assumed 
that nonlinear drift cannot be compensated for by a linear 
drift model. Abrupt changes also count like nonpredictable 
nonlinear events. It is assumed that small outliers that were 
not detected by Skzs (time 5-10 h) result 10 h (time 20-30 
h) in the oscillating poor predictions. An indication for a 
similar delay in the prediction can be found later once more. 
The discontinuity (time 36-40 h) later (8 h) causes a sharp 
increasing predicted absorbance (time 44-48 h). An alter- 
native possibility to overcome these problems could be a 
nonlinear model for drift. 

CONCLUSIONS 
The extension of the classical Kalman filter quality control 

algorithm by the possibility of adapting its parameters either 
by quality control standards or by recalibration standards 
provided a chemometrical technique for quality self-monitoring 
of independently working automatic analyzers and sensors. 

The algorithm performs a continuous dynamic modeling 
of the parameters a and b of a calibration line as well as the 
drift a and fl  in both parameters. a and 0 allow one to take 
into account the future development of the drift. In this way, 
a prediction of the individual adapted calibration line becomes 
possible for each sample. The calculated precision, Salc, for 
each individual calibration line is compared with Sprd, that 
is, by a user-predefined precision. Based on this test, the 
extended Kalman filter is able to forecast how many unknown 
samples can be measured, beginning with the time point k up 
to the next recalibration. The algorithm forecasts in this way 
the time point for the next necessary QC standard measure- 
ment and/or the next recalibration. 

Additionally an automatical outlier treatment procedure 
based on a modified least median of squares method with new 
stop criterion, S:zs, was incorporated to overcome the 
influence of strong outliers and to repair them on-line. 

The application of the extended Kalman filter in automated 
graphite furnace AAS makes it possible to use a graphite tube 
over a longer period of time. The first reason for that is that 
the tube can also be used in its drifting phases in the beginning 
and in the end of its life. The drift is compensated for. The 
second reason is that fewer recalibrations and fewer QC 
standards are necessary, providing space in time for the analysis 

of samples, More space for samples became available because 
QC standards and recalibrations were not equidistant, but 
optimal placed in the space of time adapted to the real drift 
situation. The self-monitoring of the system by QC standards 
happened more frequently in a drifting phase than in a phase 
with no drift. 

Limitations of the extended Kalman filter algorithm are 
the mathematical complexity and some heuristics. The 
heuristics are the predefined precisions, Sprd and Skzs, the 
maximal allowed QC distances, and the choice of suitable 
initial parameters to force a fast and optimal adaptation of 
the algorithm in the starting phase of the long-term mea- 
surement. The choice of the predefined precision depends on 
the analytical technique. Especially for well-defined standard 
methods, this precision can simply be found in the related 
published method descriptions. The suitable choice of the 
QC distance (maximal number of samples allowed to be 
analyzed between two QC standards) and the maximal allowed 
number of QC standards between two recalibrations require 
more research. It depends strongly on the monitored sensor 
system. In our experimental case, it depended on the chosen 
excitation conditions, type of graphite tube, and strength of 
the acid. One way to overcome the initialization problem and 
to minimize the initial training phase of the Kalman filter is 
the use of starting parameters of previously used graphite 
tubes. Especially in routine analyses, the type of tubes and 
the analytical conditions stay more or less the same. Routine 
laboratories especially accumulate this kind of experience. 
Another disadvantage of the algorithm is that only a linear 
drift model is described, so only linear drift can be predicted. 
However, the choice of the model depends on the application 
and can be implemented easily as theoretically shown for a 
second-order calibration curve with linear drift (eq 5 ) .  

The general gain of an intelligent quality self-monitoring 
will be in this way a more economical use of the expensive 
graphite tubes or, in general, of the drifting sensor unit. 
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