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SUMMARY 

Rank annihilation factor analysis (RAFA) is a method for multicomponent calibration using two data 
matrices simultaneously, one for the unknown and one for the calibration sample. In its most general 
form, the generalized rank annihilation method (GRAM), an eigenvalue problem has to be solved. In this 
first paper different formulations of GRAM are compared and a slightly different eigenvalue problem will 
be derived. The eigenvectors of this specific eigenvalue problem constitute the transformation matrix that 
rotates the abstract factors from principal component analysis (PCA) into their physical counterparts. 
This reformulation of GRAM facilitates a comparison with other PCA-based methods for curve 
resolution and calibration. Furthermore, we will discuss two characteristics common to all formulations 
of GRAM, i.e. the distinct possibility of a complex and degenerate solution. It will be shown that a 
complex solution-contrary to degeneracy-should not arise for components present in both samples for 
model data. 
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INTRODUCTION 

Rank annihilation factor analysis (RAFA) is a method for multicomponent calibration using 
two data matrices simultaneously, one for the unknown and one for the calibration sample. 
In order to apply the technique of rank annihilation, the measured signal must be linear and 
additive, e.g. high-performance liquid chromatography with a diode array-UV/visible 
spectrophotometer as a detector (HPLC-DA-UV) or fluorescence excitation-emission 
spectroscopy. Data constructed in this way are called bilinear. For bilinear data the rank of 
a one-component data matrix is one in the absence of noise. Rank annihilation further 
demands that the signal for the analyte of interest be identical for both samples and finally it 
must be independent of the signal of the remaining substituents, i.e. the presence of the analyte 
of interest will raise the rank of the data matrix by one. If the data follow the assumed model, 
rank annihilation can be used to  quantitate the analyte of interest without calibrating for the 
interferents. 

The method was originally developed by Ho el al. ' as an iterative procedure, but the latest 
developments in rank annihilation have their origin in Lorber's non-iterative reformulation of 
the calibration problem. Lorber found a direct solution for the case where the calibration 
sample contains only one component. He derived a standard eigenvalue problem by projecting 
the calibration matrix on the significant principal components of the unknown data matrix. 
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The concentration ratio of the component was found as the only non-zero eigenvalue. Lorber’s 
method was generalized by Sanchez and Kowalski3 to the case of several components that are 
not necessarily present in both samples. This method, introduced as generalized rank 
annihilation factor analysis (GRAFA), is now known as the generalized rank annihilation 
method (GRAM). Wilson el al.4 modified the procedure of Sanchez and Kowalski by 
projecting both matrices on a common low-dimensional subspace. 

In this first paper we will compare different formulations of GRAM and present an 
alternative derivation that results in an eigenvalue problem for which the eigenvectors have a 
very simple interpretation: they form the transformation matrix that rotates the abstract 
factors found by a principal component analysis (PCA) to  their physical counterparts. In this 
way a relationship can be established with other PCA-based curve resolution methods, 5 * 6  e.g. 
iterative target-testing factor analysis (ITTFA), ’ evolving factor analysis (EFA)8 and the 
recently described window factor analysis (WFA). Every method has its specific features, but 
a drawback common to all these curve resolution methods is the difficulty in constraining the 
(final) solution for the transformation matrix in an objective way. Finally we will discuss two 
characteristics of GRAM, i.e. the distinct possibility of a complex and degenerate solution. It 
will be shown that a complex solution should not arise for components that are present in both 
samples if the data follow the assumed linear additive model. However, the situation may be 
markedly different if the data are affected by model errors. Degeneracy constitutes a 
fundamental problem for ideal as well as non-ideal data. Whereas self-modeling curve 
resolution methods seem to work best when used for the calibration of samples that are very 
similar, at least part of the information may be lost if rank annihilation is applied. 

We will start by introducing the relevant symbols and decompositions in the context of 
PCA-based curve resolution and calibration. 

PCA-BASED CURVE RESOLUTION AND CALIBRATION 

The goal of curve resolution is the decomposition of a data matrix into the pure contributions 
of the individual components. Without loss of generality we will assume throughout this paper 
that the data are obtained by the spectral detection of a chromatographic separation process. 
Then, if Beer’s law is valid, the S x  W data matrix M of S mixture spectra measured at W 
wavelengths can be written as 

M = H Y ~  

where H(S x K) contains the pure elution profiles of the K components and Y ( W x  K )  
contains the pure spectra. Usually the spectra in Y are normalized so that the concentration 
dependency is absorbed in H .  

In curve resolution one is primarily concerned with the reconstruction of H and Y 
(qualitative solution). The problem of ca!ibration is more difficult, because the denormalized 
elution profiles in H have to be related to real concentration values (quantitative solution). This 
can be done directly if a theoretical relationship exists between the measured response and the 
concentrations. Otherwise an empirical relationship has to be built by estimating calibration 
factors from the response of a standard sample. Different calibration schemes are outlined in 
Reference 7. In calibration the following notation for M is often preferred: 

M = XCMY (2) 
where the columns in X(S x K )  represent normalized elution profiles and CM is a K x K 
diagonal matrix proportional to  the concentrations. 
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PCA-based curve resolution proceeds in two steps.6 First, PCA is applied in order to define 
the solution space in terms of a set of orthogonal base vectors. This results in the following 
decomposition of M: 

where the matrices A(Sx W )  and B T ( W x  W )  are usually denoted as score and loading 
matrices respectively. (It is assumed that S 2 W.) The decomposition in scores and loadings 
is equivalent to the singular value decomposition (SVD) of M: 

M = A B ~  (3) 

M = UBVT (4) 

where U is the S x W matrix of left singular vectors, 8 is the W x  W diagonal matrix of 
singular values and V T  is the W x W matrix of right singular vectors. Scores and loadings are 
related to the singular vectors by* 

A = U 8  (5a) 

B = V  (5b) 

Next M is reproduced using only the significant PCs and this decomposition is rewritten by 
means of a transformation matrix T as 

(6 )  R = A B T  = ATT - I j j T  

The ‘overbar’ denotes that the corresponding decomposition (PCA or SVD) is truncated. I f  
F is the number of PCs retained for the reproduction, T is an F x F matrix. A successful 
transformation yields the physical decomposition of M up to a normalization constant: 

H = A T  ( 7 4  

Differences between PCA-based methods come down to differences in estimating the 
transformation matrix T. The problem of curve resolution and subsequent calibration is 
therefore translated to finding the correct number of factors F in the PCA step and 
determining a successful transformation matrix T. It is important to  note that overfactoring 
the model will not change the PCs but will certainly affect the estimate of T. However, one 
frequently reported advantage of rank annihilation is the relative insensitivity of the solution 
to the number of PCs included in the model. This fact can very well be explained by the 
standard errors for the eigenvalues we recently derived using the method of error 
propagation. lo 

Until now the treatment has been restricted to  the analysis of a single data matrix. In the 
next section it will become clear how the availability of a second data matrix, obtained under 
identical experimental circumstances, can help in determining T. 

DIFFERENT FORMULATIONS OF RANK ANNIHILATION 

As outlined in the Introduction, RAFA comprises a number of related methods. We will 
restrict ourselves to  the discussion of methods that can be derived from the direct solution to 
the one-component problem, first published by Lorber. * 

*The definition of scores and loadings mentioned before is purely conventional. A more operational definition has 
been given by Malinowski:’ ‘Attention is focused on either the row designees or the column designees. Where attention 
is focused is called the scores; the counterpart is called the loadings.’ For the discussion of rank annihilation only the 
relation to the SVD is important. 
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Lorber's method 

The method of rank annihilation can be applied if a calibration matrix N is present: 

N = X C N Y ~  (8a) 

Equation (8a) is the preferred notation for the calibration matrix in the literature of rank 
annihilation. The alternative derivation presented in a later section will make use of the 
transcription 

N = HIIY' (8b) 

where II = C G I C ~ .  The components that are absent in the calibration sample (all but one) are 
indicated by a corresponding zero on the diagonal of CN and I3 respectively. Lorber' showed 
that combination of equations (1) and (8a) gives the generalized eigenvalue problem 

NZ = MZII (9) 
where Z = (YT)'. The matrices N and M are, however, not necessarily square and 
consequently the common eigenvalue-problem-solving routines " cannot be used. 
Approximating M by the truncated SVD of equation (4), i.e. M = UBVT, and making use of 
the orthogonality properties of U and V leads to  the standard eigenvalue problem 

- - _  

(UTNV6- ' )Z*  = Z*II (10) 

where Z" = OvTZ.  The concentration ratio of the analyte of interest is found as the only non- 
zero eigenvalue. 

Generalization by Sanchez and Kowalski 

If the calibration sample contains several components that are also present in the unknown 
sample, the eigenvalues found have to be identified, i.e. the qualitative solution is needed. 
Sanchez and Kowalski recognized that the pure component responses, necessary for the 
identification step, could be reconstructed by 

H = u Z *  (1 la) 

y T  = (Z*) - ' ( j V T  (1 lb) 

M = U g V T  (1 1c) 

Combination of ( l l a )  and ( l l b )  gives, as expected, 

In the general case where both samples contain unique components, the solution space has to 
be derived from a matrix that is a combination of the unknown and calibration data matrices. 
Sanchez and Kowalski propose to decompose the sum matrix Q = N + M and solve the 
standard eigenvalue problem with M substituted for N.  This results in an eigenvalue matrix 
II= (CN + CM)-'CM and a possible division by zero is avoided. With the necessary 
substitutions made, equations (10) and (1 1) describe the generalized rank annihilation method 
(GRAM). 

Generalization by Wilson et al. 

Wilson et u I . ~  devised a different algorithm for carrying out the rank annihilation. Equation 
(9) is converted to  the usual generalized eigenvalue problem by approximating M using 
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orthogonal bases F and G for the column and row space as follows: 

M = ~ M ~ ~ i 2 ~  
N = FNFGCT 

If M spans the space of N ,  then F and G can be calculated from M. In the general case it is 
recommended to calculate F and G from the column and row augmented matrices (N 1 M )  and 
(2) respectively. Introducing ZG = GZ leads to 

N F G Z C  = M F G Z G n  (13) 

The eigenvalue matrix II is obtained from the QZ  algorithm''^" in the form 7rk = CYk/Pk, where 
Qlk and P k  are scalars, possibly zero or near zero. The divisions in 7rk = ( Y k / P k  become the 
responsibility of the program's user. l 2  The pure component responses are now reconstructed 
by 

H = FMFGZG (144 

Y T  = ( z c ) - ' G T  (1 4b) 

Combination of (14a) and (14b) gives equation (12a). The authors claim a better stability for 
their algorithm, since only unitary transformations are involved in solving equation (13). 

Alternative derivation 

Assuming that the components present in the calibration sample are a subset of those present 
in the unknown, a standard eigenvalue problem similar to  Lorber's eigenvalue problem is 
derived. (The generalization is obtained by replacing Q = N + M for M and M for N.) The 
derivation has as its main advantage that it is short and leads to simple reconstruction 
expressions for the pure component responses. 

Premultiplying N of equation (8b) by the pseudoinverse of H, postmultiplying by the 
pseudoinverse of Y T  and introducing H f  = (AT)+  = T - ' A +  and (Y')+ = (T-'BT)+ = BT 
from equation (7) immediately leads to the standard eigenvalue problem* in scores and 
loadings 

(15) 

that has already been derived by Ohman ef a/. l 3  by manipulations similar to those employed 
by Lorber.' (It is interesting to note that KubistaI4 arrives at the transpose problem by 
correlating the data matrices by means of a Procrustes rotation.) 

H + N ( Y ~ ) +  = T - ' ( A + N B ) T  = n 

Substitution of A' = (06)' = e and B = v and premultiplication by T yields 

( e - ' U T N v ) T  = TII (16) 

The matrices H and Y T  are now calculated from equation (7). 
There is a remarkable difference between equation (16) and equation (10) with respect to the 

position of the matrix - I .  The origin of this difference lies in the attribution of the singular 
values to the score matrix according to  equation (3, which is merely a conventional choice 

* In a subsequent paper we will show that the eigenvalues found by GRAM are biased estimates of the concentration 
ratios n in equation (8). Deriving-an expression for the bias obviates the introduction of a new symbol for the 
estimated concentration ratio, e.g. n. Making a distinction between the concentration ratio actually present, lT, and 
the concentration ratio estimated from the response matrices, fi, is not necessary for the present discussion. 
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from the point of view of this paper. It is, however, well known from matrix algebra that 
premultiplication of a matrix by a diagonal matrix followed by postmultiplication by the 
inverse matrix constitutes a similarity transformation and therefore leaves the eigenvalues 
unchanged. l5 The eigenvectors T, Z* and ZG are related according to 

(17) 

The matrix T is found by multiplying the rows of Z* by the inverse singular values of M. ZG 
reduces to T if  for the orthogonal bases F and G the singular vectors U and V of M are taken. 
This is immediate after premultiplication of equation (9) by @'aT and insertion of 
Z = ~ Z G  = ~ Z V .  The manipulations are still very straightforward but the eigenvector matrix 
ZV is identified as the desired transformation matrix T a posteriori. For the derivation of (16) 
the transformation matrix was the starting point. 

T = a - ' Z *  = (ETv)-'zG 

CHARACTERISTICS OF RANK ANNIHILATION 

We have seen that when applying the method of rank annihilation, an eigenvalue problem has 
to be solved. This leads to difficulties that are characteristic for this method. It would be nice 
if these difficulties already become apparent from the formulation of the model. Stated 
differently: rather then deriving an eigenvalue problem and discussing the properties of this 
eigenvalue problem, it should become clear why the formulation of the calibration problem 
leads to an eigenvalue problem with all its inherent properties. 

The eigenvalue matrix ll enters the derivation by the transcription of equation (8a). It is seen 
that both (8a) and (8b) are misleading with respect to the information displayed. For the 
components not present in the calibration sample we have zeros on the diagonal of CN or KI 
and the corresponding profiles in X, H and Y are in no way restricted to  correlate with the 
profiles that reproduce M. They may even be complex, since they do  not contribute to the data 
anyway. Furthermore, it is apparent from equation (8b) that under certain circumstances some 
(non-zero) diagonal elements of KI may be identical and in that case the corresponding profiles 
may be linear combinations. Therefore the characteristic difficulties of rank annihilation 
already show up from the alternative formulation of the model. How these difficulties must 
be encountered follows from the study of the eigenvalue problem. 

Complex eigensolution 

If  the data follow the assumed linear additive model, i.e. equations (1) and (8) hold, the 
eigenvalues and eigenvectors corresponding to  the calibrated components should be real. This 
is easily verified, since only the nth row and column of H+ and (YT)+ respectively are involved 
in the estimation of the nth eigenvalue in equation (15). This row and column are orthogonal 
to the remaining columns and rows in H and YT respectively, leading through equation (7) to 
a transformation vector t, that is real. Therefore the eigenvector matrix T can be partitioned 
into a real and (possibly) complex part as (Treal 1 Tcomplex) or, using the terminology of Liang 
et al., l6  into a white and black part as (Twhite I Tblack),  since the unknown background remains 
unresolved. 

It is in fact logical that the calibration matrix can only provide information on the 
components that are present in that sample ( c N , ~  > 0). The opposite must also be expected to 
hold: the components that are not present in the calibration sample (irrelevant part of the 
solution) cannot misinform about the components that are present in both samples (relevant 
part). For perfectly bilinear data the solution for the analytes of interest should always be real. 
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Two small problems remain. First, the calculated eigenvectors may be arbitrary to the extent 
of a complex multiplier of modulus one depending on the normalization used. Is This problem 
is eliminated by normalizing the vectors in such a way that the largest component becomes one. 
It is easily verified that this solution amounts to the first similarity transformation of Li et al. l 7  

Second, for the reconstruction of Y the inverse of T must be calculated. It is easily verified 
that performing the calculations in complex arithmetic" will provide a real solution for the 
calibrated components. Two alternatives have been proposed in the chemometrical literature. 
The first alternative is to calculate Y T  from the transpose problem (so replacing N and M by 
N T  and M T )  instead of using the inverse eigenvector matrix.13 The second alternative is to 
convert the partially complex eigenvalue and eigenvector matrices to real matrices. This 
procedure amounts to the second similarity transformation of Li et al. l 7  The three procedures 
should all lead to identical results for the analytes of interest. 

Until now the discussion has been restricted to the analysis of model data. Model errors may 
cause the transformation vectors for the calibrated components to be complex as well. l 3  Li and 
co-workers17"9 have shown that in that case acceptable results can only be obtained if GRAM 
is modified by the second similarity transformation, thereby increasing the applicability of 
GRAM to very difficult practical situations. 

Degenerate eigensolution 

If some of the eigenvalues are identical, the direction of the corresponding eigenvectors is not 
fixed. In fact, every linear combination of vectors belonging to the eigenspace of the 
degenerate eigenvalues forms a valid eigenvector and the eigenvector actually calculated by the 
computer will even depend on the algorithm used. As a result, part of the qualitative solution 
of GRAM is not unique. In this case it is useful to have more than one calibration sample in 
order to  obtain the complete qualitative solution. 2o It is also possible to  remove the degeneracy 
by imposing extra noise on the data matrices. We have good experience with this procedure 
for simulated as well as real data. Although essentially correct and easily implemented, the 
calibration by rank annihilation now becomes a matter of trial and error that we find difficult 
to recommend for routine purposes. Moreover, using different calibration samples has the 
additional advantage that the assumed linear model can be validated.2' Finally, it is possible 
to subtract the resolved components and use a self-modeling curve resolution method on the 
residual matrices. 

A special form of degeneracy is known as a defect eigensystem: l 5  

In the limit of 6 -, CY the two eigenvalues are hl = hl = CY and the corresponding eigenvectors 
coincide: z: = z: = (1,O). The eigenspace is one-dimensional and the matrix cannot be reduced 
to diagonal form, since the eigenvector matrix is not invertible. Now the direction of the 
eigenvectors is fixed and the pure component responses can be recovered. (The numerical 
consequences of eigenvalues belonging to so-called quadratic elementary divisors are discussed 
in Reference 12.) This situation, which could be expected to result from severe collinearity in 
the data, will, however not occur. If  components are undistinguishable within the noise level, 
this will result in a reduction of the number of factors found from PCA and the reconstructed 
component will simply be an average of the components that were too similar. The selectivity 
of the experiment must be improved in that case in order to obtain the complete quantitative 
solution (e.g. by employing bimodal data2'). This situation applies to all PCA-based 
techniques and is therefore not typical for rank annihilation. 
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CONCLUSIONS 

We have presented a simple derivation of the standard eigenvalue problem that arises if the 
method of rank annihilation is used for calibration. The availability of two data matrices, 
obtained under identical circumstances, enables the direct evaluation of the matrix that 
transforms the abstract decomposition of a matrix into the desired physical one. In this way 
a relationship is established with other PCA-based curve resolution and calibration methods. 
The transformation matrix found by rank annihilation may consist of a real and (possibly) 
complex part if some of the components in the unknown sample are not calibrated. However, 
in the absence of model errors the relevant part of the transformation matrix is not affected 
by the irrelevant part. In the presence of model errors (e.g. irreproducibility of 
chromatographic data) the relevant part of the eigensolution may also become complex. 13317 ,19  

In that case it is mandatory to follow up the solution of the eigenvalue problem with unitary 
transformations as recommended in References 17 and 19. It remains an important issue as 
to how the accuracy and precision of the transformed solution must be estimated. 
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