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Abstract 

Nowadays, analytical instruments that produce a data matrix for one chemical sample enjoy a widespread popularity. However, 
for a successful analysis of these data an accurate estimate of the pseudorank of the matrix is often a crucial prerequisite. A large 
number of methods for estimating the pseudorank are based on the eigenvalues obtained from principal component analysis 
(PCA) . In this paper methods are discussed that exploit the essential similarity between the residuals of PCA of the test data 
matrix and the elements of a random matrix. In the literature of PCA these methods are commonly denoted as parallel analysis. 
Attention is paid to several aspects that have to be considered when applying such methods. For some of these aspects asymptotic 
results can be found in the statistical literature. In this study Monte Carlo simulations are used to investigate the practical 
implications of these theoretical results. It is shown that for sufficiently large matrices the distribution of the measurement error 
does not significantly influence the results. Down to a very small signal-to-noise ratio the ratio of the number of rows and the 
number of columns constitutes the major influence on the expected value of the eigenvalues associated with the residuals. The 
consequences are illustrated for two functions of the eigenvalues, i.e. the logarithm of the eigenvalues and Malinowski’s reduced 
eigenvalues. Both methods are graphical and have been applied in the past with considerable success for a variety of data. 
Malinowski’s reduced eigenvalues are of special interest since they have been used to construct an F-test. Finally, a modification 
is proposed for pseudorank estimation methods that are based on the principle of parallel analysis. 

1. Introduction 

It is becoming common practice that modem analyt- 
ical instruments produce a large amount of data for one 
chemical sample. This development has inspired che- 
mometricians to introduce new multivariate techniques 
and extend existing ones, especially for the purpose of 
calibration [ 11. In this area it is also proposed to clas- 
sify the techniques according to the order of the data 
that are analyzed: zero-order data are scalars, first-order 
data are vectors and second-order data are matrices. 
The use of first-order data enables the quantitation of 
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an analyte in the presence of an interfering signal that 
is accounted for in the model. This is the so-called first- 
order advantage. The use of second-order data enables 
the quantitation of an analyte in the presence of an 
interfering signal that is nor accounted for in the model 
[ 11. This is the so-called second-order advantage. The 
importance of the second-order advantage cannot be 
overstrained, especially since the techniques developed 
for exploiting this advantage only need one calibration 
sample for the analysis of the test sample. 

For many techniques that handle second-order data 
the concept of pseudorank is of pivotal importance. The 
pseudorank is defined as the mathematical rank of the 
matrix in the absence of noise. Finding a good estimate 
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for the pseudorank is often critical for the overall suc- 
cess of the data analysis. In practice, this may lead to 
problems that are far from trivial, since the analytical 
instrument is usually not optimized for the measure- 
ment of a specific sample. Instead, a large data matrix 
is produced in order to determine only a few parame- 
ters, e.g. the concentrations and the physical descriptors 
(elution profile, spectrum) of the analytes. It is not 
uncommon that the data are overdetermined by orders 
of magnitude. Stated otherwise: the information con- 
tained by the resulting data matrix is highly redundant. 
Or equivalently, there is a large number of linear rela- 
tions constraining the data within the level of the noise. 
Redundancy leads to ill-conditioned problems which 
e.g. in the field of calibration invariably accumulate to 
the inversion of a nearly singular matrix. The inversion 
should be carried out in a space of lower dimension in 
order to avoid excessive error propagation. This dimen- 
sion is preferably equal to the pseudorank of the data 
matrix. An overestimate leads to unnecessary error 
propagation whereas an underestimate leads to loss of 
information, especially information concerning the 
minor substituents. Thus it seems appropriate to con- 
sider the problem of pseudorank estimation as a serious 
second-order disadvantage. It is important to note that 
the technique of rank annihilation factor analysis 
(RAPA) can accommodate for a small overestimate of 
the pseudorank [2]. This empirical result has very 
recently been given a theoretical basis by the derivation 
of the appropriate variance and bias expressions [ 31. 

An important class of pseudorank estimation meth- 
ods is based on principal component analysis (PCA) . 
PCA is a multivariate technique that finds new axes 
that span the space of the data matrix in an optimal 
way. The projection of the data swarm onto the first 
principal axis gives the best least-squares reproduction 
of the data in a one-dimensional space. The projection 
of the data swarm onto the plane spanned by the first 
two principal axes gives the best least-squares repro- 
duction of the data in a two-dimensional space. In gen- 
eral, each axis successively accounts for a maximum 
amount of variation in the data by minimizing the resid- 
uals. Using PCA it is possible to retain the systematic 
part of the variation in the first axes, the so-called pri- 
mary principal components (PCs), while most of the 
noise is described by the remaining axes, the so-called 
secondary PCs. This is the essential result of Mali- 
nowski’s theory of errors for PCA [4]. PCA is also 

often referred to as abstract factor analysis (AFA) 
since it leads to an abstract decomposition of the data 
matrix. 

It is often overlooked that determining the pseudo- 
rank is not necessarily a difficult task. In another paper 
[ 51 it is shown that parametric methods may be put to 
effective use if a dependable estimate of the standard 
deviation of the noise is available. Parametric methods 
have the advantage of replacing subjective decision 
rules by a formal significance test. This is illustrated 
for data matrices presented in the literature for testing 
the adequacy of a new pseudorank estimation method. 
If some considerations about the measurement error are 
met (i.e. uncorrelated and homoscedastic) it is possible 
to obtain accurate confidence levels for the primary PCs 
using a parametric method. Thus it may even be con- 
cluded that in favorable cases the correct procedure 
constitutes of applying a parametric method. 

In the past several methods have been proposed that 
are based on the eigenvalues of PCA. In this paper the 
focus will be on a certain class of methods that does 
not depend on prior knowledge about the standard devi- 
ation of the noise and may therefore be classified as 
non-parametric. These methods try to exploit the 
essential similarity between the residuals of PCA of the 
test data matrix, i.e. the data matrix under considera- 
tion, and the elements of a random matrix. This simi- 
larity is assumed to be carried over to the corresponding 
eigenvalues of PCA. Methods based on comparison of 
(functions of) the eigenvalues of random matrices are 
commonly denoted as parallel analysis [ 61. 

Several aspects have to be considered when applying 
such methods. For some of these aspects asymptotic 
results can be found in the statistical literature. These 
results usually concern the matrix size or the signal-to- 
noise ratio. However, asymptotic results derived for 
infinitely large matrices with intinitely large signal-to- 
noise ratio are not very useful for the analytical chemist 
who wishes to analyze a matrix of a specific size with 
a iinite signal-to-noise ratio. Thus in order to investi- 
gate the practical implications of these theoretical 
results one will have to perform an evaluation for a 
variety of matrix sixes and signal-to-noise ratios. This 
evaluation is carried out by performing Monte Carlo 
simulations. Deviations from ‘ideal behavior’ resulting 
from finite sized data matrices with finite signal-to- 
noise ratio will be compared with the inherent vari- 
ability of the eigenvalues given by the standard error. 
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Deviations from ideal behavior can be tolerated if they 
are (sufficiently) smaller than the standard error. 

Furthermore, in practice it is not justified to make 
strong assumptions about the distribution of the noise. 
(A vast majority of the theory in multivariate statistics 
is developed around the assumption of normally dis- 
tributed errors.) Thus it is necessary to test the influence 
of the distribution. The distributions that are investi- 
gated only have in common that they are symmetric 
around the mean. It is emphasized that homoscedastic 
noise is simulated. Otherwise, weighted PCA should 
be used [ 61. Moreover, the effect of outliers will not 
be investigated. If outliers are expected to be important, 
robust estimation of PCs becomes mandatory [ 61. 
Neglecting heteroscedasticity and outlying data sim- 
plifies reality without immediately leading to trivial or 
meaningless results. Many of the conclusions based on 
these simulations are e.g. also relevant for the multi- 
variate detection limit very recently developed by 
Liang et al. [ 71 for chromatographic data. This detec- 
tion limit is based on the resampling of so-called zero- 
component regions. In this way random matrices are 
constructed by sampling an ‘experimental’ distribu- 
tion. Thus the simulations described in this paper can 
be attributed to hold a place between the restrictive 
normal assumption and the method of Liang et al. 
which is completely free of assumptions. Discrepancies 
due to the use of different distributions will also be 
compared to the standard error in the eigenvalues. 

By combining the theoretical and numerical results, 
two functions of the eigenvalues that have been pro- 
posed in the past as pseudorank estimation method will 
be evaluated. These functions are the logarithm of the 
eigenvalues [ 81 and Malinowski’s reduced eigenval- 
ues [ 91. The logarithm of the eigenvalues are reported 
to yield a straight line for the secondary PCs whereas 
the reduced eigenvalues should be constant in that 
region. This important property of the reduced eigen- 
values has recently led to the construction of an F-test 
[ 10,111. In this paper the assumption is tested that the 
reduced eigenvalues are constant for the secondary 
PCs. In another paper [5] the number of degrees of 
freedom that can be used for the F-test is discussed. 

Finally, a modification is proposed for pseudorank 
estimation methods that are based on the principle of 
parallel analysis. In this modification the size of the 
random matrices is varied in order to account for the 
loss of degrees of freedom due to the systematic con- 

tribution to the data/The modification is therefore iter- 
ative in nature in contrast to the old methods where 
random matrices are generated that have the same size 
as the test data matrix. 

It should be noted that throughout this paper it is 
assumed that the elements of the data matrix are 
unknown constants contaminated with measurement 
error [ 121. This is the case for second-order data, e.g. 
high-performance liquid chromatography with a diode 
array-UV/Visible spectrophotometer as a detector: the 
data matrix is obtained for one chemical sample. The 
situation may be different if the data matrix is con- 
structed from first-order data. In that case the row index 
usually corresponds to an object whereas the column 
index corresponds to a variable and the elements denote 
the observations made. Since the objects are randomly 
drawn from a population, an additional error is present 
in the resulting data matrix, the so-called sampling error 
(selecting other objects by chance leads to a different 
data matrix). The relative importance of the sampling 
error depends on the number of objects and the standard 
deviation of the measurement noise [ 131. Examples of 
this kind of data are abundant, especially in the field of 
pattern recognition [ 141. The work of Duewer and 
Kowalski [15] is one of the very few studies that 
involve both sampling error and measurement error. In 
this paper we will confine ourselves to the effect of the 
measurement error. For second-order data like the pop- 
ular spectrochromatograms mentioned above data pre- 
processing other than background subtraction and 
selection of a time and spectral window is not custom- 
ary. Thus it is assumed that the test data matrix is open 
and no mean centering has taken place (‘covariance 
about the origin’). The consequences of closure and 
mean centering for the estimated pseudorank have 
recently been discussed by PelI et al. [ 161. 

The following notation will be adopted throughout 
this paper. Bold upper-case letters will denote matrices, 
e.g. M. Bold lowercase italic letters will denote column 
vectors, e.g. v. Matrix and vector transposition are indi- 
cated by a superior ‘T’, e.g. IW and vT. Italic letters 
(uppercase as well as lowercase) will denote scalars, 
e.g. Mii is the element in row i and columnj of M. The 
elements of diagonal matrices, e.g. A, and e,, are 
denoted by lower case letters with one index indicating 
the position on the diagonal, e.g. A, and 0,. 
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2. Theory 

This section is organized so that first it is discussed 
how PCA and the related singular value decomposition 
(SVD) can be used to reveal the pseudorank, i.e. the 
essential dimension of the data matrix. Next, the diffi- 
cult problem of the number of degrees of freedom in 
PCA is treated. In parallel analysis it is assumed that 
the secondary eigenvalues of the test data matrix can 
be approximated by the eigenvalues of a random matrix 
with the same size [ 61. However, Mandel [ 171 has 
shown that ideally the (random) reference matrices 
should have the same number of degrees of freedom 
instead of the same size. (As a matter of fact this result 
will be used here to develop a modification of parallel 
analysis.) In the following part attention is paid to the 
fact that the application of such methods is always 
complicated by the systematic variation in the data 
because it affects the distribution of the secondary 
eigenvalues. This in turn will be of immediate conse- 
quence for theoretical predictions about the primary 
eigenvalues. (This insight can be seen as a useful 
byproduct of the current investigation.) Next, theoret- 
ical results from multivariate statistics are shown that 
indicate the importance of the ratio of the number of 
rows and columns for the distribution of the eigenval- 
ues of a random matrix. This ratio will be denoted as 
the divergence coefficient d. The expected influence of 
the distribution of the noise is also shortly discussed. 
Next, three methods will be discussed that are based 
on the expected behavior of the eigenvalues of random 
matrices: the logarithm of the eigenvalues [ 81, Mali- 
nowski’s reduced eigenvalues [ 91 and the F-test based 
on Malinowski’s reduced eigenvalues [ 10,111. At the 
end of this section, Mandel’s ‘reduced eigenvalues’ are 
briefly introduced followed by an outline of the pro- 
posed modification of parallel analysis. 

2.1. Principal component analysis (PCA) and 
singular value decomposition (SD) 

Algebraically, PCA comes down to performing an 
eigenvalue decomposition (EVD) of one of the cross- 
products of the data matrix M, i.e. M%l or MW. If 
the objective of PCA is the estimation of the pseudo- 
rank, it is customary to analyze the smallest of the two 
matrices. Let the data points be arranged in such a way 
that the number of rows I is larger than the number of 

columns J, then PCA calculates the following decom- 
position: 

MTM=VAVT (1) 

Since I@‘M is symmetric, the columns of V are orthog- 
onal eigenvectors in RJ and the diagonal elements of 
A, the eigenvalues h,, are real numbers arranged in 
non-increasing order. Furthermore, in the presence of 
noise, M%l is a positive definite matrix so that the 
eigenvalues are all positive. 

The following identities show that PCA leads to an 
apportionment of the total sum of squares of the data 
matrix to the eigenvalues: 

ii Mg=tr[MTM]=tr[VTMTMV]= i&, 
i- lj- 1 a-1 

(2) 

where tr[ ] denotes the trace of a matrix. According 
to Malinowski [ 41 only the largest eigenvalues repre- 
sent systematic variation whereas the remaining eigen- 
values represent noise. If the signal-to-noise ratio is 
large, simple inspection of the size of the eigenvalues 
leads to a reliable estimate of the pseudorank of M. In 
the past several functions of the eigenvalues have been 
proposed in order to facilitate this task in cases where 
the signal-to-noise ratio is intermediate or low. 

Another group of methods has been developed that 
tries to exploit the characteristics of the eigenvectors 
v,. Important examples are the frequency distribution 
of the Fourier transformed eigenvectors [ 181 and 
canonical correlation analysis [ 191. The primary argu- 
ment is that the eigenvectors contain more information, 
since the eigenvalues are merely single numbers. This 
argument is, however, not sufficient to unconditionally 
prefer the eigenvector-based methods, since the preci- 
sion of an eigenvalue is better than that of the associated 
eigenvector. This is immediately clear if we consider 
e.g. the way an eigenvalue-eigenvector pair is calcu- 
lated by the power method. At convergence the follow- 
ing holds: 

II~=~~~ll~=ll~~ll~=~, (3) 

where I] I] n represents the Euclidean vector norm and 
z, is the converged iterate. Since the eigenvalue A, is 
found from the Euclidean vector norm of &, some noise 
averaging will take place. Thus A, is expected to be 
more precise than the individual elements of v,, the 
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normalized converged iterate. The effect should be par- 
ticularly notable if J =E, 1 (a common situation for data 
in analytical chemistry) and we merely show this qual- 
itative argument to justify why only eigenvalue-based 
methods are considered in this paper. 

A computationally very stable alternative to the EVD 
of a cross-product matrix is given by the SVD of the 
original data matrix: 

M=Uev= =UA”zv= (4) 

where the columns of U are orthonormal vectors in R’. 
(They are in fact normalized eigenvectors of MMr.) 
The diagonal elements of 8, the singular values r3,, are 
(by convention) the positive square roots of the eigen- 
values A,. Using the SVD, the element-wise represen- 
tation of M becomes: 

0-l 

Every term in the expansion of Eq. (5) successively 
improves the reproduction of the data according to the 
least-squares criterion. The SVD is useful for detecting 
near-dependencies (constraints) among the columns 
of M. Near-dependencies are indicated by the elements 
of the eigenvector v, associated with a small singular 
value 0,. This is immediate from 

ll~~nII~=II~n~nII~=~a (6) 

The vector Mv, is close to the null-vector if 0, is 
‘small’. For the practical worker, the key question is: 
how to relate the ‘smallness’ of 6, to the variation in 
the data contributed by the measurement error? It fol- 
lows that pseudorank estimation can also be interpreted 
as finding the number of near-dependencies in the data. 
The subsequent analysis of the data should preferably 
be executed in a space from which all near-dependen- 
cies are removed. 

2.2. Number of degrees of freedom 

According to Eq. (2) the eigenvalues of a cross- 
product matrix represent a partitioning of the total sum 
of squares of the data matrix. Thus according to Mandel 
[ 17 ] it is more appropriate to speak about the ‘portion 
trace explained by an eigenvalue’ than the ‘portion 
variance explained by an eigenvalue’ which is common 
practice now. 

In order to test the portion variance explained by 
each successive PC one needs to assess the number of 
degrees of freedom associated to a single eigenvalue. 
The question of the correct number of degrees of free- 
dom amounts to one of the most intriguing problems 
of multivariate statistics [ 61. We will summarize the 
essential results from the literature and hereby use the 
terminology that is common in analytical chemistry. 
Two numbers of degrees of freedom are considered 
separately. Let A denote the pseudorank of M we wish 
to determine. 

Total number of degrees offreedom for the residuals 
First, there is the total number of degrees of freedom 

for the residuals. This number is (Z-A) (J-A) if A 
significant PCs are extracted from the data. (In the case 
row, column or grand average are subtracted from the 
data, modifications of this number given by Mandel 
[ 171 should be used.) Dividing the sum of squares of 
the residuals by this number of degrees of freedom 
should give an accurate estimate of the variance of the 
noise, a,‘: 

-2 - ==A+1 
u 

M - (I-A)(J-A) 
(7) 

where the hat indicates that the variance is estimated. 
This is confirmed by different authors [ 12,17,2&22 1. 
(Strictly speaking this is an asymptotic result: see 
below and the Results and Discussion section.) Note 
that this number is used in cross-validation for the pri- 
mary as well as the secondary PCs [ 23] I.. (We will 
return to this point in the Results and Discussion sec- 
tion.) It is emphasized that it differs from the number 
that is used to evaluate the real error function [ 41, i.e. 
Z( .Z -A). Several derivations can be found in the liter- 
ature. A simple proof is given by Paatero and Tapper 
[ 121: the Z X .Z pseudorank A data matrix is reproduced 
by the product of the IX A score matrix S = UB, and 

1 In this paper the focus is on the residual variation and therefore 

only the degrees of freedom pertinent to the residual variation are 

discussed. Interestingly, Wold and Sji5strom introduced an empirical 

function in their cross-validation procedure in order to account for 

the decreasing number of degrees of freedom due to the extraction 
of primary PCs [ 241. This perfectly makes sense, since in cross- 

validation the PCs are examined in decreasing order of importance, 

while the methods discussed in this paper proceed backwards 

through the list of PCs. 
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the A X .Z loading matrix L = VT. This reproduction is 
tied up to an A X A transformation matrix. As a result 
one finds for the number of free variables for the A- 
dimensionalPCmodel:ZXJ-ZXA-AX.Z+AXA= 
(I-A)(J-A). A formal proof based on projection 
matrices is given by Mandel [ 251. It follows that the 
real error function gives estimates for the standard devi- 
ation of the noise that are biased low compared to the 
estimates obtained from Eq. (7). 

Number of degrees offreedom of an individual second- 
ary PC 

Second, there is the number of degrees of freedom 
that is associated with an individual secondary PC. 
Mandel states that for the portion trace explained by an 
eigenvalue no equivalent exists for the number of 
degrees of freedom well known from the additive anal- 
ysis of variance (ANOVA) model [ 171. However, a 
number of degrees of freedom can be defined by rec- 
ognizing that the expected value of a secondary eigen- 
value A, (as it represents a sum of squares), divided 
by an appropriate ‘number of degrees of freedom’ v,, 
should be an unbiased estimate of the error variance 
oM2. Thus v, should be related to aM2 and A, as 

A* UAaI -- =M- 
V, 

where E[ ] denotes taking expectation. (As noted by 
Mandel the degrees of freedom for secondary PCs are 
generally not integral numbers.) Mandel’s degrees of 
freedom are determined by simulating a large number 
of random matrices of appropriate size for which the 
individual elements are drawn from some distribution 
with variance uM2 = 1. The eigenvalues for these matri- 
ces are averaged and the average constitutes an estimate 
for the expected value in Eq. (8). The precision of this 
estimate depends on the number of matrices that has 
been generated. Since aM2 = 1, the average eigenvalue 
automatically yields an estimate for the desired number 
of degrees of freedom. The degrees of freedom for the 
leading PCs of a variety of matrix sizes have been 
tabulated by Mandel. These numbers were obtained by 
simulating normally distributed noise and averaging 
the eigenvalues of 625 random matrices. Inserting these 
degrees of freedom in Eq. (8) gives an estimate of aM2 
for each secondary eigenvalue. Evidently, this estimate 
can be improved by ‘pooling’ the individual estimates 
r171. 

A correct number of degrees of freedom has many 
applications apart from the cross-validation mentioned 
above, e.g. the evaluation of the Exner function [26] 
and the construction of fitting criteria in curve resolu- 
tion [ 271. It is one of the purposes of this paper to 
compare the number of degrees of freedom defined by 
Eq. (8) and the number of degrees of freedom implied 
by Malinowski’s reduced eigenvalues. (The discussion 
of Malinowski’s reduced eigenvalues is deferred to a 
later stage.) 

2.3. Influence of the systematic variation in the data 
(signal-to-noise ratio) on the distribution of the 
secondary eigenvalues and the consequences for the 
validity of theoretical expressions for the primary 
eigenvalues 

Let T denote the minimum for the following ratio of 
successive PCs: (f3,-&+,)/a, for l<alA where 
(by definition) 0, = 0 if a > A. Goodman and Haber- 
man [ 221 have proved that after extracting the A pri- 
mary PCs the residual variation approaches a central 
x2 distribution with (Z-A) (J-A) degreesof freedom 
if T approaches 03. Thus in the limiting case the number 
of degrees of freedom for the residuals previously given 
as (Z-A) (J-A) becomes essentially correct. 

Immediately the question arises how this result can 
be exploited in practice. By performing Monte Carlo 
simulations Mandel [ 171 has found that the distribu- 
tion of the secondary eigenvalues depends only little 
on the value of the primary eigenvalues. This means 
that the secondary eigenvalues of the Z X J pseudorank 
A test data matrix can adequately be approximated by 
the eigenvalues of an (Z-A) (J-A) random matrix. 
Johnson and Graybill [ 211 have confirmed Mandel’s 
numerical results. In this study we will relate the ade- 
quacy of the approximate number of degrees of free- 
dom to the value of the signal-to-noise ratio which is 
-contrary to T- a typical figure of merit in analytical 
chemistry. 

The fact that a theoretical prediction for the second- 
ary eigenvalues such as Bq. (7) is an asymptotic result 
is of direct consequence for the theoretical prediction 
of the influence of the measurement error on the pri- 
mary eigenvalues. Random measurement errors lead to 
a standard error and bias in the primary eigenvalues 
that can be predicted if an estimate of a, is available 
[ 22,131. It is to be expected that these expressions will 
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EIGENVALUE 

Fig. 1. Distribution of eigenvalues for divergence coefficient d = 1 
(-),2(---),lO(.~~)andlOO(.-.-.). 

not be valid if the distribution of the secondary eigen- 
values is markedly different from the asymptotic dis- 
tribution. This conjecture will be tested in the Results 
and Discussion section. 

2.4. Z@uence of the divergence coefJicient d of the 
matrix and the distribution of the noise 

In a theoretical study of Grenander and Silverstein 
[ 281 the elements of the data matrix were allowed to 
take the values - 1 and + 1 exclusively (i.e. there is 
no systematic variation). This is the so-called random 
sign distribution. The cross-product matrix M%I was 
standardized by dividing all elements by the average 
eigenvalue. The probability density of finding any 
eigenvalue with value A was derived for the standard- 
ized cross-product matrix of an infinitely large matrix 
(i.e. I+ m,J--, m and d=ZIJ= constant). It wasshown 
that the probability density function, f(h), only 
depends on the divergence coefficient d: 

f(A) = 
d\lTA-b,)(b,-A) 

2?rA 

b <A<b 
1 2 

(9) 
= 0 otherwise 

The borders of the existence ‘on of the eigenvalues 
d)ldandb,=(d+l+ 

Plots off(A) are shown in Fig. 1 for various values 
of d. For square matrices (d = 1) there is a relatively 
large probability of finding very small eigenvalues 
while for very large values of d the eigenvalues start to 
cluster around one. This is an indication that the stan- 
dardized cross-product matrix approaches the unity 
matrix. For intermediate values of d the effect of chance 
correlations is clearly visible in this plot. 

The results obtained for the random sign distribution 
might not seem very useful for practical applications. 
However, from the central limit theorem it is expected 
that if the number of rows Z is ‘large enough’, the 
elements of M’%I (standardized or not) approach the 
same distribution, irrespective of the distribution of the 
elements of M. In that case one would only have to 
assume that the elements of M are independently dis- 
tributed with some known mean and variance. (Thus 
only pathological distributions for which these param- 
eters do not exist, e.g. the Cauchy distribution, are 
excluded from this discussion.) 

Clearly, simulations are needed to assess how large 
the number of rows Z should be before the results 
become sufficiently independent of the distribution of 
the noise. It should be noted that the probability distri- 
bution for the eigenvalues of a matrix with normally 
distributed elements has received more attention in the 
statistics literature [ 291. However, we prefer to eval- 
uate the practical usefulness of Eq. (9) because this 
expression is much simpler to interpret than the expres- 
sion obtained from the normal assumption. 

It is e.g. straightforward to obtain an expression for 
the expected spacing of the eigenvalues, since it should 
be inversely proportional to the probability density 
function given above. (If the density is large, the 
expected spacing should be correspondingly small and 
vice versa.) In nuclear physics the eigenvalues of ran- 
dom matrices have been studied in order to estimate 
the energies associated to the state of a system [ 301. 
For this kind of applications it is obvious that the spac- 
ing is an important property. However, in the case of 
PCA the eigenvalues and the associated spacing do not 
have a clear interpretation 2. Still, it is interesting to 
introduce this concept because the postulated proper- 
ties of the logarithm of the eigenvalues and reduced 

’ The spacing of the eigenvalues does, however, play an important 
part in the error analysis of PCA [ 13,221. An example is the asymp- 
totic result for the distribution of the residuals mentioned earlier. 
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eigenvalues (see below) can directly be interpreted as 
a statement about the spacing of the original eigenval- 
ues. While the properties for logarithm of the eigen- 
values and reduced eigenvalues are derived from 
numerical experiments there is a well-established the- 
oretical result for the spacing. This knowledge should 
be used when constructing the appropriate data for the 
simulations. In analytical practice one expects to find 
considerable differences in the shape of the probability 
density function of the eigenvalues because d varies 
over a broad range for the data obtained by different 
techniques. For fluorescence excitation emission data 
one typically encounters a value around 1, while for 
the analysis of so-called spectrochromatogrls small 
windows in the chromatographic mode and a large 
number of sensors in the spectral mode may lead to 
values (much) larger than 10. It follows that systematic 
simulations should include a large range for the 
expected dominating factor, i.e. the divergence coeffi- 
cient d. 

2.5. Logarithm of eigenvalues 

Farmer [ 81 has found that a plot of the logarithm of 
the eigenvalue versus PC number may show three dif- 
ferent regions: a straight line part of the so-called log- 
eigenvalue diagram which was attributed to random 
noise in the data, an upward deviation for the low- 
numbered PCs which was attributed to large scale pat- 
terns (systematic variation) and a downward deviation 
for the high-numbered PCs which was attributed to 
intercorrelations within the data. These conclusions 
were based on simulations of truly random data and 
serially correlated data (matrix size 200 X30). The 
log-eigenvalue diagram has been introduced to analyt- 
ical chemistry by Ohta [ 311. The method proved to be 
successful in finding the correct dimension for simu- 
lated data (matrix size 64X 31). Kormos and Waugh 
[ 321 applied the method to simulated data with varying 
signal-to-noise ratio (matrix size 520 X 10 and 
600 X 10) and real data (matrix size 195 X 9). The 
results agreed with those obtained for Malinowski’s 
indicator function [ 331. It can be seen that the diver- 
gence coefficient d varies over an extreme range in 
these examples (2 < d < 60). 

It should be noted that the straight line part in the 
log-eigenvalue diagram is equivalent to a constant 
value for the eigenvalue ratio. The eigenvalue ratio has 

already been thoroughly investigated by Hirsch et al. 
[ 341. In this paper we prefer to discuss the logarithm 
of the eigenvalues for the following reason. In the 
Results and Discussion section we compile eigenvalues 
and standard errors for random matrices. These eigen- 
values are useful for the evaluation of functions of the 
eigenvalues. The associated standard errors can, how- 
ever, only be used to evaluate the standard error in the 
function of a single eigenvalue because the eigenvalues 
are not independent. In a previous paper it was shown 
that the eigenvalues are uncorrelated to first-order 
approximation [ 131. The amount of correlation is 
described by the higher-order contributions which pri- 
marily depend on the spacing between the eigenvalues. 
Monte Carlo simulations showed that the correlation 
between the primary eigenvalues is negligible if the 
signal-to-noise ratio is high [ 131. The same results 
indicate that it is certainly not negligible for the sec- 
ondary eigenvalues. (This reasoning automatically 
applies to the eigenvalues of random matrices.) The 
eigenvalue ratio, however, depends on two successive 
eigenvalues which should be anti-correlated: if one 
eigenvalue rises the adjacent eigenvalues tend to 
decrease and vice versa. Thus it is to be expected that 
the eigenvalue ratio method is less stable than might be 
deduced from the standard errors for the individual 
eigenvalues. Correlations can easily be estimated by 
simulations but it is very bothersome to present the 
resulting tables in a journal article. 

2.6. Malinowski’s reduced eigenvalues 

Recently, Malinowski presented. his theory of the 
distribution of the secondary eigenvalues resulting 
from PCA [ 91. Numerical experiments showed that 
the expected value of the eigenvalues of random matri- 
ces is proportional to (Z-a+ 1) (J-a+ l), where a 
is the number of the extracted PC. A pseudorank esti- 
mation method was developed by constructing reduced 
eigenvalues as 

REV, = 
A, 

(Z-a+ l)(J-a+ 1) 
(10) 

and comparing their relative size. The reduced eigen- 
values for the secondary PCs should be constant and 
the primary PCs are easily distinguished, since their 
associated reduced eigenvalues are larger. However, it 
was found that the ideal behavior is only obeyed by 
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uniform distributed noise. For normally distributed 
noise one large reduced eigenvalue may be present that 
does not follow the proposed distribution. (This obser- 
vation is not confinned by the present study: see Results 
and Discussion section.) The results for spectroscopic 
data were in accordance with earlier work. 

The relationship between Malinowski’s reduced 
eigenvalues and the degrees of freedom defined by Eq. 
(8) is established as follows. Since the reduced eigen- 
values should be constant for the secondary PCs, the 
denominator in Eq. ( 10) is proportional to the number 
of degrees of freedom of the eigenvalue. The propor- 
tionality constant N is found by recognizing that sum- 
ming these numbers of degrees of freedom should give 
(I-A)(J-A),thetotalnumberofdegreesoffreedom 
for the secondary PCs, so 

N= J 

(Z-A) (J-A) 
(11) 

c (Z-u+ l)(J-a+ 1) 
a-A+1 

It follows that N can only be determined if A is known. 
Evidently, this is a problem in practice. However, in 
this paper simulations are used for the comparison of 
the different expressions for the degrees of freedom 
and, consequently, this problem does not exist. 

The concept of reduced eigenvalues has proved to 
be useful for pseudorank estimation but it has much 
wider application. There are many expressions where 
an estimation of the magnitude of the secondary eigen- 
values must be made in order to obtain a final result in 
closed form. The parametrization of Malinowski could 
be used without modification by the factor N in 
instances where the ratio of eigenvalues is important. 
An example of this kind is the expression for the rate 
of convergence of the non-linear iterative partial least 
squares (NIPALS) algorithm [ 351. The NIPALS algo- 
rithm is a popular method for the calculation of a pre- 
selected number of PCs. Usually this preselected 
number is relatively small and the rate of convergence 
is a property of interest if the NIPALS algorithm has 
to be compared with another method with respect to 
the number of floating point operations to be expected. 

2.7. F-test based on Malinowski’s reduced 
eigenvalues 

Malinowski [ 10,111 noticed that the reduced eigen- 
values can be compared in an F-test because the asso- 

ciated eigenvectors are independent. It was found that 
the 5% level tends to underestimate, whereas the 10% 
level tends to overestimate the number of primary PCs. 
In another paper the number of degrees of freedom that 
can be used for this F-test is discussed [ 51. 

2.8. Mandel’s ‘reduced eigenvalues’ 

It is interesting to note that Mandel [ 171 constructed 
‘reduced eigenvalues’ by dividing the experimental 
eigenvalues by the eigenvalues obtained for random 
matrices. As mentioned above, this procedure, 
although essentially correct, is afflicted with a funda- 
mental problem. The random matrices should have the 
same number of degrees of freedom as the test data 
matrix but the number of degrees of freedom depends 
on the true dimension of the test data matrix, which is 
just the parameter we want to determine. This calls for 
an iterative approach that comes down to a modification 
of parallel analysis (see below). It is worth mentioning 
that Mandel [ 171 also considered the use of an F-test. 
However the behavior of his ‘reduced eigenvalues’ was 
found to leave little doubt about the essential dimension 
in most practical applications. 

2.9. Modification ofparallel analysis 

Mandel’s ‘reduced eigenvalues’ have a sound theo- 
retical basis but they should only be trusted if they are 
obtained from reference matrices with the same number 
of degrees of freedom. Thus a correct procedure for 
pseudorank estimation seems to be as follows. Given 
the IX J test data matrix one should generate reference 
matrices of size (I- a) X (.I- a) where a takes all 
values that are compatible with the experiment. In order 
to reduce the amount of work, one could use an initial 
guess from another method. It is e.g. well known that 
the indicator function [ 331 often exhibits a minimum 
that is shallow and one could take as initial guess all 
dimensions that can hardly be distinguished from this 
minimum. A good initial guess may also be obtained 
from the original procedure of Mandel, i.e. examine 
the ‘reduced eigenvalues’ obtained from random matri- 
ces with the same size. Next, A is taken to be the value 
of a for which the eigenvalues obtained from the ref- 
erence matrices yield the best match with the smallest 
J- a eigenvalues of the test data matrix. 
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Additional support for the tinal choice may be All distributions have in common that they are sym- 
obtained from the observation that Eqs. (7) and (8) metric around the mean, i.e. they all can be appropri- 
yield two independent estimates for the standard devi- ately described with one standard deviation aM. aM 
ation of the measurement error. It is seen that the esti- will be 1 for all simulations. This means that the uni- 
mate provided by Eq. (7) is based entirely on the test form distribution has a range of fi= 1.732. The ele- 
data while Eq. (8) uses external information, since the ments of a matrix generated according to the random 
degrees of freedom V, are the average eigenvalues of sign distribution are restricted to have the values - 1 
random matrices. It seems therefore appropriate to base and + 1. Expected values for the eigenvalues and their 
the final choice on consistency between the two esti- standard error are estimated by the average obtained 
mates. It should, however, always be kept in mind that for Monte Carlo samples composed of 10 000 matrices. 
Eq. (7) gives estimates that are biased low. This will It should be noted that in most cases the standard error 
especially constitute a problem in the most interesting in the eigenvalues of a single matrix is reported. The 
case, i.e. the situation where the signal-to-noise ratio is standard error in the average eigenvalue of 10 000 
small. matrices is a factor 100 smaller. 

3. Experimental 
3.2. Literature data matrix 

Random matrices are simulated in order to test the 
conjectures about the various influences on the value 
of the secondary eigenvalues of a test data matrix. The 
outcome of these simulations can, however, also be 
used to derive confidence levels for the primary PCs of 
a test data matrix as illustrated by the resampling 
method of Liang et al. [ 71. Furthermore, we analyze 
one data matrix taken from the literature that is char- 
acterized by a large loss of degrees of freedom. This 
data matrix should therefore be ideally suited for dem- 
onstrating the consequences of using the eigenvalues 
of a random matrix with the same size instead of the 
same number of degrees of freedom for pseudorank 
estimation. 

3.1. Random matrices 

The divergence coefficient d is varied over a range 
of 1 to 10 by varying the number of rows Z from 10 to 
100 while keeping the number of columns .Z iixed to 
10. The influence of the matrix size is investigated by 
constructing 20X 10, 20X20, 40X20 and 40X40 
matrices. Experimental noise is simulated according to 
the normal, the uniform and the random sign distribu- 
tion. These distributions are expected to cover a large 
number of experimental distributions because some 
fundamental properties are varied. The normal and the 
uniform distribution are continuous while the random 
sign distribution is not. Furthermore, the normal distri- 
bution has an infinite range in contrast to the other two. 

The data matrix taken from the literature consists of 
simulated mass spectra [ 361. The size of the matrix is 
20 X 10 and it corresponds exactly to the size of the 
random matrices used to sample the eigenvalue distri- 
bution for d = 2. The true dimension of this data set is 
known to be 5, i.e. one has 200 data points and 125 
parameters to be estimated by PCA. The ‘measurement 
noise’ is introduced by rounding the errorless data 
points to the nearest integer. As a result one would 
expect the noise to be uniformly distributed with range 
0.5 and standard deviation aM = 1/6fi= 0.289. How- 
ever, the residuals left after extracting five PCs lead to 
an estimated value I?~ = 0.588. (This value is obtained 
by dividing the total sum of squares of the residuals by 
(I-A)(.Z-A) =75 according to Eq. (7).) We have 
no explanation for the discrepancy between expected 
and estimated standard deviation but it is assumed to 
be of minor importance for the purpose of this research. 

4. Results and discussion 

In this section the systematic deviation from ideal 
behavior is always compared to the standard errors in 
the eigenvalues. Since these standard errors are inevi- 
table in practice, the necessary playground is provided 
where asymptotic results may be assumed to be true. It 
should be evident that the discussion becomes aca- 
demic if e.g. the effect of using the wrong dimension 
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for the reference matrix is small compared to the stan- 
dard error in the eigenvalues resulting from noise 3. 

4.1. Random matrices 

The key assumption investigated in this study is that 
the secondary eigenvalues of the test data matrix can 
be approximated by the eigenvalues of an appropriately 
sized random matrix. At this point the influence of the 
distribution of the noise is not important because it can 
be assumed to be adequately simulated. A more dis- 
turbing factor is the systematic variation in the data 
because it is different for each test data matrix. Thus 
from the point of view of this research it is more justi- 
fied to consider the stochastic contribution to the total 
signal, i.e. the measurement noise, as ‘systematic’ 
because the expected value of this contribution is 
(approximately) the same for each test data matrix. 

Influence of the systematic variation in the data (signal- 
to-noise ratio) on the distribution of the secondary 
eigenvalues and the consequences for the validity of 
theoretical expressions for the primary eigenvalues 

First, the influence of the systematic variation in the 
data on the expected value of the secondary eigenvalues 
is investigated. Furthermore attention will be paid to 
the consequences for the predicted bias and standard 
error in the primary eigenvalues. This is achieved by 
constructing a simple one-component system. To the 
elements of a 20 X 10 random matrix we add a constant 
systematic contribution. 

The results of PCA are given in Table 1. In the first 
column the size of the elements of the error-less data is 
given. Since a, = 1, this number in fact constitutes the 
signal-to-noise ratio, in the sequel denoted by p. 

The second column lists the value for &,,, estimated 
from the residuals of the correct PC model according 
to Eq. (7). For p = 0 the estimate is based on a zero- 
dimensional model while for the other values of p, it is 
based on a one-dimensional model. The figure in paren- 
theses denotes the standard error in the Monte Carlo 

3 Very recently Liang et al. [ 71 have proposed a non-parametric 
multivariate limit of detection based on the analysis of reference 
matrices with the same size. The method is especially constructed to 
work in the presence of correlated noise. Correlated noise tends to 
increase these standard errors [7]. Thus it may turn out that for 
uncorrelated noise a significant effect would be predicted from using 
the wrong dimensions while Liang’s detection limit is still correct. 

Table 1 
Eigenvalues of a 20 X 10 matrix with constant elements p and nor- 
mally distributed noise added. The figure in parentheses denotes the 
standard error in the average (expressed in units of the last reported 
digit) 

P 44 

0.0 1.0005(5) 49.2( 1) 37.74(5) 29.85(4) 
0.5 0.9863(5) 82.9(2) 43.97(7) 33.26(5) 
1.0 0.9965(5) 230.6(3) 45.05(7) 34.01(5) 
2.0 0.9976(5) 829.7(6) 45.24(7) 34.14(5) 
3.0 0.9984(5) 1828.3(9) 45.27( 7) 34.07(5) 

sample average. It is seen that a, is correctly repro- 
duced for the random matrices (p = 0) while for the 
other levels of p the input value (or+, = 1) is systemat- 
ically underestimated. As predicted by Goodman and 
Haberman [ 221 the residual variation approaches the 
limiting distribution with increasing signal-to-noise 
ratio. In practice one should compare this ‘bias’ to the 
precision to which these numbers can be obtained for 
a single test data matrix. The standard errors for one 
matrix are larger than the standard errors for the sample 
average by a factor 100 and it is easily verified that for 
this specific example the improvement going from 
p = 0.5 to p = 1 is negligible, i.e. the estimated standard 
deviation bM may be considered to be constant 4. (It 
is worth mentioning that the real error function under- 
estimates &M by a factor 6120 = 0.975.) 

The third column gives the first eigenvalue obtained 
from PCA. In the absence of noise it should be equal 
to the total systematic variation in the data. Thus in the 
absence of noise one would expect to find h 1 = 0, 50, 
200,800 and 1800, respectively. It can be seen that for 
the data matrices containing systematic variation the 
eigenvalues are biased upwards. Goodman and Haber- 
man [ 221 have derived a theoretical expression for the 
expected bias in the first eigenvalue of a data matrix 
that has been corrected for row, column and grand 
average. It will be shown in a future publication that 

4 It is clear that this point defines the detection limit for this data 
matrix. For univariate calibration the detection limit is usually 
defined as the concentration of the analyte for which the signal-to- 
noise ratio is three. The results obtained in this study for second- 
order data show that extension of this definition to higher-order data 
is not so straightforward as implied by Wang et al. [ 11. It should be 
noted that our (limited) results are confirmed by similar results 
obtained by Stewart [ 371 for an index which is inversely proportional 
to Lorber’s multivariate signal-to-noise ratio [38]. 
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without this data preprocessing the bias in the first 
eigenvalue is given by 

b* =A-&, = (z+J- l)ah (12) 

According to Goodman and Haberman the adequacy 
of this prediction depends on the value crJ f3,. Thus 
the predicted bias is independent of the eigenvalue itself 
and in this specific example equal to 29. The error in 
the predicted bias ( = 29 -32.9 = -3.9) is much 
smaller than the standard error ( = 20) for p= 0.5, i.e. 
the prediction is already useful. Furthermore, the pre- 
dicted value is seen to be approached from above. 
Again, the improvement going from p = 0.5 to p= 1 
should be compared to the expected experimental pre- 
cision of the eigenvahres for a single test matrix. Con- 
sequently the same conclusion is arrived at as for the 
estimated a,: the signal-to-noise ratio should be 
approximately 0.5 before the asymtotic limit is virtually 
reached. For p = 0.5, the level for which the approxi- 
mation starts to work well, one finds uM/ e1 = 0.11, 
which is a reasonable value since 0.11 K 1. Although 
this quantity is important for estimating the size of 
approximation errors we think that it is more conveni- 
ent for the analytical chemist to express the level for 
which the theory predicts welI in terms of the signal- 
to-noise ratio. 

The fourth and fifth column list the second and third 
eigenvalue respectively. It can be seen that these eigen- 
values also start to approach their limiting values for 
p= 0.5. (The limit is approached even faster for the 
higher-numbered eigenvalues not shown here.) A note 
can be made about the general pattern that is displayed 
by the eigenvalues. Golub [ 391 has derived a formula 
for the updated eigenvalues after a so-called rank-one 
modification of a matrix. This formula has led to the 
development of fast updating algorithms that have 
found their use in e.g. the cross-validation procedure 
of Eastment and Krzanowski [24]. According to 
Golub’s result the new eigenvalues interleave the old 
ones. Thus after adding systematic variation to the ran- 
dom elements, the second eigenvalue of the ‘updated’ 
matrix is bracketed by the first and second eigenvalue 
of the original random matrix, and so on. It immediately 
follows that the first secondary eigenvalue of the test 
data matrix will not equal the first eigenvalue of a 
random matrix of the same size. However, in practice 
only the following question is relevant: in how far is it 
justified to approximate the first secondary eigenvalue 

Table 2 
Standard errors in the first eigenvalue of a 20 X 10 matrix with con- 
stant elements p and normally distributed noise added 

P Predicted Monte Carlo Relative error (%) 

0.0 14.0 7.2 94 
0.5 18.2 15.4 18 
1.0 30.4 29.5 3.1 
2.0 57.6 56.2 2.5 
3.0 85.5 85.1 0.5 

by the first eigenvalue of a random matrix with the 
same size instead of number of degrees of freedom? 
From simulations (analogous to the ones previously 
described) the expectation of the first eigenvalue of a 
19 X 9 random matrix is found to be 45.4. We note that 
in our example the difference between the ‘correct’ and 
the simple ‘substitute’ value (taken from Table 1) is 
49.2 -45.4=3.8. Again, this difference should be 
compared with the precision of the eigenvalue that is 
to be scrutinized for significance. 

In Table 2 the standard errors in the first eigenvalue 
are displayed in more detail. In the second and third 
column we compare the predicted and Monte Carlo 
value. The theoretical prediction is based on the follow- 
ing expression [ 22,131: 

(T =2h112a A M (13) 

In contrast to the predicted bias, the standard error 
depends on the size of the eigenvahre itself. From the 
relative error in the fourth column it is seen that also 
this prediction works well for p 2 0.5. (For p < 0.5 the 
expression derived by a first-order approximation con- 
stitutes a gross overestimate.) 

It is immediate that in this specific example the stan- 
dard error in the eigenvalues obtained for a single 
matrix is much larger than the difference between the 
correct and the substitute estimate of the reference 
eigenvalue. Here, the simple substitution is certainly 
justified and pseudorank estimation by parallel analysis 
should work without the proposed modification. It 
should, however, be noted that for this example the loss 
of degrees of freedom is relatively small. The advan- 
tage of large intrinsic standard errors is not automati- 
calIy copied to other situations. This example was 
primarily constructed in order to investigate the influ- 
ence of the signal-to-noise ratio on the distribution of 
the secondary eigenvalues. 
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Influence of the divergence coeficient d of the matrix 
From the preceding (lengthy) discussion it has 

become clear that down to a very small signal-to-noise 
ratio the secondary eigenvalues of a test matrix are 
virtually equal to reference values obtained from appro- 
priately sized random matrices. Thus we have simu- 
lated random matrices and compiled the eigenvalues 
and their standard errors for random matrices for a wide 
range of d in Tables 3 and 4. The matrix elements are 
generated according to the normal distribution. These 
numbers can be conveniently used to evaluate functions 
of the eigenvalues and their standard error. (The tables 
given by Mandel [ 171 are restricted to the largest 
eigenvalues.) Of the few observations worth mention- 
ing the presence of one very small and instable eigen- 
value for the 10X 10 matrix is particularly striking. 
Furthermore, the relative standard error is seen to 
decrease with increasing matrix size and increase with 
increasing PC number. 

Number of degrees of freedom for a secondary princi- 
pal component 

Using the eigenvalues from Table 3 it is possible to 
investigate the different numbers of degrees of freedom 
proposed in the past for the individual secondary PCs. 
Fig. 2 shows the relevant numbers for a random matrix 

Table 3 
Eigenvalues of a random matrix with normally distributed elements 

of varying size and divergence coefficient. The first 
two numbers, Z and Z+J- 2u + 1, are based on the 
numbers for the total residual variation, Z( J-A) 
and (I-A)(./-A). The other two numbers, NX 
(I-a+l)(J-a+l) and A,/c~M*, are related to Ma- 
linowski’s and Mandel’s reduced eigenvalues, respec- 
tively. The ‘reduced eigenvalues’ of Mandel are based 
on a sound statistical argument and can be seen as a 
canonical limit. The other three numbers should be 
interpreted as approximations. It is found that among 
the three approximations, Malinowski’s reduced eigen- 
values generally perform best. For the 20 X lo,20 X 20, 
40X20 and 40X40 matrices the loss of degrees of 
freedom is underestimated for most PCs but there is a 
cross-over point after which the loss of degrees of free- 
dom is overestimated (see Fig. 2a-d), For the 50 X 10 
and 100X 10 matrices the loss of degrees of freedom 
is overestimated for all PCs (see Fig. 2e,f). There is 
clearly a systematic deviation but the difference with 
the target values is usually much smaller than the dif- 
ference with the competing values. Furthermore, a 
comparison of the plots for matrix size 20X 10 and 
20 X 20 (Fig. 2a,b) with the plots obtained after dou- 
bling the matrix size (Fig. 2c,d) shows that the agree- 
ment does not seem to improve by going to larger 
matrix sizes. 

10x10 32.14 22.47 16.18 11.47 7.83 5.06 2.94 1.45 0.50 0.07 

11x10 33.86 24.07 17.62 12.78 8.97 5.97 3.68 1.99 0.84 0.20 

12x10 35.66 25.66 19.00 13.96 10.05 6.90 4.42 2.57 1.22 0.37 
13x10 37.48 27.31 20.51 15.27 11.17 7.87 5.22 3.16 1.63 0.58 
14x10 39.28 28.86 21.89 16.53 12.21 8.75 5.96 3.76 2.06 0.84 
15x10 41.02 30.39 23.24 17.72 13.32 9.70 6.77 4.38 2.52 1.10 
16x10 42.67 31.91 24.57 18.98 14.39 10.61 7.55 5.02 2.99 1.41 
17x10 44.26 33.37 25.88 20.12 15.42 11.54 8.34 5.68 3.50 1.72 
18x10 46.11 34.93 27.24 21.37 16.51 12.53 9.17 6.33 4.01 2.07 
19x10 47.68 36.33 28.62 22.55 17.56 13.42 9.91 6.97 4.51 2.41 
20x10 49.22 37.74 29.85 23.71 18.64 14.38 10.77 7.72 5.09 2.82 
30x10 64.62 51.73 42.69 35.40 29.24 23.89 19.19 14.96 11.09 7.37 
40x10 79.27 65.01 54.99 46.77 39.65 33.43 27.81 22.65 17.74 12.81 
50x10 93.25 78.12 67.06 58.03 50.11 43.00 36.60 30.57 24.80 18.77 
60x10 106.8 90.47 78.70 68.90 60.38 52.60 45.46 38.77 32.16 25.16 
70x10 120.3 103.1 90.64 80.09 70.86 62.41 54.67 47.18 39.77 31.85 
80X10 133.1 115.1 101.9 90.82 81.00 71.98 63.59 55.51 47.46 38.67 
90x10 146.3 127.3 113.4 101.7 91.31 81.76 72.74 64.10 55.42 45.82 

100x10 158.9 139.2 124.8 112.6 101.5 91.48 81.95 72.81 63.49 53.11 
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It is emphasized that for some important applica- 
tions, e.g. cross-validation, the relevant quantity is a 
ratio where a number of degrees of freedom is substi- 
tuted in the numerator as well as in the denominator. 
As a result errors of any hind will tend to cancel out in 
the final result and therefore the accuracy of the inserted 
number is not necessarily critical. (Application of Ma- 
linowski’s reduced eigenvalues to cross-validation has 
not yet been reported to the authors’ knowledge.) 

Influence of the distribution of the noise 
The influence of the distribution of the noise is shown 

in Figs. 3 and 4. In Figs. 3 and 4 the logarithm of the 
eigenvalues and Malinowski’s reduced eigenvalues are 
plotted for matrices with normal, uniform and random 
sign distribution. The matrix sixes are equal to the ones 
just discussed. It is seen that the differences due to a 
different distribution are small, especially for the large 
matrices. 

The logarithm of the eigenvalues is found to be on a 
straight line for the low-numbered PCs. A downward 
deviation for the high-numbered PCs occurs in all 
cases, although for the matrices with largest divergence 
coefficient (see Fig. 3e,f) the deviation is relatively 

small 5. It follows that Farmer’s result [ 81 (downward 
deviation is due to intercorrelations within the data) is 
not confnmed by these simulations. However, since the 
log-eigenvalue diagram is exclusively used to extrap- 
olate towards the low-numbered PCs, this part of the 
plot is not particularly interesting anyway. Thus the 
log-eigenvalue diagram seems to provide a valid pseu- 
dorank estimation method over the range of matrix 
sixes considered in Fig. 3 if the number of primary PCs 
is not too large. 

The reduced eigenvalues displayed in Fig. 4 show 
very different patterns. In all cases we find a systematic 
deviation from the ideal behavior. For d = 1 the low- 
numbered PCs have reduced eigenvalues that are too 
high whereas the high-numbered PCs are characterized 
by reduced eigenvalues that are too low (see Fig. 4b,d). 
In the worst case the reduced eigenvalues differ by a 
factor of five. The situation is rather different for the 
other cases where the low-numbered PCs have reduced 
eigenvalues that are rather constant while the reduced 
eigenvalues for the high-numbered PCs are too high 

’ Different behavior is to be expected from tbe varying shapes of 
the distribution functions displayed in Fig. 1. 
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(see Fig. 4a,c,e,f). It should, however, be noted that 
from a numerical point of view even the worst case 
displayed here may be very acceptable, i.e. one might 
still obtain useful results after introducing Malinow- 
ski’s reduced eigenvalues in theoretical equations. Fur- 
thermore, contrary to the results reported by 
Malinowski the same behavior is observed for random 
matrices generated according to the uniform and nor- 
mal distribution. This finding extends the applicability 
of Malinowski’s parametrization. 

Using the standard errors from Table 4 it is possible 
to quantify the preceding statements obtained from 
plots. Thus it is easily verified that within the associated 
standard error the logarithm of the eigenvalues is lying 
on a straight line for a substantial part of the plot (we 
have not plotted the corresponding error bars because 
it does not improve the visibility). The situation is more 
complicated for Malinowski’s reduced eigenvalues. 

Table 5 gives the difference of the individual reduced 
eigenvalues with respect to the average reduced eigen- 
value in units of the standard error of the particular 
reduced eigenvalue. Deviations from the ‘ideal’ behav- 
ior are easily tolerated if they are much smaller than 

the standard error. In that case one would not notice the 
difference in practice. The relative deviations tend to 
be large for the low-numbered PCs, since the standard 
error in the eigenvalue is relatively small then. This is 
an unfavorable situation since it concerns the interest- 
ing region. The results in Table 5 clearly show the range 
of d where Malinowski’s reduced eigenvalues will pro- 
vide a valid pseudorank estimation method. It is imme- 
diate that the deviations are too large for dz 3. 
Furthermore, it turns out that 20 X 10 is the only matrix 
size in this investigation that gives a systematic devia- 
tion smaller than the standard error for all PCs. From 
these results it seems dangerous to use the reduced 
eigenvalues (and an associated F-test) as a pseudorank 
estimation method for a particular matrix size without 
performing simulations in the direct neighborhood. At 
the same time these results show that it is likely that 
many other matrix sixes can indeed be found that follow 
the desired pattern. 

4.2. Literature data matrix 

From the results of the simulations it has become 
clear that the size of the literature data matrix (20 X 10) 
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Table 4 
Standard errors in the eigenvalues of a random matrix with normally 
distributed elements 

Size PC1 PC, PC, PC, PC, PC, PC+ PC, PC, PCIO 

10x10 6.144.11 3.12 2.44 1.86 1.43 1.02 0.68 0.35 0.11 
11X10 6.224.23 3.19 2.53 2.00 1.54 1.16 0.79 0.47 0.20 
12X10 6.40434 3.30 2.63 2.10 1.66 1.26 0.90 0.59 0.30 
13X 10 6.53 4.48 3.44 2.72 2.20 1.76 1.38 1.01 0.70 0.39 
14x 10 6.56 4.55 3.52 2.85 2.33 1.88 1.47 1.12 0.80 0.49 
15X 10 6.90 4.66 3.70 2.98 2.44 1.98 1.58 1.22 0.90 0.59 
16X10 6.884.71 3.76 3.07 2.52 2.03 1.66 1.31 0.99 0.67 
17x10 6.834.82 3.81 3.11 2.58 2.14 1.74 1.41 1.09 0.77 
18X10 7.10494 3.90 3.18 2.67 2.23 1.84 1.50 1.18 0.86 
19X 10 7.11 5.00 3.99 3.32 2.76 2.30 1.91 1.56 1.26 0.95 
20X10 7.175.10 4.07 3.33 2.82 2.38 1.99 1.66 1.35 1.05 
30X 10 8.085.88 4.79 4.08 3.50 3.05 2.71 2.36 2.08 1.85 
40X10 9.01 6.51 5.43 4.65 4.10 3.69 3.29 2.98 2.71 2.57 
50X10 9.507.14 5.92 5.17 4.60 4.13 3.81 3.48 3.26 3.19 
60x10 10.2 7.50 6.32 5.53 5.02 4.57 4.23 3.94 3.70 3.77 
70x10 10.5 8.05 6.81 6.01 5.41 4.93 4.62 4.41 4.25 4.31 
80X10 11.0 8.29 7.12 6.24 5.80 5.41 4.99 4.74 4.63 4.77 
90X10 11.7 8.79 7.54 6.80 6.17 5.68 5.34 5.18 5.04 5.30 

100X10 11.9 9.13 7.93 7.09 6.42 6.14 5.72 5.53 5.38 5.68 

makes it particularly suited for the analysis with both 
functions of the eigenvalues previously considered, i.e. 
the logarithm of the eigenvalues and the reduced eigen- 
values. 

Functions of the eigenvalues 
The results of PCA for the literature data matrix are 

given in Table 6. The first column lists the number of 
the PC under consideration. The large jump in the 
eigenvalues in the second column clearly points in the 
direction of a five-dimensional PC model. According 
to Eq. (13) the estimated standard error for the last 
primary PC is a, = 2 X 42422 X O.&B = 57.9. This 
number should be compared to the gap with the fkst 
secondary eigenvalue. Thus the extreme significance 
of this model is established. 

The log-eigenvalue diagram is shown in Fig. 5. It is 
important to note that the choice of a five-dimensional 
model from the log-eigenvalue diagram cannot be 
based on a straight part in the plot since there are too 
many primary PCs. Instead, this conclusion should now 
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Table 5 
Relative deviation with respect to the mean of the reduced eigenvalues of a random matrix with normally distributed elements. Relative deviations 
smaller in absolute value than 1 are marked in bold 

Size 

10x10 
11x10 
12x10 
13x10 
14x10 
15x10 
16x10 
17x10 
18X10 
19x10 
20x10 
30x10 
40x10 
50x10 
60x10 
70x10 
80X10 
90x10 

100x10 

PC1 PC2 

1.90 1.43 
1.82 1.33 
1.72 1.23 
1.63 1.12 
1.57 1.02 
1.43 0.90 
1.36 0.79 
1.27 0.67 
1.16 0.56 
1.08 0.45 
O.% 0.30 

-0.w - 0.92 
- 1.16 -2.11 
- 2.21 -3.18 
-3.16 - 4.35 
- 4.23 -5.34 
- 5.14 -6.46 
-5.96 - 7.36 
- 6.93 - 8.34 

PC3 PC, 

0.99 0.59 
0.90 0.51 
0.78 0.39 
0.68 0.30 
0.57 0.20 
0.44 0.09 
0.32 -0.00 
0.20 -0.12 
0.08 - 0.23 
0.00 -0.31 

-0.16 - 0.45 
- 1.33 - 1.47 
- 2.43 -2.44 
-3.49 - 3.32 
-4.57 - 4.27 
-5.48 -5.03 
- 6.48 - 5.94 
- 7.33 - 6.51 
-8.16 -7.27 

PC5 PC.5 

0.25 -0.04 
0.18 -0.12 
0.09 - 0.17 
0.01 - 0.23 

-0.10 -0.31 
-0.17 - 0.35 
- 0.25 -0.43 
-035 - 0.47 
-0.43 - 0.51 
- 0.50 - 0.57 
-0.60 -0.63 
- 1.41 - 1.14 
-2.15 - 1.58 
- 2.82 -2.04 
-3.49 -2.44 
-4.12 - 2.85 
- 4.69 - 3.14 
-5.24 - 3.54 
-5.87 - 3.80 

PC7 

- 0.33 
-0.36 
-0.41 
- 0.41 
-0.46 
- 0.45 
-0.48 
- 0.50 
-0.50 
-0.54 
- 0.55 
-0.68 
- 0.82 
-0.95 
-1.09 
- 1.20 
- 1.33 
- 1.46 
- 1.56 

PC, PC, PC10 

- 0.58 -0.90 - 1.26 
-0.60 - 0.82 - 1.06 
- 0.57 - 0.72 -0.82 
- 0.55 - 0.62 -0.63 
-0.52 - 0.54 - 0.41 
-0.50 -0.44 - 0.24 
- 0.47 -035 - 0.08 
- 0.42 -0.25 0.07 
-0.41 - 0.17 0.20 
- 0.39 -0.10 032 
- 0.32 0.00 0.47 
-0.06 0.70 1.50 

0.15 1.25 2.28 
0.31 1.72 2.95 
0.48 2.18 3.53 
0.62 2.50 4.06 
0.75 2.87 4.58 
0.86 3.20 4.99 
0.97 3.53 5.48 

be based on a jump in the logarithms which is extraor- 
dinarily large for this specific data matrix. However, in 
absence of a jump a justified extrapolation will not be 
possible and the fact that success or failure merely 
depends on the number of primary PCs is certainly a 
weakness of the log-eigenvalue diagram. 

The next two columns in Table 6 give the reduced 
eigenvalues calculated according to Malinowski [9] 

Table 6 
Eigenvalues and reduced eigenvalues for literature data matrix 

PC EV REV’ REVb (20X10)’ REVb (15X5)’ 

1 2.562X1@ 1.281x1@ 5199X103 - 
2 2.119X lo4 1.239X 10r 5.606X ld - 
3 1.767x lo4 1.227x 10r 5.920X@ - 
4 1.023x 104 8.598X 10 4.307X 10’ - 
5 2.422X lb 2.523X10 1.298Xld - 
6 9.999 0.133 0.694 0.343 
7 5.866 0.105 0.544 0.300 
8 5.199 0.133 0.676 0.393 
9 3.575 0.149 0.705 0.425 

10 1.330 0.121 0.472 0.292 

a Calculated according to Malinowski [9]. 
b Calculated according to Mandel [ 171. 
‘Size of random matrices. 

and Mandel [ 171, respectively. The pattern in Mali- 
nowski’s reduced eigenvalues is also characterized by 
a large jump. Moreover, there is no visible trend for the 
last five PCs. The same goes for Mandel’s ‘reduced 
eigenvalues’ calculated from the eigenvalues of 
20 X 10 random matrices. The five-dimensional model 
is easily discerned and it seems that parallel analysis 
works satisfactorily without modification. However, 
close examination shows that there is a problem. Pool- 
ing the ‘reduced eigenvalues’ should provide an effi- 
cient estimate of a, according to Eq. (8). The value 
found is &M - - 0.786. This value is not close to the value 
estimated from the residuals using Eq. (7), i.e. 
1 u, -0.588. Thus the behavior of Mandel’s ‘reduced 
eigenvalues’ is partly misleading in this case. (Other 
examples show that constant ‘reduced eigenvalues’ 
cannot be expected in general if the size of the reference 
matrix is not correct.) It is, however, clear that an 
excellent initial guess is supplied by the results in the 
last two columns for the appropriate size of the refer- 
ence matrix, i.e. (20-5)X(10-5). The ‘reduced 
eigenvalues’ calculated from the eigenvalues of 15 X 5 
random matrices are also perfectly constant but now 
the pooled ‘reduced eigenvalues’ yield the estimate 
. u,,, =0.592 which is very close to the correct value 
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calculated from Eq. (7)) i.e. &,,, = 0.588. This lends 
credit to the followed approach. The only disadvantage 
connected to the method seems to be the trial-and-error 
character. Malinowski’s reduced eigenvalues do not 

. . 
b 

l 

l 

l 0 
0 

Fig. 5. Logarithm of eigenvalues for literature data matrix. 

have this disadvantage but their applicability should be 
properly evaluated for the relevant matrix sixes. 

Finally, it is emphasized that the example worked 
out here is selected in order to demonstrate the use of 
the modification rather than to put the method to the 
test. (In general the initial and final choice are not 
necessarily the same.) Work is currently in progress to 
evaluate the performance of the method on literature 
data that is generally accepted to be difficult. 

Distribution of the residuals 
In the preceding part it was assumed that the eigen- 

values of random matrices with normally distributed 
elements could be used for the parallel analysis. It is 
therefore interesting to examine the distribution of the 
residuals of PCA. The distribution of the residuals of 
the five-dimensional PC model is shown in Fig. 6. It 
can be seen that the distribution is very close to the 
normal distribution with the same mean and standard 
deviation although the input round-off errors should be 
uniformly distributed. The tendency of the residuals to 
be more normally distributed then the original noise 
has been observed for other data as well. A ‘theoretical’ 
explanation could be as follows. Each principal axis is 
constructed with an error distributed according to some 
distribution. The size of the residuals, however, 
depends on the errors in all principal axes included in 
the model. Then according to the central limit theorem 

Fig. 6. Distribution of residuals after extracting five PCs for literature data matrix. The dots represent normalized frequency counts based on a 
binsize of 0.2. The normal distribution function with the same mean and standard deviation is drawn as guide to the eye. 



224 NM. Faber et al, / Chemometrics and Intelligent Laboratory Systems 25 (1994) 203-226 

the distribution of the residuals should converge to a 
normal distribution if enough PCs are extracted. (Note 
that this example has been selected because of the rel- 
atively large number of primary PCs.) This result 
should increase the value of Tables 3 and 4 and, perhaps 
more importantly, the applicability of certain signifl- 
cance tests that specifically demand normally distrib- 
uted residuals, e.g. the x2 test and the number of 3a 
misfits [ 401. 

5. Conclusions 

In the past, several pseudorank estimation methods 
have been proposed that are based on the similarity 
between the secondary eigenvalues of the test data 
matrix and the eigenvalues obtained from random 
matrices. These methods are commonly denoted as par- 
allel analysis. In this study theoretical considerations 
have lead to a number of aspects that are expected to 
influence the applicability of such methods. The aspects 
thoroughly evaluated are the systematic contribution to 
the data, the divergence coefficient of the matrix and 
the distribution of the noise. The effect of possible 
approximations is always compared to the inherent 
variability of the eigenvalues, i.e. the standard error. 

In this way the results of Monte Carlo simulations 
have shown that the size of the secondary eigenvalues 
depends only little on the value of the primary eigen- 
values (systematic contribution) down to a very low 
signal-to-noise ratio ( = 0.5-1.0). Thus the secondary 
eigenvalues of a test data matrix can very well be 
approximated by the eigenvalues of an appropriately 
sized random matrix. As a useful byproduct of the cur- 
rent investigation it was found that theoretical predic- 
tions for the influence of the measurement errors on the 
primary eigenvalues start to work well for the same 
critical signal-to-noise ratio. 

In the same way it is shown that the influence of the 
distribution of the noise becomes negligible if the data 
matrix is large enough. Differences between the eigen- 
values that can be attributed to the distribution used 
(we have considered the normal, uniform and random 
sign distribution) are not significant with respect to the 
standard error in the eigenvalues for matrices as small 
as 20 X 10. 

Thus if the data matrix is large enough, the distri- 
bution of the eigenvalues primarily depends on the 

divergence coefficient d. For square matrices (d = 1) 
this distribution is characterized by a relatively large 
probability of finding a very small eigenvalue. For 
‘skinny’ matrices (d B- 1) the distribution approaches 
a spike, indicating that chance correlations vanish (the 
cross-product matrix becomes diagonal). Thus differ- 
ent values of d may lead to a completely different 
behavior for functions of the eigenvalues. 

This has been illustrated for the logarithm of the 
eigenvalues and Malinowski’s reduced eigenvalues. 
The logarithm of the eigenvalues is seen to yield a 
straight line for the low-numbered PCs. The logarithm 
of the eigenvalues for the high-numbered PCs may 
show a downward deviation. Since the use of the log- 
eigenvalue diagram is based on extrapolation towards 
the low-numbered PCs, it directly depends on the num- 
ber of primary PCs which is an unfavorable situation. 
It is shown that, depending on the value of d, Mali- 
nowski’s reduced eigenvalues are constant within the 
associated standard error. Thus they may be used for 
pseudorank estimation if the relevant matrix sizes have 
been properly investigated. The limited simulations 
described in this paper indicate that Malinowski’s 
reduced eigenvalues will not work if d 2 3. 

A modification of parallel analysis is proposed that 
comes down to a trial-and-error procedure. The final 
estimate of the pseudorank is based on a consistent 
estimate of the variance of the measurement noise 
according to Eqs. (7) and (8). The procedure is 
inspired by the early result of Mandel [ 171 that ideally, 
one should simulate random matrices with the same 
number of degrees of freedom as the test data matrix 
in order to obtain the desired reference eigenvalues. It 
is emphasized that depending on the loss of degrees of 
freedom good results may still be expected if the ref- 
erence eigenvalues are obtained from random matrices 
with the same size. In fact, simulating random matrices 
with the same size is useful in order to obtain an initial 
guess for the optimal size of the reference matrix. 

Finally, numerical results show that the residual va- 
riance tends to become normally distributed if ‘enough’ 
PCs are extracted, independent of the distribution of 
the measurement error. As a consequence (parametric) 
methods that assume normally distributed residuals 
should have a wider range of applicability than previ- 
ously assumed. This result is important for the appli- 
cability of the currently advertized method as well, 
since the choice of generating random matrices from 
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the normal distribution can now be motivated. The 
method may therefore especially hold a promise for the 
analysis of so-called high-rank data. It is emphasized 
that estimating the pseudorank for this kind of data 
constitutes a difficult problem in practice [ 411. 
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