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Abstract 

The estimation of the pseudorank of a matrix, i.e., the rank of a matrix in the absence of measurement error, is a 
major problem in multivariate data analysis. In the practice of analytical chemistry it is often even the only problem. 
An important example is the determination, of the purity of a chromatographic peak. In this paper we discuss three 
pseudorank estimation methods that make use of prior knowledge about the size of the measurement error. The first 
method (Method A) is based on the standard errors in the diagonal elements of the row-echelon form of the matrix, 
the second method (Method Bl is based on the eigenvalues of principal component analysis @CA) and the third 
method (a t-test) is based on the singular values. Methods A and B are modifications of methods that are well 
known in analytical chemistry. However, these methods cannot provide significance levels for the estimated 
pseudorank. This holds for the original methods as well as the present modifications. The main reason for 
introducing these modifications is that in this way relationships are established between the t-test and methods that 
are already known. The aspects that are covered in this paper include the sampling distribution of the test statistic, 
the number of degrees of freedom to be used in the test, the adequacy of theoretical predictions and the bias that 
results from random measurement noise. The object of this paper is to demonstrate that using prior knowledge 
about the size of the measurement error may yield powerful pseudorank estimation methods. This is illustrated by 
comparing the significance levels obtained by the r-test and Malinowski’s F-test. The r-test yields sharper 
significance levels for experimental data obtained from the literature as well as simulated data. This can be 
satisfactorily explained by the larger number of degrees of freedom that is employed in this test. The viability of the 
new t-test is supported by a thorough evaluation of the test data by a large number of conventional methods. As a 
remarkable by-product of the present investigation we find that a plot of the singular values yields a promising 
graphical pseudorank estimation method. Graphical methods have proved their use in the past in the case that the 
size of the measurement error is unknown. This new graphical method therefore provides a natural complement to 
the t-test. 
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1. Introduction 

The estimation of the pseudorank of a matrix, 
i.e., the rank of a matrix in the absence of mea- 
surement error, is a major problem in multivari- 
ate data analysis. It typically arises when highly 
redundant data produced by modem analytical 
instruments are to be compressed to a more 
relevant format. This problem is not likely to be 
solved in the near future by a better instrumenta- 
tion since for many applications the main interest 
is focused on very fast data acquisition, e.g., for 
the on-line monitoring of an industrial process. 
Therefore many methods have been proposed 
over the years to tackle this problem mathemati- 
cally and the field of analytical chemistry has 
been especially fertile in producing such methods 
ill. 

A useful and general classification of pseudo- 
rank estimation methods is based on the required 
prior knowledge about size and/or distribution 
of the measurement error. Methods that require 
such input are called parumetric whereas meth- 
ods that work without this prior knowledge are 
called non-parametric. Parametric methods are 
only reliable if it is safe to make the necessary 
assumptions concerning the noise. Otherwise they 
will not work. Interest in these methods has 
greatly faded with the introduction of Mali- 
nowski’s methods based on error functions [2] 
and Wold’s cross-validation [3]. Both methods are 
non-parametric and make use of a very popular 
method for the compression and subsequent 
analysis of multivariate data, i.e., principal com- 
ponent analysis (PCA). 

Characteristic for these and many other meth- 
ods in extensive use today is their inability to 
establish a signi&unce level for the estimated 
pseudorank. A notable exception is Malinowski’s 
F-test [4,51 which is recently developed from the 
concept of reduced eigenvalues [6]. It is a para- 
metric method that however works without 
knowledge about the size of the measurement 
error. The only assumption being implicitly made 
is that the residuals are Gaussian distributed. 
(However, from classical analysis of variance it is 
well known that even this assumption is not nec- 
essarily restrictive [7].) This method is therefore 

essentially different from a number of very re- 
cently introduced methods for which significance 
levels can be obtained from simulation studies or 
resampling methods. Examples are canonical cor- 
relation [8] which may also be applied if only one 
data matrix is available [9], an algebraic method 
based on the Wronskian determinant [lo], a non- 
parametric method based on resampling the 
zero-component region in the data matrix [ll] 
and a non-parametric method based on the resid- 
uals of consecutive PC models [12]. 

In this paper we will discuss three parametric 
pseudorank estimation methods that explicitly re- 
quire knowledge about the size of the measure- 
ment error. The first method (Method A) is based 
on the standard errors in the diagonal elements of 
the row-echelon form of a matrix [13]. The original 
formulation of this method [13] allows for a com- 
plication that critically depends on the nature of 
the test data matrix, i.e., the data matrix under 
consideration. Consequently we will propose a 
possible solution to this problem. The second 
method (Method B) constitutes a modification of 
the method of Hugus and El-Awady [14,1]. In the 
method of Hugus and El-Awady the eigenvalues 
of PCA of the test data matrix are compared to 
their standard error. In the current modification 
the eigenvalues of the test data matrix are cor- 
rected before they are compared to their stan- 
dard error. The correction emulates the value 
that should be expected if an eigenvalue were 
caused by measurement error and is obtained as 
the dominant eigenvalue of a ‘reference’ matrix. 
In a previous paper we showed that an appropri- 
ately sized random matrix can be used as a suit- 
able reference matrix [151. Furthermore, we make 
use of the previously derived standard errors in 
the eigenvalues of PCA [161. The third method (a 
t-test) is based on results obtained by Goodman 
and Haberman [17] for the singular values of a 
matrix. This method comes down to comparing 
the singular values of the test data matrix to the 
associated reference value in a similar way as 
Method B. It will be shown that in all these 
methods the data matrix is reduced to a ‘canoni- 
cal’ form that is suitable for revealing the pseudo- 
rank. However, only the t-test is able to give 
significance levels for the estimated pseudorank. 
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The main reason for also introducing and dis- 
cussing methods A and B is that in this way a 
relationship is established between the t-test and 
methods that are already introduced in analytical 
chemistry. This should lead to an improved un- 
derstanding of the working of the proposed t-test 
and parametric methods in general. The aspects 
that are covered in this paper include the sam- 
pling distribution of the test statistic, the number 
of degrees of freedom to be used in the test, the 
adequacy of theoretical predictions and the bias 
that results from random measurement noise. 

It is to be expected that prior knowledge about 
the size of the measurement error should yield a 
method that gives sharper significance levels than 
a method that does not use this extra knowledge. 
This will be illustrated by comparing the signifi- 
cance levels obtained by the t-test and Mali- 
nowski’s F-test for literature data as well as simu- 
lated data. It is found that Malinowski’s F-test 
gives rather conservative confidence levels. This 
can be explained by the small number of degrees 
of freedom employed in this test. The number of 
degrees of freedom associated with PCA will be 
further discussed in the Appendix. Support for 
the viability of the new t-test may also come from 
a thorough evaluation of the test data by a large 
number of methods that are currently in use in 
analytical chemistry. Thus we will also pay con- 
siderable attention to the background of these 
conventional methods. 

In the remaining part of this paper we will 
assume that no data preprocessing has taken place 
and that the data matrix under consideration is 
open. Data preprocessing is absolutely necessary 
if the measurement error is heteroscedastic [18]. 
The consequences of closure and mean centering 
for the estimated rank have recently been dis- 
cussed by Pell et al. [19]. Finally we will assume 
that pure data for the individual contributing 
sources are not available. Otherwise the Kalman 
filter (KF) approach developed at our laboratory 
1201 provides an excellent parametric pseudorank 
estimation method. 

The following notation will be adapted 
throughout this paper. Bold upper-case letters 
will denote matrices, e.g., M. Bold lower-case 
letters will denote column vectors, e.g., u. Matrix 

and vector transposition are indicated by a supe- 
rior ‘T’, e.g., MT and u*. Italic letters (upper-case 
as well as lower-case) will denote scalars, e.g., Mij 
is the element in row i and column j of M. The 
elements of diagonal matrices, e.g., e,, and A,,, 
are denoted by lower case letters, e.g., 8, and A,, 
where the index indicates the position on the 
diagonal. 

2. Theory 

AI1 parametric methods discussed in this sec- 
tion except Malinowski’s F-test have in common 
that they are based on standard errors derived by 
the method of error propagation. Thus before 
introducing the parametric methods we will out- 
line the principle behind the derivations. Since 
the parametric methods to be discussed primarily 
rely on a dependable estimate of the measure- 
ment error in the data matrix M, U(M), we will 
also briefly discuss how it could be estimated in 
practice. 

2.1. The method of error propagation 

The method of error propagation deals with 
the way in which uncertainties are carried over or 
propagated from the data points to the estimated 
parameters. The parameters are written as a 
function of the data and this function is approxi- 
mated by a truncated Taylor expansion. The 
function is expanded around the errorless values 
and truncation usually proceeds after the linear 
or quadratic term. It follows that the function 
should be differentiable in a sufficiently small 
neighbourhood of the errorless values. The 
method works well if the measured data points 
are unbiased estimates of the true data points 
and the errors are small. The characteristics and 
limitations of this method are discussed in detail 
by Moran and Kowalski 1211. We emphasize that 
for the methods described in this paper the error 
propagation is carried out to first-order. As a 
result the derived standard errors can only be 
expected to be accurate if the standard deviation 
of the measurement error is small. 
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2.2. Estimation of the standard deviation of the 
measurement error in a data math 

It is evident that in general one should use all 
the information available in order to ensure that 
the estimate of the size of the error is accurate. 
For example, Bubert and Jenett [22] recommend 
to extend the data matrix obtained from Auger 
electron spectrometry with sputter cycles in the 
lower and higher energy regions where no lines 
can be detected. Essentially the same approach 
can be followed for chromatographic data. Here 
the zero-component regions should provide the 
necessary information [ll]. 

2.3. Pseudorank estimation method based on the 
standard errors in the diagonal elements of the 
row-echelon form of the data matrix (Method A) 

The oldest methods developed in (analytical) 
chemistry for pseudorank estimation are based 
on mathematical definitions of matrix rank in 
terms of the largest non-zero submatrix [23-251 
or the number of non-zero rows in the row-eche- 
lon form of the matrix [13]. In this paper we will 
only consider the method of Wallace and Katz 
[13] although it should be clear that the main 
disadvantage connected with the other submatrix 
methods (excessive computing time) is greatly al- 
leviated by the use of modern high-speed com- 
puters. 

The method of Wallace and Katz - in the 
sequel referred to as method A - consists of 
setting up, in addition to the data matrix M, a 
companion matrix E, whose elements E, are the 
estimated error of Mij. M is reduced to row- 
echelon form by daussian elimination [26] with 
complete pivoting: 

The elements of E are transformed during the 
reduction of M by computing new values based 

on the propagation of errors in M: 

Eij= [,+,( zr+E;( 2) 

L/2 

(2) 

Complete pivoting is used in order to minimize 
the rate of propagation of errors. The pseudo- 
ranlt is now determined by investigating for each 
dimension the following ratio 

Thus given a good estimate of the amount of 
measurement error it can be established whether 
a row is zero in the statistical sense by examining 
the diagonal elements of the transformed matri- 
ces M’ and E’. ‘Iwo decision rules have been 
found in the literature. Wallace and Katx con- 
sider a diagonal element of the reduced data 
matrix to be significant if it is three times its 
estimated error whereas Halket [27] proposes a 
ratio of one. 

There is a complication not accommodated for 
by the simultaneous transformation of the com- 
panion matrix. This complication is best illus- 
trated by the following example given by Golub 
and Van Loan [26] 

/l -1 -1 -1 . . 
0 1 -1 -1 . . 
0 0 1 -1 . . 
0 0 0 1.. 

\ - . . . 

Suppose for the sake of simplicity that I this 
matrix is the data matrix we start with. Then 
application of the decision rule that the ratio 
should exceed, say, k would immediately lead to 
the conclusion that M is full ranlc if the estimated 
standard deviation of the measurement error is 
less than l/k. However applying the matrix to 
the vector whose elements are 1, l/2, l/4, l/8,... 
shows that the columns of the matrix are nearly 
dependant because this weighted sum of the 
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columns is nearly zero. The matrix is very ill-con- 
ditioned and a much smaller perturbation then 
expected may cause the resulting matrix to be 
singular. As a result we need an independent test 
for invertibility. Such a test is easily constructed 
by using a well known result from numerical 
analysis that says that the smallest singular value 
of M is the L,-norm distance of M to the set of 
all rank-deficient matrices [26]. Therefore we 
propose to compute, in addition to the ratios of 
Eq. 3, the following index T: 

(4) 

where cond,(*) is the L,-condition number, ll@ll~ 
is the L,-norm and M:, and E;, denote the II X tl 
leading principal submatrix of M’ and E’ respec- 
tively. The pseudo rank of M’ should be at least 
n if 7, < 1. 

2.4. Pseudorank estimation method based on the 
standard errors in the eigenvalues of PCA (Method 
B) 

PCA is a method that finds new (orthogonal) 
base vectors that span the space of the matrix in 
an optimal way. The new base vectors are con- 
structed in such a way as to explain successively 
the maximum amount of variation in the data. 
According to Malinowski [l] the data matrix can 
be reconstructed using only the significant dimen- 
sions found by PCA. The remaining dimensions 
will only contain measurement error. In the ter- 
minology of Malinowski the significant dimen- 
sions are denoted as primary and the remaining 
ones as secondary. 

PCA is directly related to the singular value 
decomposition (SVD) of M. Let s be equal to r 
or c whichever is smaller. The SVD decomposes 
M into a product of three matrices: 

M = U9VT (5) 

where U is an r x s orthogonal matrix whose 
columns u, are the left singular vectors, V is an 
s x c orthogonal matrix whose columns v,, are the 
right singular vectors and 8 is an s x s diagonal 
matrix with elements 8,~ 8,2 . . . 2 0,. These 

elements, the singular values, are the (positive) 
square roots of the eigenvalues An of the cross- 
product matrices MMT and MTM: 

A, = u;(MM=)u, = v,T(MTM)v, (6) 

The singular vectors u, and v, are seen to be 
eigenvectors of the cross-product matrices. The 
eigenvalue decompositions of MMT and MTM 
are often referred to as Q-mode and R-mode 
PCA respectively. 

Hugus and El-Awady [14] have developed a 
test based on the following expression for the 
standard errors (R-mode analysis): 

CT(hn) = 

Here, Sk, is the well-known Kronecker delta. 
In their test a PC is considered to be significant if 
the associated eigenvalue is larger than its stan- 
dard error. (It should be noted that Bubert and 
Jenett 1221 employ a critical ratio of three.) In a 
previous paper [16] we showed that the expres- 
sion of Hugus and El-Awady is incorrect and 
should be replaced by 

a( A,) = 2Afi*a(M) (8) 

Furthermore, in the test of Hugus and El- 
Awady the eigenvalues are directly compared to 
their standard error. The underlying assumption 
is that an eigenvalue resulting from measurement 
error should be zero. However, measurement er- 
ror also contributes to the variation in the data 
and one should try to take this fact into account. 
Thus we propose to test the eigenvalues for sig- 
nificance after correcting them for the value that 
could be the result of chance effect alone. In a 
previous publication [15] we showed that the sec- 
ondary eigenvalues of the test data matrix can 
very well be estimated by the eigenvalues of a 
pure random matrix. This random matrix should 
preferably have the same number of &grees of 
freedom as the test data matrix. It is well known 
that the number of degrees of freedom left after 
extracting the nth PC from the test data is (r - n) 
(c - n). Since we need the number of degrees of 
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freedom before extracting the nth PC, the num- 
ber of degrees of freedom of the reference matrix 
is therefore found to be (r - n + 1) (c - n + 1). 
Since no parameters can be estimated from a 
random matrix, the number of degrees of free- 
dom automatically equals the total number of 
data points. Thus the sloe of the reference matrix 
should be (r - n + 1) X (c - n + 1). This leads to 
the following correction procedure before testing 
the significance of the eigenvalues. The first 
eigenvalue of the test data matrix is corrected by 
subtracting the first eigenvalue of an r x c ran- 
dom matrix, the second eigenvalue of the test 
data matrix is corrected by subtracting the first 
eigenvalue of an (r - 1) X (c - 1) random matrix, 
and so on. In general, the correction for the nth 
eigenvalue under scrutiny is found as the domi- 
nant eigenvalue of an (r - n + 1) X (c - n + 1) 
random matrix. Accurate reference values are 
obtained by averaging the eigenvalues of a large 
number of random matrices. Tables with accurate 
reference eigenvalues have, for example, been 
published by Mandel[281 and are easily extended 
by Monte Carlo (MC) simulations [U]. As a mod- 
ification to the method of Hugus and El-Awady - 
in the sequel referred to as method B - we 
therefore propose to examine the following ratio 

(9) 

where A, ref denotes the nth reference eigen- 
value. It is to be expected that only the ratio 
associated with the last significant PC (complete 
model) should be consistent with the ratio found 
by equation (3) since here the data reduction 
proceeds in an entirely different way. Further- 
more these values should only agree as long as 
the reference values hn,ref are negligible since we 
do not apply a correction in Method A. 

In a previous publication we showed that the 
standard errors predicted by Eq. 8 overestimate 
the true standard errors [16]. The overestimate is 
negligible for the large primary eigenvalues but 
may be notable for the small ones. (The true 
standard errors were estimated by MC simula- 
tions.) Thus especially for the high-numbered pri- 
mary eigenvalues the ratios calculated by Eq. 9 

are an underestimate of the true ratios and con- 
sequently method B is expected to give conserva- 
tive estimates of the pseudorank. This will, how- 
ever, only constitute a problem if for the specific 
application at hand a false negative declaration, 
i.e., a primary PC is deemed non-significant, 
causes more harm than a false positive declara- 
tion, i.e., a secondary PC is deemed significant. It 
should be noticed that for many PCA based 
methods e.g., iterative target testing factor analy- 
sis (ITTFA) the incomplete model will lead to 
erroneous results. In that case the conservative 
estimate could still provide a useful lower bound. 

There is still one point we want to discuss with 
respect to Eq. 9. Goodman and Haberman [17] 
have shown that the eigenvalues of PCA are 
biased as a result of random measurement noise. 
Although they only give the relevant expression 
for a one-dimensional PC model their result is 
easily generalized to an n*-dimensional PC model 
by invoking Malinowski’s error functions. We will 
show in a future publication that the bias in 
eigenvalue A, can be predicted as bias&) = (r + 
c - n*)u(M12. The adequacy of this theoretical 
prediction, however, depends on the signal-to- 
noise ratio (SZV..). For low SNl? this prediction is 
not accurate enough in order to construct a confi- 
dence interval for the eigenvalue in absence of 
noise. It will be shown in this paper that an 
accurate empirical ‘bias correction’ is always pro- 
vided by the reference eigenvalue An,_+ 

2.5. Pseudorank estimation method based on the 
standard errors in the sin&r values of SVlI (t- 
test) 

Methods A and B are both characterized by 
comparing a ratio with a @ed critical value (one 
or three). This procedure is not in the spirit of 
hypothesis testing in statistics. In statistics a hy- 
pothesis is formulated about a test statistic and 
the validity of the hypothesis is derived from the 
sampling distribution of the test statistic, the ap- 
propriate number of degrees of freedom and a 
certain (predetermined) significance level. The 
number of degrees of freedom and thus also the 
critical value of the test statistic should depend 
on the test data at hand. It is extremely difficult 
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to devise such a procedure for the statistics given 
by Methods A and B because their sampling 
distribution is unknown. For Method B this is 
caused by the fact that the numerator and de- 
nominator in Eq. 9 are not independent. In gen- 
eral it is possible to infer the sampling distribu- 
tion of a statistic from MC simulations. However, 
we will not pursue this line because it is possible 
to derive a significance test ’ from Method B in a 
straightforward manner without resorting to (ad- 
ditional) simulations. 

In the case that the variance in an estimated 
parameter depends on the parameter itself, the 
standard procedure in statistics consists of ‘stabi- 
lizing’ the variance by transforming the parame- 
ter in such a way that the transformed parameter 
is independent of the associated variance [29]. It 
immediately follows from Eq. 8 that the standard 
error in the singular values is constant and equal 
to o(M) (see also [17,16]). Thus the stabilized 
parameters are simply given by the singular val- 
ues. ’ Furthermore, the singular values are linear 
functions of the data. Thus given Gaussian dis- 
tributed measurement errors, the sampling distri- 
bution of the singular values is also given by the 
Gaussian distribution 1171. The assumption of 
Gaussian distributed noise is often not justified in 
practice. However, it is well known that devia- 
tions from normality can be neglected if the num- 
ber of observations (i.e., in our case the number 
of matrix elements) is sufficiently large. As a 
general guide, a number of at least 50 can be 
considered to be large enough [30,31]. If we have, 
in addition, some prior knowledge which suggests 
that the distribution of the matrix elements re- 
sembles the Gaussian in some way, e.g., symme- 

1 We make a distinction here between pseudorank estima- 
tion methods: only methods that are able to provide a signifi- 
cance level are denoted as significance tests. 

’ It is important to note that Lawson and Hanson [30] give 
deterministic error bounds for the singular values of a per- 
turbed matrix. If M is perturbed by a matrix E, an upper 
bound for the error in a singular value is given as the largest 
singular value of E. It should be clear that these error bounds 
are not statistical in nature (no assumptions are made about 
the elements in E) and therefore not accurate enough for the 
purpose of this paper. 

try, then this would allow us to regard a smaller 
number as large enough. It is interesting to note 
that very recently Booksh and Kowalski [32] have 
demonstrated a considerable ‘normalizing’ effect 
for the generalized rank annihilation method 
(GC4M), a calibration method that is based on 

It is possible to examine the statistic that is 
obtained by simply replacing the eigenvalues in 
Eq. 9 by the corresponding singular values. It is 
easily shown that the resulting statistic is always 
larger. However, the Eq. 9 statistic does not take 
into account that the eigenvalues of the reference 
matrix vary in a similar way as the eigenvalues of 
the test data matrix. Thus an additional modifica- 
tion is necessary before the test statistic is com- 
plete. Approximating the standard errors in both 
singular values by a(M) yields as a possible test 
statistic 

P”(e) = 
en - 9,re.f 

d%(M) 

If the test data matrix is large enough the ratio 
given by Eq. 10 is approximately distributed as 
Student’s t independent of the distribution of the 
measurement error (large sample assumption). 
The number of degrees of freedom associated 
with this test statistic is determined by the size of 
the reference matrix, i.e., Y = (r - n + 1Xc - n + 
1). The ratio of Eq. 10 is designed to test the 
null-hypothesis 

H, 1% = %,ref 

against the alternative hypothesis (a one-sided 
test) 

Hence we reject H, at the (Y level of signifi- 
cance if the realization of p,(B) is greater than or 
equal to the tabulated t,(l - (~1. Analogous to 
the F-test of Malinowski (that is to be briefly 
discussed next) the proposed significance test 
starts at the high-numbered PCs. First, the singu- 
lar value with IZ = s is tested against the singular 
value of an (r -s + 1) X 1 matrix. If the calcu- 
lated p is less than the tabulated t, the singular 
value under test is added to the secondary set. 
Next, we examine the ratio for n = s - 1, and so 
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on. The process of testing and adding to the nulI 
set is repeated until the calculated p exceeds the 
tabulated t. 

It is seen that the variability of both singular 
values is taken into account in Eq. 10 in a pes- 
simistic fashion since the standard error in the 
singular values of the reference matrix is smaller 
than a(M). (An overestimate by a factor of two 
should be expected [16].) The conservative char- 
acter of the proposed t-test should guard the user 
against the consequences of, for example, violat- 
ing the large sample assumption in practice. 
However, a thorough evaluation should demon- 
strate whether the test still has enough discrimi- 
nating power or that it is useless. 

2.6. Reduced eigenvahes and Malinowski’s F-test 

Malinowski discovered that the following func- 
tion of the eigenvalues of PCA 

lwz= (r_ 

An 
n+l)(c-n+l) (11) 

is constant for the secondary PCs [61. Using these 
‘reduced’ eigenvalues (REVS) an F-test was de- 
veloped [4,5]: 

s 
C (r-j+l)(c-j+l) 

F(v14 = j-p n + l)(c _ n + 1) 

X 
A” 

I? Aj 
(12) 

j=n+l 

Table 1 
Characterization of literature test data 

with degrees of freedom vi = 1 and y2 = s -n. 
The procedure consists of testing A” against the 
pool of (s - n) remaining eigenvalues. One starts 
with eigenvalue As_ I and works backwards 
through the list of eigenvalues. If an eigenvalue is 
found to be insignificant, it is pooled with the 
remaining error eigenvalues, the counter n is 
lowered by one and the next eigenvalue is consid- 
ered. It is seen that the number of degrees of 
freedom is taken as the number of eigenvalues 
involved in the test. The number of degrees of 
freedom associated with PCA is further discussed 
in the Appendix. It was found that in general 
testing on the 5% level tends to underestimate 
whereas testing on the 10% level tends to overes- 
timate the pseudorank of the matrix [4]. 

3. Experimental 

The methods discussed in the preceding sec- 
tion are evaluated by analyzing data obtained 
from the literature as well as simulated data. 

3.1. Literature data 

Investigating data from the literature in order 
to test a new method is useful since these data 
‘should be readily available for other researchers 
thus malting the present results reproducible. 
Some of the data sets considered in this section 
are based on computer simulations. They should 

Data FIALSO a GUTM68 b HAVES5 c MALI82 d RIl-l76 e WEIIVO f WEIN * 

Size 20 x 5 9x5 10 x 8 20x 10 17 x 7 14 x 9 22 x 6 
Pseudorank 3 2 3 5 2 3 2 
d(MIh 0.45 0.049 0.013 0.59 0.14 0.65 0.56 

a Computer simulated powder diffraction intensities [33]. 
b Half-wave potentials of metal ions in various solvents [34]. Two PCs are deemed significant by the tests discuase d below while 
Howery reports that three PCs are needed to adequately reproduce the data [35]. 
’ Potentiometric data [36]. 
d Simulated mass spectra [37]. 
’ Mass spectra for which the row corresponding to contaminating nitrogen is deleted [38]. 
f Chemical shifts in various solvents [39]. 
* Chemical shifts in various solvents [40]. Two significant PCs are found by the tests discussed below while Weiner et al. report that 
three PCs are needed for the;reproduction of the data within the experimental error (0.5Hz). 
h Estimated as &CM) = 2” ,_“. +iAj/(r - n*)fc -n*) where n* denotes the pseudorank. 
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be particularly useful for the purpose of this 
paper since simulated data can be expected to be 
well-behaved with respect to the ‘measurement’ 
error. The selection of these data sets is primarily 
based on the following consideration: if we want 
to discover whether a procedure has failed to 
indicate the correct pseudorank, we should apply 
it to data for which a reliable estimate for the 
pseudorank is available. In Table 1 we have de- 
scribed the literature test data that meet this 
requirement. The selected data sets cover a wide 
range of experimental techniques. The first row 
gives the data matrix under investigation. In the 
second row the size of the matrices (r X c) is 
given. It is seen that in general the number of 
data points is rather small. The obvious reason is 
that it is not practical to publish large data matri- 
ces in journal articles. The number of data points 
ranges between 45 for data set GUTM68 and 200 
for data set MAL182. The unfavourable size of 
some of the data sets may lead to a small number 
of degrees of freedom and critically influence the 
outcome of the proposed t-test. In the third row 
we have listed the estimated pseudorank II*. The 
quoted estimate is found by a large number of 
methods from which the following are the most 
widely used: cross-validation [2], reduced eigen- 
values [6], imbedded error function [3], indicator 
function [3] and the eigenvalue ratio [41-431. 
With two exceptions, i.e., GUI%468 and WEIN70, 
the determined pseudorank agrees with the value 
reported earlier. (These exceptions show that data 
reproduction - formerly a popular method - only 
provides a reliable pseudorank if a(M) can be 
estimated accurately.) In the last row we give the 
estimated standard deviation of the measurement 
error that is based on the residuals of the correct 
PC model. These values will be used as input for 
the parametric methods since for many of these 
data sets a reliable estimate independent of the 
,data is not available. Exceptions are formed, for 
‘example, by data sets WEIN and WEIN for 
which a measurement error of 0.5 Hz is reported. 
One of these datasets, i.e., WEIN70, will be in- 
vestigated using both values, i.e., 0.5 and 0.65, in 
order to evaluate the robustness of the paramet- 
ric methods with respect to an inaccurate esti- 
mate of c(M). 

3.2. Simulated data 

In a previous investigation [16] we constructed 
a dilution series by simulating a number of multi- 
component systems for which the signal of one 
component was systematically lowered. This way 
the usefulness of theoretical results like Eq. 8 was 
tested. A three-component LC-W data matrix 
was simulated by multiplying Gaussian functions 
and the (normalized) W spectra of adenine, 
cytidine and guanine taken from the work of 
Zscheile et al. [44]. The size of the resulting 
matrices was 36 x 36. Artificial Gaussian noise 
with standard deviation 0.5 mAU was added. In 
this paper we will restrict the discussion to dilu- 
tions where theoretical predictions should be ex- 
pected to start to break down. For these dilutions 
the peakheights of adenine and guanine are 1000 
mAU while the peakheight of cytidine is only 6,5 
and 3 mAU respectively. The resulting data sets 
are denoted as EXPl, EXP2 and EXP3. Details 
about the simulations are summarized in Table 2. 
A plot of data matrix EXPl is shown in Fig. 1. 
The unfavourable ratio of peakheights and high 
overlap of the pure component responses (in both 
instrumental modes) are apparent. These data 

Table 2 
Characterization of simulated test data ’ 

Adenine Cytidine Guanine 

Peak positions, p 9 18 27 
Standard deviation peaks, D 5 5 5 
Peakheights h for EXPl 1lkKl 6 1000 
in mAU 
Peakheights h for EXP2 1000 5 1lWO 
in mAU 
Peakheights h for EXP3 1600 3 1000 
in mAU 
Number of spectra 36 
Number of wavelengths 36 
o(M) in mAU 0.5 

a The elements of the data matrices are generated as Mij = 
Xf_rCikSjk + N(O,dM)) where K is the number of compo- 
nents (i.e., 3 in our case.), Cik is the value of the elution 
profile of component k at time i, Sjk denotes the absorbance 
of component k at wavelength j and N(O,o(M)) is a normally 
distributed number with zero mean and standard deviation 
a(M). The elements of the elution profiles are calculated as 
Cik = h,.ezp [- 1/2(i - rk)*/~~I where the symbols have 
the meaning as indicated above. 
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3.3. Caictitions 

Fig. 1. Simulated three-component LC-UV data matrix EXPl. 

matrices should therefore constitute an interest- 
ing test case for the methods discussed in this 
paper. Only data matrices EXP2 and EXP3 have 
been analyzed before in [161. For data set EXP2 
it was found that the prediction of the standard 
error in the eigenvalue was excellent for the two 
main components but wrong (too high) by 20% 
for the dilute component. However, given the low 
value of the relevant eigenvalue ratio &/A4 = 
1.77) this result was seen as very promising. For 
data set EXP3 the true standard error for the 
dilute component was overestimated by 85%. Ad- 
ditional results showed that the third dimension 
for this data set primarily consists of noise. 

The computer program is written in Fortran 
and all calculations are performed in double pre- 
cision arithmetic on a I-IDS-EX60 mainframe 
computer. Built-in subroutines and functions of 
the IMSL library 1451 are used. The SVD of the 
data sets is performed by subroutine DLSVRR. 
Significance levels for the F-test are calculated 
from the output of function DFDF as %a = 100 
x (I- DFDFW,V,,V,I). Occasionally very large 
F-values may cause a floating point underflow in 
the evaluation of DFDF. This problem is solved 
by setting %cy to zero if F > 100. Significance 
levels for the t-test are calculated from the out- 
put of function DTDF as %a = 100 x (l- 
DTDF(~,v)). 

4. Results and discussion 

4.1. Literature data 

Before presenting the results for the paramet- 
ric methods introduced in the theoretical section, 
we want to discuss the performance of three 
conventional pseudorank estimation methods. 
These methods are based on (functions of) the 
eigenvalues and are often used graphically. Addi- 
tionally, we will show that the singular values are 
a promising alternative for these conventional 
methods. 

Table 3 

Eigenvalues of PCA for literature test data. The numbers marked in bold indicate the estimated useudorank 

n GuTM68 HAVE85 MALI82 RIn76 wEIN WEIN 

1 2.60 x 105 
2 1.87 x lo4 

3 2.53 x 103 

4 3.53 
5 3.43 

6 
7 
8 
9 

10 

1.89 x 102 9.67 x 10 
238x10-’ 4.61 x lo- 1 
3.17 x 10-Z 4.10 x 10 -?# 

1.51 x 10-Z 3.30 x 10-3 

3.05 x 10-3 1.87 x 1O-3 
3.40 x 10-4 
2.98 x 1O-4 
1.15 x 10-6 

2.56 x 10’ 
2.12 x 104 
1.77 x 104 
1.02 x 104 
2.42 x 10’ 
1.00 x 10 
5.87 
5.20 
3.58 
1.33 

2.43 x 10’ 1.02 x 10’ 4.90 x 105 

3.34 x 102 4.77 x 102 5.54 x 103 

7.60 x 10-l 9.55 x 10 1.13 x 10 

3.35 x 10-l 1.16 x 10 8.52 
2.56 x 10-l 8.79 3.73 

1.20 x 10-l 3.94 1.54 

5.76 x lo-* ,1.56 
1.36 
0.70 
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Table 4 
Indicator function for literature test data. The numbers marked in bold indicate the estimated pseudorank 

11 

n GUTM68 ~HAvE85 MALI82 WEIN wEm71 
(x10-*) (x lo-‘) (x 10:‘) 

1 1.02 0.56 1.74 0.209 5.04 0.36 0.284 
2 0.72 
3 0.10 
4 0.41 
5 - 
6 

8 
9 

10 

0.48 0.78 0.215 0.54 0.23 0.033 
0.80 0.43 0.194 0.67 0.16 0.051 
1.84 0.50 0.126 1.03 0.19 0.086 

0.51 0.020 1.81 0.23 0.264 
0.97 0.028 5.82 0.33 - 

0.34 0.046 - 0.68 
0.088 2.24 
0.258 - 

In Table 3 the eigenvalues of PCA are listed. 
Using the simple argument that primary eigenval- 
ues should be relatively large one easily arrives at 
the values for the pseudorank given in Table 1. 
(It is interesting to note that support for the 
two-dimensional model for WEIN comes from 
comparing the eigenvalue pattern with that for 
WEIN70.) However, in general the jump between 
primary and secondary eigenvalues is not so 
prominent and several methods have been intro- 
duced to aid in the decision making process. 

The results for two of these methods, the 
indicator function [2] and the reduced eigenval- 
ues [6], are shown in Tables 4 and 5. Malinowski 
has postulated that the indicator function should 
exhibit a minimum for the true dimension of the 
data matrix 3. Thus we arrive at the same pseu- 
dorank estimates using the indicator function. It 
is often stated as a disadvantage of this method 
that the minimum is shallow. This is also the case 
here for data set WEIN but the point is that we 
can not quantify such a statement without know- 
ing the standard errors in the indicator function. 
It is possible to derive these standard errors from 
ELI. 8. This could lead to theoretical evidence for 
the postulated minimum. However, there is al- 

3 Occasionally a local minimum is observed as already 
noted by Mahnowski. For the present data sets we fmd a local 
minimum for HAVE85 and MALJ82. The local minimum for 
HAVE85 is discussed later. The local minimum for MALI82 
is caused by the small ratio between the second and third 
eigenvahte. 

ready considerable experimental evidence in the 
literature that indicates that the minimum is sig- 
nificant (the method is very successful) and we 
will not pursue this line. According to Malinowski 
the reduced eigenvalues should be constant for 
the secondary PCs while the values for the pri- 
mary PCs should be larger. In another publica- 
tion [15] we have shown by simulations of random 
matrices that it depends on the ratio of the rows 
and the columns of the matrix, the so-called 
divergence coefficient, whether the reduced 
eigenvalues are (approximately) constant. This 
numerical result is explained by a theoretical 
result of multivariate statistics for the joint proba- 
bility density function (pdf) of the eigenvalues of 
a random matrix. (The joint pdf gives the proba- 
bility of finding any eigenvalue in a certain range.) 
The shape of the joint pdf depends primarily on 
the divergence coefficient of the matrix. The con- 
sequences for the reduced eigenvalues are that 
different patterns should be expected depending 
on the value of the divergence coefficient. We 
have found, for example, that a divergence coeffi- 
cient of (approximately) one leads to a large 
probability of finding a very small eigenvalue. 
This is confiied here for data set HAw5. 
(This very small eigenvalue is believed to be the 
reason for the dip in the indicator function.) For 
the other data sets the divergence coefficient 
ranges between 1.5 and 4. This is the range where 
the reduced eigenvalues of random matrices were 
shown to be approximately constant [15]. Thus for 
the data sets under investigation the method 
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Table 5 
Reduced eigenvalues for literature test data. The numbers marked in bold indicate the estimated pseudorank 

n GUM68 HAVE85 MALI82 RITT76 wElN70 wEIN 

1 2.60 x 10s 4.20 1.21 1.28 x lo3 2.05 x 10 8.13 x lo4 3.71 x 10s 
2 2.45 x 10’ 7.43 x 10 -3 7.32 x 1O-3 1.24 x 102 3.4g 4.59 5.27 x 10 
3 4.69 x 10 1.51 x 10-3 8.!Mx10-4 1.23 x 102 1.01 x 10-r 1.14 0.14 
4 0.10 1.26 x 10-s 9.42 x 1O-5 8.60 x 10 0.60 x 10-r 0.18 0.15 
5 0.21 0.61 x 1O-3 7.80 x lo-’ 2.52 x 10 0.66 x 10-r 0.18 0.10 
6 2.27 x 1O-5 0.13 0.50 x 10-s 0.11 0.09 
7 3.72 x lo-’ 0.11 0.52 x 10-s 0.07 
8 0.04 x 10-s 0.13 0.10 
9 0.15 0.12 

10 0.12 

should work and this is confirmed by the results 
given in Table 5. 

In Table 6 we have listed the singular values of 
the literature test data. The reason for showing 
the singular values is as follows. In the theoretical 
section it is argued that the error in the singular 
values is constant (and equal to the original mea- 
surement error). Contrary to the primary singular 
values the secondary singular values only consist 
of measurement error. Thus it is to be expected 
that the distance between the secondary singular 
values is bounded by the size of the measurement 
error whereas the distance between the primary 
singular values is also affected by the size of the 
systematic variation. Since the size of the system- 
atic variation should be larger than the size of the 
measurement noise for the data to be analyzable 
at all, it seems logical to simply inspect the dis- 
tance between the singular values. It is seen that 
for all data sets the distance between the sec- 
ondary singular values is of the same order of 
magnitude. Furthermore, it is easily verified that 
the order of magnitude is given by the standard 
deviations in Table 1; This leads to the conclu- 
sion that plotting the singular values yields a 
promising graphical pseudorank estimation 
method: the singular values should (approxi- 
mately) lie on a straight line for the secondary 
PCs whereas for the primary PCs the curve devi- 
ates upwards. It is worth mentioning that the 
logarithm of the eigenvalues is reported to yield a 
straight line for the secondary eigenvalues [461. 
However, a systematic evaluation [15] showed that 
a straight line should only be expected for the 

low-numbered secondary PCs. This numerical re- 
sult has now been explained since the logarithm 
and the square root may transform the eigenval- 
ues in a similar way over a restricted range (they 
are both weak transformations) 4. It should be 
kept in mind that we are using qualitative argu- 
ments here which we will try to quantify by means 
of the proposed t-test on the singular values. It is 
evident that such a quantification should be based 
on an estimate of the size of the measurement 
error. 

The working and use of the parametric meth- 
ods is illustrated by discussing the results in detail 
for data set WEIN’70. This data set has a large 
number of degrees of freedom, i.e., (r - n*) (c - 
n*) = (14 - 3X9 - 3) = 66, and has already been 
treated extensively in the literature (see e.g., [4] 
and [431X Additional results (not shown here) 
obtained for the x2-test as well as the number of 
3cT-misfits [14] are further evidence for the suit- 
ability of this data set for the evaluation of pseu- 
dorank estimation methods. The results of Meth- 
ods A and B are summarized in Table 7. It 
should be noted that all calculations are per- 
formed with the reported value for the standard 
deviation of the measurement error (0.5 Hz) which 

4ltivariate statistics standard errors in the eigenval- 
ues as a result of sampling errors have been derived (see [16] 
for a detailed discussion). These standard errors also depend 
on the sire of the eigenvalues but now Rouation (8) is no 
longer appropriate. Now the stabilizing transform is given by 
the logarithm. This motivates inspecting the logarithm of the 
eigenvalues in the case that sampling errors play a role. 
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is 30% smaller that the standard deviation esti- 
mated from the residuals of the 3-dimensional PC 
model (0.65 Hz). The first column gives the PC 
under investigation. The second and third column 
give the diagonal elements of the reduced matri- 

ces, M’ and E’. The resulting ratio calculated 
from Eq. 3 is given in the next column. Four PCs 
are deemed significant if we use the (fixed) criti- 
cal value of three. It is clear that three significant 
PCs would have been found if the input standard 

Table 6 
Singular values for literature test data. The numbers marked in bold indicate the estimated pseudorank 

n FIAL80 GUTM68 HAVE85 MAL.182 RITl76 wEIN WEIN 

1 5.10 x 102 1.374 x 10 9.835 5.06 x 102 4.93 x 10 3.20 x 103 7.00 x 102 
2 1.37 x 102 0.488 0.679 1.46 x 102 1.83 x 10 2.18 x 10 7.44x10 
3 5.03 x 10 0.178 0.202 1.33 x 102 0.87 9.77 3.35 
4 1.88 0.123 0.057 1.01 x 102 0.58 3.41 2.92 
5 1.85 0.055 0.043 4.92 x 10 0.51 2.97 1.93 
6 0.018 3.16 0.35 1.98 1.24 
7 0.017 2.42 0.24 1.25 
8 0.001 2.28 1.17 
9 1.89 0.84 

10 1.15 

Table 7 
Results of method A and B for literature data matrix WBIN70. The numbers marked in bold indicate the estimated pseudorank 

n Method A Method B 

diag(M’) diag(E’) ’ P(E) h Gf u(A) p(A) 

1 4.56 x lo* 0.50 9.11 x 102 1.02 x 10’ 9.28 3.20 x 103 3.20 x 103 
1.49 x 10 0.55 
7.11 0.83 

-2.99 0.98 
- 2.22 1.24 
- 2.01 0.90 

1.55 1.74 
1.55 2.21 

-0.15 1.82 

2.71 x 10 4.77 x 103 8.34 2.18 x 10 2.15 x 10 
8.61 9.55 x 10 7.38 9.77 9.02 
3.04 1.16 x 10 6.42 3.41 1.53 
1.79 8.79 5.47 2.97 1.12 
2.23 3.94 4.50 1.98 -0.28 
0.89 1.56 3.55 1.25 - 1.59 
0.70 1.36 2.56 1.17 - 1.03 
0.08 0.70 1.49 0.84 -0.94 

’ Calculated with B(M) = 0.50. 

Table 8 
Results of t-test and F-test for literature data matrix WBIN70. The numbers marked in bold indicate the estimated pseudorank 

n 

i- 
2 
3 
4 
5 
6 
7 
8 
9 

t-test F-test 

0 8 = ref U(8,f) t Y %a 
3.20x 103 3.04 0.26 4.52 x lo3 126 0.0 
2.18 x 10 2.88 0.27 2.68 x 10 104 0.0 
9.77 2.70 0.27 1.00 x 10 84 0.0 
3.41 2.52 0.28 1.26 66 10.6 
2.97 2.32 0.29 0.92 50 18.1 
1.98 2.10 0.29 -0.17 36 56.7 
1.25 1.86 0.31 - 0.86 24 80.1 
1.17 1.57 0.32 - 0.57 14 71.1 
0.84 1.17 0.35 - 0.47 6 67.3 

REV F Yl y2 %a 

8.13 x lo4 5.20x lo4 1 8 0.0 
4.59 1.04x10 1 7 1.4 
1.14 7.% 1 6 3.0 
0.18 1.40 1 5 29.0 
0.18 1.86 1 4 24.4 
0.11 1.33 1 3 33.2 
0.07 0.63 1 2 51.0 
0.10 0.83 1 1 53.0 
0.12 - - - - 

a Calculated with B(M) = 0.50. 
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deviation would have been larger by only 2%. In 
the next two cohunns we give the eigenvalues of 
PCA and the appropriate reference eigenvalues. 
The standard error in the eigenvalues predicted 
from Eq. 8 is given in the next column. The 
resulting ratio calculated from Eq. 9 is given in 
the last cohunn. Due to the considerable correc- 
tion by the reference eigenvalue we now find only 
three significant PCs. It is clear that the outcome 
would only change if we would underestimate 
u(M) by a factor of two. It is seen that Method B 
is more robust with respect to errors in the input 
value of a(M) than Method A. 

The results for the f-test and Malinowski’s 
F-test are given in Table 8. The first three columns 
give the PC under consideration, the test singular 
value and the reference singular value respec- 
tively. In the next column we have listed the’ 
standard error in the reference singular values. 
Over the whole range this value is (much) smaller 
than a(M) = 0.50. This means that the t-values 
listed in the next column are conservative as 
indicated before. The degrees of freedom to be 
used in the test are given in the next column. The 
resulting significance levels clearly indicate the 
presence of three significant PCs and nearly a 
fourth one on the 10% level. However, the input 
value of a(M) is rather small compared to the 
value estimated from the residuals of the correct 
PC model and these results are therefore promis- 
ing. (It follows that the robustness found earlier 
for Method B is misleading.) The results for the 
F-test are shown next. They have already been 
discussed in detail by Malinowski [4]. Three PCs 
are deemed significant at the 5% level of signifi- 

cance. Thus both tests agree about the true di- 
mension of the data. However, there is a sharp 
contrast with respect to the significance levels. 
The significance level supplied by the t-test is 
essentially zero while the F-test attaches an un- 
certainty of 3% to the model. The reason for the 
discrepancy is that the ?-test uses much more 
degrees of freedom than the F-test (see Ap- 
pendix). Although the t-test should also give con- 
servative estimates of the significance of a PC 
model it is seems to be less conservative than the 
F-test. Using the extra knowledge about the mea- 
surement error has indeed led to a sharper signif- 
icance level. In the case that an important deci- 
sion has to be made based on the result of a 
significance test the improvement obtained by the 
t-test may be appreciable. 

In Table 9 we have summarized the results of 
the various parametric methods for the last signif- 
icant PCs. It should be noted that for all data sets 
the value of a(M) taken from Table 1 is inserted 
in the relevant expressions. (As a result the first 
secondary PC is deemed non-significant in all 
cases.) The first column lists the data set under 
consideration. The next two columns gives the 
ratios calculated from Eqs. 3 and 9, respectively. 
It is seen that the agreement is very well in all 
cases. This result is remarkable since the evalua- 
tion of Eq. 9 involves the correction by a refer- 
ence value obtained from random matrices. The 
next three columns list the results for the t-test. 
The t-values are extremely high in all cases lead- 
ing to very small significance levels. The last 
three columns summarize the results for the F- 
test. In all cases the F-values are larger than the 

Table 9 

Results of various pseudorank estimation methods a for last significant PC of literature test data 

Data Method A Method B t-test F-test 
- - 
P(E) P(A) t Y %a F v2 %a 

PIAL 4.03 x 10 5.54 x 10 

GUTM68 4.37 4.18 

HAVES 7.19 7.19 
MALI82 4.16 x 10 4.16 x 10 

RITI-76 6.01 x 10 6.38 x 10 

WEIN 6.58 6.52 

WEIN 6.26 x 10 6.64 x 10 

’ Evaluated with G(M) given in Table 1. 

7.49 x 10 54 0.0 3.37 x 102 2 0.3 

4.24 32 8.9 x 10-2 5.66 3 9.8 

7.89 48 0.0 1.25 x 10 5 1.7 
5.51 x 10 96 0.0 1.99 x 102 5 3.2 x 1O-3 

1.22 x 102 96 0.0 4.66 x lo2 5 4.0 x 10-4 

6.79 84 0.0 7.96 6 3.0 

8.98 x 10 105 0.0 4.00 x 102 4 3.7 x 10-3 
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Table 10 
Reference singular values ’ for literature test data. The numbers marked in bold indicate the estimated pseudorank for the test 
data. Reference values that are higher than the test values (see Table 3) are underlined 

n FmL8o GUTM68 HAVES MALI82 RITl-76 WEIN WEIN 

1 2.72 2.180 0.068 4.12 0.87 3.95 3.61 
2 2.54 0.1% 0.063 3.94 0.82 3.74 3.41 
3 2.34 0.171 0.058 3.77 0.77 3.52 3.20 
4 
5 
6 
7 
8 
9 

10 

2.11 
1.79 

0.053 
0.047 
0.040 
0.032 
0.021 

3.58 
337 
3.17 
2.92 
2.66 
2.34 
191 A 

0.71 
0.65 
0.57 
047 -_ 

3.28 
3.02 
2.74 
2.42 
204 -_ 
1.52 - 

a Calculated with B(M) given in Table 1. 

t-values (this is not a general rule). However, as a 
result of the much smaller number of degrees of 
freedom the resulting significance levels are much 
larger than those found by the t-test. This is 
without consequence for the estimated pseudo- 
rank except for the (extremely small) data set 
GUTM6g. For this data set Malinowski’s F-test 
gives one significant PC at the 5% level and two 
significant PCs at the 10% level. This result is in 
agreement with the conclusion of Malinowski 
about the tendency to underestimate or overesti- 
mate the pseudorank at the S and 10% level 
respectively. 

singular values tend to be smaller than their 
reference values. The differences are small, how- 
ever, especially for the first secondary PC. The 
tendency of the reference values to be too large 
contributes to the conservative character of the 
t-test. 

In Table 10 we give the reference singular 
values for the literature data matrices. Using 
these numbers it is possible to reproduce the 
results for the t-test given in Table 9. In another 
publication 1151 we show that the secondary 
eigenvalues of the test data matrix are ap- 
proached from above by the eigenvalues of the 
reference matrix. As a result we find that the test 

For the literature data sets we have found an 
excellent agreement between the results of the 
F-test and the t-test with respect to the estimated 
pseudorank. The reason is that these data sets 
are not selected for their discriminating ability. It 
is possible to investigate the difference in sensitiv- 
ity in more detail by performing the following 
‘Gedankenexperiment’ on the data. A hypotheti- 
cal matrix is constructed from the test matrix by 
lowering the last significant singular value while 
keeping all other things fiied. The size of the 
hypothetical singular value is determined by the 
significance level it would give for a certain test. 
It is to be expected that in order to find a 
predetermined significance level, say l%, the size 

Table 11 
Comparison of actual and critical values for the eigenvalue ratio (ER) at different confidence levels 

Data ER t-test F-test 
(actual value) ER (1%) ER (5%) ER (10%) ER (1%) ER(5%) ER (10%) 

FIALBO 7.17 x 102 4.22 3.29 2.84 2.10 x 10s 3.95 x 10 1.82 x 10 
GUTM68 7.51 4.20 3.09 2.59 4.52 x 10 1.34 x 10 7.35 
HAVE85 1.24 x 10 3.19 2.41 2.05 1.62 x 10 6.57 4.04 
MALI82 2.42 x 10’ 2.85 2.26 1.98 1.98 x 10 8.04 4.94 
RITT76 4.39 x 102 2.23 1.76 1.54 1.53 x 10 6.23 3.82 
WEIN 8.21 2.80 2.19 1.91 1.42 x 10 6.18 3.90 
wEIN 4.92 x 10’ 2.48 1.99 1.75 2.61 x 10 9.48 5.58 
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of this singular value is smaller for the t-test than 
for the F-test. Since there is an arbitrary differ- 
ence in scale between the different data sets, we 
have listed in Table 11 the ratio of the last 
significant (hypothetical) and the first non-signifi- 
cant (actual) eigenvalue that would result in sig- 
nificance levels of 1, 5 and 10% respectively for 
both tests. The first column contains the dataset 
under consideration. The second column gives 
the eigenvalue ratio that is actually found. The 
next three columns give the eigenvalue ratios that 
would enable testing at the 1, 5 and 10% respec- 
tively by the t-test. The last three columns give 
the same results for the F-test. From these num- 
bers it is easily discerned that the r-test is more 
sensitive than the F-test. The situation is espe- 
cially favourable for the t-test if testing at the 1% 
level is required. The difference in sensitivity 
decreases rapidly with increasing significance 
level. It is interesting to compare the values found 
for WEIN to the critical region found by Hirsch 
et al. [43] for this data set from extensive simula- 
tions: ‘If one wishes to ensure the detection of all 
significant factors and is not concerned that too 
many factors might be accepted, one should use 
an ER (eigenvalue ratio) test, probably with a 
critical value in the range 2.0 to 2.5.’ It is remark- 
able that (approximately) the same critical region 
is found here by a test that is designed to be 
conservative. 

4.2. Simulated data 

In this section we will restrict ourselves to the 
comparison of the t-test and Malinowski’s F-test. 
But before presenting these results we discuss the 
outcome of a large number of conventional meth- 
ods. In this way we hope to discover what we can 
reasonably expect from the two significance tests. 

In Fig. 2 we show the reduced eigenvalues, the 
eigenvalue ratios, the logarithm of the eigenval- 
ues and the singular values for the simulated 
three-component systems. (The values for the first 
two PCs are not included for visual clarity.) The 
reduced eigenvalues slowly decrease for the sec- 
ondary PCs ‘. The logarithm of the eigenvalues 
lie (approximately) on a straight line for the low- 
numbered non-significant PCs. This is further 

illustrated by the eigenvalue ratios being (ap- 
proximately) constant in that region. (Plotting the 
eigenvalue ratios instead of the logarithm of the 
eigenvalues has the advantage of leading to a 
more practical scale.) These trends are in agree- 
ment with the results found earlier [15] for ran- 
dom matrices with an equal number of rows and 
columns. It is seen that the singular values lie 
(approximately) on a straight line for all non-sig- 
nificant PCs. This lends credit to the use of the 
singular values for visual inspection. The graphi- 
cal methods strongly indicate the presence of 
three significant PCs for EXPl and EXP2. For 
EXP3 no evidence for the presence of the dilute 
component can be deduced from these plots. The 
results for EXP2 should be contrasted to the 
minimum found at the second PC for both 
imbedded error function and indicator function 
(not shown here). It should be emphasized that 
finding a minimum for the imbedded error func- 
tion can be satisfactorily explained. It is simply 
the point where less error (random and system- 
atic) is introduced in the model by not including 
a PC that in fact contains systematic variation. 
Cross-validation [3] confirms the choice of a two- 
dimensional model by giving the ratios 0.04, 0.02 
and 1.02 for the first three PCs (cut-off value is 
one). Since much structure is present in the pure 
component responses used to construct the data 
we also investigated the eigenvectors. The first- 
order autocorrelation function has proved to be a 
very sensitive method for this kind of data [47]. 
For the third PC the time constants found are 
4.63 and 3.24 for the left and right singular vector 
respectively while the time constants are 0.47 and 
0.58 for the corresponding vectors of the first 
secondary PC. This result is in excellent agree- 
ment with the cut-off value of 0.60 proposed by 
Shrager [47]. However, for data matrix EXP3 the 
values 0.75 and 0.69 are found for the third PC 
and basing a decision on this method becomes 
difficult. From all the conventional methods ap- 

’ The fact that the reduced eigenvalues are not constant is 
of little consequence for the application of the F-test. The 
F-test guards against violations of assumptions by the small 
number of degrees of freedom. 
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Table 12 
Results of t-test and F-test for simulated data matrix EXPl. The numbers marked in bold indicate the estimated pseudorank 

n t-test F-test 

8 8 a ref de,,) t Y %a l&W F vl V2 %a 

1 4.23 x 103 5.75 0.22 5.97 x 103 1296 0.0 1.38 x lo4 4.62 x 10’ 1 35 0.0 
2 6.68 x 10’ 5.66 0.22 9.36 x 10’ 1225 0.0 3.64 x 102 1.54 x 104 1 34 0.0 
3 7.71 5.58 0.22 3.01 1156 0.1 5.14 x 10-2 2.44 1 33 12.8 
4 5.24 5.49 0.22 - 0.35 1089 63.7 2.52 x 1O-2 1.22 1 32 27.9 
5 5.18 5.40 0.22 -0.31 1024 62.2 2.62 x 1O-2 1.30 1 31 26.4 
6 4.85 5.31 0.23 - 0.65 961 74.2 2.45 x 1O-2 1.24 1 30 27.4 

’ Calculated with B(M) = 0.50. 

plied to this matrix only a plot of the singular 
vectors indicates the presence of the third dimen- 
sion (see Fig. 7 in [16]). The human eye is seen to 
be an excellent pattern recognizer. The applica- 
tion of this method is, however, restricted to 
ordered data [48]. In the light of the above results 
it is reasonable to demand that the significance 
tests yield certainly three significant PCs for EXPl 
and EXP2 and possibly two for EXP3. 

estimated pseudoranks are summarized in Table 
13. 

5. Conclusions 

In Table 12 we have summarized the relevant 
results for data matrix EXPl (for explanation of 
the symbols see Table 8). It is seen that the t-test 
correctly yields three significant PCs whereas the 
F-test fails. The failure is caused by the combined 
effect of the relatively small F-value and the 
small number of degrees of freedom. The results 
for data matrix EXP2 (not shown here) are very 
similar. Only the numbers for the third PC, which 
corresponds to the dilute component, change sig- 
nificantly. The r-value for the third PC is de- 
creased to 1.92, yielding a significance level of 
2.8%. Inspecting the plots in [16] may lead to the 
conclusion that this is somewhat pessimistic. Fi- 
nally, for data matrix EXP3 we find a t-value of 
0.40 which is not significant (%cr = 34.5). The 
results for the simulated data sets support the 
results obtained for the literature data. The t-test 
makes effective use of the extra knowledge. The 

In this paper three methods are discussed with 
respect to their usefulness as a parametric pseu- 
dorank estimation method. These methods expliG 
itly need an estimate of the size of the measure- 
ment error. Thus they are restrictive in their use 
but should be expected to be more sensitive than 
methods that cannot employ this extra knowl- 
edge. Method A (based on the row-echelon form 
of the matrix) and Method B (based on the eigen- 
values of PCA) have the disadvantage of not 
supplying significance levels for the estimated 
pseudorank. (Furthermore, Method A is shown 
to be sensitive for an incorrect estimate of the 
size of the measurement error.) Thus they offer 
little advantage over a large number of methods 
that is already available and does not need the 
extra knowledge. The third method (a t-test) 
makes good use of the extra knowledge and does 
supply a significance level. As a result of the 
assumptions made in order to construct the test 
statistic, the t-test should be expected to give 
conservative estimates of the pseudorank. In or- 

Table 13 
Results of various pseudorank estimation methods for simulated test data 

Data Cross- Imbedded F-test Indicator t-test Reduced Logarithm Eiienvalue Singular 
validation error function function eigenvalue eigenvalue ratio value 

EXPl 2 2 2 3 3 3 3 3 3 
EXP2 2 2 2 2 3 3 3 3 3 
EXP3 2 2 2 2 2 2 2 2 2 
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der to gauge the sensitivity of this t-test, a com- 
parison is carried out with Malinowski’s F-test 
for data obtained from the literature and simu- 
lated data. For the data matrices obtained from 
the literature the estimated pseudorank agrees 
very well for both significance tests. However, the 
t-test gives sharper confidence levels as a result of 
the larger number of degrees of freedom involved 
in the test. For the simulated data matrices Mali- 
nowski’s F-test fails to indicate the correct di- 
mension in cases where the t-test still yields sharp 
confidence levels. It is concluded that prior 
knowledge of the size of the measurement is put 
to effective use by the currently developed t-test. 
Additional support for the viability of the new 
t-test comes from a thorough analysis of the test 
data by a large number of conventional methods. 
Finally, as a remarkable by-product of the current 
research we have found that a plot of the singular 
values yields a promising graphical pseudorank 
estimation method. (This is only remarkable, since 
two modem textbooks on PCA do not mention 
this possibility [49,50].) Graphical methods have 
proved their use in the past in cases where the 
size of the measurement error is unknown. This 
new graphical method therefore provides a natu- 
ral complement to the t-test. 

Appendix 1 

In essence Malinowski’s theory deals with the 
number of degrees of freedom associated with 
secondary PCs. It is interesting to compare his 
results, viz. Eq. 11, with the theory developed by 
Mandel [28]. Mandel argues that an eigenvalue 
explains a portion of the sum of squares associ- 
ated to the data. In order to arrive at the portion 
variance explained by an eigenvalue, the eigen- 
value should be divided by an appropriate num- 
ber of degrees of freedom. The consequence of 
this reasoning is as follows: for a secondary PC 
the expectation of the eigenvalue divided by the 
appropriate number of degrees of freedom should 
be an unbiased estimator of the variance of the 
measurement error Us. Alternatively, dividing 
the expectation of the eigenvalue A,, by the vari- 
ance of the measurement error should yield an 

unbiased estimator of the appropriate number of 
degrees of freedom, v,+ 

EbbI 
v =- 

” c(M)~ 
(13) 

where E[ -1 denotes expected value. In fact these 
expected values are the reference values dis- 
cussed earlier. Since the variance accounted for 
by the secondary PCs should be constant the 
denominator in Eq. 11 should be proportional to 
the number of degrees of freedom associated 
with the PC under scrutiny. The proportionality 
constant N (normalization) is found by observing 
that the number of degrees of freedom summed 
over the secondary PCs should add up to the 
total number of degrees of freedom left after 
extracting n* components, i.e., building the cor- 
rect model: 

N= s 
(r-n*)(c-n*) 

(14) 
c (r-j+1)(c-j+1) 

j-n*+1 

Hence vn = N(r - IZ + IXc - n + I), found this 
way, should equal v,, found from evaluating Eq. 
13. We will return to this question in more detail 
in another publication [151. It is tempting to eval- 
uate Fq. 12 using the number of degrees of 
freedom associated with the sources of variance 
that are tested instead of using the number of 
sources as the number of degrees of freedom, i.e., 
take vr = N(r - n + IXc - n + 1) and v2 = 
8i+,N(r - j + 1Xc -j + 1) instead of vr = 1 and 
v2=s -n. In general this should lead to larger 
numbers of degrees of freedom and consequently 
the resulting F-test should yield an increased 
discriminating ability. Some obvious disadvan- 
tages are connected with this ‘alternative F-test’. 
In general the resulting numbers will not be inte- 
gral as already indicated by Mandel [28]. This 
problem is easily solved by rounding the numbers 
to the nearest integer. The confidence levels do 
not change very much by this operation, espe- 
cially for large data matrices. A second disadvan- 
tage is the presence of the correct dimension of 
the PC model in Eq. 14. This problem cannot be 
solved since it leads to circular reasoning: the 
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pseudorank needs to be lamwn in order to esti- 
mate it. 
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