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Abstract. Recently, Fully-Depleted Silicon on In-
sulator (FD-SOI) MOSFETs have been accepted as
a favourable technology beyond nanometer nodes, and
the technique of Recessed-Source/Drain (Re-S/D) has
made it more immune in regards of various per-
formance factors. However, the proper selection of
Buried-Oxide (BOX) thickness is one of the major
challenges in the design of FD-SOI based MOS de-
vices in order to suppress the drain electric penetrations
across the BOX interface efficiently. In this work, the
effect of BOX thickness on the performance of TMG
Re-S/D FD-SOI MOSFET has been presented at 60 nm
gate length. The perspective of BOX thickness varia-
tion has been analysed on the basis of its surface poten-
tial profile and the extraction of the threshold voltage
by performing two-dimensional numerical simulations.
Moreover, to verify the short channel immunity, the
impact of gate length scaling has also been discussed.
It is found that the device attains two step-up poten-
tial profile with suppressed short channel effects. The
outcomes reveal that the Drain Induced Barrier Lower-
ing (DIBL) values are lower among conventional SOI
MOSFETs. The device has been designed and sim-
ulated by using 2D numerical ATLAS Silvaco TCAD
simulator.
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1. Introduction

In current technological trends, high performance and
low power devices are in demand for the faster oper-

ation of Integrated Circuits (ICs). However, the con-
tinuous scaling in MOS transistors beyond nanometer
nodes affected the device performance. This results
in various short channel effects, like Drain Induced
Barrier Lowering (DIBL), Band-To-Band Tunnelling
(BTBT), threshold voltage roll-off, subthreshold slope
etc. [1], [2] and [3]. From past two decades, various
technologies have been evaluated for the improvement
in the device performance at such nodes. Mostly rec-
ommended technologies are fully-depleted silicon on in-
sulator [4] and [5], FinFET [6], [7] and [8], tunnel field
effect transistors [9].

Moreover, Buried Oxide based SOI MOS devices
have gained popularity due to their control over higher
drain electric field penetrations, lower parasitic junc-
tion capacitance, higher trans-conductance and con-
trolled subthreshold swing [10]. SOI based substrates
are also efficiently functional even in un-doped con-
ditions; this made it a preferable choice among vari-
ous device designers [11]. Moreover, FD-SOI is one of
the popular un-doped MOS technology FD-SOI MOS
structures exhibit excellent electrostatic characteristics
and offer high performance for low power ICs [10]. FD-
SOI technology also follows Moore’s law [12]. The pri-
mary concern related to the FD-SOI based MOS de-
vices is the selection of appropriate thickness and ma-
terial of buried oxide layer [13]. So that, the device
could efficiently conquer the electric field penetration
at SOI/BOX interface at sufficient drain bias. Re-
cently, the effect of back oxide thickness variation on
the performance of FD-SOI MOSFET has also been
discussed [14]. However, the problem associated with
the FD-SOI structures is the higher series resistance
[15] because of very thin layers of drain and source re-
gions and that will result in lower drive current.

In order to solve this problem, Re-S/D FD SOI
MOSFET has been evaluated [16]. In which, S/D re-
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gions are extended deeper into the BOX layer. This
modification resulted in higher drive current and en-
hanced immunity over short channel effects. The the-
oretical justifications regarding Re-S/D UTB FD-SOI
MOSFET has been provided by proposing an analyti-
cal model for front and back gate [17].

Moreover, gate engineering techniques have also
been emphasized in the past few years. As, Dual Metal
Gate (DMG) technique offers better performance as
compared to conventional structures [18] and [19]. Ku-
mar et al. has discussed the various performance fea-
tures of DMG FD-SOI MOSFET. The DMG technol-
ogy offers a step-up potential profile that predomi-
nantly controls the threshold voltage roll-off in short
channel MOSFETs due to different multi-gate work-
functions. This has also been employed with the Re-
S/D SOI MOSFETs for better results [19].

In continuation of the research, TMG technology has
also been found as the prominent method to conquer
the short channel effects and threshold voltage degra-
dation. The incorporation of triple metal adds two
step-up profile of potential distribution as compare to
DMG [20]. The advantages of TMG have been dis-
cussed by the analytical model of surface potential [21].
Whereas, an analytical model for surrounding gate en-
gineered TMG MOSFET has also been developed [22].
This incorporation effectively reduced the short chan-
nel effects in nanoscaled MOSFETs. TMG technol-
ogy has also been adopted for the effective reduction of
short dimension effects in Re-S/D FD-SOI MOSFETs.

Recently, the analytical model for the TMG Re-S/D
FD SOI MOSFET has been deliberated at 90 nm gate
length for the first time [23]. This paper correctly ex-
plains the two-step potential profile across the chan-
nel that assures the gate controllability over the device
rather than drain. It is therefore necessary to evalu-
ate the electrical performance over various design chal-
lenges of TMG Re-S/D FD-SOI MOSFET.

In this work, the effect of buried oxide thickness vari-
ation on the performance of Re-S/D FD SOI MOSFET
has been presented. The primary objective of this work
is to justify the electrical performance of the TMG Re-
S/D FD-SOI MOSFET over various design challenges
at nanometer nodes. The performance analysis of the
studied device has been done on the basis of its surface
potential profile and the threshold voltage at different
BOX thickness. In order to verify the short channel im-
munity, the DIBL effects and subthreshold slope has
also been taken under study. The impact of channel
length variation has also been a part of the study for
this work.

This paper has been organized as follows. Section
1. itself defines the introduction of recent reports
related to the various device performance. The stud-
ied device structure and specifications are discussed in

Sec. 2. The results of the numerical simulations are
thoroughly discussed in Sec. 3. and conclusion is
given in Sec. 4.

2. Device Structure and
Specifications

The schematic of TMG Re-S/D FD SOI MOSFET has
been shown in Fig. 1. The three metal gates of different
work-functions (Φm1, Φm2, Φm3) have been used here
with the length of L1, L2 and L3. Here, the first metal
gate is working as the control gate and second is as
first screen gate. Third metal is the second screen gate
which almost neglects the effects of drain electric field
penetration towards the Si/BOX interface. The source
and drain regions are highly doped, and low substrate
doping has been taken here.
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Fig. 1: Schematic of TMG Re-S/D FD SOI MOSFET.

Tab. 1: Various device parameters and their specifications.

Device parameters TMG Re-S/D FD
SOI MOSFET

Gate length 60 nm (variation: 30–70 nm)
Front oxide thickness (tox) 2 nm

Doping density
in Substrate regions 1015 cm−3

Doping density in Source Constant profile 1019 cm−3

Doping density in Drain 1019 cm−3

Back oxide (BOX)
thickness (tBOX) variation: 200–50 nm

Silicon Thickness (tSi) 10 nm
Device width 100 nm

trsd 30 nm
dbox 3 nm

Control Gate (Φm1) 4.8 eV (Au)
First Screen Gate (Φm2) 4.6 eV (Mo)
Second Screen Gate (Φm3) 4.4 eV (Ti)
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Table 1 shows the complete specifications of vari-
ous device parameters. All the device parameters have
been taken as per the ITRS guidelines. In Tab. 1,
the variation of channel length and BOX thickness has
been listed accordingly. The extension of drain and
source regions in BOX layer has been written as trsd
and the S/D overlap at the BOX layer as dbox.

2.1. Materials and Methodology
Used

In this design, triple-metal-gate is used for analysis of
BOX thickness variations. The main motive to use
triple-metal gate engineering is to improve the device
performance in terms of current drivability. As per
earlier discussion, there are three regions in the gate-
control gate, first screen gate and second screen gate.
The work-function of the metal gate decreases by mov-
ing from the source side to drain side. Higher dif-
ference between source side work-function and drain
side work-function increases the immunity to the vari-
ation of drain voltage which reduces DIBL. First gate,
i.e. control gate requires high work-function material
to increase the velocity of majority carriers, which in-
crease the electric field across source side. Due to the
increase of electric field the efficiency of current trans-
portation is increased. So, Aurum (Au-gold) with the
work-function of 4.8 eV is used. Screen gates have lower
work-function to screen the source side with drain vari-
ation. In first screen gate, Molybdenum (Mo) with
a work-function of 4.6 eV is used to make a first step-
up potential profile. In the second screen gate, Tita-
nium (Ti) with work-function of 4.4 eV is used to make
second step-up potential profile.

3. Results and Discussion

The characterization of the TMG Re-S/D MOSFET
has been done by 2D Silvaco ATLAS simulator. Differ-
ent types of models are used to simulate the device such
as CVT, SRH, CONMOB, FLDMOB, and Fermi [24].
CVT (Concentration Voltage Temperature) is concen-
tration dependent mobility model which includes sur-
face mobility degradation. SRH (Shockley Read-Hall)
recombination model is used to calculate the lifetime of
carriers. CONMOB (Concentration Dependent Mobil-
ity) model is a table to relate doping and field mobility.
FLDMOB (Field Dependent Mobility) model is used to
model velocity saturation effect. Fermi Dirac statistic
model is used to reduce carrier concentration in heavily
doped region.

Figure 2 shows the graph of surface potential at the
interface of front and back channel. The minima of
surface potential in the graph shows that the inver-

sion is done at the interface of back channel before
front channel interface. This indicates the significance
and control over various leakages associated during off
state. Form plot, the studied device successfully of-
fers the three-step profile in surface potential at front
channel interface due to inclusion of triple metal gate.
This will screen-off the drain potential effects twice as
compared to conventional dual metal gate structures
and hence improved immunity to short channel effects.
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Fig. 2: Surface potential versus position of channel length at
front and back channel interface.

The characteristic of the surface potential at front
and back interfaces has been shown in Tab. 2. The sur-
face potential minima position along the channel length
has been observed near to the source side of the chan-
nel. This corresponds to more uniform electric field
in the channel region and hence reduced short channel
effects. Also, the back-channel potential is lower than
the front potential. This signifies that the front surface
potential is responsible for threshold voltage. So, for
further verification, extraction of threshold voltage at
different channel length and buried oxide thickness has
been done.

Tab. 2: Characteristics of Surface Potential at 60 nm channel
length.

Interfaces Minima
Minimum
surface

potential
Front channel interface x = 9.21 nm 0.54056 V
Back channel interface x = 15.24 nm 0.48535 V

The graph of threshold voltage variation with chan-
nel length at the drain voltage of 0.05 V and 0.1 V has
been drawn in Fig. 3. It shows the roll-off effect by
varying drain voltage. One can observe from the plot
that there is no roll off seen at higher drain voltages.
This also justifies that the studied device is free form
drain electric field penetrations and offers lower volt-
age of operation as well. Threshold voltage variation
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with channel length at different buried oxide thickness
for 0.1 V of drain bias is shown in Fig. 4. The thresh-
old voltage is increased by decreasing BOX thickness
which assures better immunity to short channel effect
at small BOX thickness as compared to other reports
[14]. Increasing BOX thickness reduces threshold volt-
age roll-off. So, there is less consumption of less frac-
tion of gate voltage at thicker BOX layer.
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Fig. 3: Threshold voltage variation with channel length at dif-
ferent drain voltage.
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Fig. 4: Threshold voltage variation with channel length at dif-
ferent buried oxide thickness at VDS = 0.1 V.

Figure 5 shows the graph of Drain Induced Barrier
Lowering (DIBL) variation with channel length at dif-
ferent buried oxide thickness for VDS = 0.1 V. It shows
the less DIBL in the case of small BOX thickness which
ensures better immunity to barrier lowering.

Figure 6 shows the sub-threshold slope varia-
tion with channel length at different BOX thick-
ness for drain voltage of 0.1 V. It shows that sub-
threshold slope for the device moves towards ideal
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Fig. 5: DIBL variation with channel length at different buried
oxide thickness at VDS = 0.1 V.

value (60 mV·dec−1) at small BOX thickness. It shows
that sub-threshold slope is getting worse by decreas-
ing channel length which indicates the slow transition
between on and off state.
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Fig. 6: Subthreshold slope variation with channel length at dif-
ferent buried oxide thickness at VDS = 0.1 V.

From previous discussions, it has also been clari-
fied that the device is free from small dimension ef-
fects at optimized buried oxide thickness and how the
buried oxide is playing a significant role in the design of
fully depleted SOI MOSFETs. For the exact analysis
of current-voltage behavior, the input characteristics
curve has been taken under study. The drain current
vs. gate voltage plot for different BOX thickness for bi-
asing of drain at 0.1 V is shown in Fig. 7. It can be seen
from the figure that the device is showing almost negli-
gible off-state leakage and offering better drive current.
The Ion/Ioff is calculated as 2.14·109 at BOX thickness
of 50 nm.
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Fig. 7: The input characteristics curve (Id vs Vgs) at different
BOX thickness at VDS = 0.1 V.
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Fig. 8: Switching (Ion/Ioff) current ratio variation with chan-
nel length at different buried oxide thickness at
VDS = 0.1 V.

Figure 8 shows the variation of on/off current ra-
tio with channel length at different BOX thickness for
VDS = 0.1 V. The ratio of Ion/Ioff is increased by de-
creasing BOX layer thickness which shows better on
current at thinner BOX layer. It shows the better gate
control at thinner BOX layer.

Further, for the study of analog performance of the
device, transconductance analysis has been taken into
account. The device transconductance with the vari-
ation in gate to source voltage at different BOX ox-
ide thickness is shown in Fig. 9. The drain voltage
is taken as 0.1 V. It is found from the plot that the
value of transconductance is incrementing and it fol-
lows the pattern of drain current variation. However,
at higher gate voltage levels, there is a significant drop
recorded at all variations of BOX thickness and lesser
at BOX of 50 nm. Moreover, it is seen from the plot
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Fig. 9: Transconductance vs gate voltage plot with variation in
buried oxide thickness at VDS = 0.1 V.

that the transconductance value is also higher for the
same BOX oxide thickness of 50 nm and calculated as
3.82·10−9, which itself explains the analog performance
of the studied device. This is due to the enhanced car-
rier transport efficiency of the TMG Re-S/D FD-SOI
MOSFET. The various performance features at differ-
ent BOX thickness have been listed in Tab. 3.

0 1 0 2 0 3 0 4 0 5 0 6 0

0 . 5 2

0 . 5 4

0 . 5 6

0 . 5 8

0 . 6 0

0 . 6 2

0 . 6 4

0 . 6 6

0 . 6 8

 

 

Su
rfa

ce
 Po

ten
tia

l (V
)

P o s i t i o n  a l o n g  c h a n n e l  l e n g t h  ( n m )

 � M 1 =4.77 e V ,  � M 2 = 4 . 4  e V ,  � M 3 = 4 . 1  e V
 � M 1 =4.8 e V ,  � M 2 = 4 . 6  e V ,  � M 3 = 4 . 4  e V
 � M 1 =4.85 e V ,  � M 2 = 4 . 7  e V ,  � M 3 = 4 . 5 4  e V

Fig. 10: Surface potential variation with the position along the
channel for different work-functions of metal-gates at
VDS = 0.1 V.

The perspective of buried oxide thickness variation
on triple metal-gate Re-S/D FD-SOI MOSFET can be
clearly seen from Tab. 3. The optimized BOX oxide
thickness is calculated as 50 nm. For further inves-
tigations, work-function engineering for these metal-
gates has been taken into account at optimized BOX
oxide thickness. Surface potential profile has been
considered here for the work-function difference anal-
ysis. Figure 10 shows the plot of surface potential
along the channel at different work-functions of metal
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Tab. 3: Parameters value of the device for different BOX thickness at 60 nm channel length.

Parameters tBOX = 50 nm tBOX = 100 nm tBOX = 150 nm tBOX = 200 nm
Threshold (V) 0.38715 0.37575 0.3656 0.36009
DIBL (mV) 4.04 4.15 4.23 4.36

Subthreshold Slope (V·dec−1) 0.08433 0.08545 0.08717 0.08867
Ion/Ioff 2.14 · 109 9.28 · 108 7.96 · 108 6.63 · 108

Transconductance (S·µm−1) 3.82 · 10−3 3.26 · 10−3 3.26 · 10−3 3.27 · 10−3

gates. It is clear from the plot that the control gate
screening has been enhanced as the differences between
the metal-gate work-functions are increased because of
drain bias variations. Also, with the work-function en-
gineering, the minima of the surface potential are get-
ting changed. As, the work-function is decreased, the
minima is shifting more along the source channel junc-
tion, which optimally controls the drain bias effects.
However, the increment in the value of surface poten-
tial at this minima position along the channel leads
to less immunity over short dimension effects. So, it
is therefore necessary that one should trade-off as per
the requirements.

4. Conclusion

In this paper, the performance evaluation of triple
metal gate recessed source/drain FD SOI MOSFET
has been done. The appropriate validations have been
provided over various design challenges at nanometer
nodes and it has been found that the studied device
offers high performance and low power constraints. It
has been verified that the device exhibits two step-up
potential profile at the interfaces of metal gates and
hence enhanced short channel immunity. It is also
worth here to mention the threshold voltage results, as
almost negligible roll-off has been observed at higher
drain bias. From Tab. 3, the optimized buried oxide
thickness has been calculated as 50 nm at 60 nm chan-
nel length and DIBL as 4.04 mV. The device is also
offering higher drive current and low off-state leakage.
The switching ratio (Ion/Ioff) is found as 109, which is
quite enough to stay over various off state leakage issues
in the device. Hence, the studied device could be sug-
gested as a future alternative for design of nanoscaled
MOS integrated circuits.
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