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Abstract: This paper deals with a model of the telegraph
line that consists of system of ordinary differential equa-
tions, rather than partial differential telegraph equation.
Numerical solution is then based on an original mathemat-
ical method. This method uses the Taylor series for solving
ordinary differential equations with initial condition – ini-
tial value problems in a non-traditional way. Systems of
ordinary differential equations are solved using variable
order, variable step-size Modern Taylor Series Method. The
Modern Taylor Series Method is based on a recurrent calcu-
lation of the Taylor series terms for each time interval.
The second part of paper presents the solution of linear
problems which comes from the model of telegraph line.
All experiments were performed using MATLAB software,
the newly developed linear solver that uses Modern Taylor
Series Method. Linear solver was compared with the state
of the art solvers in MATLAB and SPICE software.

Keywords: Telegraph line; ordinary differential equations;
Taylor series method; MATLAB; SPICE

1 Introduction
The second order partial differential equations (PDEs)
and especially the linear ones (elliptic, hyperbolic and
parabolic) are very important in practical applications [1, 2].
One of these applications includes the telegraph equation,
which is a PDE, that describes a telegraph line (a long wire
that serves as a transmissionmedium for a signal). The PDE
can describe the behavior of the signal, however, this de-
scription does not contain any specific information about
the conditions on the wire and it is very complicated. This
paper presents a numericalmodel of the telegraph line, that
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consists only of ordinary differential equations (ODEs), it
is relatively simple, easy to configure and the results match
real output precisely. The systemofODEs is solvedusing the
Modern Taylor Series Method (MTSM), which is introduced
in one of the sections of the paper. To show the suitability
of the MTSM to solve this kind of problem and its advan-
tages over the other commonly usedmethods (Runge-Kutta,
Gear), the set of experiments is performed and the results
are analyzed.

Thiswork extends the article presented at the 2017 IEEE
14th International Scientific Conference on Informatics [3].

2 Solution of telegraph equation
Voltage and current change along the telegraph line contin-
uously in time and they can be expressed using equations

u = u(x, t), (1)
i = i(x, t), (2)

where x is a distance from the beginning of the line and t
is the time. Voltage and current in the distance x + dx can
be expressed using Taylor series with second and higher
derivatives omitted

u(x + dx) = u(x, t) + ∂u∂x dx, (3)

i(x + dx) = i(x, t) + ∂i
∂xdx. (4)

Basic Line Equations (5), (6) describe the change of voltage
and current on the line

−∂u∂x = Ri + L ∂i∂t , (5)

− ∂i∂x = Gu + C ∂u∂t , (6)

where constants R, G, L, C are parameters of line: the re-
sistance of the wire, the conductance between wires, in-
ductance of the wire (e.g. due to the magnetic field around
the wires) and capacitance between two wires, respectively.
Using (5) and (6) it is possible to construct a model of the
segment. The entire line is then a series of infinite number
of connected segments (Fig. 1). The line chained using this
segment is lossy.
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L(x)

i(x)

R(x) i(x + dx)

G(x)C(x)u(x) u(x + dx)

Fig. 1.Modeling a segment of the telegraph line – complex model.

The model in the Fig. 1 can be simplified by removing
the terms R(x) andG(x). The simplifiedmodel is in the Fig. 2.
The line then becomes lossless.

L(x)

i(x)
i(x + dx)

C(x)u(x) u(x + dx)

Fig. 2.Modeling a segment of the wire – simplified model.

Based on the simplified model, partial differential equa-
tions for voltage and current can be derived

L · C ∂
2u(x, t)
∂t2 − ∂

2u(x, t)
∂x2 = 0, (7)

L · C ∂
2i(x, t)
∂t2 − ∂

2i(x, t)
∂x2 = 0. (8)

The equations (7) and (8) can be solved analytically using
for example themethod of Separation of Variables, however
the solution of large systems of PDEs is very complicated.
Therefore, the simple model of telegraph equation was cre-
ated. The model is described in Section 4.

3 Modern Taylor series method
The Modern Taylor Series Method (MTSM) is based on re-
current calculation of the Taylor series terms for each time
step [4]. Therefore the complicated calculation of higher
order derivatives (much criticized in the literature) does
not need to be performed as the value of each term of the
Taylor series is calculated numerically. An important part
of the method is an automatic integration order setting, i.e.
using as many Taylor series terms as the defined accuracy
requires. Thus it is usual that the computation uses differ-
ent numbers of Taylor series terms for different time steps
of constant length.

Several papers focus on computer implementations of
the Taylor series method in a variable order and variable
step context, see for instance TIDES software [5], TAYLOR
[6] including detailed description of a variable step
size version, ATOMF [7], COSY INFINITY [8], DAETS [9].
Variable-stepsize variable-order scheme is also described
in [10] and [11], where simulations on a parallel computer
are shown.

The best-known and the most accurate method of cal-
culating a new value of the numerical solution of ODE [12]

y′ = f (t, y), y(t0) = y0 , (9)

is to construct the Taylor series in the form

yi+1 = yi + h · f (ti , yi) +
h2
2! · f

′(ti , yi)+ (10)

. . . + h
n

n! · f
[n−1](ti , yi),

where h is the integration step, yi = y(ti) is the previous
value and yi+1 = y(ti + h) is the next value of the function
y(t). Theoretically, it is possible to compute the solution of
homogeneous linear differential equations with constant
coefficients with arbitrary order and with arbitrary accu-
racy. Let us denote the ORD as the function which changes
during the computation and defines the number of Taylor
series terms in the current integration step (ORDi+1 = n).
The resulting system of linear equations can be effectively
solved either sequentially or in parallel.

For linear systems of ODEs, the equation (10) can be
rewritten in matrix/vector notation

yi+1 = yi + h(Ayi + b) + h2
2!A(Ayi + b) + . . .

+ h
n

n!A
(n−1)(Ayi + b) ,

(11)

where A is the constant Jacobian matrix and b is the con-
stant right-hand side. Moreover, (11) can be rewritten in the
form

yi+1 = DY0 + DY1 + DY2 + · · · + DYn , (12)

where Taylor series terms could be computed recurrently
using (13).

DY0 = yi , DY1 = h(Ayi + b), (13)

DYj =
h
j ADYj−1 , j = 2, . . . , n

Themodel of the telegraph line presented in this article can
be effectively solved by a system of linear ODEs.
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u0

R1 L1i1

C1uC1

Segment 1

i2 iS−1

CS−1uCS−1

LSiS

CSuCS

Segment S

iS+1

R2

Fig. 3.Model of the line – series of S segments.

4 Telegraph equation model
As stated in Section 2, the model used in the experiments is
the simplified model of the telegraph line (segment in Fig.
2). By chaining these segments together, we can create a
lossless model of the line (Fig. 3). Let us denote the number
of segments of telegraph line as S.
The equations describing the model are below. For the first
segment

u′C1 =
1
C1

(i1 − i2), (14)

i
′

1 =
1
L1

(u0 − uC1 − R1 · i1),

where u0 is the input voltage of the system, uC1 is the volt-
age on the first capacitor and i1 is the current that flows
through the first inductor. Resistor R1 represents input load
of the transmission line. Equations for the following seg-
ments are very similar to one another. For the second seg-
ment

u
′

C2 =
1
C2

(i2 − i3) (15)

i
′

2 =
1
L2

(uC1 − uC2 )

for the next segments

u
′

Ck =
1
Ck

(ik − ik+1), (16)

i
′

k =
1
Lk

(uCk−1 − uCk ),

where k ∈ ⟨3, S⟩. The last segment of the line ends with an
output load, simulated by the resistor R2

iS+1 =
1
R2
uCS . (17)

Note that all differential equations have initial conditions
equal to zero.

The model can be represented as the linear system of
ODEs in the matrix/vector notation

y′ = Ay + b, y(0) = y0 , (18)

where A is the sparse matrix, y is the vector of voltages
and currents and b is the vector of constants. The block
structure of matrix A, vectors y and b is

A =
(︃
A11 A12
A21 A22

)︃
, y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uC1
...
uCS
i1
...
iS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
u0
L1
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(19)
where A11, A12, A21 and A22 are individual block matrices
with size S × S

A11 =

⎛⎜⎜⎝
0 0 · · · 0
...

...
...

...
0 0 · · · −1

R2CS

⎞⎟⎟⎠

A12 =

⎛⎜⎜⎜⎜⎜⎝
1
C1

−1
C1 0 · · · · · · 0

0 1
C2

−1
C2 0 · · ·

...
...

...
...

...
...

...
0 · · · · · · · · · · · · 1

CS

⎞⎟⎟⎟⎟⎟⎠

A21 =

⎛⎜⎜⎜⎜⎜⎝
−1
L1 0 0 · · · · · · 0
1
L2

−1
L2 0 0 · · ·

...

0 1
L3

−1
L3 0 · · ·

...
0 · · · · · · · · · 1

LS
−1
LS

⎞⎟⎟⎟⎟⎟⎠

A22 =

⎛⎜⎜⎝
−R1
L1 0 · · · 0
...

...
...

...
0 0 · · · 0

⎞⎟⎟⎠ .

For our simulation experiments, the capacitances and in-
ductances are the same, C1 = C2 = · · · = CS = 1pF and
L1 = L2 = · · · = LS = 10nH (homogeneous lossless tele-
graph line).

The input voltage u0 should be generally constant (DC
circuit) or harmonic (AC circuit) signal. In the case of DC
circuit the input voltage u0 is hidden in constant right hand
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side b, see (19). In the case of AC circuit the input voltage
u0 = U0 sin(ωt) can be computed using auxiliary system of
coupled linear ODEs

u′0 = ωx , u0(0) = 0
x′ = −ωu0 , x(0) = U0 .

(20)

For our experiments, we used firstly harmonic input
signal u0 = sin(ωt), where the angular velocity ω = 3 ·
109 rad/s, and secondly impulse input voltage which is
defined as

if(t < πω ) u0 = sin(ωt) else u0 = 0 .

The behavior of the transmission on the line was stud-
ied. This behavior is based on the values of the input (R1)
and the output (R2) loads. If the condition

R1 = R2 =
√︀
L/C (21)

holds, the line is lossless and signal on the line is transmit-
ted without change. For our simulation experiments, the
line is adjusted for R1 = R2 = 100Ω. The behavior of the
signal for the harmonic input and the impulse input on the
line comprised of 100 segments (S = 100) can be seen in
the Fig. 4.
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(a) Harmonic input
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(b) Impulse input

Fig. 4. Adjusted line – output just delayed.

The propagation constant per unit length of one seg-
ment for the usedmodel is known tLC =

√
LC. Then the total

delay of input signal can be computed as tdelay = S tLC. The
simulation time for all experiments was set tmax = 2 tdelay.
For S = 100, and used L and C, the output signal is delayed
by 100 ·

√
10−8 · 10−12 = 10−8 seconds.

The next experiment was done for not adjusted line,
where (21) doesn’t hold (for example open-circuit with pa-
rameters R1 = 100Ω , R2 = 1012 Ω). The behavior of such
telegraph line (with S = 100) could be seen in the Fig. 5.

0 0.5 1 1.5 2

t [s] 10-8
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(a) Harmonic input
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(b) Impulse input

Fig. 5. Not adjusted line – output delayed and amplified.

Notice, that in the Fig. 5b, the input signal is amplified
on the output and then repeated back. This can be useful
to determine where the line is cut.

5 Numerical experiments
This section presents a set of experiments with the model
from the Section 4. The experiments are performed using
the traditional (MATLAB and SPICE software) and non-
traditional approaches (new implementation of MTSM in
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Table 1.MATLAB time of solutions: MTSM with fixed integration time step h = 5 · 10−10; harmonic input.

Adjusted line Not adjusted line
ode23 ode45 ode113 expTay ode23 ode45 ode113 expTay

S ratio ratio ratio [s] ratio ratio ratio [s]
200 29.5 12.1 9.7 0.035 28.6 10.8 9.4 0.035
600 17.3 9.3 6.5 0.211 18.2 9.4 6.5 0.21
1000 10.3 5.1 2.8 0.895 10.3 4.7 2.8 0.892
1400 7.9 3.9 2.1 2.049 8.1 3.8 2.1 2.051
1800 5.9 3.2 1.8 3.808 6.5 3.8 1.8 3.833

Table 2.MATLAB time of solutions: MTSM with fixed number of steps tmax/h = 200; harmonic input.

Adjusted line Not adjusted line
ode23 ode45 ode113 expTay ode23 ode45 ode113 expTay expTay

S ratio ratio ratio [s] ratio ratio ratio [s] ORD
200 18.6 7.3 6.4 0.053 19.5 7.4 6.4 0.053 20
600 19.03 10.7 7.1 0.196 19.8 10.8 7.1 0.196 41
1000 16.3 7.9 4.5 0.565 17.0 7.9 4.4 0.567 62
1400 15.9 7.6 4.2 1.052 16.4 7.7 4.1 1.056 84
1800 9.1 6.1 2.7 2.596 9.9 7.8 2.8 2.596 104

MATLAB). The aim is to compare the efficiency of MTSM
and other available methods and highlight the suitability
of MTSM for solving these kinds of problems coming from
technical practice [13, 14].

All codes are implemented in MATLAB 2015a and the
computations are performed by the SALOMON supercom-
puter atVŠB-TUOstrava [15]. Experiments in SPICE software
were performed on 4 core CPU clocked at 3.2 GHz with 8 GB
of RAM using LTSpice XVII [16].

Maximum time of all numerical experiments was set
to tmax = 2 tdelay, numerical error for all calculations was
set to 10−7.

5.1 MATLAB

MATLAB is the language of scientific computing [17]. It
contains the full suite of tools that can be used to solve
various engineering and mathematical problems. Experi-
ments in this paper use the ODE solvers, that are bundled
with MATLAB. The solvers used in the paper are based
on the Runge-Kutta method (solvers ode23 and ode45)
[18]. Solver ode45 is based on an explicit Runge-Kutta
(4,5) formula, solver ode23 on an explicit Runge-Kutta
(2,3) formula. Both are single-step solvers. Solver ode113 is
a variable-step, variable-order (VSVO) Adams-Bashforth-
Moulton PECE solver of orders 1 to 13. The highest order
used appears to be 12, however, a formula of order 13 is

used to form the error estimate and the function does local
extrapolation to advance the integration at order 13.

Vectorized MATLAB code of explicit Taylor series
expTaywith a variable order and variable step size scheme
for linear systems of ODEs (18) has been implemented. This
algorithm was tested on a set of examples of telegraph line
with different number of segments S. The MTSM was com-
pared with vectorized MATLAB explicit ode solvers. Both
relative and absolute tolerances for all solvers were set to
10−7 for all experiments.

Benchmark results for MTSM with fixed integration
step size h = 5 · 10−10 are shown in Tables 1, 3. The nu-
merical results for all experiments are similar and shows
the stability of MTSM during the different computations.
The results of computations for line with harmonic input
and fixed number of integration steps tmax/h = 200 are
shown in Table 2. Other experiments (line with impulse
input) will be again similar. Ratios of computation times
(ratio := ode/expTay > 1) indicate faster computation of
the MTSM in all cases. Each reported runtime is taken as
a median value of 100 computations. The fastest solution
fromMATLAB solvers is obtained by ode113 solvers that use
higher order method.

For the linearity and non-stiffness of the problem the
ORD function was oscillating 35 ± 2 during the compu-
tation (for experiments with fixed integration step size
h = 5 ·10−5). The average order of the MTSM (mean(ORD))
for experiments with fixed number of integration steps
(tmax/h = 200) is shown in the last column of Table 2. The
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Table 3.MATLAB time of solutions: MTSM with fixed integration time step h = 5 · 10−10; impulse input.

Adjusted line Not adjusted line
ode23 ode45 ode113 expTay ode23 ode45 ode113 expTay

S ratio ratio ratio [s] ratio ratio ratio [s]
200 28.1 11.6 9.3 0.036 30.3 11.7 9.3 0.036
600 16.5 9.3 6.4 0.214 17.6 9.5 6.4 0.213
1000 8.7 4.5 2.9 0.907 9.6 4.7 3.0 0.907
1400 6.9 3.6 2.3 2.075 7.4 3.7 2.2 2.072
1800 5.12 2.9 1.9 3.833 5.4 2.9 1.9 3.847

Table 4.MATLAB number of steps: harmonic input.

Adjusted line Not adjusted line
S ode23 ode45 ode113 ode23 ode45 ode113 expTay
200 9553 6924 2685 10017 6984 2685 80
600 26262 19944 8031 27479 20036 8031 240
1000 42260 32836 11804 44248 32964 11804 400
1400 57972 45656 15878 60755 45824 15878 560
1800 73465 58452 19952 77061 58592 19952 720

0 0.2 0.4 0.6 0.8 1
t

×10
-7

0

10

20

30

40

ORD

(a) S = 600

0 0.5 1 1.5 2 2.5
t

×10
-7

0

20

40

60

80

ORD

(b) S = 1400

Fig. 6. Adjusted line with harmonic input: MTSM order.

order of the MTSM for adjusted line with harmonic input
and 600 segments is depicted in the Fig. 6a and for 1400
segments in Fig. 6b.

The number of integration steps needed during the
computation could be seen in Tables 4, 5 for harmonic and
impulse input signal, respectively. The number of integra-
tion steps is strictly linear with growing size of the ODEs
(the number of segments S in transmission line).

More comparisons of MTSM numerical solutions of lin-
ear ODEs systems and some ideas of parallel computation
could be found in [19].

5.2 SPICE

Content of this section is mostly from [20]. SPICE is used
for analogue circuit simulation because it can compute
the full large signal behavior of arbitrary circuits. SPICE
uses three numerical methods for numerical integration.
Newton integration is suitable to find the solution of circuits
with non-linear elements. The sparsematrixmethod is used
to save memory by storing only non-zero elements of the
matrices. Implicit integration method is used to integrate
the differential equations that describe the circuit.

Numerical integration of differential equations is neces-
sary for analogue circuit simulation. SPICE uses second or-
der integration. Most SPICE implementations follow Berke-
ley SPICE and provide two forms of second order implicit
integration: Gear and Trapezoidal (trap). Trap integration is
both faster andmore accurate than Gear. However trap inte-
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Table 5.MATLAB number of steps: impulse input.

Adjusted line Not adjusted line
S ode23 ode45 ode113 ode23 ode45 ode113 expTay
200 9943 7552 2688 10589 7656 2688 80
600 25232 20404 8017 26983 20716 8017 240
1000 38668 32340 12603 41449 32860 12878 400
1400 51063 43776 17367 54861 44508 17367 560
1800 62696 54868 21879 67533 55804 21879 720

Table 6. SPICE time of solutions and number of steps: not adjusted line.

Time of solutions [s] Number of steps
Harmonic input Impulse input Harmonic input Impulse input

S modTrap gear modTrap gear modTrap gear modTrap gear
200 1.547 2.427 2.593 3.812 1903 1903 2974 2921
600 15.0 21.7 16.29 26.58 6045 6089 6866 6842
1000 39.33 70.92 40.99 65.63 9543 9634 10122 10146
1400 141.9 157.7 81.92 166.5 13287 13340 13176 13172
1800 125.3 291.3 180.4 298.5 17903 17997 16163 16025

gration can cause anumerical artifacts. These artifactsman-
ifest like the oscillation around the precise solution in each
time step. LTSpice, which was used for the experiments,
also provides Modified Trapmethod, which solves the prob-
lem with numerical artifacts. All of the experiments were
performed using Gear and modified Trapezoidal method
(denoted as modTrap in the tables).

The model for SPICE consists of components (mod-
els) for resistors, capacitors, inductors and input voltage
(sine wave). The input voltage has the same characteris-
tics as in the previous sections of the paper. For the har-
monic input, the SINE component has the following pa-
rameters (0 U0 ω/(2π) 0 0 0 0) and for the impulse input
(0 U0 ω/(2π) 0 0 0 0.5).

The description of the rest of the components is straight
forward. The abbreviated version of the netlist (the descrip-
tion of the circuit) for the model with 100 segments (S =
100) for not adjusted line with R1 = 100Ω, R2 = 1012 Ω
and with the harmonic input where ω = 3 ·109 rad/s could
be seen in Listing 1. The model corresponds with the elec-
trical circuit in Fig. 3.
V1 1 0 SINE (0 1 477464829.275686 0 0 0 0)
R1 1 2 100.0
C1 2 0 1e−12
L1 2 3 1e−08
C2 3 0 1e−12
L2 3 4 1e−08
. . .
C99 100 0 1e−12
L99 100 101 1e−08
C100 101 0 1e−12
L100 101 102 1e−08
R100 102 0 1000000000000.0

Listing 1. SPICE source code.

The tolerances of all solvers were set to 10−7. The result of
the simulation for not adjusted line with 100 segments is
shown in Fig. 7. The output matches the result obtained by
the MATLAB solvers (see Fig. 5).

The results of the performed experiments for not ad-
justed line are summarized in Table 6.

The experiments for adjusted line show similar behav-
ior. When comparing to the MTSM solver implemented in
MATLAB, the time of solution is much longer. It it caused by
the lack of vectorization, that is used in MATLAB or implicit
schemes of methods implemented in SPICE. The time of
transformation the set problem from netlist scheme (see
Listing 1) to inner matrix/vector representation is also time
consuming.

6 Conclusion
This article dealt with the numerical analysis of the sec-
ond order partial differential equation – Telegraph equa-
tion. This equation was replaced by the segment model
and described by the system of ordinary differential equa-
tions (ODEs). The systemhas been solvednumerically using
MTSM and other methods for comparison.

As an example, the model with different number of
segments (different length of the line) was presented. The
experiments showed the behavior of the signal transmis-
sion for the specific combination of input/output loads (pa-
rameters R1 and R2) and different input signal (harmonic
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Fig. 7. SPICE not adjusted line – output delayed and amplified.

or impulse). The experiments are summarized and clearly
show the suitability of the MTSM for this kind of problem.
TheMTSMwas comparedwith the state of the art numerical
solvers implemented in MATLAB and SPICE software.

Due to the fact that the Telegraph equation is the spe-
cial case of the wave equation, it might be possible to
slightly change the presented model to represent much
wider class of problems, which is an interesting topic for
future research. The problem is easily scalable so differ-
ent approaches to parallelization can also be researched
especially for larger systems of ODEs.
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