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Abstract. Due to conventional differential evolution
algorithm is often trapped in local optima and pre-
mature convergence in high dimensional optimization
problems, a State Evaluation Adaptive Differential
Evolution algorithm (SEADE) is proposed in this pa-
per. By using independent scale factor on each dimen-
sion of optimization problem, and evaluating the dis-
tribution of population on each dimension, the SEADE
correct the control parameters adaptively. External
archive and a moving window evaluation mechanism
on evolution state are introduced in SEADE to detect
whether the evolution is stagnation or not, and with the
help of opposition-based population, the algorithm can
jump out of local optima basins. The results of experi-
ments on several benchmarks show that the proposed al-
gorithm is capable of improving the search performance
of high dimensional optimization problems. And it is
more efficient in design FIR digital filter using SEADE
than conventional method like Parks-McClellan algo-
rithm.
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1. Introduction

FIR digital filter is an important component of digi-
tal signal processing system [1]. With the characteris-
tics of system stability, easy to achieve linear phase,
allowing to design of multi passband/stopband and
easy to implement in hardware, FIR digital filter has

been widely used in communications, voice and im-
age processing, radar, biomedical systems, consumer
electronics system, seismic exploration and other fields
[2]. Traditional design methods of FIR digital filter
include window function method [3], frequency sam-
pling method [4] and uniform approximation method
[5]. Among them, the frequency sampling method and
the window function method are simple, but it is dif-
ficult to accurately determine boundary frequency of
passband and stopband of the filter. Uniform approx-
imation method, such as Parks-McClellan algorithm
[6], can obtain better passband and stopband perfor-
mance, and can accurately specify the passband and
stopband edge, but the amplitude error relative value
of frequency band is specified by the weighting function
rather than by the deviation of FIR digital filter.

In recent years, various computational intelligence
algorithms have begun to be applied to the optimal
design of FIR digital filter and various unbiased state-
space filters, and achieved good results [7] and [8]. Dif-
ferential Evolution (DE for short) algorithm, which is
proposed by Storn and Price [9], is a simple and effec-
tive random optimization algorithm based on popula-
tion. Due to its excellent extendibility and versatility,
DE has been widely used in various fields. However,
similar to other evolutionary algorithms, DE is easy
to fall into local optima and premature convergence
in solving high dimensional optimization problems. In
order to overcome the shortcomings of DE, researchers
have proposed a variety of improved algorithms based
on DE. The improvement is focused on the parameter
adjustment and control of DE [10], and there are three
main types of improvements [11] and [12]:

• Modify the control parameters of DE using deter-
ministic parameter control rules, such as the linear
change of control parameters with the evolution-
ary iterations [13].
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• Modify and adjust the control parameters of DE
according to the feedback of evolutionary search
[14], [15] and [16].

• Self-adaptive improvement of DE, in which the
control parameters are encoded into the popu-
lation, and evolve together with the population,
such as the self-adaptive DE algorithm(jDE) [17],
SaDE [18] and ISAMODE-CMA [19].

In this paper, we present a State Evaluation Adap-
tive Differential Evolution algorithm (SEADE), aiming
at the shortcomings of DEs in solving high dimensional
optimization problems. SEADE correct the control pa-
rameters using the feedback of the state of population
and evolution, and jump out of local optima basins
through external archive and opposition-based popu-
lation. The simulation results show that the SEADE
applied to the optimal design of FIR digital filter is
superior to other optimization algorithms.

2. Differential Evolution
Algorithm

2.1. Optimization Problem Model

Optimization problems in practical scientific research
and engineering applications can be formulated as min-
imization problems which can be expressed in general:

minf(~x), (1)

where f : Ω ⊆ <D −→ < is any real-valued func-
tion, which can be discontinuous, non-differentiable;
~X = [x1, x2, x3, . . . , xD] is the solution vector of the
problem to be optimized; and D is the dimension of
the problem. The objective of the minimization prob-
lem is to find an optimal solution vector ~X∗, which
ensure that for all ~X ∈ Ω, there is f( ~X∗ < f( ~X)).

2.2. Differential Evolution Algorithm

Similar with standard Evolutionary Algorithms (EA),
DE also includes three operations: mutation, crossover
and selection. Unlike standard evolutionary algo-
rithms, the DE algorithm mainly uses differential mu-
tation operations to achieve disturbance to the popu-
lation, while EA relies more on the generation of off-
spring randomly to disturb the population.

The classic DE algorithm flow is as follows:

• Initial population: NP solution vectors are gener-
ated randomly in solution space, of which the ith
solution vector ~Xi,G express as:

~Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G], (2)

where i = 1, 2, . . . ,NP is the index of solution vec-
tor, D is the dimension of the problem to be opti-
mized, and G is the current evolutionary iteration,
which the initial value is G = 0.

• Mutation: there are 5 commonly used mutation
strategies in DE, of which the most widely used is
the strategy DE/rand/1 which generate the muta-
tion individual according to the following method:

~Vi,G = ~Xri1,G
+ F · ( ~Xri2,G

− ~Xri3,G
), (3)

where ~Vi,G is the mutation vector generated by
~Xi,G, ri1, ri2 and ri3 are mutually exclusive indices
randomly chosen from solution space, which are
also different from i, and F is the scaling factor
which control the magnitude of the difference com-
ponent.

• Crossover: to enhance the potential diversity of
the population, a crossover operation comes into
play after mutation. There 2 crossover strategies
in DE, exponential and binomial, of which the bi-
nomial can be expressed as follows:

uj,i,G =

{
vj,i,G, if(randi,j ≤ Cr or j = jrand),
xj,i,G, otherwise,

(4)
where uj,i,G ∈ ~Ui,G is the element of new solu-
tion vector generated by mutation, randi,j is a
uniformly distributed random number in interval
[0, 1], jrand is a randomly chosen index, which en-
sures the it can get at least one element from ~Vi,G,
and Cr is cross factor which control the probabil-
ity of crossover.

• Selection: the greedy selection mechanism is used
to determine the solution vectors for the next it-
eration, the method of selection is as follows:

~Xi,G+1 =

{
~Ui,G, if f(~Ui,G) ≤ f( ~Xi,G),
~Xi,G, if f(~Ui,G) > f( ~Xi,G).

(5)

The DE algorithm searches the solution space by
mutation operation, realizes the information exchange
of the solution vector by crossover operation, and ob-
tains the better solution vector through the selection
operation. Through the iterative mechanism, DE al-
gorithm can complete the directional search of the so-
lution space. With the increase of the size of the op-
timization problem, especially the increase of the di-
mension of the problem, the DE algorithm is easy to
fall into the local optimal, and leads to premature con-
vergence.
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3. State Evaluation Adaptive
Differential Evolution
Algorithm

Aim at the disadvantage of DE in high-dimensional
optimization problem, of which being easy to fall
into local optimal and premature convergence, a
State Evaluation Adaptive Differential Evolution Al-
gorithm (SEADE) is proposed based on DE algorithm,
with introducing external archiving mechanism and
opposition-based population, and through state eval-
uation which include population distribution based
state evaluation and sliding windows based evolution-
ary state evaluation.

3.1. External Archiving Mechanism
and Opposition-based
Population

The external archiving mechanism provides informa-
tion guidance for subsequent evolution by stores the
relevant information after evolutionary iteration. The
information External archived includes the current op-
timal value and the optimal value of each generation
of the nearest N generation, where N = L+ 2, and L
is the length of sliding window. In order to make the
algorithm jump out of the local optimal, the SEADE
algorithm introduces the opposition-based population
[20] and [21].

Definition 1. Let x be a real number defined in the
closed interval [a, b], i.e., x ∈ [a, b]. Then the opposite
number x̆ of x may be defined as:

x̆ = a+ b− x. (6)

Definition 2. Opposition-based population OX of
population X is defined as:

OXj,i = aj,i + bj,i −Xj,i, (7)

where i = 1, 2, . . . ,NP is the index of solution vector
of population, NP is the number of solution vectors,
j = 1, 2, . . . , D is the dimension index of each solu-
tion vector, D is the dimension of the problem to be
optimized, aj,i and bj,i indicate the upper boundary
and lower boundary of dimension j of the ith solution
vector, respectively. The opposition-based population
can greatly increase the diversity of the population by
complementary movement of the population, which has
excellent ability to jump out of the local optimal.

3.2. Population-Based Distribution
State Evaluation

The distribution of the population is very important
for guiding the algorithm when optimizing the spe-
cific problem. Through distribution state evaluation
on every dimension of the population, SEADE can get
real-time search status, and provide appropriate con-
trol parameters for the sequent evolution iteration.

Definition 3. The population center is the mean of
each solution vector of the current population in each
dimension, i.e., the population center of the Gth itera-
tion is defined as ~XM

G :

~XM
G =

1

NP

NP∑
i=1

xj,i,G, (8)

where j is the dimension of the problem to be op-
timized, and NP is the total number of all solution
vectors in the current iteration.

Definition 4. The deviation from the population cen-
ter of solution vector is defined as the distance between
the solution vectors and population center in each di-
mension, which can express as:

~Si,G =
~Xi,G − ~XM

G

~Xmax − ~Xmin

, (9)

where ~Xmax and ~Xmin is the upper boundary and lower
boundary of the solution vector in each dimension.

Definition 5. The population distribution state DSG

of the Gth iteration express as:

DSG =
1

NP

NP∑
i=1

(
1

D

D∑
j=1

~Si,G), (10)

where NP is the total number of all solution vectors
in the current iteration, and D is the dimension of the
problem to be optimized. For ~Si,G is a normalized
vector according to Eq. (9), the population distribution
state calculated by Eq. (10) is in the closed interval
[0, 1], i.e., DSG ∈ [0, 1].

Definition 6. The deviation from the optimal is de-
fined as the distance between the optimal solution vec-
tor and population center in each dimension, which can
express as:

~Sbest =
~Xbest − ~XM

G

~Xmax − ~Xmin

, (11)

where ~Xbest is the optimal solution vector stored in ex-
ternal archive so far.

The deviation from the population center of solution
vector ~Si,G reflects the search distribution between the
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current solution vector and other solution vectors dur-
ing the proceeding of evolution. The deviation from
the optimal ~Sbest reflects the search distribution be-
tween the current population and the optimal solution
vector. The population distribution state DSG of the
Gth iteration evaluates the search status of popula-
tion from a unitary perspective, which indicates that
the population distribution is relatively concentrated
when DSG tends to 0, and the population distribution
is relatively dispersive when DSG tends to 1.

3.3. Sliding Window Based
Evolutionary State Evaluation

In order to evaluate the evolutionary state, and judge
whether the algorithm into a local optimal or not,
SEADE algorithm introduces the method of sliding
window. By combining with the external archive, an
evaluation mechanism based on sliding window is es-
tablished in SEADE.

Definition 7. The evolutionary state window is the
mean of the best archive within the window, i.e., the
evolutionary state window WG of the Gth iteration is
defined as:

WG =
1

L

L−1∑
n=0

f( ~XGbest,G−n), (12)

where L is the length of window, ~XGbest,G is the global
optimal individual in external archive in the Gth iter-
ation, and f(·) is the fitness function.

Definition 8. The coefficient of evolutionary state
PSG of the Gth iteration express as:

WG =
WG −WG−1

WG−1 −WG−2 + ε
, (13)

where ε a small number, which is to avoid the denom-
inator in the Eq. (13) is 0.

Its indicates in Eq. (13) that algorithm is in stag-
nation state when PSG = 0, and in slow search state
when 0 < PSG < 1, and in accelerated search state
when PSG > 1.

3.4. SEADE Algorithm

The SEADE algorithm adjusts the control parameters
according to the evaluation of the distribution and evo-
lution state of the population. The two threshold DST

G

and PST
G are introduced to control the parameters,

which correspond to the population distribution and
evolutionary state respectively. The control parame-
ters mainly point at differential scaling factor F and

crossover factor Cr, and the control strategies includ-
ing the following:

F
(G+1)
i = (1− |~Si,G − ~Sbest|) · rand(0, 1), (14)

Cr
(G+1)
i = |~Si,G − ~Sbest| · rand(0, 1), (15)

F
(G+1)
i = (1− |~Si,G|) · rand(0, 1), (16)

F
(G+1)
i = |~Si,G| · rand(0, 1), (17)

where FG+1
i and CrG+1

i is the differential scaling fac-
tor and crossover factor of the ith solution vector in
(G + 1)th iteration respectively, ~Si,G and ~Sbest is the
deviation from population center and the optimal solu-
tion vector in Gth iteration respectively, and rand(0, 1)
is a uniformly distributed random number in interval
(0, 1).

In the condition of PSG = 0, randomly initial-
ize the population and go to the next iteration when
DSG < DST

G, and generate the opposition-based popu-
lation and go to the next iteration when DSG ≥ DST

G.

In the condition of 0 < PSG < PST
G, update the

differential scaling factor and crossover factor using
Eq. (14) and Eq. (15) when DSG < DST

G, and using
Eq. (16) and Eq. (17) when DSG ≥ DST

G.

In the condition of 0 < PSG ≥ PST
G, update the

differential scaling factor and crossover factor using
Eq. (14) and Eq. (17) when DSG < DST

G, and using
Eq. (16) and Eq. (15) when DSG ≥ DST

G.

The threshold DST
G and PST

G is adjusted according
to the evolution proceeding. The strategies including
the follows:

DST
G+1 = 0.8 ·DST

G, (18)

DST
G+1 = 0.2 + 0.8 ·DST

G, (19)

PST
G+1 = 0.8 · PST

G, (20)

PST
G+1 = 0.2 + 0.8 · PST

G, (21)

where DST
G+1 and PS

T
G+1 is the threshold after adjust-

ment.

The DST
G is adjusted according to Eq. (19) after

continuous N times stochastic initialization of popu-
lation, and according to Eq. (18) after continuous N
times generate opposition-based population. The PST

G

is adjusted according to Eq. (21) after PSG continu-
ous N times fall in interval (0, PST

G), and according to
Eq. (20) after PSG continuous N times fall in interval
(PST

G,+∞).

The basic flow of the SEADE algorithm is shown in
Tab. 1.
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Tab. 1: SEADE Algorithm Flowchart.

SEADE Algorithm Flowchart
Step 1. Initializing population and related parameters
Step 2. Compute the fitness value of each initial vector,
save the initial optimal value and vector to external archive
Step 3. The iteration is performed when the termination
condition is not satisfied

Step 3.1 Differential mutation operation
Step 3.2 Crossover operation
Step 3.3 Selection operation
Step 3.4 Evaluate the population, store the evolutionary
status information and update the current optimal
Step 3.5 Control parameters are updated using popula-
tion distribution state and evolutionary state

Step 4. Output optimal value and corresponding vector

3.5. Experiments

In order to verify the performance and effectiveness of
the SEADE algorithm, simulation comparison exper-
iments is carried out. The test functions used in the
experiments are listed in appendix. The contrast algo-
rithms used in the experiments are standard DE, jDE
and ODE. The experiments were carried out 50 times
in each group to ensure the reliability of the solution.

The parameters for each algorithm are set as follows:
the number of solution vectors of the population is 10
times of the dimension of the optimization problem,
i.e., the number of solution vectors of population is 300
when the dimension of the optimization problem is 30.
The number of iterations is 1000, and not any other
termination conditions were set. The scaling factor F
of DE is a random number in interval (0.5, 1), and
the crossover factor Cr is a random number in interval
(0.8, 1). The mutation and crossover of DE adopt the
strategy of DE/best/1/exp. jDE and ODE adopt the
recommended parameters given by literature [8] and
[14] respectively. Table 2 is the experimental result, in
which Mean represents the mean value of the optimal
results obtained by the 50 repeated tests, and StdDev
is the corresponding standard deviation.

The experimental results in Tab. 2 show that the
SEADE algorithm is better than the other three algo-
rithms in the optimization effect, of which the average
values indicate that the SEADE algorithm has better
performance, and the standard deviation shows that
the SEADE algorithm is more stable in the process of
optimization. Figure 1, Fig. 2, Fig. 3 and Fig. 4 shows
the contrast of average evolution process of the four
algorithms with 50 repeated experiments on the test
functions f1, f3, f4, and f9. The SEADE algorithm
has faster convergence speed relative to the other three
algorithms from the diagrams.
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Fig. 1: Contrast of average evolution process on test function
f1 with 50 repeated experiments.
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Fig. 2: Contrast of average evolution process on test function
f3 with 50 repeated experiments.
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Fig. 3: Contrast of average evolution process on test function
f4 with 50 repeated experiments.
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Tab. 2: The contrast of SEADE and other 3 algorithms (50 times repeated experiments).

DE jDE ODE SEADE
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

f1 1.5259e− 14 2.9492e− 14 4.7680e− 21 5.8081e− 21 7.0837e− 94 3.5687e− 93 1.2458e− 190 0
f2 1.7774e− 88 6.3323e− 88 4.8831e− 27 2.2260e− 26 1.7109e− 203 0 6.5074e− 246 0
f3 1.3992e− 13 2.6509e− 13 5.7435e− 20 1.0744e− 19 2.6812e− 92 1.5814e− 91 1.0216e− 203 0
f4 0.0130 0.0080 0.1526 0.1620 2.1560e− 32 1.2318e− 31 3.8576e− 90 2.6280e− 89
f5 0.4204 1.2054 15.3271 14.7124 0.0015 0.0021 1.0821e− 04 2.7317e− 03
f6 0 0 0 0 0 0 0 0
f7 0.0618 0.0140 0.0202 0.0054 0.0095 0.0041 2.8861e− 04 2.1396e− 03
f8 −5.7867e+ 169 - −inf - −3.7067e+ 89 1.4335e+ 90 −3.5025e+ 105 1.6819e+ 106
f9 21.3923 2.7907 0.1194 0.3835 0 0 0 0
f10 3.4666e− 08 3.1107e− 08 1.3244e− 11 8.8224e− 12 4.4409e− 15 1.0151e− 15 8.8818e− 16 1.5209e− 15
f11 6.6169e− 16 1.7712e− 15 0.0024 0.0172 0 0 0 0
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Fig. 4: Contrast of average evolution process on test function
f9 with 50 repeated experiments.

4. Optimum Design of FIR
Digital Filter Using SEADE

For the N order FIR digital filter, the transfer function
can be expressed as:

H(z) =

N−1∑
n=0

h(n)z−n, (22)

where h(0), h(1), . . . , h(N − 1) is the coefficient of FIR
digital filter. Take z = ejω, the frequency response of
the filter is:

H(ejω) =

N−1∑
n=0

h(n)e−jωn. (23)

If the ideal frequency response of the FIR digital fil-
ter is recorded as |Hd(ejω)|, then at the discrete points
{ωi|i = 1, 2, . . . ,M}, the sum of square of the error of
the amplitude |H(ejω)| of designed filter and the am-
plitude |Hd(ejω)| of of ideal filter is:

E =

M∑
i=1

(|H(ejωi)| − |Hd(ejωi)|)2. (24)

According to Eq. (23) and Eq. (24), it can conclude
that

E =

M∑
i=1

[∣∣∣∣∣
N−1∑
n=0

h(n)e−jωin

∣∣∣∣∣− ∣∣Hd(ejωi)
∣∣]2. (25)

Thus the optimum design of FIR digital filter can be
translated into the minimization problem of the sum
of square of the error between the designed frequency
response and ideal frequency response.

5. Simulation

In order to verify the effectiveness of the proposed
SEADE algorithm in the optimization design of FIR
digital filters, the simulation experiments of FIR digi-
tal filter design are carried out by using MATLAB on
computer. The Parks-McClellan algorithm [6], PSO al-
gorithm [7] and standard DE algorithm are used as the
contrast algorithms to SEADE algorithm in the exper-
iments. The size of population in the PSO algorithm is
set to 10 times of the order of the filter, and the coef-
ficient of inertia weight w = 0.9, and linearly damped
to w = 0.4 by iteration process. The acceleration con-
stant of PSO is set to 2, i.e., c1 = c2 = 2. The size of
population of DE is set to 10 times of the order of the
filter, the scaling factor F is set to a random number
in interval (0.5, 1), and the crossover factor Cr is set
to a random number in interval (0.8, 1).

5.1. Optimal Design of Highpass
FIR Digital Filter

For the design of 30 order high pass FIR digital filter,
which the technical index is

Hd =

{
1, 0.52π ≤ ω ≤ π,
0, 0 ≤ ω ≤ 0.48π.

(26)

The sampling of ω in interval [0, π], and the total
sampling points are N = 64, i.e.,
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ωi =
π · i
N − 1

, i = 0, 1, 2, . . . , N − 1. (27)

Then the amplitude frequency sampling point of the
corresponding high pass FIR filter is

Hd(i) =

[
0, 0, . . . , 0︸ ︷︷ ︸

31

, 0.3016, 0.6984, 1, 1, . . . , 1︸ ︷︷ ︸
31

]
. (28)

The result of contrast experiment is shown in Fig. 5
and Fig. 6, and the results of 50 times contrast ex-
periments between DE, PSO and SEADE are listed in
Tab. 3.

Frequency (ω/π)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Parks-McClellan
DE
PSO
SEADE

Fig. 5: Contrast of amplitude frequency response of 30 order
high pass FIR digital filter.
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Fig. 6: Contrast of log amplitude frequency response of 30 order
high pass FIR digital filter.

The figures and table show that the SEADE can get
more optimized parameters to design the FIR filter
than the methods of Parks-McClellan, standard DE
and PSO.

Tab. 3: 50 times repeated contrast experiments.

Optimal Mean Standard deviation
DE 0.9235 1.0032 0.0725
PSO 0.0947 0.1022 0.0091

SEADE 0.0848 0.0893 0.0057

5.2. Optimal Design of Bandpass
FIR Digital Filter

For the design of 30 order bandpass FIR digital filter,
which the technical index is

Hd(ejω) =

{
0, 0 ≤ ω ≤ 0.28π, 0.72π ≤ ωπ
1, 0.32π ≤ ω ≤ 0.68π

. (29)

The sampling of ω in interval [0, π], and the total
sampling points are N = 64, i.e.,

ωi =
π · i
N − 1

, i = 0, 1, 2, . . . , N − 1. (30)

Then the amplitude frequency sampling point of the
corresponding bandpass FIR filter is

Hd(i) =

[
0, 0, . . . , 0︸ ︷︷ ︸

18

, 0.1429, 0.5397, 0.9365,

1, 1, . . . , 1︸ ︷︷ ︸
22

, 0.9365, 0.5397, 0.1429, 0, 0, . . . , 0︸ ︷︷ ︸
18

]
.

(31)

The result of contrast experiment is shown in Fig. 7
and Fig. 8, and the results of 50 times contrast ex-
periments between DE, PSO and SEADE are listed in
Tab. 4.

Frequency (ω/π)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
m

pl
itu

de

0

0.2

0.4

0.6

0.8

1

1.2

Parks-McClellan
DE
PSO
SEADE

Fig. 7: Contrast of amplitude frequency response of 30 order
bandpass FIR digital filter.

From the simulation results, the SEADE algorithm
is better than the 3 other methods including Parks-
McClellan, PSO and DE algorithm in the optimum
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Fig. 8: Contrast of log amplitude frequency response of 30 order
bandpass FIR digital filter.

Tab. 4: 50 times repeated contrast experiments.

Optimal Mean Standard deviation
DE 0.9680 1.0135 0.0536
PSO 0.1597 0.1762 0.0166

SEADE 0.1326 0.1491 0.0084

design of 30 order high pass and bandpass FIR digital
filter. The amplitude frequency response curve show
that the optimization parameters of filter with SEADE
algorithm is the best of 4 methods, and the 50 times
of repeated tests show that the SEADE algorithm is
much better than PSO and DE in the optimal value,
average value and standard deviation.

In conclusion, it can achieve satisfactory perfor-
mance with SEADE in the optimized design of FIR
digital filter, and the experiments show that the opti-
mization method is an effective design method of FIR
digital filter.

6. Conclusion

As a very effective computational intelligence optimiza-
tion algorithm, DE algorithm provides a new idea for
the optimization of many nonlinear, non-differentiable
and multi peak complex problems. Aim at standard
DE algorithm is easy to fall into local optimal and pre-
mature convergence in solving high-dimensional opti-
mization problems, we proposed a method based on
state evaluation adaptive differential evolution algo-
rithm SEADE, the simulation experiments show that
the SEADE algorithm has been significantly improved
in accuracy and stability in solving optimization prob-
lems. And in the optimum design of FIR digital filter,
the SEADE algorithm is also proved very effective and
has good performance.
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Appendix A
Test Functions

•

f1(x) =

n∑
i=1

x2i ,

dimension n = 30, variable xi ∈ [−100, 100]n and
the optimal is 0.

•

f2(x) =

n∑
i=1

|xi|+
n∏

i=1

|xi|,

dimension n = 3, variable xi ∈ [−10, 10]n and the
optimal is 0.

•

f3(x) =

n∑
i=1

 i∑
j=1

x2j

 ,

dimension n = 30, variable xi ∈ [−100, 100]n and
the optimal is 0.

•
f4(x) = max{|xi|, 1 ≤ i ≤ D},

dimension n = 30, variable xi ∈ [−100, 100]n and
the optimal is 0.

•

f5(x) =

n−1∑
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
,

dimension n = 30, variable xi ∈ [−30, 30]n and
the optimal is 0.

•

f6(x) =

n∑
i=1

(bxi + 0.5c)2,

dimension n = 30, variable xi ∈ [−100, 100]n and
the optimal is 0.

•

f7(x) =

n∑
i=1

ix4i + random(0, 1),

dimension n = 30, variable xi ∈ [−100, 100]n and
the optimal is 0.

•

f8(x) =

n∑
i=1

−xi sin(
√
|xi|),

dimension n = 30, variable xi ∈ [−500, 500]n and
the optimal is −12569.

•

f9(x) =

n∑
i=1

[
x2i − 10 cos(2πxi) + 10

]
,

dimension n = 30, variable xi ∈ [−5.12, 5.12]n and
the optimal is 0.

•

f10(x) = −20 exp

−0.2

√√√√(1/n

n∑
i=1

x2i

)
− exp

(
(1/n)

n∑
i=1

cos(2πxi)

)
+ 20 + exp(1),

dimension n = 30, variable xi ∈ [−32, 32]n and
the optimal is 0.

•

f11(x) = (1/400)

n∑
i=1

x2i −
n∏

i=1

cos(xi/
√
i) + 1,

dimension n = 30,variable xi ∈ [−100, 100]n and
the optimal is 0
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