Safety and Ergonomics of Iron Casts Manufacturing

dr inż. Sławomir Kukla

University of Bielsko-Biała, Department of Industrial Engineering ul. Willowa 2, 43-309 Bielsko-Biała, Poland skukla@ath.bielsko.pl

Abstract

The article presents the issues of production analysis of iron casts manufacturing using automated foundry lines. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

Keywords

Safety in foundry industry, Work ergonomics at workstations.

1 Introduction

The basis of the costs reduction methodology is to identify wastage. It is vital to identify the causes of generating losses. Costs analysis constitutes a kind of map showing the sources generating the biggest losses, but also costs and the places with the highest chances of savings.

Searching for more efficient methods of work, enterprises more and more frequently focus on limiting reserves and processes, and, above all, manufacturing prime costs. Such behaviour also found application of the casting industry by eliminating the operations and activities in manufacturing processes which do not add value to the produced casts.

Analysing the activities performed at production workstations, it is possible to divide them into three categories:

- activities with added value, which change the shape, dimensions, physical and chemical properties of treatment objects (e.g. melting, forming, pouring, eliminating the gate assembly, etc.),
- activities with partially added value, like: fixing, quality control operations,
- activities without added value, like: waiting, unnecessary transportation, storing, repairing faults, etc.

The main areas of wastage in foundry enterprises were presented in fig. 1.

Fig. 1 Areas of wastage in a foundry

Identification of the areas of wastage allows an enterprise to create a list of activities, thanks to which it will be possible to eliminate losses suffered by a company. Apart from the activities which do not add value to products, analysis should be carried out also in case of difficult and unnatural activities which have a significant influence on worker's tiredness and workload, as well as operations realised only periodically.

Identification of the areas of wastage allows an enterprise to create a list of activities, thanks to which it will be possible to eliminate losses suffered by a company. Apart from the activities which do not add value to products, analysis should be carried out also in case of difficult and unnatural activities which have a significant influence on worker's tiredness and workload, as well as operations realised only periodically.

In relation to technical devices themselves, it is possible to distinguish six kinds of losses:

- · machine and equipment breakdowns,
- · changeovers, e.g. pattern plate exchange on a line,
- minor stoppages e.g. blocked conveyor, inadequate temperature of liquid alloy,
- lower speed, e.g. slowing down on a line due to problems with cooling,
- start-up, e.g. starting a line or furnaces after a break,
- faults production of faulty casts and the need to repair them.

Also, logistics of materials flow in a foundry is of significant importance in elimination of losses. Excessive manipulation of objects (transporting, arrangement, packing) and storing are sources of additional costs [Harris 2010, Nyhuis 2009].

2 Research object, aim and methodology

The object of research in the present work is the manufacturing process of iron casts on automated foundry lines (fig. 2). Cast iron is prepared in electric furnaces and transported in tubs on foundry lines. There casts are prepared, which, after pouring, are transported to the minting workstation in a cooling tunnel. Further, casts on the line are separated from the moulding sand and the gate assembly and are cleaned on through cleaners. After being picked up from the line, casts also undergo control, grinding and, in some cases, initial machining on customer's request [Kukla 2010].

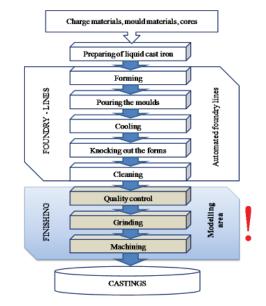


Fig. 2 Research object - the manufacturing system of iron casts

The main objective of the presented methodology of production systems optimisation in foundries is to eliminate all kinds of organisational losses, machine breakdowns, accidents at work, as well as to improve the quality of the manufactured casts. These aims may be achieved by recording and eliminating losses, improving standards and engaging all workers of a foundry into the process of continuous improvement [Matuszek 2009, Kukla 2012].

The concept of production systems improvement outlined in the paper is based on 10 technical pillars, shown in fig. 3.

The task of cost accounting is to record and allocate costs. For this purpose, a system which aids the decision taking process was created, thanks to which it is possible to simulate and analyse, among others:

- manufacturing prime costs,
- · costs of new casts, introduced to production,
- the choice of product range and production batch sizes,
- · cooperative collaboration,
- costs of emergency situations and production losses related to them,
- · costs of exploitation activities,
- · costs of improvement activities,
- · costs of planned investments, etc.

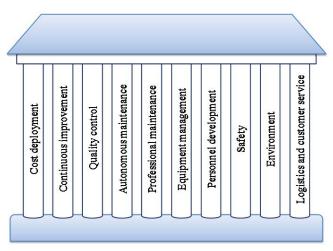


Fig. 3 Technical pillars in production systems improvement

In order to streamline processes in an enterprise in a situation of limited resources, we should choose the problems which are significant and, at the same time, leave less important ones for later. Improvement of vital processes in a foundry by 50 % is more likely to bring about considerable advantages for the system than improving marginally important processes by 80 %.

3 Description of the obtained results

In the first stage (fig. 2), the model area was defined as finishing of a chosen group of casts on the basis of the performed Pareto analysis. The optimisation project was carried out according to the scheme presented on fig. 4.

One has proposed a possibility of implementation of manufacturing systems modelling and simulating technique in management of production processes. In course of the study there was implemented ARENA universal software package to modelling and simulation of the manufacturing systems (fig. 5).

To improve this area of the process, a machining cell was designed, where such operation are going to be realised as: USG control, grinding the surface after separating the gate assembly and initial machining (fig. 6). Previously, the machining workstation was located in a different production hall, significantly distant from the workstations of grinding and control.

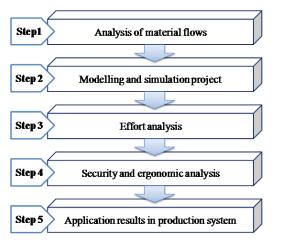
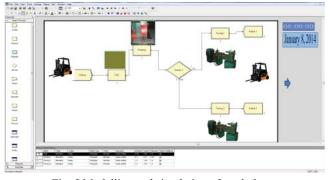
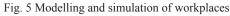




Fig. 4 Stages of the improvement process realisation

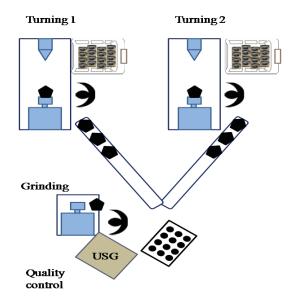


Fig. 6 Design of a machining cell

The process of design of a new machining cell took into consideration the minimal equipment needs for workstations (tools, devices, aids). Also, standardisation of methods and order of particular activities was carried out, as well as time of operation duration was estimated.

A labour-consumption analysis was performed both before and after the changes, followed by tests on work ergonomics at particular workstations of the model area. To compare the current state with the planned one, a point-based scale was used for evaluation of particular ergonomic situations (fig. 6).

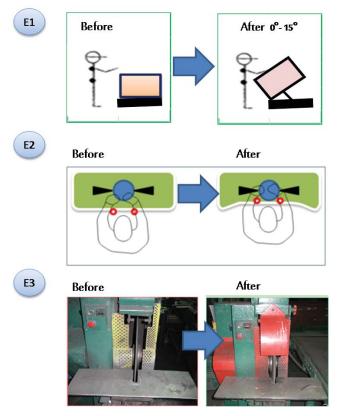


Fig. 6 Rationalisation of workplace - examples

Thanks to the undertaken alterations, it was possible to achieve a number of economical solutions. Transport routes have been shortened by almost 90 %, the level of activities without added value has been decreased by about 17 %, conditions of work ergonomics improved significantly in the machining cell thanks to eliminating uncomfortable activities (improvement by almost 70 %), and labour consumption of manufacturing one piece (cast) has been lowered by almost 11 %.

4 Conclusions

The presented concept aims at ensuring safety and balanced advantages in an enterprise by achieving the goals of no losses, no faults, no breakdowns and no reserves. Analysing difficult and unnatural operations allows to identify the activities which are tedious for a worker and may become a stimulus for the introduction of an improvement project at the workstation.

Continuous improvement of production systems in a foundry is key to lowering prime costs of manufacturing casts. Thanks to precise costs determination and allocating them to particular activities, it is possible to eliminate actions with no added value.

References

- [1] Harris, R.; Harris, C.; Wilson, E.; Womack, J. (2010).: Making materials flow: a lean material-handling guide for operations, production-control and engineering professionals, Cambridge: The Lean Enterprise Institute.
- [2] Kukla, S. (2012).: Costs analysis of iron casts manufacturing. Archives of Foundry Engineering vol. 12, Issue 2, 45 - 48.
- [3] Kukla, S. (2010).: *Production systems rationalisation on the example of iron foundry*. Archives of Foundry Engineering vol. 10, Issue 2, 209 212.
- [4] Matuszek, J.; Kukla, S. (2009).: Analysis of foundry production systems on the basis of modelling and simulation. *Acta Mechanica Slovacia*, vol. 13, No. 2, 106 - 111.
- [5] Nyhuis, P.; Wiendahl, H.P. (2009).: Fundamentals of production logistic - theory, tools and applications. Berlin: Springer-Verlag.