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Abstract Generalized structured component analysis has
emerged in marketing and psychometric literature as an
alternative to structural equation modeling. A recent simu-
lation study recommends that, in most cases, this analysis is
preferable to structural equation modeling because it outper-
forms the latter when the model is misspecified. This article
examines the characteristics of generalized structured com-
ponent analysis and reveals that the surprising previous
findings are attributable to an incomplete experimental de-
sign and an error incurred during the software implementa-
tion of generalized structured component analysis.
Simulated data show that generalized structured component
analysis provides inconsistent estimates. In some instances,
model misspecification can nearly neutralize this inconsis-
tency, but in others it will reinforce the inconsistency. More-
over, generalized structured component analysis is hardly
suitable for mediation analysis because it substantially over-
estimates the direct effect. Thus, generalized structured
component analysis cannot be recommended universally
over structural equation modeling.

Keywords Generalized structured component analysis .
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Mediation

“Since its introduction in marketing […], structural equation
models with latent variables have been used extensively in
measurement and hypothesis testing” (Bagozzi and Yi 1988,
p. 74). This statement, which is as true today as it was in 1988,
begins the most frequently cited article ever published in this
journal, on the subject of structural equation modeling (SEM).
It is not surprising, therefore, that SEM has become an estab-
lished element in the methodological toolbox of marketing
researchers (Baumgartner and Homburg 1996). Researchers
have embraced the advantages of SEM, which include its
abilities to model latent variables, to account for measurement
error (Bagozzi and Phillips 1982), and to test a series of
dependence relationships simultaneously (Shook et al.
2004). Traditionally, marketing research has predominantly
used two SEM techniques: covariance-based SEM and partial
least squares path modeling (Fornell and Bookstein 1982;
Reinartz et al. 2009). Hwang and Takane (2004) have also
proposed a third SEM technique: generalized structured com-
ponent analysis (GSCA).

In this context, misspecified (and therefore incorrect)
models are a permanent threat to the advancement of mar-
keting science and model-based predictions in marketing
practice. Marketing researchers are well aware of the con-
sequences of model misspecification: in marketing research,
“model misspecification looms large” (Chandy 2003, p.
353), and in marketing practice, “model misspecification
can affect resource allocation decisions and other marketing
efforts that are important to a firm” (Schweidel et al. 2008,
p. 82). As for any marketing models, it is crucial to identify
and eliminate misspecification for structural equation models
(Hu and Bentler 1998), whose estimates otherwise would not
be trustworthy.

A recent article advises marketing researchers to avoid SEM
and adopt GSCA instead (Hwang et al. 2010b). These authors
report that GSCA outperforms SEM when the models are
misspecified, and that GSCA obtains more accurate estimates

J. Henseler (*)
Institute for Management Research, Radboud University
Nijmegen,
Thomas van Aquinostraat 3,
6525 GD, Nijmegen, The Netherlands
e-mail: j.henseler@fm.ru.nl

J. Henseler
ISEGI, Universidade Nova de Lisboa,
Campus de Campolide,
1020-312, Lisbon, Portugal
e-mail: jhenseler@isegi.unl.pt

J. of the Acad. Mark. Sci. (2012) 40:402–413
DOI 10.1007/s11747-011-0298-6



in the case of misspecified models than in the case of well-
specified models. They also advise that, “if correct model
specification cannot be ensured, the researcher should use
generalized structured component analysis” (Hwang et al.
2010b, p. 710). Yet this condition seems somewhat rhetorical;
virtually all models are biased in some way (Browne and
Cudeck 1993). In turn, GSCA apparently would be the univer-
sal method of choice in normal circumstances. Should market-
ing researchers follow this advice? If GSCA consistently
achieves accurate estimates frommisspecifiedmodels, it would
offer significant opportunities for empirical research. Using
GSCA, researchers could expect accurate estimates without
having to pursue the correct specification of their models.

Logic tells us, however, that this claim cannot be true.
Model misspecification means developing a hypothetico-
deductive system on the basis of incorrect assumptions.
Consequently, a system itself becomes inconsistent, and
“the distinction between truth by derivation and falsity by
derivation becomes blurred” (Bunge 1967, p. 437); this
makes it impossible to tell whether conclusions based on
the system are right or wrong. Therefore, GSCA’s superior
parameter accuracy in the case of misspecified models refers
to a situation in which the correct conclusions are coinci-
dentally drawn from an inconsistent model. However, as we
will show by means of a computational experiment, there
are other situations in which GSCA estimates facilitate
incorrect conclusions in case of both misspecified and
well-specified models.

Consistency can be achieved only if the separate assump-
tions of a system are true (cf. Bunge 1967), which means
there is no way to avoid the consequences of misspecifica-
tion other than to specify the model correctly. Thus, GSCA
cannot be a remedy for model misspecification. Still, the
possibility remains that GSCA could be relatively robust
against model misspecification. This means that, while it is
impossible for GSCA to work better in the case of misspe-
cified models than in the case of well-specified models, it
might be possible that misspecification affects the estimates
of GSCA less than it affects those obtained by covariance-
based SEM. With this study, we investigate exactly what
GSCA is and how it behaves to discern how Hwang et al.
(2010b) achieved their findings. In so doing, we offer some
guidelines for what researchers should consider when they
use GSCA or interpret studies that have used it.

Moreover, this paper makes four key contributions. First,
we provide new insights into what GSCA does and what
characteristics it has. We show that GSCA creates weighted
sums of indicator variables (i.e., composites) that maximize
the average coefficient of determination (R2) of prespecified
linear equations between the composites. Second, we reveal
that Hwang and Takane (2004) erred in their description of
GSCA’s algorithm, which influenced all software imple-
mentations of GSCA. We identify the methodological

articles affected by this problem and advise marketing
researchers about which of the resulting conclusions they
should disregard. Third, we demonstrate that Hwang et al.’s
(2010b) findings, which are based on a simulation study,
reflect their specific population model choice; in general,
GSCA provides inconsistent estimates. If the bias induced
by the model misspecification neutralizes GSCA’s inconsisten-
cy, then GSCA provides estimates that are closer to the true
values; alternatively, the model misspecification could catalyze
GSCA’s inconsistency. Fourth, we show that GSCA exhibits
undesirable behavior in the case of a mediation analysis, such
that it overestimates the direct effect. Overall then, GSCA
cannot be universally recommended for use in marketing
research, regardless of whether a correct model specification
has been achieved. Instead, researchers should make deliberate
choices based on conceptual, empirical, and simulation-based
comparisons of extant structural equation modeling techniques
(e.g., Dijkstra 1983; Fornell and Bookstein 1982; Lu et al.
2011; Reinartz et al. 2009).

Generalized structured component analysis

Hwang and Takane (2004) propose generalized structured
component analysis (GSCA) as an alternative to SEM.
GSCA maximizes the average or sum of explained varian-
ces of linear composites and is equivalent (as we will show
later) to an approach developed by Glang (1988), which he
called “maximization of the sum of explained variances.”
Thus Hwang and Takane (2004) might more accurately be
considered promulgators of Glang’s (1988) work than the
inventors of GSCA. GSCA consists of three defining ele-
ments: (1) a way to specify linear models, (2) an optimiza-
tion criterion, and (3) an algorithm to obtain estimates. We
illustrate all three elements of the GSCA approach next.

The GSCA model specification

As its name suggests, GSCA is a component-based ap-
proach, which means that composites result from linear
combinations of the observed variables (Meredith and
Millsap 1985). The approach assumes that all observed
variables and composites are centered and scaled to unit
variance (Hwang and Takane 2004). The definition of the
composites depends on whether a construct is formative or
reflective (for a general discussion on this distinction, see
Diamantopoulos and Winklhofer 2001). Then for each for-
mative construct, GSCA defines a composite of the con-
struct’s indicators, relying on the assumption that formative
constructs do not contain measurement error on either the
indicator or the construct level. For each reflective con-
struct, GSCA defines a composite of the construct’s indica-
tors and transforms each reflective indicator into a single-
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indicator composite with unit weight, such that it can define
relationships from the composite that link the reflective
construct to the single-indicator composite(s).

A consequence of this design is that GSCA does not
entirely correct for random measurement error in reflective
indicators, and it leaves systematic measurement error al-
most uncorrected. In order to illustrate how GSCA handles
measurement error of reflective indicators, we depart from
the notion that reflective indicators are assumed to be error-
prone manifestations of the true construct; that is, that the

observed value of a reflective indicator xi is a composition
of the true value plus random and systematic error:

xi ¼ xtruei þ "i ¼ xtruei þ "randomi þ "
systematic
i ð1Þ

Using the variance-covariance matrix of the reflective
indicators and the indicators’ weights wi as obtained from
GSCA makes it possible to determine the variance of
GSCA’s construct scores as follows (under the usual as-
sumption that random errors are neither correlated with each
other nor with the true construct score):

Var xð Þ ¼PJ
i¼1

PJ
j¼1

wi � wj � Cov xi; xj
� � ¼PJ

i¼1
w2

i � Var xið Þ þ 2 �PJ�1

i¼1

PJ
j¼iþ1

wi � wj � Cov xi; xj
� �

¼
XJ
i¼1

w2
i � Var xtruei

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

true score

þ
XJ
i¼1

w2
i � Var "ið Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

random measurement error

þ 2 �
XJ�1

i¼1

XJ
j¼iþ1

wi � wj � Cov xi; xj
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
true scoreþsystematic measurement error

ð2Þ

As long as the reflective indicators are affected by ran-
dom measurement error, the construct scores will also con-
tain some measurement error. However, if there is no
systematic measurement error, the use of multiple indicators
reduces the proportion of variance in the construct scores
due to random measurement error compared to the variance
due to the true score. The same does not hold true for
systematic measurement error because the proportion of
variance due to this type of error is reinforced almost pro-
portionally to the variance due to the true score.

Figure 1 contains an illustration of GSCA’s specifications
and transformations on the basis of a simple model. The upper
half of Fig. 1 depicts a structural equation model with three
latent variables. The lower half emphasizes the auxiliary spec-
ifications by GSCA. Although the two model figures appear
different, they result in equal parameter matrices,W andA, so
for GSCA, these two figures are different representations of
the same model. The dashed lines (parameterized by the
composite weights) denote the defining relationships of the
composites and therefore do not enter into the explained
variance of the respective composite. The weights of the
single-indicator composites equal 1 (w11 0 w22 0 w33 0 w74 0
w85 0w96 0 1). GSCA identifies this model by constraining the
variances of all composites to equal 1 and setting the construct-
level measurement errors to 0 (e7 0 e8 0 0). Themodel equation
of GSCA can be written as follows:

ZW ¼ ZWAþ E; ð3Þ

where Z is the data matrix of form N × J, with N as the number
of observations and J as the number of observed variables, and
W is a J × T matrix containing the measurement weights, with
T as the number of composite variables in the model. Thus W

describes how the composites can be built from the observed
variables. For the example in Fig. 1, the matrix W would be:

W ¼

1 0 0 0 0 0 w17 0 0
0 1 0 0 0 0 w27 0 0
0 0 1 0 0 0 w37 0 0
0 0 0 0 0 0 0 w48 0
0 0 0 0 0 0 0 w58 0
0 0 0 0 0 0 0 w68 0
0 0 0 1 0 0 0 0 w79

0 0 0 0 1 0 0 0 w89

0 0 0 0 0 1 0 0 w99

26666666666664

37777777777775
:

The left-hand side of Eq. 3 consists of a matrix Γ 0 ZW
(form N × T) that contains the values of all composite varia-
bles. The right-hand side of Eq. 3 reveals the already described
matrices Z andW, as well as A (form T × T), which contains
the component loadings and path coefficients. For the exam-
ple in Fig. 1, the matrix Awould be:

A¼

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
a71 a72 a73 0 0 0 0 0 a79
0 0 0 0 0 0 0 0 a89
0 0 0 a94 a95 a96 0 0 0

26666666666664

37777777777775
¼ C B½ �:

The six leftmost columns of A contain the component load-
ings (submatrix C); the three rightmost columns contain the
path coefficients of the structural paths (submatrix B). Overall
then, the right-hand side of Eq. 3 consists of the predicted
values of the composites (ZWA 0 ΓA of form N × T) and
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the residual values matrix E (form N × T). Equation 3 implies
that all composite scores can be explained by the composite
scores in the model—a notation that follows the spirit of a
reticular action model (McArdle and McDonald 1984).

The GSCA optimization criterion

GSCA provides a solution to the so-called weighting prob-
lem (McDonald 1968), which seeks weights for linear com-
binations of indicators to find those that are optimal in some
objective sense. Alternative approaches include multiple
regressions based on summed scores or principal compo-
nents (Tenenhaus 2008), canonical correlation analysis
(Horst 1961), or partial least squares (PLS) path modeling

(Hair et al. 2011). When Hwang and Takane (2004)
introduced their version of GSCA, they asserted that it
strongly resembles PLS path modeling but avoids its
major drawback, namely, the lack of a global optimiza-
tion function. The global optimization criterion that
Hwang and Takane (2004) introduced takes the form
of a least squares criterion; accordingly, “the unknown
parameters of generalized structured component analysis
(W and A) are estimated such that the sum of squares
of all residuals (ei) is as small as possible” (Hwang et
al. 2010b, p. 700). The following function thus must be
minimized:

fGSCA � SS Eð Þ ¼ SS ZW� ZWAð Þ: ð4Þ

ξ1z2

z1

z3

ξ2z5

z4

z6

η z8

z7

z9ν

ζ Ovals represent latent variables.

(a) A structural equation model 

z5z4 z6

a79

a89

w48 w58 w68

γ8

γ9

γ7

z8z7 z9

w79 w89 w99

a71

a72

a73

γ2

γ1

γ3

z1

z2

z3

z2z1 z3

w17 w27 w37

a94

γ5

γ4

γ6

z7

z8

z9

w11

w22

w33

w74

w85

w96

e1

e2

e3

a95

a96

e4

e5

e6

e7

e9

e8

Hexagons represent composites.

(b) Derived GSCA model 

Fig. 1 Transforming a
structural equation model into a
GSCA model. a A structural
equation model. b Derived
GSCA model
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If all observed variables are standardized, the minimization
function can be expressed by the observed data correlation
matrix S:

fGSCA � SS Eð Þ ¼ trace ZW� ZWAð ÞT ZW� ZWAð Þ
� �

¼ N � trace I� Að ÞTWTSW I� Að Þ
� �

:

ð5Þ
In this equation, matrix I is the identity matrix of the

same dimension as A. Because the sample size N is a
positive constant (for a particular optimization), it can be
disregarded for optimization purposes. Equation 5 shows
that the raw data are not required for the optimization
function, as long as the correlation matrix is available.

The existence of a global optimization criterion paves the
way for global model statistics, such as FIT (Hwang 2009):

FIT � 1� SS ZW� ZWAð Þ
SS ZWð Þ ¼ 1� SS Eð Þ

N � T

¼ 1� 1

N � T � fGSCA: ð6Þ

Equation 6 indicates that minimizing GSCA’s optimiza-
tion function is equivalent to maximizing FIT. Unknown
thus far though is the meaning of FIT. As we show in Eq. 7,
FIT is the average variance explained (average R2) of all
composite variables in the model. As a proportion of vari-
ance (or average thereof), the value of FIT can range from 0
to 1.

FIT ¼ 1� SS Eð Þ
N � T ¼

N � T �PT
t¼1

e2t

N � T

¼ 1

T

XT
t¼1

1� e2t
N

� �
¼ 1

T

XT
t¼1

R2
t : ð7Þ

Thus, GSCA maximizes the average explained variance
of linear composites. Equivalently, it maximizes the sum of
the R-square values of linear composites.

The GSCA algorithm

The third element of GSCA is an algorithm that must
estimate the variable elements of the matrices A and W to
minimize the optimization criterion fGSCA. In principle, this
task can be fulfilled in several ways, such as by using
numerical optimization, applying existing algorithms such
as Glang’s (1988), or creating a new algorithm. Hwang and
Takane (2004) recommend an alternating least squares
(ALS) algorithm (de Leeuw et al. 1976) to minimize fGSCA.
Their algorithm consists of two steps: calculate A keeping
W constant, and calculate W keeping A constant (for a

detailed description of ALS, including a discussion of its
convergence, see Hwang and Takane 2004). It has been
implemented in the software programs VisualGSCA
(Hwang 2007) and GeSCA (Hwang and Park 2009), as well
as in a protected MATLAB code (Hwang and Takane 2004).

An error in the GSCA algorithm and its consequences

Henseler (2010) has shown that the available software
implementations of GSCA maximize a criterion other than
FIT. In a web erratum, Hwang et al. (2010c) acknowledge
this point and indicate that they “standardized observed
variables while normalizing latent variables.” This problem
actually already existed in the initial formulation of the
algorithm (see Hwang and Takane 2004, p. 86). The erro-
neous GSCA algorithm (which we call GSCA2004) does not
maximize FIT but rather a weighted average over the
explained variances of the composites:

FIT GSCA2004ð Þ ¼ 1

T

XT�D

t¼1

R2
t þ

1

N
�
XT

t¼T�Dþ1

R2
t

 !
: ð8Þ

As Eq. 8 illustrates, the model statistic FIT(GSCA2004)
weights the explained variances of the D constructs in the
model by a factor of 1/N. Because the optimization criterion
depends on the sample size, any fixed correlation matrix
will produce varying GSCA2004 estimates for different sam-
ple sizes. The asymptotic properties of the GSCA2004 algo-
rithm are particularly interesting: for large values of N, the
importance of the structural model for determining compos-
ite weights approaches 0, and the estimates become more
and more similar to those that result from regressions be-
tween principal components—exactly the finding reported
by Tenenhaus (2008).

The question that arises is whether the error in the
GSCA2004 algorithm leads to substantially different results.
In comparing the results obtained by GSCA2004 and the
correct implementation of GSCA, Hwang et al. (2010c)
confirm that a

noticeable difference was found in the direction of the
(average) relative biases of the parameter estimates
under correct specification. Specifically, in the article,
we reported that the loading estimates of generalized
structured component analysis generally had a tolera-
ble level of positive bias (less than 10%), whereas the
path coefficient estimates were negatively biased.
However, the new simulation showed that the loading
estimates had an acceptable level of negative bias,
whereas the path coefficient estimates were positively
biased.
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The error in the GSCA2004 algorithm turns the positive
bias of GSCA into negative bias, and vice versa, which
suggests that its impact is substantial. At first glance, it
might appear unintuitive that GSCA underestimates load-
ings and overestimates path coefficients, because this situa-
tion conflicts with findings in prior research pertaining to
principle component analysis and common factor analysis
(cf. Widaman 1990). We therefore replicate Hwang et al.’s
(2010b) computational experiment in the next section and
show that this unexpected behavior is due to cross-loadings
in the population model. Cross-loadings mean that an ob-
served indicator is influenced by one or more variables other
than the intended latent variable. Although marketing
researchers try to avoid cross-loadings because of their
detrimental effects on discriminant validity (Fornell and
Larcker 1981), such cross-loadings are very common as a
result of the frequent problem of common method variance
(Podsakoff et al. 2003).

A secondary objective of the computational experiment is
to illustrate the substantiality of the error in the GSCA2004

algorithm. Until around 2010, all GSCA software—whether
published like VisualGSCA (Hwang 2007) and GeSCA
(Hwang and Park 2009) or unpublished like the MATLAB
code (Hwang et al. 2010b; Hwang and Takane 2004)—
implemented GSCA2004 instead of GSCA. This error has
consequences for all empirical studies that have applied or
explored GSCA or introduced extensions of GSCA (up to
August 2011, Hwang 2007, 2009; Hwang et al. 2007a,
2010a, 2010b; Hwang and Park 2009; Hwang and Takane
2004; Hwang et al. 2007b; Tenenhaus 2008) and renders
their empirical findings with regard to GSCA invalid.

Reexamining the parameter recovery of GSCA

The computational experiment by Hwang et al. (2010b) is
the foundation for their recommendation to prefer GSCA
over SEM. We therefore describe their experiment, identify
three serious shortcomings, and replicate and extend it.

To assess the parameter accuracy of estimates obtained
through GSCA, Hwang et al. (2010b) generated artificial data
using the population model in Fig. 2, with cross-loadings
χ0 .21. They also implemented an experimental factor model
specification by estimating two different models: Model 1
(“correct specification”), which includes cross-loadings and
constrains the path β3 to 0, and Model 2 (“misspecification”),
which omits the cross-loadings and freely estimates β3. They
used GSCA2004 and SEM to estimate both models. In addition
to the model specification experimental condition, they ma-
nipulated the sample size and data distribution. The factors
model specification and applied method had significant and
substantial effects on parameter accuracy, but neither the
sample size nor the data distribution had substantial effects

(if they were significant, they were not substantial, η2<.005).1

The key finding of their experiment revealed that in the mis-
specification experimental condition, GSCA recovered the
parameters of the population model significantly better than
SEM did. However, this finding was possible only because
their experiment contains three severe shortcomings, two of
which affected the internal validity and one that affected
external validity.

First, the experiment manipulates two factors at once, so
the observed effect cannot be attributed to either of the two
factors. Hwang et al. (2010b) combined the measurement
model specification (correctly specified versus misspecified)
and the consideration of an additional structural path (fixed to
0 versus freely estimated), which means that they mixed
model underparameterization and model overparameteriza-
tion. With underparameterization, “one or more parameters
are fixed to zeros whose population values are nonzeros,”
whereas overparameterization means that “one or more
parameters are estimated whose population values are zeros”
(Hu and Bentler 1998, p. 427). Underparameterization and
overparameterization have different consequences for structural
equation models (La Du and Tanaka 1989). Conceptually,
underparameterization renders a theoretical model wrong,
whereas overparameterization renders a theoretical model
weaker. Combining the manipulations makes it impossible to
attribute a change in the criterion (i.e., parameter recovery) to
any particular manipulation. Moreover, it remains unclear
whether GSCA is immune to measurement model misspecifi-
cation or able to recognize an effect of zero as such. Second,
Hwang et al. (2010b) did not apply GSCA but rather used
GSCA2004. This erroneous application renders their findings
inapplicable. According to their corresponding web errata, the
conclusions of the experiment generally remained unaffected.
However, because the updated results were not reported
entirely, it is hard to verify the extent to which their con-
clusions hold. Third, they chose a particular population
model but made generalizations to other models. They
did not control for potential interferences of the constitut-
ing elements of the population model, such as the sign of
coefficients or the existence of cross-loadings.

To demonstrate the consequences of these shortcomings
and overcome them, we replicate their experiment and ex-
tend its design in two ways. First, to establish internal
validity, we use GSCA instead of GSCA2004 and disentangle
the misspecification factor into two subfactors, each with
two levels: cross-loadings, which are either modeled or
ignored, and a direct effect, which can be freely estimated or
fixed to zero. Second, to explore the contingencies for these

1 Hwang et al. (2010b) also assessed the standard errors of the esti-
mates. Because GSCA relies on bootstrapping, a well-established
approach for obtaining standard errors, we do not pursue this issue
further.
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phenomena, we use four population models. In Model A, we
retain Hwang et al.’s (2010b) original model with three pos-
itive cross-loadings (χ0 .21) and two positive structural paths
(β10β20 .6). In the second population model (Model B), we
slightly modify their model to exclude all cross-loadings (χ0
0; standardized error variances increase accordingly). All
other parameters remain unchanged. Models C and D are
similar toModels A and B, except for the sign of the structural
paths (β10β20 −.6). We provide the correlation matrices for
the four population models in Table 1; our data exactly pro-
duce these four correlation matrices. Although most experi-
ments require replications to cope with data uncertainty, they
are not needed in our case, because for different data with the
same correlation matrix, GSCA always produces the same
estimates (see Eq. 5). To reduce complexity, we keep the
sample size (N0100) and data distribution (normal) constant.
Overall, our extended experimental design thus includes 4×
2×2016 conditions (four population models; cross-loadings
modeled or ignored; direct effect free or fixed).

We provide the results of our experiment in Table 2,
which contains the estimates of SEM, GSCA, and
GSCA2004 for each of the 16 experimental conditions. Ex-
perimental conditions II and III are the original conditions
analyzed by Hwang et al. (2010b). All other cells represent
results from the new experimental conditions, which have
not been analyzed previously.

If we considered only the results from conditions II
and III, we would confirm the conclusions drawn by
Hwang et al. (2010b): SEM recovers the parameters
perfectly for a well-specified model (condition II), but
for a misspecified model (condition III), it performs
poorly. In contrast, GSCA2004 delivers near-perfect esti-
mates in both conditions. For GSCA, the results are
similar when we review the misspecified model, but
they differ for the well-specified model. That is, condi-
tion II suggests that GSCA cannot recover parameters
when the model is well-specified.

The results from all 16 conditions offer richer, dif-
ferent conclusions. Five in particular are worth empha-
sizing. First, we find that in experimental conditions X
and XI (which differ from conditions II and III only in
the sign of the population effects), GSCA performs
better when estimating well-specified models rather than
misspecified ones. Thus, Hwang et al.’s (2010b) primary
finding cannot be reproduced with another model and
appears attributable to the specific population model
they chose.

Second, regarding the substantiality of the difference
between GSCA and GSCA2004, we find that conditions III,
IV, VII, VIII, XI, XII, XV, and XVI indicate relatively small
differences. However, all other conditions (I, II, V, VI, IX,
X, XII, XIV) reveal substantial differences between these
methods. The two groupings of conditions vary according to
whether the cross-loadings are estimated. If no cross-
loadings are estimated, the differences in the GSCA versus
GSCA2004 estimates seem negligible. However, when we
estimate cross-loadings, GSCA and GSCA2004 produce
clearly different results.

Third, our experiment indicates that GSCA estimates are
inconsistent. Whereas SEM is able to perfectly recover
parameters for well-specified models (conditions I, II, V–
X, XIII–XVI), GSCA cannot recover parameters perfectly
in any condition.

Fourth, we note the effects of experimentally applied
constraints. When we compare a condition in which the
direct effect is constrained with a corresponding condition
without this constraint (in the structural model, condition I
versus II, III versus IV, V versus VI, and so on), we find that
GSCA’s estimates are not invariant to the correct constraints.
If a parameter in a GSCA model is constrained, it affects the
other parameters. In contrast, SEM estimates remain unaf-
fected by correct constraints.

Fifth, with regard to GSCA’s behavior, we note that
modeling cross-loadings leads to an increase in the absolute

η1

z2z1 z3

η2

z5z4 z6

η3

z8z7 z9

.64

β2

β3=0

β1

.64

.7 .7 .7 .7 .7 .7 .7 .7 .7χ χ χ

Fig. 2 Model Specified for
Simulation Study (Hwang et al.
2010b) and Replication and
Extension (this article). Notes:
All variables (zi and ηj) are
centered and have unit variance.
In Hwang et al.’s (2010b)
population model, the structural
paths β1 and β2 have values of
.6, and the cross-loadings χ
(dashed lines) have values of
.21. We create three additional
conditions that vary the struc-
tural paths and the cross-
loadings: β10β20 .6 versus
β10β20−.6, and χ0 .21 versus
χ00
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size of the estimates bb1 and bb2 but a decrease in the absolute
size of bb3 . This pattern emerges regardless of whether the
population model has cross-loadings.

Overall, our extended experiment reveals five contingen-
cies that influence the accuracy of GSCA estimates: (1)
correct model specification, (2) setting constraints in the

structural model, (3) modeling cross-loadings, (4) the exis-
tence of cross-loadings in the population model, and (5) the
sign of the path coefficients if the population model contains
cross-loadings. In contrast, the accuracy of SEM estimates
depends only on correct model specification, not on the
other four contingencies.

Table 1 Correlation matrices resulting from the four population models

z1 z2 z3 z4 z5 z6 z7 z8 z9

A) Population model with positive structural paths (β10β20 .6) and cross-loadings (χ0 .21), the original specification by Hwang et al. (2010b)

z1 1

z2 .4900 1

z3 .4900 .4900 1

z4 .4410 .4410 .4410 1

z5 .2940 .2940 .2940 .5782 1

z6 .3469 .3469 .3469 .6823 .5782 1

z7 .2646 .2646 .2646 .5204 .4410 .6145 1

z8 .1764 .1764 .1764 .3469 .2940 .4410 .5782 1

z9 .1764 .1764 .1764 .3469 .2940 .4410 .5782 .4900 1

B) Population model with positive structural paths (β10β20 .6) and no cross-loadings (χ00)

z1 1

z2 .4900 1

z3 .4900 .4900 1

z4 .2940 .2940 .2940 1

z5 .2940 .2940 .2940 .4900 1

z6 .2940 .2940 .2940 .4900 .4900 1

z7 .1764 .1764 .1764 .2940 .2940 .2940 1

z8 .1764 .1764 .1764 .2940 .2940 .2940 .4900 1

z9 .1764 .1764 .1764 .2940 .2940 .2940 .4900 .4900 1

C) Population model with negative structural paths (β10β20−.6) and cross-loadings (χ0 .21)

z1 1

z2 .4900 1

z3 .4900 .4900 1

z4 −.1827 −.1827 −.1827 1

z5 −.2940 −.2940 −.2940 .4994 1

z6 −.2997 −.2997 −.2997 .5091 .4994 1

z7 .1096 .1096 .1096 −.1862 −.1827 −.0409 1

z8 .1764 .1764 .1764 −.2997 −.2940 −.1827 .4994 1

z9 .1764 .1764 .1764 −.2997 −.2940 −.1827 .4994 .4900 1

D) Population model with negative structural paths (β10β20−.6) and no cross-loadings (χ00)

z1 1

z2 .4900 1

z3 .4900 .4900 1

z4 −.2940 −.2940 −.2940 1

z5 −.2940 −.2940 −.2940 .4900 1

z6 −.2940 −.2940 −.2940 .4900 .4900 1

z7 .1764 .1764 .1764 −.2940 −.2940 −.2940 1

z8 .1764 .1764 .1764 −.2940 −.2940 −.2940 .4900 1

z9 .1764 .1764 .1764 −.2940 −.2940 −.2940 .4900 .4900 1
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Table 2 Results of the computational experiment

Population model Cross-loadings Direct effect Condition Method Estimate
for β1

Estimate
for β2

Estimate
for β3

(A) Positive structural
paths β10β20 .6 and
positive cross-loadings,
χ0 .21

Modeled Free I (overparameterized) SEM .600 .600 .000

GSCA .674 .875 −.136

GSCA2004 .527 .546 .006

Fixed to zero IIa (well-specified) SEM .600 .600 –

GSCA .666 .778 –

GSCA2004 .527 .549 –

Ignored Free IIIa (misspecified) SEM .662 .847 −.148

GSCA .522 .601 −.002

GSCA2004 .517 .578 .005

Fixed to zero IV (misspecified) SEM .646 .740 –

GSCA .522 .600 –

GSCA2004 .517 .581 –

(B) Positive structural
paths β10β20 .6 and
no cross-loadings, χ00

Modeled Free V (overparameterized) SEM .600 .600 .000

GSCA .572 .724 −.034

GSCA2004 .447 .410 .085

Fixed to zero VI (overparameterized) SEM .600 .600 –

GSCA .571 .701 –

GSCA2004 .447 .448 –

Ignored Free VII (overparameterized) SEM .600 .600 .000

GSCA .445 .407 .086

GSCA2004 .445 .407 .086

Fixed to zero VIII (well-specified) SEM .600 .600 –

GSCA .445 .445 –

GSCA2004 .445 .445 –

(C) Negative structural
paths β10β20−.6 and
positive cross-loadings,
χ0 .21

Modeled Free IX (overparameterized) SEM −.600 −.600 .000

GSCA −.511 −.608 .047

GSCA2004 −.389 −.318 .117

Fixed to zero X (well-specified) SEM −.600 −.600 –

GSCA −.511 −.637 –

GSCA2004 −.389 −.364 –

Ignored Free XI (misspecified) SEM −.526 −.389 .113

GSCA −.397 −.309 .122

GSCA2004 −.397 −.305 .121

Fixed to zero XII (misspecified) SEM −.537 −.462 –

GSCA −.397 −.357 –

GSCA2004 −.397 −.354 –

(D) Negative structural
paths β10β20−.6 and
no cross-loadings, χ00

Modeled Free XIII (overparameterized) SEM −.600 −.600 .000

GSCA −.572 −.724 .034

GSCA2004 −.447 −.410 .085

Fixed to zero XIV (overparameterized) SEM −.600 −.600 –

GSCA −.571 −.701 –

GSCA2004 −.447 −.448 –

Ignored Free XV (overparameterized) SEM −.600 −.600 .000

GSCA −.445 −.407 .086

GSCA2004 −.445 −.407 .086

Fixed to zero XVI (well-specified) SEM −.600 −.600 –

GSCA −.445 −.445 –

GSCA2004 −.445 −.445 –

a Conditions II and III were analyzed by Hwang et al. (2010b)
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GSCA’s behavior in models with mediation

The finding that GSCA delivers inconsistent estimates is
particularly worrisome if we consider the direct effect. For
conditions I, V, VII, IX, XIII, and XV, which imply well-
specified models, the method should identify a path of 0 as
such. Whereas SEM is able to recover a population effect of
0, GSCA obtains standardized estimates with an absolute
value of up to .136. Conditions I and VII even deserve a
special comment: both conditions imply a well-specified
model, and GSCA delivers estimates for their direct effects
that are clearly different from 0 (−.136 and .086, respective-
ly). If the sample size were large enough (e.g., about 200
observations in the case of an estimate of −.136), GSCA
would identify these effects as significant. Therefore, the
larger the sample size, the more likely GSCA is to commit a
Type-I error. It is striking that this bias applies particularly to
condition VII, which represents a common type of (sub-)
model in marketing and other business and social sciences.

Marketing researchers can use Eq. 9 to quantify the
estimate that GSCAwill deliver for a direct effect under full
mediation (see the Appendix for the derivation)2:

Unless the mediating construct is measured perfectly
reliably, GSCAwill provide a non-zero estimate for a direct
effect. The exact size of the estimation bias depends on the
reliability of the mediating construct rel eη2ð Þð Þ, its coefficient
of determination R2 eη2ð Þ , and the correlation between the
mediated constructs’ scores cor eη1;eη3ð Þð Þ.

Conclusion

Structural equation modeling plays an important role not only
in marketing but also in management, psychology, sociology,
educational research, and beyond. Researchers embrace
SEM’s advantages, such as its abilities to model latent varia-
bles, correct for measurement error, specify error covariance
structures, and estimate entire theories simultaneously. Hwang
and Takane (2004) have reintroduced Glang’s (1988) concept
of the maximization of the sum of explained variances under a
new name, generalized structured component analysis
(GSCA), and presented it as an alternative to SEM.

With this article, we attempt to provide a better understand-
ing of what GSCA is and how it works. We have shown that
GSCA creates standardized composite variables as weighted
sums of indicator variables, such that the average R-square
value resulting from predefined linear relationships gets

maximized.3 Moreover, this average R-square value equals
GSCA’s model statistic, the FIT.

A mistake in the formulation of the algorithm and its
subsequent implementation means that several academic pub-
lications that use GSCA are at least partially invalid. In par-
ticular, the erroneous implementation of GSCA facilitated the
incorrect claim by Hwang et al. (2010b) that GSCA outper-
forms SEM. Using a simulation study, they conclude that “if
correct model specification cannot be ensured, the researcher
should use generalized structured component analysis” in-
stead of SEM. However, we have shown that these findings
are attributable to the specific choice of a population model; in
general, GSCA provides inconsistent estimates. If the bias
induced by the model misspecification or the inclusion of
cross-loadings neutralizes GSCA’s inconsistency, then GSCA
provides estimates that are closer to the true values. But model
misspecification can also aggravate GSCA’s inconsistency, in
which case the GSCA estimates are much farther from the
truth than are the parallel estimates derived from SEM. Fur-
thermore, GSCA’s inconsistency has particularly negative
consequences for mediation analysis, because GSCA is likely
to overestimate the direct effect.

Implications

Related to these findings, our study offers several key implica-
tions for marketing researchers. Primarily, they should recog-
nize that Hwang et al.’s (2010b) findings are invalid, due to an
error in the algorithm and an experimental design that lacks
internal validity. In general, GSCA can neither yield more
accurate estimates frommisspecified models than from correct-
ly specified ones nor come close to SEM’s parameter accuracy.

To obtain accurate estimates, researchers instead must
specify their models correctly and use adequate techniques
to provide estimates. Applying GSCA cannot alleviate the
potential bias that results from model misspecification.
Rather, when they use GSCA, researchers should expect
inconsistent estimates. These estimates tend to not only be
further from the true values than SEM estimates but also
have lesser value for meta-analyses, because aggregating
GSCA results cannot reveal the true parameter.

With the findings from this study, researchers can critically
examine existing studies that have used GSCA to interpret
their estimates in perspective. Typically, path coefficients will
be attenuated, whichmeans that the true relationship is likely to
be stronger than indicated by GSCA. However, the opposite
implication holds in the case of mediation, in which setting
GSCA is likely to overestimate the direct effect. If a GSCA
model involves direct and indirect effects, researchers can use

2 This equation holds only if neither the population nor the estimated
model contains cross-loadings.

3 Extensions for nonlinear relationships also are available (e.g., Hwang
et al. 2010a).
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our Eq. 9 to assess the estimate for the direct effect, if in reality
there had been no direct effect. With Eq. 9, researchers also can
distinguish between effects that emerge because they likely
exist and those that are methodological artifacts of GSCA use.
Finally, researchers should expect GSCA path coefficient esti-
mates to be inflated when there are cross-loadings.

In some situations, GSCA can be expected to yield accu-
rate, consistent estimates, namely, if the construct measure-
ment is perfectly reliable and valid. Such situations might
occur for observable variables (e.g., time, turnover, marketing
expenditures) or, eventually, with applications of formative
measurements. In other situations, researchers using GSCA
would obtain inaccurate estimates. Because GSCA does not
provide any known benefits in return for this lower parameter
accuracy, we cannot recommend that marketing researchers
use it as a substitute for SEM.

Further research

Methodology research should further explore the nature and
behavior of GSCA to find other situations in which GSCA
provides value for marketing researchers. In principle, GSCA
contains several characteristics that provide a foundation for
methodological advantages, such as the existence of a global
optimization criterion, the independence of distributional
assumptions, and the convergence behavior of the algorithm.
Perhaps GSCA’s characteristics would be beneficial in settings
with small sample sizes, complex models, or highly nonnor-
mally distributed data. A promising path for further research
would be to equip GSCA with some form of correction for
attenuation (cf. Croon 2002). Its statistical power also
demands further investigation, in that Hwang et al. (2010b)
find that GSCA2004, in combination with bootstrapping, yields
relatively small standard errors. We find the same pattern in
the standard error of GSCA. For condition VIII, a well-
specified model, we compare the standard errors of SEM
and GSCA and find that for the coefficients β1 and β2, SEM
yields standard errors of .155 and .154, whereas GSCA (with
10,000 bootstrap samples) yields standard errors of .079 and
.081, respectively. In this example, GSCA thus has greater
statistical power than SEM.

As long as empirical evidence of GSCA’s superiority over
other techniques remains lacking, marketing researchers should
not make assumptions about GSCA’s behavior. Instead, they
should resort to the ample support provided by a plethora of
conceptual, empirical, and simulation-based comparisons of
structural equation modeling techniques (e.g., Dijkstra 1983;
Fornell and Bookstein 1982; Lu et al. 2011; Reinartz et al.
2009) to make deliberate choices among their options.
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Appendix

Departing from the ordinary least squares equation and
the assumption that all data are standardized, we note

that bβ ¼ X0Xð Þ�1X0y ¼ R�1
X rXy , with the following cor-

relation matrix of the GSCA composites eη1 and eη2
(alternatively expressed by the true construct correlations
and reliabilities):

RX ¼ 1 cor eη1;eη2ð Þ
cor eη1;eη2ð Þ 1

	 

¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη2ð Þp � cor η1; η2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rel eη1ð Þ � rel eη2ð Þp � cor η1; η2ð Þ 1

	 

:

The correlation vector of the GSCA composite eη3 with
the GSCA composites eη1 and eη2 is:
rXy ¼ cor eη1;eη3ð Þ

cor eη2;eη3ð Þ
	 


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη3ð Þp � cor η1; η3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη2ð Þ � rel eη3ð Þp � cor η2; η3ð Þ

	 

:

We thus obtain the GSCA estimate of a fully mediated direct
effect, depending on a mediator variable’s reliability, R-square
value, and the correlation between the mediated composites:

bb3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη3ð Þp � cor η1; η3ð Þ

1� rel eη1ð Þ � rel eη2ð Þ � cor2 η1; η2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη2ð Þp � cor η1; η2ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rel eη2ð Þ � rel eη3ð Þp � cor η2; η3ð Þ
rel eη1ð Þ � rel eη2ð Þ � cor2 η1; η2ð Þ � 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη3ð Þp � cor η1; η3ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rel eη1ð Þ � rel eη2ð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη2ð Þ � rel eη3ð Þp � cor η1; η3ð Þ

1� rel eη1ð Þ � rel eη2ð Þ � cor2 η1; η2ð Þ

¼ 1� rel eη2ð Þð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rel eη1ð Þ � rel eη3ð Þp � cor η1; η3ð Þ

1� cor2 eη1;eη2ð Þ
¼ 1� rel eη2ð Þð Þ � 1

1� R2 eη2ð Þ � cor eη1;eη3ð Þ:
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