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Abstrakt

Srdce je komplexní orgán na jehož průběžné práci je závislý život každého člověka. Jedná se
o dutý svalový orgán, jehož mechanická práce je řízena elektrickými signály. Tyto signály jsou
produkovány samotným srdcem a jsou šířeny různou rychlostí v jeho jednotlivých částech.

Porušení tohoto systému může vést k život ohrožujícím stavům. Je proto velmi důležité
podrobně popsat tento systém, zkoumat jeho změny a účinky těchto změn na jeho funkci.

V této práci je pro aproximaci buněk srdečního svalu použit vylepšený model Fenton-Karma.
Tento model je stimulován různou stimulační frekvencí a amplitudou. Odpovědi tohoto modelu
jsou studovány z dynamického hlediska pomocí fázových portrétů, Fourierových spekter, Poin-
carého řezu, bifurkačního diagramu a testu 0-1 chaosu.

Klíčová slova: model srdeční buňky, fázový portrét, Fourierovy spektra, Poincarého řez, bifur-
kace, 0-1 test chaosu

Abstract

The heart is a complex organ on its continuous work is dependending life of every human.
It is a hollow muscular organ whose mechanical work is controlled by electrical signals. These
signals are produced by the heart itself and are propagated at different speeds at its individual
parts.

Violations of this system can lead to life threatening states. It is therefore very important
to describe this system in detail, examine its changes and the effects of these changes on the
function of heart.

In this work, improved Fenton-Karma model is used for approximation cardiac muscle cell.
This model is stimulated on various stimulation frequencies and amplitudes. Responses of this
model are studied from the dynamical point of view using phase portraits, the Fourier spectra,
Poincaré section, bifurcation diagram and the 0-1 test for chaos.

Key Words: cardiac cell model, phase portrait, Fourier spectra, Poincaré section, bifurcation,
the 0-1 test for chaos
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INTRODUCTION

1 Introduction

Since the ischaemic heart disease is the most common cause of death in the world [4], under-
standing of proper heart work and effect of changes to it’s work is crucial. On the mechanical
work of heart depends life of every human been. This mechanical work is govern by electric
system of heart. It is complex system with several stages of protection against failure. Elec-
tric signals are propagated through the heart with different speed in every region of heart. For
proper propagation of this signal, special cells are created at the heart to generate and propagate
electric signals - the conduction system of the heart. Signal propagation takes place not only
through this system, but also through one muscle cell to the other.

In this work dynamical properties of cardiac muscle cell is described. For this purpose
improvement of the well-known cardiac cell model is presented. Advantage of proposed modifi-
cation is that it can better replicate shape of action potential than original model. Using this
model, the response of the cell to the various stimulation frequencies and amplitudes is then
simulated. These responses are studied from dynamical point of view using phase portraits, the
Fourier spectra, Poincaré section, bifurcation diagram and the 0-1 test for chaos. With these
tools, chaotic as well as regular responses are detected.

This thesis is organized as follows. In Section 2 a brief introduction to the heart electrophys-
iology is presented. Section 3 is dedicated to generalities about heart cell modeling. Section 4
describes FK3V model and it’s improvement and examples of it’s using. In Section 5 a brief
introduction to numerical methods for examining the behavior of dynamic systems is given. In
Section 6 the 0-1 test for chaos is introduced. Section 7 summarizes main results achieved in this
work. Section 8 summarizes main parts of codes provided for calculation made in this thesis.
Thesis is closed by conclusions in Section 9. In Appendix is attached article summarizing the
main results achieved in this work. This article was accepted for publication in the journal
Mathematical Methods in the Applied Sciences ranking Q2 (108/255) in Mathematics, Applied
(2016) with impact factor 1.017 (2016).
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ELECTROPHYSIOLOGY OF THE HEART

2 Electrophysiology of the heart

2.1 The conduction system of the heart

The heart conduction system (its layout can be seen on Figure 2.1) is a very sophisticated system
that tries to protect itself from the failure of its individual subsystems. From the specialized
muscle cells, a sinus node (sinoatrial or SA node) is located in the right atrium at the superior
vena cava. The human SA node is crescent-shaped and is about 15 mm long and 5 mm wide
and its function is to be heart pacemaker. Cells of SA node are self-excitatory with frequency
about 70 per minute and from sinus node activation propagates throughout the atria. At the
boundary between the atria and ventricles is placed the atrioventricular node (AV node) with its
inherent rate approximately 50 beats per minute. Nevertheless, when the AV node is triggered
at a higher frequency, it follows this higher frequency. In healthy heart has therefore AV node
only conducting function and stimulation is provided by SA node.

From AV node to the ventricle is propagation provided using specialized conduction system.
Proximally is this system composed of a common bundle, called the bundle of His. This bundle
is more distally separates into right and left bundle branches that spread along each side of the
septum. Even more distally is conducting system further divided into Purkinje fibers, which
extend on the inner sides of the heart ventricles walls. Due to the many activation sites in
the inner side of the ventricular wall, the formation of a wavefront is caused. This wavefront
propagetes though the ventriculi toward the outer wall. Due to the many activation sites in
the inner side of the ventricular wall, the formation of a wavefront is caused. This wavefront
propagetes though the ventriculi toward the outer wall. This process is due to the fact, that
cardiac muscle cell (unlike skeletal muscles) can propagate action potential from one cell to
another in any direction. As a result, the activation wavefronts are of rather complex shape.
After depolarization of each ventricular muscle region, repolarization happens [1].

2.2 Cardiac muscle cell electrophysiology

The cardiac action potential can be recorded by microelectrodes. The typical resting potential
is -80 to -90 mV (with respect to the surrounding extracellular fluid, similar to the nervous
and skeletal muscle). However, since the duration of the action potential is much longer than
that of the neuron and skeletal muscle, the shape of this potential is unique (see Figure 2.2).
The total duration of the action potential is 200 to 300 ms (in the case of neurons and skeletal
muscle cells, the action potential duration is 1 to 2 ms). The typical action potential is divided
into 5 phases (as can be seen in Figure 2.2). In the initial phase (phase 0), there is a rapid
increase in the action potential from a resting value to around +20 mV triggered by the inflow
of sodium ions across the cell membrane (similar to other cells). In phase 1, a potential value
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ELECTROPHYSIOLOGY OF THE HEART

Figure 2.1: The conduction system of the heart [1].

Figure 2.2: A typical action potential from a ventricular myocardial cell.

drop occurs within 2 to 3 ms to a plateau level value (caused by the closure of Na+ channels).
This is followed by plateau phase (phase 2) caused by opening of slow Ca2+ channels. This
phase lasts for most duration of the action potential. After this, repolarization follows (phase
3), during which the action potential falls back to its resting value. This is caused by closing of
Ca2+ channels and outflow of K+ ions. Steady state between action potentials is phase 4 [5].
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HEART CELL MODELING

3 Heart cell modeling

At first, it may seem simple to assemble a model of heart cells, but these models must include
properties whose modeling is not easy (for example, the correct conduction velocity, APD resti-
tution, memory, and a nonzero minimum cycle length etc.). However, in order to maintain the
best computational tractability is not necessary that each model contains all these features, but
must be retained all the characteristics important for the particular study (action potentials
calculated by various model can be seen in Figure 3.1) [6].

Models can be divided into two basic categories: entirely physiological and simplified, but
the boundaries between these models, is very unclear. Detailed cellular models may contain
tens to hundreds of variables and equations. In contrast, the simplified models generally contain
up to ten variables and smaller number of equations [6]. It follows the basic difference between
simplified and completely physiological model. While physiological models can better reproduce
the properties and behavior of cardiac cells, they are more complex and therefore are unsuitable
for use in demanding simulations. Meaning of the parameters in physiological model may not
be entirely clear and may therefore be very difficult to find the value of these parameters.

Simplified models that are used for modeling of cardiac electrophysiology can be broadly
divided into three categories: direct reduction of more detailed models, general models and
phenomenological models [6].

Reduced models are created by reducing the complexity of the physiological model (for ex-
ample by replacing the rapidly changing variables by their equilibria, removing slowly changing
variables or reduction of variables so that they will take some (or all) of intracellular ion con-
centrations as constant [6].

Another type of simplified model are generic models of excitable media. An example of
this model is, for example FitzHugh-Nagumo model [7] (originally the model of neuron). These
models but lack important features.

The last type are phenomenological models. These types of models trying to reproduce the
dynamic properties of the inclusion of a limited amount of biophysical detail. These models
include model Fenton-Karma [3, 6].

Propagation of the action potential in cardiac tissue is a complex process and models that
simulate that process must meet certain characteristics to describe the plot correctly.

One of these parameters is conduction velocity (CV), which is determined by several factors,
including for example membrane excitability, conduction in cardiac tissue (reducing these two
parameters may result in a reduction of the CV and result in a propagation block) and duration
of stimulation cycle (CV restitution). At higher stimulation is usually decrease the CV, because
the heart tissue is not yet fully repolarized [6].
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HEART CELL MODELING

Figure 3.1: The action potentials of various mathematical models of heart cells [2]
.

Another feature of the spread of the action potential is anisotropy, which results from orga-
nizations of cardiac myocytes fibers. Propagation is thereby faster along the major axis of the
muscle fiber, which leads to axisymmetric anisotropy, which is characterized by using two values
CV (with fibers parallel and perpendicular to these fibers). An important factor that affects
the speed of propagation of the wave is also the curvature of the action potential, where three
wavefront are typical (planar, convex and concave) [6].

The anisotropy can be related to other division of models - to bidomain and monodomain.
Bidomain heart tissue model takes into account the different anisotropy of extracellular and
intracellular space. Monodomain model is a simplification of the model bidomain. Conductivity
in the extracellular space is proportional to the intracellular compartment.

Ge = λGi

where λ is scalar indicating the proportion between spaces. Anisotropy is therefore the same
in these spaces. Monodomain equation is often written as

∂Vm

∂t
= ∇ · D∇Vm − iion

Cm

Where D is the diffusion tensor or scalar diffusion coefficient, Vm stands for transmembrane
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HEART CELL MODELING

voltage, iion is sum of transmembrane currents and Cm stand for capacity of the cell membrane
[6].

As apparent from the above, setting the parameters of the models is very complex and a large
number of studies is about a suitable method of finding the parameters. Pattern for determining
the parameters are experimental data, or in the case of simplified models of propagation of
the action potential is physiological model. Another option defining the parameters of the
model is to create a patient-specific parameter sets. Which will reflect well the patient’s cardiac
electrophysiology.

Determination of the individual parameters generally difficult problem, which is engaged
in numerous studies. The simplest approach is to change the parameters to achieve the tar-
geted properties. Given that the parameters generally affect more than one property model,
this approach is only possible with simple models. Usually it is required a more sophisticated
approach. Determining the parameters of the heart model deals for example in [8]. The authors
have collected data using electrophysiological experiments, and then using a genetic algorithm
determine model parameters so that the simulation results copied the measured data.

The resulting models are then used, for example, to investigate the effects of defibrillation
or, for example, to examine cardiac arrhythmias such as ventricular fibrillation and their effects
on cardiac tissue.
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FK3V MODEL

4 FK3V model

4.1 FK3V model description

Fenton-Karma model (FK3V) is a dimensionless ionic model of cardiac action potential, which
is based on the Luo-Rudy I model. For reproducing action potential it uses three variables u,
v, and w. Variable u represents the transmembrane potential (so that u = 0 and u = 1 are
the rest and peak voltages, respectively). Output from this model can be seen in Figure 4.2.
The transmembrane potential changes depending on ionic currents according to the following
equation:

u̇ = Jstim − Jfi − Jso − Jsi (4.1)

where Jfi (accountable for depolarization of the membrane), Jso (accountable for repolarization
of the membrane), and Jsi (balances Jso during the plateau phase) are cross-membrane currents
named fast inward (fi), slow outward (so), and slow inward (si) that roughly corresponds to
sodium, potassium, and calcium ion currents, respectively. But because they do not represent
the quantitatively measured currents but only their activation, inactivation, and reactivation, it
is preferred to call these currents as fast and slow inward, and slow outward, rather than Na,
Ca, and K as a reminder of these simplification. Jstim indicates the externally applied current.
In this study, the external current composition of pulses is created by the first half period of
sine function followed by zero function. Jstim is therefore defined by the following equation:

Jstim =
{

A sin(t − n(c + 1)) t ∈ [n(c + 1), n(c + 1) + 1] n ∈ N ∪ {0},

0 t /∈ [n(c + 1), n(c + 1) + 1] n ∈ N ∪ {0},
(4.2)

where c denotes the length of time interval between pulses and A stands for the amplitude. Here
u̇ denotes the first derivative of u with respect to time. This function can be seen in Figure 4.1.

The cross membrane currents are given by

Jfi(u; v) = Θ(u − uc)(1 − u)(u − uc)
−v

τd
,

Jso(u) = Θ(uc − u) u

τ0
+ Θ(u − uc)

1
τr

, (4.3)

Jsi(u; w) = −w(1 + tanh(k(u − usi
c )))

2τsi
,

where Θ(x) is the Heaviside function which replaced the gating functions h∞(V ), m∞(V ), j∞(V ),
and f∞(V ), in the Beeler-Reuter or Luo-Rudy-I models. Function d∞(V ) is replaced by smooth
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Figure 4.1: Stimulation function with labeled parameter c (red).

function
(1 + tanh(k(u − usi

c )))
2

to provide good fit of APD restitution curves.
Another two variables v and w used in the model are gating variables which regulate inactivation
of Jfi, and Jso takes the following form:

v̇ = Θ(uc − u)(1 − v) 1
τ−

v (u)
− Θ(u − uc)v

1
τ+

v
, (4.4)

ẇ = Θ(uc − u)(1 − w) 1
τ−

w
− Θ(u − uc)w

1
τ+

w
, (4.5)

τv(u) is a function for defining the time constants for two voltage ranges (uv < u < uc and
u < uv) and is introduced for proper reproducing CV restitution curve. It controls reactivation
of Jfi and is given by equation

τ−
v (u) = Θ(u − uv)τ−

v1 + Θ(uv − u)τ−
v2

The model contains several constants, which are used for fitting the output curves into the
requested shape, time constants τr, τsi, τ0, threshold potentials uc, usi

c , and uv.
The original paper [3] describes four different sets of parameters to fit for different dataset.

• BR: obtained by stimuli of the Beeler-Reuter model with standard parameter values.

• MBR: obtained by stimuli of modified the Beeler-Reuter model with accelerated up calcium
kinetic.

• MLBR-I: stimuli of Luo-Ruby-I model with speeded up calcium kinetic.
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Figure 4.2: Variable u (red), v (green) and w (blue) of FK3V model with BR parameter set.

• GP: experimental data from measuring the membrane potentials on the epicardial surface
of the left Ventricle of a guinea pig.

Table 4.1: Original published parameters of the FK3V model [3] for BR parametric set, k = 10

Parameter Description unit value
τd setting influence Jfi for u > uc ms 0.25
τr setting influence Jso for u > uc ms 33
τsi setting influence Jsi on u̇ ms 30
τ0 setting decrease u to 0 for u < uc ms 12.5
τ+

v setting decrease v to 0 for u > uc ms 3.33
τ−

v1 setting value for τ−
v (u) for u > uv ms 1250

τ−
v2 setting value for τ−

v (u) for u < uv ms 19.6
τ+

w setting decrease w to 0 for u > uc ms 870
τ−

w setting increase w to 1 for u < uc ms 41
uc depolarization threshold - 0.13
uv threshold for activation τ−

v1 or τ−
v2 - 0.04

usi
c threshold for opening Jsi - 0.85

4.2 Model improvement

Since the shape of FK3V model is not realistic, the modification of this model is proposed. The
modification consists of replacing constant τr in Equation (4.3) by the following function

τr(u) = Θ(uτr − u)τr + Θ(u − uτr )
(τr(1 + tanh(k2(1 − u)))

4 + τr

2
)
. (4.6)

This equation divides τr(u) into two potential ranges. From 0 to uτr where τr(u) remains
constant and from uτr above, where u decreases from τr to τr/2. Another parameter introduced
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FK3V MODEL

in Equation (4.6) is k2 which sets the speed of decrease of τr(u). In this work uτr = 0.85 and
k2 = 20. Another change from the original model is redefining usi

c to value usi
c = 0.7. The rest

of the parameters stay the same as in the original BR parameters set (see Table 4.1).
In Figure 4.3, the difference in the shape of the transmembrane potential of the original

FK3V model as well as the modified model can be seen.
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Figure 4.3: Time responses of u (red), v (green) and w (blue) of the original model (left) and
improved model (right) for c = 700 ms and A = 0.48.

4.3 Using of FK3V model

FK3V model is commonly used to describe a simplified model of the heart and electrophysiology
studies that use this model can be generally divided into several groups. Studies dealing with the
determination of parameters of models to better replicate the outputs obtained by using physio-
logical models and experimental data, studies that use the model to study the electrophysiology
of the heart and studies that examine the characteristics of the model FK3V.

The first group can include for example the study [9], which describes a procedure for finding
such parameters FK3V model to its restitution characteristics correspond restitution character-
istics of Courtemanche-Ramirez Nattel model of atrial tissue. In [10], the authors then edited
the parameters of detailed and simplified (FK3V) model to fit for five clinical data of patients
undergoing ablation therapy. The authors focused on fitting the shape of the action potential,
action potential duration, restitution and conduction velocity. Fitting was done using simulated
annealing fitting procedure and the resulting model accurately reproduced the clinical data, but
the parameters were significantly different from the original parameters of published authors,
and also between individual patients. Both models (detailed and simplified) reproduce a similar
spiral wave dynamics, which are however different for each patient.

In [11] authors carry out entrainment pacing to group of patient undergoing radiofrequency
ablation of atrial and ventricular reentrant arrhythmias. This process is then simulated using
2D model of cardiac tissue using a model FK3V. The authors investigated postpacing interval
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(PPI) and the tachycardia cycle length (TCL; PPI-TCL) interval to assess the reproducibility of
the interval, both in vitro and in silico. The authors found a high repeatability with differences
≤ 20 ms between the results for each stimulation. In the case of slow tachycardia, parameter
variability is significantly lower.

Termination of fibrillation is studied in [12]. Their objective was to numerical validation
the experimental techniques for terminating fibrillation presented in [13]. As a numerical model
authors used the FK3V. In his work, they found that synchronized defibrillation can create a
low-energy alternative to traditional defibrillation. In [14] the authors studied electrophysiology
and dynamic mechanism of spiral waves break up (which are one of the main mechanisms of
fibrilation to raise). This work simulated 2D cardiac tissue with the FK3V model. The authors
found several alternans unstable modes with different growth rates, frequencies and spatial
structures. Instability mode is increased along with the increase of conductivity of fast inward
current. The work also using eigenmode methods to calculate the exact time and amplitude of
the stimulus, which was then optimally located so as to ensure maximum efficiency. The authors
come to the special case where the spiral wave break up was suppressed with a single stimulus.
In a study [15], the authors examined the behavior of fibers in a computing FK3V monodomain
anisotropic model of re-entrant ventricular fibrillation. In [16] focused on the optimal control
based on the cardiac electrophysiology bidomain equations in conjunction with FK3V. The
basic tools for successful defibrillation used in this work are shape calculus and marching cubes
algorithm.

Another topic which often target individual work dealing with FK3V model is descriptions
of properties of the model itself. Example of this study is [17], which examines steady state
of the system. Linear stability of these points and their response to external stimulation were
examined.
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5 Dynamical properties detection tools

In this chapter, a brief introduction to methods exploring a dynamic system properties are given.
These tools will be explained and demonstrated using well known Lorenz system of ordinary
differential equations (5.1) which are used for modeling atmospheric convection. It is system
with three degrees of freedom (x, y and z) and three different parameters (ρ, σ and β). These
equations exhibits regular as well as chaotic patterns.

Equations were solved numerically using the explicit Runge-Kutta method implemented as
ode23 solver in Matlab. Equations were solved with initial conditions x = y = z = 1 in timespan
from 0 to 15000

dx

dt
= σ(y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz.

(5.1)

5.1 Phase diagram

Phase space (or state space) is a notion proposed by Ludwig Boltzmann, Henri Poincaré, and
Willard Gibbs in the 19th century. It is set of all the possible states of the dynamical system.
A diagram, where all states are marked is phase diagram (the state of the system is represented
as a point). In the phase diagram (phase portrait), every degree of freedom of the dynamical
system is represented by the axis in the multidimensional space. This tool is suitable for example
to distinguish between stable and chaotic behavior [18].

Example of phase diagram can be seen in Figures 5.1 and 5.2. In Figure 5.1 examples of phase
diagram depicting stable orbit is given. In Figure 5.2 is shown example of chaotic attractor.

5.2 Poincaré section

Let’s have a dynamical system in continuous time

ẋ = f(x)

where x ∈ Rn. Now, in the phase space of this dynamical system, define a section with lower
dimension called Poincaré section (named after Henri Poincaré). Next step is to compute all
intersections of Poincaré section with state space and plot them to graph. Intersections are
represented as points, and the set of all intersections is called Poincaré map. This map can be
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Figure 5.1: Phase diagram of stable orbit of system (5.1) with parameters ρ = 240, σ = 10 and
β = 8/3 (left) and parameters ρ = 150, σ = 10 and β = 8/3 (right).

Figure 5.2: Phase diagram of Lorenz equations with parameters ρ = 28, σ = 10 and β = 8/3.
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Figure 5.3: Phase diagram of Lorenz equations with depicted Poincaré section parameters ρ =
240, σ = 10 and β = 8/3 (left) and Poincaré map (right).

Figure 5.4: Phase diagram of Lorenz equations with depicted Poincaré section parameters ρ =
150, σ = 10 and β = 8/3 (left) and Poincaré map (right).

seen as a discrete dynamical system (with less degrees of freedom than the original continuous
system). This tool is often used in practice for dynamical system analysis, because it displays
many properties of periodic, quasi-periodic and chaotic orbits, and dynamical system behavior
is interpreted in lower dimensions. There is no general procedure for constructing the Poincaré
section. The information obtained with this tool is dependent on the location of the subspace
in which the intersection is calculated.

Example of Poincaré map can be seen in Figures 5.3, 5.4 and 5.5. In Figure 5.3 only one
point can be seen. This illustrates stable orbit with period 1 (intersection is only in one point
of Poincaré section) of Poincaré map. Another examples of stable period orbit can be seen in
Figure 5.4. This Figure represents stable orbit of Poincaré map with period 2 (in the right part
of Figure can be seen only two points). Example of Poincaré map created from chaotic attractor
is depicted in Figure 5.5. Chaotic behavior indicates line created from intersection of Poincaré
section and state space. By comparing Figures 5.4 and 5.6, dependence on Poincaré section
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Figure 5.5: Phase diagram of Lorenz equations with depicted Poincaré section parameters ρ =
28, σ = 10 and β = 8/3 (left) and Poincaré map (right).

Figure 5.6: Phase diagram of Lorenz equations with depicted Poincaré section parameters ρ =
150, σ = 10 and β = 8/3 (left) and Poincaré map (right).

placement can be seen. While in Figure 5.4, two points depicting period 2 orbit of Poincaré map
is shown. In Figure 5.6 can be seen only one point suggesting period 1 solution. This difference
is caused by shifting Poincaré section to different location in phase space.

5.3 Bifurcation diagram

Let’s have a dynamical system dependent on parameters. Let’s write this system in continuous
time as

ẋ = f(x, α), (5.2)

or in discrete time case as
x ↦→ f(x, α), (5.3)

where x ∈ Rn and α ∈ Rm denotes phase variables and parameters, respectively. As the
parameters α changes, the phase portrait of system (5.2) and (5.3) also varies. These changes
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Figure 5.7: Bifurcation diagram of Logistic map with respect on parameter r and x0 = 2/3.

may result in two options: system stay topologically equivalent to the original one, or its topology
will be different [19].

Definition 5.1 ([19]) The appearance of a topologically nonequivalent phase portrait under
variation of parameters is called a bifurcation.

Bifurcation is therefore a change of the topological type of system (5.2) or (5.3) when its pa-
rameters pass through a bifurcation (critical) value [19]. To capture these changes, a bifurcation
diagram is usually created. It is a graphical representation of the relationship between bifur-
cation parameter and behavior of the system. In this diagram, system behavior (fixed points,
periodic orbits, or chaotic attractors etc.) can be distinguished.

Definition 5.2 ([19]) A bifurcation diagram of the dynamical system is a stratification of
its parameter space induced by the topological equivalence, together with representative phase
portraits for each stratum.

In order to maintain the greatest possible clarity, the bifurcation diagram will be presented
on Logistic map (5.4).

xn+1 = rxn(1 − xn) (5.4)

Bifurcation diagram of Logistic map is depicted in Figure 5.7. In this diagram can be seen
period 1 solution (fixed point) for parameter 1 ≤ r ≤ 3 as only one point for 1 ≤ r ≤ 3 can be
seen. In r = 3 bifurcation occurs and solution with period 2 can be found for 3 ≤ r ≤ 3.44949.
After that, another bifurcation appears and period 4 solution can be found. This phenomena
called period doubling continuous until r = 3.5699456 where chaotic behavior of Logistic map
starts and bifurcation diagram shows line which implies non-periodic motion. Another stable
solution of period 3 can be found at interval 3.831874055 ≤ r ≤ 3.857082826.
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Figure 5.8: Fourier spectra of (5.1) with parameters ρ = 240, σ = 10 and β = 8/3 (left) and
parameters ρ = 28, σ = 10 and β = 8/3 (right).

5.4 Fourier spectra

This is a very popular tool, since the idea of decomposing a non-periodic signal into a set of
sinusoidal or harmonic signals is well known. This method is based on the assumption that
combination of the sine or cosine signals can represents a periodic or non-periodic signal:

f(t) = 1
2π

∫
Γ

F (ω)eiωtdω

Since F (ω) is in many cases complex, for graphical representation the absolute value |F (ω)|
is used [20].

In case of periodic, or quasi-periodic motion, graphical representation of Fourier spectra
shows narrow peaks or lines, which means, that the signal is possible to reconstruct with discrete
set of harmonic functions {e±iωkt}, where k = 1, 2, ... In case of chaos onset, graph depicting
|F (ω)| with continuous frequencies distribution emerge. When the motion is in fully chaotic
regime is possible that in continuous spectrum dominates the discrete spikes [20].

Differences in Fourier spectra between these two motions are represented in Figure 5.8. In
Figure 5.8 (left), Fourier spectrum of stable behavior is shown. Peaks in this graph represents
discrete set of harmonic functions. In Figure 5.8 (right), continuous frequency spectrum of
chaotic motion is depicted. Here, the Fourier spectra is formed by a number of harmonic
components having the basic, super-harmonic, sub-harmonic, and combination frequencies on
which there are superposed further motions with frequencies forming the sided bands of the
dominant frequencies. Their mutual ratio indicates the irregularity of the motion.
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6 The 0-1 test for chaos

Generally, a dynamic system can be viewed as a model of the action of a time flow T on a state
space X whose elements are all possible states of the system. There are several ways to describe
this system in a mathematical way. One of the options is the description using differential
equations. However, since it can be seen as a dynamic system also human heart, when its
activity is examined over time. Differential equations therefore can be used to describe the
activity of the heart and examine this activity with tools designed for dynamic system analysis.
[21]

One of the tools for analyzing dynamical systems is the 0-1 test for chaos [22, 23]. This test
is used to distinguish regular and chaotic dynamics. The resulting value of this test can only be
0 (regular behavior) or 1 (chaos). This method is based on the statistical properties of a single
coordinate only. Systems dynamics is then quantified by a single parameter calculated in the
time domain.

Advantage of this test over the approaches based on frequency spectrum is that in this method
only one parameter provides information about systems dynamics (likewise maximal Lyapunov
exponent). Compared to Lyapunov exponents, however, this method is far more suited for
practical applications, since it does not require linearization of the system (which is often non-
trivial and sometimes difficult to achieve), but the theory behind this method is based on the
long-term behavior of suitable extensions of the system with respect to the two-dimensional
Euclidean group [21].

0-1 test can also be used for measured data, where the presence of noise can not be avoided
(how to deal with noisy data is described for example in [23, 24]). In study [25] authors applied
the 0–1 test to stochastic time series and they discovered, that pairing this with a test for
determinism can be used to distinguish between chaos and randomness from a noisy data.
Application of the 0-1 test for chaos to experimental data is described in [25]. In this article
is taken as example data measured from electromagnetic bipolar motors. In application is
also important to take into account sampling period and its possible influence to test results.
There were proposed several approaches how to optimize sampling frequency and also reduce
the number of elements in time series. The main thought of this approaches is to relate sampling
frequency with characteristic period present in the time serie (for more details see e.g. [23]).

As it was written before, the 0-1 test for chaos is based on the exploration of the long-term
behavior of the underlying dynamical system extension with respect to the two-dimensional
Euclidean group (for more information about Euclidean extensions of dynamical systems see
[26]). If we extend dynamical system, then in the (p, q)-plane defined using equation (6.2) is
its asymptotic dynamics bounded for regular motions and unbounded for nonregular motions.
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Due to computation load is this criterion in the applications applied to the projections of the
trajectory on the p or the q axis (time series is therefore further simplified due to focusing only
on one component of the ’virtual point’) [21].

According to the statement, that occurrence of chaos is shown by unbounded motion in
(p, q)-plane. In the implementation we have to choose between two ingredients which will affect
the subsequent implementation of the method.

• Computation of scalar quantities from the knowledge of the trajectory. Asymptotic growth
rate of this sequence can be correlated with the unboundedness.

• The way of defining the asymptotic growth rate.

In numerical tests are shown [22], that chaotic dynamical system in (p, q)-plane slant to
motion with irregular behavior which is similar to Brownian motions. Probability distribution
for these type of motion is Gaussian with mean x0 and variance σ2 which linearly increasing
with time t and because Brownian motion is a ergodic process, therefore variance of these
distribution is equal to the time-averaged mean-square displacement (MSD) of any specific
trajectory evaluated over some time lag. Due to this, the boundedness or unboundedness of a
trajectory can be determined by examining the asymptotic growth rate of MSD as a function
of the time lag defined using equation (6.3) [21].

It is obvious, that displacement over the same time lag may not be the same in different
parts of trajectory, therefore quantity Mb(n) is average of displacements calculated during all
time lags of duration n along the trajectory [21].

It is also appropriate to note that MSD is related to the partial power spectrum sum (for
definition see [27, 28]), that can be viewed as ancestor of the 0–1 test. Therefore it can be said
that MSD is scaled according to the power law.

MSD ∼ tλ(b)

where λ(b) is the Lyapunov exponent of the spectrum at frequency b (for more details see [27])
[21].

From the knowledge of auxiliary trajectory can be calculated family of quantities parame-
terized by the time lag n using equation (6.3).

For the fixed value of time lag n, MSD provides knowledge about local behavior in the
(p, q)-plane (local because it takes account displacement after n units of time). As the n growth,
behavior of M(n) yields information about eventual unboundedness of the trajectory. In case
that auxiliary trajectory is bounded, resulting function M(n) will be bounded. In case of linear
growth of this function, the trajectory behaves like a Brownian motion [21].
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Last think is defining way to describe asymptotic growth rate. In the first paper dedicated
to this test, authors use average logarithmic growth rate of the MSD.

Kb := lim
n→∞

logM(n)
logn

(6.1)

In paper [26] is shown, that in chaotic case, the dynamics of this extension is unbounded but
sublinear. That’s why there are two possibilities, Kb = 0 for a regular motion or Kb = 1
for a chaotic trajectory. Therefore Kb is natural indicator for the presence of chaos. It is
important to note, value calculated using equation (6.1) is dependent on the parameter b, used for
characterization of proposed Euclidean extension. Therefore parameter Kb must be calculated
for several values of b and as the final value a median of these values should be taken [21].

The resulting indicator provides a knowledge, that is equivalent to the maximum Lyapunov
exponent, but, by far, much easier to implement, with approach which is independent on the
nature of the underlying system [21].

Equations (6.1) and (6.3) are not only one possible way of how to compute these parameters.
In some cases, is even more appropriate to use some modifications of these formulas. For example,
of possible modifications see e.g. papers [23, 24, 29] [21].

At last, let’s complete the whole process of calculating the 0-1 test for chaos. This correlation
method works as follows. For a given set of observations ϕ(j) for j ∈ {1, 2, . . . , N} are computed
translation variables for suitable choice of b ∈ (0, 2π):

pb(n) =
N∑

j=1
ϕ(j) cos(jb) = 1,

qb(n) =
N∑

j=1
ϕ(j) sin(jb) = 1

(6.2)

then the mean square displacement is computed using the following equation

Mb(n) = lim
N→∞

1
N

N∑
j=1

[pb(j + n) − pb(j)]2 + [qb(j + n) − qb(j)]2 (6.3)

here n ≤ ncut where ncut ≪ N . Then, the estimate of the modified mean square displacement
is computed using the next equation

Db(n) = Mb(n) −
(

lim
N→∞

1
N

N∑
j=1

ϕ(j)
)2 1 − cos(nb)

1 − cos(b) .

Finally, the output of the 0-1 test is obtained as correlation coefficient of ξ and ∆ for fixed
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parameter b

Kb = corr(ξ, ∆)

where ξ = (1, 2, . . . , ncut) and ∆ = (Db(1), Db(2), . . . , Db(ncut)). Hence, Kb is dependent on the
choice of b. To get K as the output of the 0-1 test, as limiting value of all Kb, the result value
is taken as

K = median(Kb).
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7 Main results

In individual simulations, the heart cell was stimulated with the half-sine shaped current pulses
with an amplitude from A = 0.16 to A = 0.96 with step of 0.04 and duration 1 ms. The individual
stimulation pulses were separated by the delay c (see Equation (4.2)). The computations were
performed for the stimulation delays from 10 to 300 ms with step of 5 ms. Each simulation was
done for the time from 0 to 5 × 105 ms. From the results, a phase diagram, amplitude frequency
spectrum, and Poincaré section for each simulated frequency was computed. From the data was
also created bifurcation diagram for the entire simulated frequency spectrum and the 0-1 test
for chaos was computed.

This section is based on results that are accepted for publication in Mathematical Methods
in the Applied Sciences, the paper is enclosed as Appendix of this thesis.

7.1 Phase portraits, the Fourier spectra, and Poincaré section

The Fourier spectra and phase portraits were computed for A = 0.48 (twice as needed to cause
stimulation). Chaotic behavior of the model was observed on stimulation delays ranging from
30 to 50 ms and 105 ms. Regular behavior was observed elsewhere.

Cases with regular behavior can be divided into five groups (RG1 – RG5). Each of these
groups corresponds to the different biological response of the cell to the stimulatory pulses and
corresponding representatives are shown in (Figure 7.1 – Figure 7.5); in all of these cases the
Fourier spectra is formed by a number of harmonic frequencies, hence the frequency of the
periodic trajectory is computable. Periodic motions of trajectories are also visible in Poincaré
sections.

The irregular (chaotic) case is shown in Figure 7.6, the IRG case. In this case, the Fourier
spectra is formed by a number of harmonic components having the basic, super-harmonic, sub-
harmonic, and combination frequencies on which there are superposed further motions with
frequencies forming the sided bands of the dominant frequencies. Their mutual ratio indicates
the irregularity of the motion. The character of this motion’s case is underlined by the Poincaré
section.

RG1 This case is represented in Figure 7.1 for stimulation delay 20 ms. The amplitude of u

does not reach the full range (0 to 1), but changes only between 0 and 0.34. The action
potential shape (variable u) also does not match with proper shape of action potential (see
Figure 4.3 for comparsion).

RG2 At stimulation delays from 75 ms to 100 ms, stimulation causes every third stimulus (two
unsuccessful stimulation followed by successful pacing). In the phase diagram, a closed
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Figure 7.1: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section of the modified FK3V model for c = 20 ms.

1 1.002 1.004 1.006 1.008 1.01×10
5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05

f (Hz)

0

0.02

0.04

0.06

0.08

0.1

F
F

T
(u

)

Figure 7.2: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section of the modified FK3V model for c = 80 ms.

loop with two spikes due to unsuccessful stimulation can be seen. The representative case
of the model with this behavior can be seen in Figure 7.2.

RG3 In Figure 7.3, the typical model response for the delays ranging from 110 ms to 145 ms
can be seen. The relevant stimulation is caused by every second stimulation impulse,
but every second successful stimulation comes to phase of relative refracterity, therefore
the action potential of this stimulation has shorter duration than the action potential
of the previous successful stimulation impulse. In the phase portrait, two spikes from
unsuccessful stimulation and two curves from the stimulation (one comes from the phase
of relative refracterity and one comes from steady state) can be seen.

1 1.002 1.004 1.006 1.008 1.01×10
5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05

f (Hz)

0

0.02

0.04

0.06

0.08

0.1

F
F

T
(u

)

Figure 7.3: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section of the modified FK3V model for c = 120 ms.

36



MAIN RESULTS

1 1.002 1.004 1.006 1.008 1.01

×10
5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05

f (Hz)

0

0.02

0.04

0.06

0.08

0.1

F
F

T
(u

)

Figure 7.4: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section of the modified FK3V model for c = 160 ms.
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Figure 7.5: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section of the modified FK3V model for c = 250 ms.

RG4 In Figure 7.4, the representative case, every second stimulation impulse causes stimulation
at delays from 150 ms to 185 ms. The action potential duration is about 200 ms.

RG5 Finally, in Figure 7.5, the representative is shown where every stimulation impulse causes
stimulation. This is observable for delays from 190 ms and above.

IRG The behavior of motions observed on delays from 30 ms to 50 ms and 105 ms is irregular,
the representative can be seen in Figure 7.6. In this case, the mutual ratio of stimulation
impulse and stimulation indicates the irregularity of the motion. Moreover, these cases
are chaotic due to the output of the 0-1 test for chaos performed in Section 7.3.
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Figure 7.6: From the left: time responses of u (red), v (green), and w (blue); FFT of variable
u; phase diagram and Poincaré section the modified FK3V model for c = 105 ms.
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Figure 7.7: Bifurcation diagram for variable u (left), v (middle), and w (right).
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Figure 7.8: Results of the 0-1 test for chaos for A = 0.48 and c from 10 ms to 300 ms. Variable
u (left), v (middle) and w (right).

7.2 Bifurcation diagram

Next work was to plot bifurcation diagrams of modified FK3V model. Values for diagrams was
collected witch period of stimulation frequency. Diagrams can be seen in Figure 7.7. In diagrams
can be seen, that stimulation delays from 30 to 50 ms and 105 ms are chaotic, at the other delays
are regular responses. This coincides with time series exploration.

7.3 The 0-1 test for chaos

Next, the 0-1 test for chaos was performed. Description of this test is given in the section 7.3.
The results of this test can bee seen in Figure 7.8. At delays up to 25 ms, the behavior of
variable u is regular, but for variables v and w , it cannot be decided if the behavior is chaotic
or regular. Chaotic behavior of the model was observed on stimulation delays from 30 to 50
ms and 105 ms. There are also several cases of stimulation delays with the output of the 0-1
test for chaos in the range (0.1,0.9); in this cases it cannot be decided if it is chaotic or regular
behavior, e.g. at the stimulation delay of 70 ms. Notice, that results of this test coincides with
time series and bifurcation diagram.
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Figure 7.9: Results of the test for chaos 0-1 for various stimulation delays and amplitudes for
variable (from the left) u, v, w and color bar (right).

But because of that, the stimulation of heart cell is dependent not only on the stimulation
frequency but also on the amplitude of stimulation, the test for chaos 0-1 was computed also for
the amplitude range from 0.16 to 0.96 in step 0.04. But since the results of the test for chaos 0-1
for A = 0.48 was the regular behavior for c > 105 ms (see Figure 7.8), the tests were computed
for the stimulation delays from c = 20 ms to c = 200 ms in 5 ms increments. The results of this
test can be seen in Figure 7.9. From this figure can be seen that chaotic behavior is focused into
three regions.

The first and biggest region of the chaotic behavior is at amplitudes from 0.24 above and
stimulation delays from approximately 30 ms to 55 ms. Another area of section of chaotic
behavior is at amplitudes from 0.8 and above and stimulation delay 80 ms. And the last region
of chaotic behavior is at stimulation delay around c = 105 ms and amplitudes from A = 0.24.
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8 Matlab codes

In this section, the main parts of programs are provided, that were used for calculation of above
mentioned results.

8.1 FK3V cardiac cell model

The code given in Listing 8.1 is for calculation of FK3V model. On the lines 1 to 26 is ini-
tialization of model parameters. On the lines 32 to 45 definition of model’s functions can be
seen.

1 % model parameters (original Beeler-Reuter parameter set)

2 uc = 0.13; % [-]

3 tauv_plus = 3.33; % [ms]

4 tauw_minus = 41; % [ms]

5 tauw_plus = 870; % [ms]

6 taud = 0.25; % Cm/gfi

7 tau0 = 12.5; % [ms]

8 taur = 33; % [ms]

9 k1 = 10; % [-]

10 tausi = 30; % [ms]

11 uv = 0.04; % [-]

12 tauv1_minus = 1250; % [ms]

13 tauv2_minus = 19.6; % [ms]

14
15 % model parameters (parameters for modified model)

16 ucsi_mod = 0.7; % [-]

17 k2 = 20; % [-]

18 u_taur = 0.85; % [-]

19
20 % stimulation impulse parameters

21 amp = .48; % stimulation amplitude

22 n = 1; % nb of pulses during one stimulation

23 a = 0; % time to first stimuli

24 c = 105; % time between stimulation

25 i = 1000000000; % number of stimulation

26 T = 1; % period of stimulatin impulse

27
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28 % ode solver parameters

29 timeSpan = [0 5000];

30 opts = odeset(’MaxStep’,T/3); % maximum step for ode solver

31
32 % definition of function tauv_minus(u_t) (original model)

33 tauv_minus=@(y) heaviside(y(1)-uv)*tauv1_minus+heaviside(uv-y(1))*tauv2_minus;

34
35 % definition of taur modification (modified model)

36 tau_r = @(y) heaviside(u_taur-y(1))*(taur)+heaviside(y(1)-u_taur)*((taur/2)

*((1+tanh(k2*(1-y(1))))/2)+taur/2);

37
38 % definition of modified FK3V model

39 FK3V_mod = @(t, y) ...

40 [-((-y(2)/taud)*heaviside(y(1)-uc)*(1-y(1))*(y(1)-uc)) ... % -Jfi

41 - ((y(1)/tau0)*heaviside(uc-y(1)) + heaviside(y(1)-uc)/tau_r(y)) ... %-Jso

42 - ((-y(3)/(2*tausi))*(1+tanh(k1*(y(1)-ucsi_mod)))) ... % -Jsi

43 + (stimImp(t(1), amp, n, a, c , i, T)); ... % stimulation impulse

44 (heaviside(uc-y(1))*((1-y(2))/tauv_minus(y(1))) - heaviside(y(1)-uc)*(y(2)/

tauv_plus)); ... % dv

45 (heaviside(uc-y(1))*((1-y(3))/tauw_minus) - heaviside(y(1)-uc)*(y(3)/

tauw_plus))]; % dw

46
47 % solve modified FK3V model using explicit Runge-Kutta with initial conditions

U = 0, V = 1, W = 1

48 [time, results] = ode45(FK3V_mod, timeSpan, [0 1 1], opts);

Listing 8.1: Matlab code for modeling transmembrane potential using modified FK3V model.

8.2 Stimulation impulse

The Listing 8.2 is used for calculation of stimulation impulse amplitude. This function is used
in model definition in code 8.1 on the line 43. In this code, it is gradually decided whether a
stimulus pulse is to be applied.

1 function y = stimImp(t, amp, n, a, c , i, T)

2 % y output (stimulation impulse)

3 % t time

4 % amp stimulation impulse amplitude
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5 % n nb of pulses during one stimulation

6 % a time to first stimulus

7 % c time between stimulation

8 % i number of stimulation

9 % T period of stimulatin impulse

10
11 f = 1/(2*T); % calculate frequency of stimulus sine pulse

12 b = n*T; % total time of stimulation

13 t1 = t - a; % remove time to first stimulus

14 if t1 < 0 % if should not been applied yet

15 y = 0;

16 else

17 k = t1/(b+c); % calculate the number of impulses already given

18 k1 = floor(k);

19 if k1+1 > i % if total number of stimulation impulses has been reached

20 y = 0;

21 else

22 t2 = t1-k1*(b+c); % remove time of already given impulses

23 if t2 <= b % if stimulation impulse should be applied

24 t3 = t-t2; % calculate the start time of the pulse application

25 t4 = t - t3; % calculate how long the impulse is already given

26 y = amp*sin(2*pi*f*t4); % calculate impulse amplitude

27 else

28 y = 0;

29 end

30 end

31 end

Listing 8.2: Matlab code for calculating stimulation impulse.

8.3 Poincaré section

The code in Listing 8.3 is used for calculation of Poincaré section. In the code, the plane, in
which Poincaré section is calculated, is defined by the parametric expression (lines 7 to 19). In
lines 21 to 30 are selected values, that are near to desired section. In the rest of the program
are from the obtained data computed exact points in which Poincaré section intersects data
obtained from code 8.1. These points are calculated using cubic spline interpolation.
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1 %% load data

2 freq;

3 data_u;

4 data_v;

5 data_w;

6
7 % define plane

8 vec_u = [1 0 0]; vec_u = vec_u/norm(vec_u);

9 vec_v = [0 -0.7 0.3]; vec_v = vec_v/norm(vec_v);

10
11 % pro c = 40:300

12 A = [0.0077 0.6523 0.9206];

13 t = [-0.1 0.1];

14 s = [-0.1 0.1];

15
16 % pro c = 20

17 % A = [0.0077+0.1, 0.6523-0.64, 0.9206+0.05]; % pro c = 20

18 % t = [-0.1 0.05];

19 % s = [-0.0 0.01];

20
21 prunik = [];

22 prec = 10^(-4);

23 for a = 1:length(data_u)

24 s1 = (data_v(a)-A(2)-((data_u(a)*vec_u(2))/vec_u(1))-((A(1)*vec_u(2))/vec_u

(1)))/(vec_v(2)-(vec_v(1)*vec_u(2))/vec_u(1));

25 t1 = (data_u(a)-A(1)-s1*vec_v(1))/vec_u(1);

26 z1 = A(3)+t1*vec_u(3)+s1*vec_v(3);

27 if data_w(a)>=(z1-prec) && data_w(a)<=(z1+prec) && s1>=min(s) && s1<=max(s)

&& t1>=min(t) && t1<=max(t)

28 prunik = [prunik a];

29 end

30 end

31
32 start = prunik(1);

33 spline_data_x = [];

34 spline_data_y = [];
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35 spline_data_z = [];

36 for a = 2:length(prunik);

37 if (prunik(a)-prunik(a-1)) > 1

38 stop = prunik(a-1);

39
40 if stop - start > 1

41 vector_u = (data_u(start)+data_u(stop))/2;

42 vector_v = (data_v(start)+data_v(stop))/2;

43
44 s11 = (vector_v-A(2)-((vector_u*vec_u(2))/vec_u(1))-((A(1)*vec_u(2))/

vec_u(1)))/(vec_v(2)-(vec_v(1)*vec_u(2))/vec_u(1));

45 t11 = (vector_u-A(1)-s11*vec_v(1))/vec_u(1);

46 value = A(3)+t11*vec_u(3)+s11*vec_v(3);

47 spline_data_z = [spline_data_z, value];

48
49 dataIndex = spline(data_w(start:stop),start:stop,value);

50 spline_data_x = [spline_data_x, spline(start:stop,data_u(start:stop),

dataIndex)];

51 spline_data_y = [spline_data_y, spline(start:stop,data_v(start:stop),

dataIndex)];

52 end

53
54 start = prunik(a);

55 end

56 if a == length(prunik)

57 stop = prunik(end);

58
59 if stop - start > 1

60 vector_u = (data_u(start)+data_u(stop))/2;

61 vector_v = (data_v(start)+data_v(stop))/2;

62
63 s11 = (vector_v-A(2)-((vector_u*vec_u(2))/vec_u(1))-((A(1)*vec_u(2))/

vec_u(1)))/(vec_v(2)-(vec_v(1)*vec_u(2))/vec_u(1));

64 t11 = (vector_u-A(1)-s11*vec_v(1))/vec_u(1);

65 value = A(3)+t11*vec_u(3)+s11*vec_v(3);

66 spline_data_z = [spline_data_z, value];

67
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68 dataIndex = spline(data_w(start:stop),start:stop,value);

69 spline_data_x = [spline_data_x, spline(start:stop,data_u(start:stop),

dataIndex)];

70 spline_data_y = [spline_data_y, spline(start:stop,data_v(start:stop),

dataIndex)];

71 end

72
73 end

74 end

Listing 8.3: Matlab code for Poincaré section.

8.4 Bifurcation diagram

In Listing 8.4 can be seen code for calculation bifurcation diagram from results obtained us-
ing code 8.1. Values for diagram are plotted with frequency equal to stimulation frequency.
Therefore for bigger stimulation frequency, more data points are plotted. At first, parameters
of bifurcation diagram are sets (lines 1 to 7). On the line 8 to 15, maximum plotted data points
per stimulation delay is find out and matrices for saving the results are allocated. Lines 22 to
28 loads simulated results. On the lines 30 to 39 is calculated frequency of stimulation and at
these times the data for plotting are selected. In the end are data saved to matrix.

1 % parameters

2 n = 1;

3 lowestTimeStep; % time step in data

4 frequency; % frequencies to plot

5 frq = min(frequency);

6 maximumTimeStart; % start of simulation

7
8 % Find out how much data will be needed for bifurcation diagram

9 time; % load time

10 time2plot = maximumTimeStart:(frq+1)*n:max(time); % times to plot

11 resIndex2plot = round(time2plot*(1/lowestTimeStep)-(maximumTimeStart*(1/

lowestTimeStep))+1); % indexes times to plot

12
13 bifDiagram_matrix_u = ones(nbOfFrequencies, length(resIndex2plot))*(-100);

14 bifDiagram_matrix_v = ones(nbOfFrequencies, length(resIndex2plot))*(-100);

15 bifDiagram_matrix_w = ones(nbOfFrequencies, length(resIndex2plot))*(-100);
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16
17 index = 1;

18 for frq = frequency

19
20 display(frq); disp(’bifurcation diagram’);

21
22 nameRes_u = [ ’FKmodification_interp’,num2str(frq),’_u.mat’ ];

23 nameRes_v = [ ’FKmodification_interp’,num2str(frq),’_v.mat’ ];

24 nameRes_w = [ ’FKmodification_interp’,num2str(frq),’_w.mat’ ];

25
26 load(nameRes_u,’interpPoints_u’); % load result data

27 load(nameRes_v,’interpPoints_v’); % load result data

28 load(nameRes_w,’interpPoints_w’); % load result data

29
30 % times to plot

31 time2plot = maximumTimeStart:(frq+1)*n:max(time);

32
33 % indexes times to plot

34 resIndex2plot = round(time2plot*(1/lowestTimeStep)-(maximumTimeStart*(1/

lowestTimeStep))+1);

35
36 % data for plotting

37 output2plot_u = interpPoints_u(resIndex2plot);

38 output2plot_v = interpPoints_v(resIndex2plot);

39 output2plot_w = interpPoints_w(resIndex2plot);

40
41 % save to matrix

42 bifDiagram_matrix_u(index, 1:length(output2plot_u)) = output2plot_u;

43 bifDiagram_matrix_v(index, 1:length(output2plot_v)) = output2plot_v;

44 bifDiagram_matrix_w(index, 1:length(output2plot_w)) = output2plot_w;

45
46 index = index + 1;

47 end

Listing 8.4: Matlab code for plot bifurcation diagram.
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8.5 The 0-1 test for chaos

The 0-1 test for chaos is calculated in Listing 8.5. At first, parameters for test calculation are
sets (lines 1 to 13). Then, the average value of tested data is calculated (line 15 to 18). After
that, translation variables are computed. On the lines 41 to 54, the mean square displacement
and the estimate of the modified mean square displacement is computed. At the end (line 57),
correlation coefficient is calculated.

1 % load data

2 res; % loaded data

3 skip=100;

4
5 RS=size(res);

6 n1=1;

7 n2=RS(1);

8
9 phi=res(n1:skip:n2,3);

10 phi=phi’;

11 N=size(phi,2);

12
13 ncut=floor(N/10);

14
15 Ephi=0;

16 for j=1:1:N

17 Ephi=Ephi+(1/N)*phi(j);

18 end

19
20 Kc=zeros(310,1);

21 for m=1:1:310

22 c=m/100;

23
24 pc=zeros(N,1);

25 qc=zeros(N,1);

26
27 pc(1)=phi(1)*cos(c);

28 qc(1)=phi(1)*sin(c);

29
30 for i=2:N
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31 pc(i)=pc(i-1)+phi(i)*cos((i)*c);

32 qc(i)=qc(i-1)+phi(i)*sin((i)*c);

33 end

34
35 Vosc=zeros(ncut,1);

36
37 for n=1:ncut

38 Vosc(n)=Ephi*Ephi*( (1-cos(n*c))/(1-cos(c)) );

39 end

40
41 Mc=zeros(ncut,1);

42 Dc=zeros(ncut,1);

43
44 for n=1:ncut

45 MCpom=zeros(N-1-ncut,1);

46
47 MCpom(1)=(pc(1+n)-pc(1))^2+(qc(1+n)-qc(1))^2;

48
49 for j=1:N-1-ncut

50 MCpom(j+1)=MCpom(j)+(pc(j+n+1)-pc(j+1))^2+(qc(j+n+1)-qc(j+1))^2;

51 end

52
53 Mc(n)= MCpom(N-1-ncut)/(N-1-ncut);

54 Dc(n)=Mc(n)-Vosc(n);

55 end

56
57 CR=corrcoef(1:1:ncut,Dc);

58 Kc(m)=CR(2,1);

59
60 end

61
62 Kc; % result data

Listing 8.5: Matlab code for test for chaos 0-1.

48



CONCLUSION

9 Conclusion

In this work, a modification of the Fenton-Karma model of cardiac cell action potential is
presented. Thanks to this modification, the resulting shape of the action potential is much
better copied by the real data. In addition, the dynamic properties of this modified model were
examined using the bifurcation diagrams, the Furier spectra, the Poincaré section, and the 0-1
test for chaos. The dynamics of investigated model (4.1, 4.4, 4.5) was analyzed in detail with
respect to the amplitude A and stimulation delays c. The model was forced by stimulus with the
shape of half-sine period. The equations of potentials were solved numerically using the Runge-
Kutta method of the fourth order implemented as ode45 solver in Matlab. It was observed that
the model is showing regular (see, e.g., Figures 7.2 and 7.5) as well as irregular patterns (see
Figure 7.6) for different range of stimulation delay and amplitude. This behavior of variables u,
v, and w were also confirmed by bifurcation diagrams (Figure 7.7) and by the 0-1 test for chaos
(Figures 7.9).

The results obtained were accepted for publication in the journal Mathematical Methods in
the Applied Sciences ranking Q2 (108/255) in Mathematics, Applied (2016) with impact factor
1.017 (2016). Copy of this article can be seen in Appendix. In Section 8, there are matlab codes
that were used to achieve the above mentioned results.
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DYNAMICAL PROPERTIES OF THE IMPROVED FK3V HEART CELL MODEL

Appendix - Dynamical properties of the improved FK3V heart
cell model

In the following, the original research article, that covers main results of this thesis, is enclosed.
This paper was accepted for publication in the journal Mathematical Methods in the Applied
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Abstract
The main aim of this paper is to study the evolution of the transmembrane potential
on the cardiac cell under different rates and amplitudes of stimulation. For model-
ing this potential, the modification of the Fenton-Karma model was applied. It is
a phenomenological model with three degrees of freedom that corresponds to non-
dimensional transmembrane potential and gating variables for regulation of inward
and outward ion currents which can better reproduce the shape of the transmem-
brane potential than the original Fenton-Karma model. The model was newly forced
by stimulus with the shape of the half-sine period. As the main goal of the paper is
to show that this model is showing regular as well as irregular motion; periodic as
well as chaotic patterns are detected using bifurcation diagrams, the Fourier spectra,
Poincaré sections, and 0-1 test for chaos.
KEYWORDS:
cardiac cell model, bifurcation, Fourier spectra, 0-1 test for chaos

1 INTRODUCTION

The cardiac electrophysiology is the result of complex processes occurring on the heart cell membranes, which aim to ensure
the proper progression of cardiac action potential inherent in the heart muscle. The stability of the propagation of the action
potential in the heart tissue is often examined parameter1,2,3. The ordered propagation of the action potential is essential for the
proper functioning of the heart, and a life-threatening condition, such as ventricular fibrillation, may occur when the propagation
is not correct. To understand the dynamic properties of propagation of the action potential, it is important to examine not only
the entire tissue but also the dynamic properties of the individual cells from which it is created.
The three variable Fenton-Karma (FK3V) model is commonly used to describe heart electrophysiology. Studies that use

this model can be generally divided into several groups. Studies dealing with the determination of model parameters to better
replicate the outputs obtained by using physiological models or experimental data, studies that uses the FK3V model to study
the electrophysiology of the heart, and studies that examine the characteristics of the FK3V model itself.
The first group can include, for example, the study published by Oliver and Krassowska4, which describes a procedure for

finding such parameters of the FK3Vmodel to its restitution characteristics corresponding to the restitution characteristics of the
Courtemanche-Ramirez Nattel model of atrial tissue. Lombardo et al.5 edited the parameters of the detailed model and FK3V
to fit for five clinical data of patients undergoing ablation therapy.
Another possible field of study is termination of fibrillation6. Objective of this paper is to numerically validate the experi-

mental techniques for terminating fibrillation presented in Pak et al.7 In his work, they found that the synchronized defibrillation
can create a low-energy alternative to the traditional defibrillation. Allexandre and Otani1 studied the electrophysiological and
dynamic mechanism of spiral wave break up. The authors found several alternans unstable modes with different growth rates,

0Abbreviations: FK3V, Three variable Fenton-Karma
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frequencies and spatial structures. In another study8, the authors examined the behavior of fibers in the computing FK3V
monodomain anisotropic model of re-entrant ventricular fibrillation.
Another topic, which is often targeted in individual work dealing with the FK3V model, is the description of properties of the

model itself. One of these studies examines the steady state of the system2. Linear stability of these points and their response to
external stimulation were examined.
In this work an improvement of the FK3V model is introduced to obtain a better shape of action potential. The dynamical

properties of this improved FK3V model are analyzed in dependence on the stimulation frequencies and amplitudes. It is shown
that for suitable choices of the system parameters the system is chaotic (irregular patterns are visible) as well as periodic (regular).
For this purpose, the 0-1 test for chaos was applied. The 0-1 test for chaos, a newly established test9,10, gives a binary char-

acteristic of motion’s behavior. More precisely, this test returns 0 for regular (periodic) and 1 for irregular (chaotic) patterns.
The mathematical background can be found in the article by Gottwald and Melbourne11, Bernardini and Litak12 or in the lat-
est review13. This test is applicable on discrete dynamical systems14, continuous dynamical systems15 as well as on a real data
represented as time series16. This test has been successfully used in many applications, for example, in distinguishing between
chaos and randomness from a noisy data17, exploration of mechanical system’s dynamic properties consisting of a ball jumping
between a movable baseplate and a fixed upper stop18. This test was also used for analysis of the nonlinear floating potential
fluctuations from a glow discharge plasma19, for tracing the presence of nonlinearity and chaos in wireless network traffic20, for
chaos detection of the partial discharge patterns21, or traffic flows22 .
The paper is organized as follows. In Section 2, the original FK3V model and its parameters are presented. Section 3 is

dedicated to the model modification. In Section 4, the main results of this work are summarized. In particular, they include the
phase portraits, Fourier spectra, and Poincaré section of the model results for various stimulation frequencies in Subsection 4.2,
and test for chaos 0-1 for various stimulation frequencies and amplitudes in Subsection 4.3. The paper is closed by conclusions
in Section 5.

2 FK3V MODEL

The FK3V model is a dimensionless ionic model of cardiac action potential, which is based on the Luo-Rudy-I model. For
reproducing action potential it uses three variables u, v, andw. Variable u represents the transmembrane potential (so that u = 0
and u = 1 are the rest and peak voltages, respectively). The transmembrane potential changes depending on ionic currents
according to the following equation:

u̇ = Jstim − Jfi − Jso − Jsi (1)
where Jfi (accountable for depolarization of the membrane), Jso (accountable for repolarization of the membrane), and Jsi
(balances Jso during the plateau phase) are cross-membrane currents named fast inward (fi), slow outward (so), and slow inward
(si) that roughly corresponds to sodium, potassium, and calcium ion currents, respectively. But because they do not represent
the quantitatively measured currents but only their activation, inactivation, and reactivation, it is preferred to call these currents
as fast and slow inward, and slow outward, rather than Na, Ca, and K as a reminder of these simplification. Jstim indicates the
externally applied current. In this study, the external current composition of pulses is created by the first half period of sine
function followed by zero function. Jstim is therefore defined by the following equation:

Jstim =
{
A sin(t − n(c + 1)) t ∈ [n(c + 1), n(c + 1) + 1] n ∈ ℕ ∪ {0},
0 t ∉ [n(c + 1), n(c + 1) + 1] n ∈ ℕ ∪ {0}, (2)

where c denotes the length of time interval between pulses and A stands for the amplitude. In Equation 1 u̇ denotes the first
derivative of u with respect to time. The cross membrane currents are given by

Jfi(u; v) = Θ(u − uc)(1 − u)(u − uc)
−v
�d
,

Jso(u) = Θ(uc − u)
u
�0
+ Θ(u − uc)

1
�r
, (3)

Jsi(u;w) =
−w(1 + tanh(k(u − usic )))

2�si
,
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where Θ(x) is the Heaviside function.
Another two variables v and w used in the model are gating variables which regulate inactivation of Jfi, and Jso takes the
following form:

v̇ = Θ(uc − u)(1 − v)
1

�−v (u)
− Θ(u − uc)v

1
�+v
, (4)

ẇ = Θ(uc − u)(1 −w)
1
�−w
− Θ(u − uc)w

1
�+w
, (5)

�v(u) is a function for defining the time constants for two voltage ranges (uv < u < uc and u < uv) and is introduced for proper
reproducing CV restitution curve. It controls reactivation of Jfi and is given by equation

�−v (u) = Θ(u − uv)�
−
v1
+ Θ(uv − u)�−v2

The model contains several constants, which are used for fitting the output curves into the requested shape, time constants �r,
�si, �0, threshold potentials uc , usic , and uv.The original paper3 describes four different sets of parameters to fit for different dataset.

• BR: obtained by stimuli of the Beeler-Reuter model with standard parameter values.
• MBR: obtained by stimuli of modified the Beeler-Reuter model with accelerated up calcium kinetic.
• MLBR-I: stimuli of Luo-Rudy-I model with speeded up calcium kinetic.
• GP: experimental data from measuring the membrane potentials on the epicardial surface of the left Ventricle of a guinea
pig.

TABLE 1 Original published parameters of the FK3V model3 for BR parametric set, k = 10
Parameter Description unit value
�d setting influence Jfi for u > uc ms 0.25
�r setting influence Jso for u > uc ms 33
�si setting influence Jsi on u̇ ms 30
�0 setting decrease u to 0 for u < uc ms 12.5
�+v setting decrease v to 0 for u > uc ms 3.33
�−v1 setting value for �−v (u) for u > uv ms 1250
�−v2 setting value for �−v (u) for u < uv ms 19.6
�+w setting decrease w to 0 for u > uc ms 870
�−w setting increase w to 1 for u < uc ms 41
uc depolarization threshold - 0.13
uv threshold for activation �−v1 or �−v2 - 0.04
usic threshold for opening Jsi - 0.85

3 MODEL MODIFICATION

Since the shape of FK3Vmodel is not realistic, the modification of this model is proposed. Themodification consists of replacing
constant �r in Equation 3 by the following function

�r(u) = Θ(u�r − u)�r + Θ(u − u�r)
(�r(1 + tanh(k2(1 − u)))

4
+
�r
2

)
. (6)

This equation divides �r(u) into two potential ranges. From 0 to u�r where �r(u) remains constant and from u�r above, where udecreases from �r to �r∕2. Another parameter introduced in Equation 6 is k2 which sets the speed of decrease of �r(u). In this
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work u�r = 0.85 and k2 = 20. Another change from the original model is redefining usic to value usic = 0.7. The rest of the
parameters stay the same as in the original BR parameters set (see Table 1 ).
In Figure 1 , the difference in the shape of the transmembrane potential of the original FK3V model as well as the modified

model can be seen.
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FIGURE 1 Time responses of u (red), v (green) andw (blue) of the original model (left) and improvedmodel (right) for c = 700
ms and A = 0.48.

4 MAIN RESULTS

In individual simulations, the heart cell was stimulated with the half-sine shaped current pulses with an amplitude fromA = 0.16
toA = 0.96with step of 0.04 and duration 1ms. The individual stimulation pulses were separated by the delay c (see Equation 2).
The computations were performed for the stimulation delays from 10 to 300 ms with step of 5 ms. Each simulation was done
for the time from 0 to 5 × 105 ms. From the results, a phase diagram, amplitude frequency spectrum, and Poincaré section for
each simulated frequency was computed. From the data was also created bifurcation diagram for the entire simulated frequency
spectrum and the 0-1 test for chaos was computed.

4.1 Phase portraits, the Fourier spectra, and Poincaré section
The Fourier spectra and phase portraits were computed forA = 0.48 (twice as needed to cause stimulation). Chaotic behavior of
the model was observed on stimulation delays ranging from 30 to 50 ms and 105 ms. Regular behavior was observed elsewhere.
Cases with regular behavior can be divided into five groups (RG1 – RG5). Each of these groups corresponds to the different

biological response of the cell to the stimulatory pulses and corresponding representatives are shown in (Figure 2 – Figure 6 );
in all of these cases the Fourier spectra is formed by a number of harmonic frequencies, hence the frequency of the periodic
trajectory is computable. Periodic motions of trajectories are also visible in Poincaré sections.
The irregular (chaotic) case is shown in Figure 7 , the IRG case. In this case, the Fourier spectra is formed by a number

of harmonic components having the basic, super-harmonic, sub-harmonic, and combination frequencies on which there are
superposed further motions with frequencies forming the sided bands of the dominant frequencies. Their mutual ratio indicates
the irregularity of the motion. The character of this motion’s case is underlined by the Poincaré section.

RG1 This case is represented in Figure 2 ) for stimulation delay 20 ms. The amplitude of u does not reach the full range (0 to
1), but changes only between 0 and 0.34. The action potential shape (variable u) also does not match with proper shape
of action potential (see Figure 1 for comparsion).

RG2 At stimulation delays from 75 ms to 100 ms, stimulation causes every third stimulus (two unsuccessful stimulation fol-
lowed by successful pacing). In the phase diagram, a closed loop with two spikes due to unsuccessful stimulation can be
seen. The representative case of the model with this behavior can be seen in Figure 3 .
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FIGURE 2 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 20 ms.
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FIGURE 3 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 80 ms.
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FIGURE 4 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 120 ms.

RG3 In Figure 4 , the typical model response for the delays ranging from 110 ms to 145 ms can be seen. The relevant stimu-
lation is caused by every second stimulation impulse, but every second successful stimulation comes to phase of relative
refracterity, therefore the action potential of this stimulation has shorter duration than the action potential of the previous
successful stimulation impulse. In the phase portrait, two spikes from unsuccessful stimulation and two curves from the
stimulation (one comes from the phase of relative refracterity and one comes from steady state) can be seen.

RG4 In Figure 5 , the representative case, every second stimulation impulse causes stimulation at delays from 150 ms to 185
ms. The action potential duration is about 200 ms.

RG5 Finally, in Figure 6 , the representative is shown where every stimulation impulse causes stimulation; this is observable
for delays from 190 ms and above.

IRG The behavior of motions observed on delays from 30 ms to 50 ms and 105 ms is irregular, the representative can be seen
in Figure 7 . In this case, the mutual ratio of stimulation impulse and stimulation indicates the irregularity of the motion.
Moreover, these cases are chaotic due to the output of the 0-1 test for chaos performed in 4.3 Section.
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FIGURE 5 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 160 ms.
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FIGURE 6 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section of the modified FK3V model for c = 250 ms.
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FIGURE 7 From the left: time responses of u (red), v (green), and w (blue); FFT of variable u; phase diagram and Poincaré
section the modified FK3V model for c = 105 ms.

4.2 Bifurcation diagram
Next work was to plot bifurcation diagrams of modified FK3V model. Values for diagrams was collected witch period of stim-
ulation frequency. Diagrams can be seen in Figure 8 . In diagrams can be seen, that stimulation delays from 30 to 50 ms and
105 ms are chaotic, at the other delays are regular responses. This coincides with time series exploration.

4.3 The 0-1 test for chaos
Next, the 0-1 test for chaos was performed9,10. This test is used to distinguish regular and chaotic dynamics. It works with the
time series and does not need any phase space reconstruction. The resulting value of this test can only be 0 (regular behavior)
or 1 (chaos). This correlation method works as follows. For a given set of observations �(j) for j ∈ {1, 2,… , N} are computed
translation variables for suitable choice of b ∈ (0, 2�).

pb(n) =
N∑
j=1

�(j) cos(jb) = 1,
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FIGURE 8 Bifurcation diagram for variable u (left), v (middle), and w (right).
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FIGURE 9 Results of the 0-1 test for chaos forA = 0.48 and c from 10 ms to 300 ms. Variable u (left), v (middle) andw (right).

qb(n) =
N∑
j=1

�(j) sin(jb) = 1,

then the mean square displacement is computed using the following equation

Mb(n) = lim
N→∞

1
N

N∑
j=1
[pb(j + n) − pb(j)]2 + [qb(j + n) − qb(j)]2

here n ≤ ncut where ncut ≪ N . Then, the estimate of the modified mean square displacement is computed using the next equation

Db(n) =Mb(n) −
(
lim
N→∞

1
N

N∑
j=1

�(j)
)2 1 − cos(nb)

1 − cos(b)
.

Finally, the output of the 0-1 test is obtained as correlation coefficient of � and Δ for fixed parameter b
Kb = corr(�,Δ)

where � = (1, 2,… , ncut) and Δ = (Dc(1), Dc2,… , Dc(ncut)). Hence,Kb is dependent on the choice of c. To getK as the output
of the 0-1 test, as limiting value of all Kb, the result value is taken as

K = median(Kb).

The results of this test can bee seen in Figure 9 . At delays up to 25 ms, the behavior of variable u is regular, but for variables
v and w , it cannot be decided if the behavior is chaotic or regular. Chaotic behavior of the model was observed on stimulation
delays from 30 to 50 ms and 105 ms. There are also several cases of stimulation delays with the output of the 0-1 test for chaos
in the range (0.1,0.9); in this cases it cannot be decided if it is chaotic or regular behavior, e.g. at the stimulation delay of 70 ms.
Notice, that results of this test coincides with time series and bifurcation diagram.
But because of that, the stimulation of heart cell is dependent not only on the stimulation frequency but also on the amplitude

of stimulation, the test for chaos 0-1 was computed also for the amplitude range from 0.16 to 0.96 in step 0.04. But since the
results of the test for chaos 0-1 for A = 0.48 was the regular behavior for c > 105 ms (see Figure 9 ), the tests were computed
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FIGURE 10 Results of the test for chaos 0-1 for various stimulation delays and amplitudes for variable (from the left) u, v, w
and color bar (right).

for the stimulation delays from c = 20 ms to c = 200 ms in 5 ms increments. The results of this test can be seen in Figure 10 .
From this figure can be seen that chaotic behavior is focused into three regions.
The first and biggest region of the chaotic behavior is at amplitudes from 0.24 above and stimulation delays from approximately

30 ms to 55 ms. Another area of section of chaotic behavior is at amplitudes from 0.8 and above and stimulation delay 80 ms.
And the last region of chaotic behavior is at stimulation delay around c = 105 ms and amplitudes from A = 0.24.

5 CONCLUSIONS

In this paper, the Fenton-Karma model of cardiac cell was improved and its dynamics was analyzed in detail with respect to
the amplitude A and stimulation delays c. The model (1, 4, 5) was forced by stimulus with the shape of half-sine period. The
equations of potentials were solved numerically using the Runge-Kutta method of the fourth order implemented as ode45 solver
in Matlab. It was observed that the model is showing regular (see, e.g., Figures 3 and 6 ) as well as irregular patterns (see
Figure 7 ) for different range of stimulation delay and amplitude. For detection of this movements character, the Fourier spectra,
Poincaré sections, and bifurcation diagrams (Figure 8 ) were used. Chaotic behavior of variables u, v, and w were confirmed
by the 0-1 test for chaos (Figures 10 ), for suitable choices of stimulation delays and amplitudes.
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