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ABSTRACT 

The purpose of this paper is to investigate whether stock/flow failures persist in 

naturalistic decision making environments. A tangible stock/flow experiment is used in 

this study, which asks participants to pour a certain amount of water into a glass through 

a funnel in an as short time as possible. Findings are that people on average do not 

perform better in a tangible stock/flow task than in a computerized or paper-based test 

of a comparable task. In addition, individual performance in the tangible task cannot be 

related to performance in a similar paper-pencil stock/flow task. An implication of this 

study is that naturalistic stock/flow tasks are as difficult for humans to control as more 

abstract tasks. Further research should address individual differences between the two 

modes of task (tangible vs. paper-based). A limitation of this study is the usage of one 

tangible stock/flow task only. The value of this paper lies in the combination of a 

standard test with a tangible experiment addressing the same cognitive capabilities. 

 

Key words: understanding of accumulation, stock/flow failure, experiment, naturalistic 

decision making 
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THE CHALLENGE OF NATURALISTIC DECISION MAKING 

Understanding of accumulation (UoA), i.e. knowing about the nature of stocks and 

flows, is of utmost relevance for a broad range of decision making situations in society, 

business, and personal affairs. Yet, dynamic decision making research has shown over 

and over again that humans are not sufficiently capable to understand the difference 

between stocks and flows, deduce a system’s behaviour resulting from the existence of 

stocks and flows, or control a stock/flow system. However, the way in which results of 

dynamic decision making have been obtained has inspired criticism from proponents of 

naturalistic decision making. Their argument is that the artificial situation (in form of 

computer-based or paper-pencil tests of understanding of accumulation) in which 

stock/flow failures have been reported biases these outcomes; in naturalistic settings 

people were very well able to perform accumulation tasks successfully. 

 

This study attempts to contribute to the understanding of stock/flow failure and to 

dynamic decision making research in general by investigating whether the criticism by 

naturalistic decision making is substantial. Thus, the purpose of this paper is to find out 

whether stock/flow failures persist in naturalistic decision making environments. For 

this purpose, a tangible stock/flow experiment is used in this study, which asks 

participants to pour a certain volume of water into a glass through a funnel in an as short 

time as possible. With this experimental set-up we strive to put participants into a 

naturalistic decision making situation that is gradually more complicated than just 

filling water into a glass. Furthermore, since we conduct a standard, paper-based 

understanding of accumulation test in the same study, we are able to compare the 

performance of humans in naturalistic and in artificial decision contexts employing a 

stock/flow task. 

 

With this study, we follow a call by Sengupta & Abdel-Hamid (1993, p. 426) to conduct 

research on the performance of dynamic tasks in naturalistic settings. The scientific 

relevance of this paper lies in its contribution to the debate about naturalistic vs. 

dynamic decision making. The practical relevance of the paper is given by the fact that 

it can help to answer the question if it would “only” require to design appropriate 

decision making environments to improve decision making quality (as naturalistic 

decision making ultimately implies) or whether substantial limitations on the individual 

level would remain even in highly beneficial decision making contexts. 

 

The structure of this paper is as follows. In the next section, we review the relevant 

literature on dynamic decision making in general and on stock/flow failure in particular. 

Furthermore, we discuss the criticism by proponents of naturalistic decision making and 

present the responses from system dynamics researchers. In the section thereafter, the 

experimental setting is described. Section 4 comprises a discussion of the results of the 

experiment. The paper closes with a general discussion of implications, limitation of the 

study and some suggestions for further research. 
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STOCK/FLOW FAILURES AND RESPONSES TO CLAIMS FROM 
NATURALISTIC DECISION MAKING 

Human decision making performance in dynamic tasks is generally low—compared to 

absolute and optimal standards as well as in relative terms compared to heuristic best 

practice strategies. Dynamic decision making research (Brehmer, 1992; Edwards, 1962) 

has resulted in ample evidence of decision making failures in dynamic complex 

systems. Such systems consist of stocks and flows and interrelated information links 

(Forrester, 1961). They are characterized by feedback and delays between cause and 

effect (Sterman, 1994). Human decision makers perceive these systems often as opaque, 

incomprehensible and hard to control (Dörner, 1996). On average, people perform 

rather poorly in managing such systems. This finding persists over a wide range of 

systems. For example, Dörner and colleagues found lamentable results of participants 

who were asked to act as mayor of the virtual small town “Lohhausen” (Dörner, 1980; 

Dörner et al., 1994). Reichert and Dörner (1988) report failures when participants are 

charged with the task of manually controlling the temperature of a refrigerated 

warehouse. Sterman (1989) finds average team costs ten times greater than the 

benchmark using the well-known beer game as an experimental device. In a new 

product management task, a naïve benchmark policy outperformed the subjects in 87 % 

of the cases (Paich & Sterman, 1993). Confronted with the challenge to manage a virgin 

fish stock, 74 % of the participants overinvested in vessels resulting in a worse-than-

optimal achievement of the overall target (Moxnes, 1998). Wittman and Hattrup (2004) 

report widely varying performance of subjects acting as managers of a tailor’s shop, a 

coal-fired power plant and a high-technology company with a range of substituting 

products to develop and bring to the markets. Recently, Moxnes & Jensen (2009) report 

on a significant average overshoot of 86 % of an explicit goal of 0.8 g/l in an alcohol 

simulator experiment. While a well-developed universal theory of dynamic decision 

making has not yet emerged, the various research efforts over more than two decades 

have contributed to a better understanding of the “logic of failure,” as Dörner (1996) 

pithily named these phenomena. 

 

Recent research has identified a potential explanatory factor for poor dynamic decision 

making performance—misunderstanding of accumulation (MoA). The seminal study of 

Booth Sweeney and Sterman (2000) has revealed that a large fraction of highly 

educated people is unable to infer the behaviour of even the simplest stock-flow-

systems consisting of only one stock, one inflow, and one outflow. As no feedback, no 

time delays, or nonlinearities were incorporated in those simplistic systems, they cannot 

be characterized as dynamically complex. Nevertheless, the average understanding of 

these systems’ dynamics is far from good. The subjects showed a rather poor 

performance in a variety of paper-and-pencil tasks involving such systems, which 

supports the conclusion that human beings indeed have a poor understanding of 

accumulation. Subsequent studies by Ossimitz (2002), Sterman and Booth Sweeney 

(2002, 2007), Cronin and Gonzales (2007) corroborate the conjecture that the 

misunderstanding of accumulation is a persistent phenomenon, for instance comparable 

to the deep-rooted problems people have in probabilistic judgements and decision 

making (Hastie & Dawes, 2001; Kahneman & Tversky, 1972). 

 

Misunderstanding of accumulation and other results of dynamic decision making 

research have been criticised by proponents of naturalistic decision making (Klein, 
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2008; Lipshitz et al., 2006; Lipshitz et al., 2001; Zsambok & Klein, 1997). Their main 

argument is that apparent failures of humans to deal adequately with dynamic 

complexity do not result from erroneous thinking but are artefacts of the experimental 

method employed in this research. They claim that people in everyday life are very well 

equipped to survive and deal with a wide range of situations successfully. Naturalistic 

decision making argues that those heuristics that have been considered leading to 

inferior results in dynamic decision making are actually very functional in realistic, 

natural situations outside the laboratory. This criticism has been countered by, for 

instance, Booth Sweeney & Sterman (2000) and Sterman&Booth Sweeney (2002) who 

agreed that people might be able to control simple naturalistic decision making tasks. 

However, these two authors claim that complex dynamic decisions of our modern times 

usually are to be made in situations that are very similar to the experimental settings 

used in their studies: people have to decide on highly abstract decision making 

situations that are remote from the tangible quality of the type of naturalistic decision 

making tasks. This, their argument goes, gives the usual dynamic decision making 

experiments high external validity and renders the criticism of naturalistic decision 

making irrelevant. 

 

In this study, we want to contribute to this discussion by shedding light on two 

assumptions in this debate: (i) people are good decision makers in naturalistic situations 

when it comes to stock/flow tasks and (ii) performance in naturalistic and in more 

abstract tasks is related. We do not address Sterman and Booth Sweeney’s argument 

that today’s decision making contexts rather require control over abstract stock/flow 

tasks than naturalistic ones. Scrutinizing this argument would require the classification 

and evaluation of a wide range of decision making tasks that people are confronted with 

in their professions and daily lives. 

 

The first assumption of the naturalistic vs. dynamic decision making debate that we 

want to challenge is that people are convincingly able to control naturalistic stock/flow 

tasks. At least when the level of complexity of these tasks exceeds the simplest 

possibility (directly filling or draining one stock), the answer to the question whether 

they can do this well or not is not trivial. While we stick to the experimental method in 

our study, we use a tangible task that participants have to fulfil: filling a glass with 

water through a funnel (in structural terms: filling a stock with a delay). Thus, our first 

proposition is: 

 

P1: Participants are able to achieve good performance (that is, a minor deviation from 

the target in a reasonable short time span) when conducting a tangible stock/flow 

experiment; more specifically, when filling a glass with water through a funnel. 

 

Finding support for this proposition would strengthen the argument of the proponents of 

naturalistic decision making research. Even more support (or refutation), however, 

would come from a direct comparison of a tangible task with abstract tasks. Therefore, 

we propose, secondly: 

 

P2: Participants are able to perform better in a tangible stock/flow experiment than 

a) in a similar simulator based experiment; 

b) in paper-pencil stock/flow tasks. 
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Finding support for these propositions would give an indication that naturalistic tasks 

allow for a much better stock/flow performance than abstract tasks since in abstract 

tasks participants’ performance usually is substantially below reasonable benchmarks. 

Rejecting the proposition would indicate that people do not benefit from naturalistic 

situations in stock/flow tasks or only when the tasks are extremely simple (i.e. simpler 

than our task). 

 

Besides a comparison on the aggregate level, comparing individual performance could 

provide insights in the possibility to generalize behaviour and performance from one 

task mode to the other. Thus, thirdly, we want to challenge the assumption that 

performance in naturalistic and in abstract dynamic decision making tasks can be related 

to each other. The question behind this challenge is whether individual performance in 

naturalistic stock/flow tasks tells us anything about individual performance in a more 

abstract task. Therefore, we formulate the third proposition as 

 

P3: Participants performing well in the tangible stock/flow task will also show a good 

understanding of accumulation in a paper-pencil test and vice versa.  

 

If we found support for this proposition it would give an indication that both tasks 

(physically filling a glass of water and solving paper-based tests about the accumulation 

of stocks) are comparable: people performing well in one setting would also perform 

well in the other. If this proposition were to be rejected it would show that these tasks 

actually require two different sets of competencies and are difficult to compare directly: 

the debate would shift from a methodological discussion about the influence of the 

experimental method on the results into a content debate about what are the 

psychological foundations of decision making in different contexts.  

 

EXPERIMENTAL DESIGN AND IMPLEMENTATION 

Controlled observations in a laboratory are used in this study for gathering data. As the 

research objective is primarily explorative and descriptive, a non-experimental 

(correlational or observational) research design is chosen. First, UoA is assessed using a 

specific inventory that compiles a number of rather simple paper-and-pencil tasks 

developed by Booth Sweeney and Sterman (2000), Sterman (2002), and Ossimitz 

(2002). Second, the participants’ performance in a tangible decision making setting—

filling a glass of water through a funnel—is repeatedly (twice) observed. Although this 

setting is not a true experiment involving a treatment and a control group, the term 

experiment is kept nevertheless to describe the process of conducting these observations 

under controlled conditions.  

 

The laboratory was installed in two adjacent seminar rooms. The larger one for up to 40 

persons was equipped with cubicles to minimize interactions between participants. The 

smaller one was specifically setup to conduct the funnel and glass experiment (as shown 

in Figure 1). Between the two rooms a participants’ waiting area was established.  
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Figure 1: Laboratory setup of the funnel and glass experiment 

 

For assessing UoA ability, five relatively simple paper-and-pencil tasks were compiled 

that have already been used in prior studies in an identical or very similar form. Each 

task was designed to measure participants’ understanding of stocks and flows and their 

ability to infer systems behaviour over time. The type of the tasks ranged from 

sketching behaviour over time patterns, reading and interpretation of line graphs to 

multiple choice questions. The first task was taken from Kainz and Ossimitz (2002) and 

is referred to as a rainwater tank (RWT) task. The second task was adapted from the 

department store task developed by Sterman (2002). It was renamed bank branch task 

(BB); Figure 2 shows this task an illustrative example. The third task intends to test 

whether the participants are aware of the difference between the net flow “budget 

deficit” and the stock “national debt.” It was adapted from Ossimitz (2002) and is 

referred to as a budget deficit (BD) problem. Task number four and five were taken 

from Booth Sweeney & Sterman (2000). The fourth task is the so-called manufacturing 

case (MC). In this task, participants have to determine a possible reaction of a 

production facility to a sudden drop of final goods inventory, incorporating a four week 

delay from starting production to putting final goods on stock. The fifth and last task in 

the UoA inventory is the bath tub (BT) task.  
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Figure 2: Illustration of the bank branch UoA task 
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The task used in the tangible decision making experiment was inspired by Moxnes & 

Jensen (2009) and Moxnes (2011). Moxnes & Jensen (2009) report on the effects of 

delayed absorption of alcohol and the problems participants have in understanding this 

lagged process. In a computerized simulator experiment with high school students, who 

made drinking decisions, the authors observed an average overshoot of 86 % of an 

explicit goal of 0.8 g/l with a stomach delay time set to 22 minutes, and an average 

overshoot of 21 % with a stomach delay time of 4 minutes. In both papers the analogy 

of filling a glass through a funnel is used to explain the observed (and more general) 

overshoot behaviour. Compared to filling just a glass of water (one stock) using a funnel 

introduces a second stock that is delaying the inflow of water into the glass. Simple 

filling heuristics that rely exclusively on feedback about the water level in the glass 

and—erroneously—ignore the water in the funnel, lead to overshoot (and sometimes to 

overflow). When one stops pouring once the target level of water in the glass is 

reached—which is good strategy for just filling a glass—the water will continue 

flowing from the funnel in the glass. As result, the water level overshoots the target. 

Moxnes & Jensen (2009) argue that the stomach in their alcohol simulator experiment 

corresponds to the funnel—with one major difference: while the water in the funnel is 

visible the alcohol in the stomach is not. 

 

As this study’s objective is to investigate whether stock/flow failures persist in 

naturalistic decision making environments, real objects should be used and all stocks 

and flows should be clearly visible. Therefore, we take Moxnes & Jensen’s (2009) 

funnel and glass analogy and transform it in a tangible experimental setup. We use a 

funnel made of glass and a glass beaker. The water was coloured with red ink to 

improve observability. The target filling level (98 ml) is clearly indicated on the beaker. 

Participants are assigned the task to fill the beaker up to the indicated target level by 

pouring water into the funnel in as less time as possible. Precisely, the task in our study 

was introduced to the participants as described in Figure 33. 
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Instructions 

Please look carefully at the following experiment setup: 

Target 

filling level

Beaker

Funnel

d = 3.0 mm

 

It is your task to pour the red liquid from the flask into the funnel so that it flows in the beaker 

positioned below. You must by all means avoid that the liquid brims over the top of the funnel. 

You are allowed two runs. Please achieve the following targets as best as you can: 

1. Minimize the variance between the target filling level marked on the beaker and the 

actual filling level (measured in milliliter)!  

2. Minimize the filling time, which is measured as the time span between lifting the flask 

from the table and posing it back onto the table!  

For your participation in this experiment you are rewarded depending on the achievement of 

these targets: The less the volume variance and the less time you need, the higher is the 

monetary reward. It becomes zero if the liquid brims over the top of the funnel. The reward per 

run is calculated exactly as follows (negative amounts are set equal to zero):  

         


















s

€
2,0s5sTime Fillingml VarianceVolume
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€
2,0€5wardRe  

 

         


















s
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2,0s5sTime Fillingml VarianceVolume
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Figure 3: Instructions (authors translation from German task description) 

 

Following suggestions from experimental economics (e.g. Friedman et al., 2004; Guala, 

2005), Smith’s (1976, 1982) induced value theory is applied and participants are 

incentivized by a monetary reward. The financial incentive was linked to a participant’s 

performance in both tasks. For the UoA test, the cash-out was calculated according to 

the percentage of correct answers with a maximum of 10 €. For the funnel and glass 

task the precise payoff function was provided in the instructions and can be found in 

Figure 3. On average, 9.04 € were achieved by the participants for an exercise of about 

60 minutes.  

 

For reasons of availability and financial feasibility students were used as participants in 

the experiment. This has also the advantage that the results can be compared to previous 

studies that have mostly also relied on students. The experimental sessions were 

integrated into a core course on “Production Management” that is part of a Bachelor of 

Science Business Administration program at a German business school. In June 2011, 
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four experimental sessions were performed, involving as participants in total 71 

students in their fourth semester. The students had been informed about these special 

sessions four weeks before the specific dates. Invitations were made both orally in class 

and per email.  

 

Upon arrival in the larger room, participants were asked to sit down using the cubicles 

provided and get prepared with a pen. Once the session was started, the participants 

were briefly introduced to the process. First, the UoA test was handed out and the 

participants were asked to note start and end time on the cover sheet. Once a participant 

had completed this test, the experimenter provided the instruction sheet for the funnel 

and glass test and asked to read through the instructions thoroughly. Having finished his 

or her reading the participant left the room and waited in the waiting area before the 

“funnel and glass laboratory”. To ensure that participants in the waiting area 

communicated as little as possible a third supervisor (in addition to two experimenters) 

was installed.  

 

Before the funnel and glass experiment was started, each participant was asked by the 

experimenter to pose any remaining questions. All questions were answered and if any 

confusion existed it was cleared up. The participants were allowed to get prepared and 

take hold of the flask without lifting it. Once the starting signal was given by the 

experimenter, the participants could commence filling the water from the flask in the 

funnel. The filling time was measured between lifting up the flask from the desk and 

putting it back. Once the funnel was empty, the volume of water in the glass was 

measured. This was done using a graduated measuring glass.
1
 The participant was 

invited to verify the result. In all cases an agreement could be reached and the figure 

was filled in the protocol form. Then the experiment was set up anew and repeated. All 

funnel and glass experiments were videotaped for the purpose of documentation and 

more precise analysis.  

 

RESULTS FROM THE EXPERIMENT 

Data Preparation 

The five tasks of the UoA inventory included, all in all, 14 subtasks. Subtasks were 

assessed on a right (1) or wrong (0) basis. The UoA overall score (UoA_O) was 

determined as the percentage of correct answers to the subtasks. A score for each of the 

five UoA tasks—RWT, BB, BD, MC, BT—was defined similarly as percentage of 

correct answers to the specific task’s subtasks.  

 

Performance measures in the funnel and glass task included volume variance (FE_VV), 

absolute volume variance (FE_VV+), filling time (FE_FT), and cash-out (FE_CO). The 

volume variance was calculated as actual volume minus goal volume—both measured 

in millilitres. Positive values for the volume variance therefore mean overshoot 

(FE_VV_OS) and negative values translate into undershoot (FE_VV_US). The filling 

time was both measured manually with a stop watch and subsequent to the exercise 

determined by analyzing the video shot taken. Because of technical difficulties with the 

                                                 
1
 More precisely, the measurement is taken from the bottom of the meniscus, which is the curved surface 

of the liquid. The meniscus forms because water molecules are more attracted to glass than to each other.  
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video camera, six participants were not recorded. In addition to this, several video 

recordings could not be analyzed because participants obscured the view with their 

bodies. If the video recording could be used to determine the filling time with high 

precision this result was used instead of the manually stopped time span (which was 

used otherwise).  

 

As a first step in the statistical analysis, all data were carefully screened following the 

guidelines provided by Tabachnick & Fidell (2007). Distributions of all variables were 

checked for outliers and violations of the normality assumption. As in this process 

several skewed distributions and a few outliers were detected, transformations were 

applied as follows (note that a 1 or a 2 is used to refer to the first and the second run of 

the funnel and glass task): 

FE_VV_1_SQRT=SQRT(FE_VV_l + 41) 

FE_FT_1_LN = LN(FE_FT_1) 

FE_FT_2_LN = LN(FE_FT_2) 

 

For the UoA sub-task scores UoA_RWT, UoA_BB, UoA_BD, UoA_MC, and UoA_BT 

no transformations were found that could correct the violation of the normality 

assumption. Fortunately, no outliers could be detected for these scores. Re-running the 

procedure of outlier detection for all transformed variables identified two problematic 

cases that were deleted from the data set for further analysis (resulting in N = 69). Based 

on Mahalanobis distance no multivariate outliers could be identified in this reduced data 

set. To facilitate interpretation of our findings we do not use the transformed variables 

in the statistical analyses. Instead, we rely on non-parametric statistics in addition to 

parametric tests to increase the robustness of our analysis against violations of the 

normality assumption. 

Statistical Results Regarding Performance in the Tangible Stock/Flow Test 

We assess our first proposition that participants perform well by regarding (i) the 

volume variance, (ii) the filling time, and (iii) the aggregated performance in the 

tangible stock/flow experiment. The results for the two experimental runs are analyzed 

and presented separately.  

 

In the first experimental run, the volume variance ranged from -40 ml to 82 ml. Average 

volume variance was 20.5 ml, which is significantly different from zero, t(68)=10.09, 

p<0.001, and is also significantly different from 10 by allowing for a 10% tolerance 

zone, t(68)=5.16, p<0.001. Volume variance median is 16 ml. According to the one 

sample Wilcoxon signed rank test this is significantly different from both a median of 

zero (Z=7.06, p<0.001) and a median of 10 (Z= 4.50, p<0.001). Average overshoot is 

29.3 ml (N=31), and average undershoot is –14.5 ml (N=35). Both overshoot volume 

variance and undershoot volume variance are significantly different from 10 and –10 

respectively. The results for the second experimental run are compiled in Table 1 and 

Table 2. 
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Mean t df p t df p

FE_VV+_2 17.41 9.377 68 .000 3.990 68 .000

FE_VV_OS_2 24.62 8.565 33 .000 5.086 33 .000

FE_VV_US_2 -12.13 -6.786 29 .000 -1.193 29 .242

T-test value = 10 or -10                                 T-test value = 0                                       

 

Table 1: T-test results for second experimental run in the funnel and glass task 

 

N Median Z p Z p

FE_VV+_2 69 14.00 6.957 .000 3.311 .001

FE_VV_OS_2 34 22.00 5.089 .000 4.157 .000

FE_VV_US_2 30 -10.50 -4.785 .000 -.878 .380

Test value = 0                                       

Test value = 

10 or -10                                 

 

Table 2: Wilcoxon signed rank Test results for second experimental run in the funnel and glass task 

 

These results show that proposition P1 has to be considered not-supported based on the 

performance measure volume variance. Participants are not able to reach the target 

water level within a range of 10 % when filling water through a funnel in a glass. They 

either significantly overshoot or undershoot the target with one exception: undershoot in 

the second run does not significantly drop out the 10 % range. 

 

Assessing the first proposition by focusing on the filling time is more difficult. We 

focus on descriptive statistics first. Mean filling time is 8.09 seconds in the first run and 

6.94 seconds in the second run. Minimum values are 2.44 and 2.68 seconds. This is 

rather fast when one considers that it takes about two seconds to fill the exact amount of 

water in the funnel without spouting out or flowing over the brim of the funnel. Based 

on the small test sample used for calibrating the cash-out function, a filling time of five 

seconds was set as reference value (Figure 3). Table 3 compares the participants’ filling 

time to this reference values using both the one sample T-test and a Wilcoxon signed 

rank test. Both runs show a significant deviation from the reference filling time. 

However, in the second run participants come closer to the reference time.  

 

 

N Mean Median t df p Z p

FE_FT_1 69 8.09 6.40 5.155 68 .000 4.326 .000

FE_FT_2 69 6.94 5.36 3.614 68 .001 2.239 .022

T-test value = 5                                    

Wilcoxon Signed Rank 

Test value = 0                                       

 

Table 3: Filling time test results 

Thus, we conclude that we did not find support for the first proposition which stated 

that participants perform well in a tangible stock/flow task. The tangibility of the task 

apparently did not help in achieving a good performance. We also find that no learning 

occurs between run one and run two regarding the volume variance performance 

measures. A paired sample T-test shows non-significant differences in the scores for 

FE_VV+_1 (Mean=20.48, SD=16.87) and FE_VV+_2 (Mean=17.41, SD=15.42); 

t(68)=1.037, p=0.303. The non-parametric related samples sign test and the Wilcoxon 

signed rank tests corroborate this finding. Some learning can be observed regarding the 

filling time measures. The difference in the filling times FE_FT_1 (Mean=8.09, 
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SD=4.98) and FE_FT_2 (Mean=6.94, SD=4.46) is significant in the paired sample T-

test; t(68)=2.908, p=0.005.
2
 However, the progress is rather slow. 

 

One could suspect that some sort of false learning might have occurred, specifically, 

participants who experienced overshoot in the first run might overreact and walk into 

the undershoot trap and vice versa. This, however, is not the case as Table 4 illustrates. 

Undershoot in the first run (FE_VV_US_1) is not significantly correlated with 

overshoot in the second run (FE_VV_OS_2) and vice versa. The only significant 

correlation between FE_VV_US_1 and FE_VV_US_2 indicates that undershoot is a 

rather persistent phenomenon. 

 

  

Table 4: Spearmen rank correlation analysis for overshoot and undershoot volume variance 

 

Regarding the correlations between the volume variance and the filling time measures 

shown in Table 5 one can conclude that short filling times result in high volume 

variances and vice versa in the first run. However, the correlation is only weak (rho=-

.208) and marginally significant (p=0.1). Interestingly, the filling times in run one and 

two are highly correlated, indicating that the behaviour pattern does rarely change: a 

participant who is rather slow in the first run will probably be also slow in the second 

run (perhaps with some slight improvement due to learning effects).  

                                                 
2
 Both non-parametric related sample tests—the sign test and the Wilcoxon signed rank tests—

corroborate again this finding.  
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Table 5: Spearmen rank correlation analysis for volume variance filling time measures 

Summarizing this first set of analyses, we doubt whether a naturalistic decision making 

setting really helps making better decisions when it comes to stock and flow processes. 

Achievements of participants differed significantly from the objectives, even when we 

include a tolerance level of correct goal achievement. We do not find support for our 

first proposition. Next, we evaluate performance in the tangible test compared to 

performance in a computer-based and a paper-pencil stock/flow experiment. 

Comparison of Computer Simulated and Tangible Stock/Flow Experiment 

Because of the structural similarity of this study’s tangible stock and flow task to the 

alcohol simulator task conducted by Moxnes & Jensen (2009) as a computer simulation 

experiment, a comparison of results seems a worthwhile endeavour. By such a 

comparison we can directly address our proposition P2a that postulates that participants 

perform better in a tangible stock/flow experiment than in a similar simulator based 

experiment. Moxnes & Jensen’s (2009) alcohol simulator has a simple user interface 

showing information on the target alcohol concentration in blood, the number of bottles 

of beer drunken so far and the current alcohol concentration in a tabular manner. A 

decision on the number of bottles of beer to be drunk in the next 15 minutes is required 

and has to be entered. Then a button has to be pushed to advance 15 minutes. 

Comparing such a frugal user interface and the computer based beer drinking process to 

real stock and flow decision making tasks strengthens the main argument of naturalistic 

decision making research—that is, that apparent failures of humans to deal adequately 

with dynamic complexity do not result from erroneous thinking but are artefacts of the 

experimental method employed. 

 

The tangible task used in this study of filling water through a funnel in a glass is the 

exact opposite of a computer simulation experiment. An everyday activity—filling 

water in a glass—is slightly complicated by introducing a second stock in the system: 

the water in the funnel. By this, the structural equivalence between this study’s task and 

the alcohol drinking task is achieved. Everybody knows how funnels work. The glass 

funnel employed and the water coloured red ensure that the stock of liquid in the funnel 

is clearly visible. The target level of water in the beaker is clearly indicated using an 
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arrow pointing to a measuring line. Nevertheless, as we have shown in the previous 

section, participants perform rather poorly in this task.  

 

Comparison of our results to Moxnes & Jensen’s findings is restricted to volume 

variance and measures of overshoot; simulated drinking time and real filling time are 

not comparable. Moxnes & Jensen report for the short stomach delay time of 4.5 

minutes an average blood alcohol concentration of 21% over target. In the funnel and 

glass task with an even shorter delay of only a few seconds caused by the funnel, 

average percentage volume variance is 20.90% in the first run and 17.76% in the second 

run. None of these two results differ significantly (on the .05 level) from the 21% in a 

one sample T-test; t(68)=-0,050, p=0.960, and, t(68)=-1,710, p=0.092. However, based 

on the Wilcoxon signed rank test the percentage deviation in the second run is 

significantly different from a median of 21% (Z=-2.509, p=0.012). Nevertheless, this is 

the only significant difference that we found and we assume it to be related to a weak 

learning effect in the tangible experiment while there was no second try in the 

computer-based task. 

 

In summary, proposition 2a cannot be supported: on average, participants in a tangible 

stock/flow experiment perform similarly to participants in a computer-based task. Even 

the size of goal variance is similar. We continue testing the tangible experiment’s 

outcomes with results in a paper/pencil test. 

Comparison of Paper/Pencil and Tangible Stock/Flow Experiment 

For reasons of completeness, we start with a description of the results for the UoA test. 

Figure 4 provides a histogram for the results of the UoA test. With a mean value of 

.560, a standard deviation of .231, a minimum performance of .0714 and a maximum of 

.9286, the participants’ understanding of accumulation has to be rated as below 

appropriate. 

 

 

Figure 4: Histogram of the participant's UoA score 
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Table 6 provides an overview of participants’ sub-task results based on the percentage 

of correctly answered items. It also shows results from other studies. We did not follow 

Booth Sweeney & Sterman’s (2000) detailed rating approach, we rather assessed each 

subtask on a right or wrong basis. Therefore, a direct comparison of results is not 

always possible. We nevertheless included the result of the worst sub-item as 

approximation.  

 

 UoA_RW UoA_BB UoA_BD UoA_MC UoA_BT

N 69 69 69 69 69

Mean 0.691 0.536 0.681 0.198 0.696

SD 0.354 0.464 0.335 0.304 0.464

N 109 95

Mean 0.1
d

0.68
d

N 173

Mean 0.376

N 154 154

Mean 0.322 0.26

N 26 26

Mean 0.192 0.192
d
 Detailed coding used. Not completely comparable. 

Strohhecker (2009)

This study

Booth Sweeney & 

Sterman (2000)

Cronin et al. (2009)

Osssimitz (2002)

 

Table 6: Descriptive statistics of Understanding of Accumulation test/sub-tests 

 

Although this study’s participants achieve results in paper and pencil UoA tasks that are 

mostly better than the performance found in other research, understanding of 

accumulation is still far from optimal. All in all, this study adds to the pool of results 

found by previous work (Booth Sweeney & Sterman, 2000; Cronin & Gonzalez, 2007; 

Cronin et al., 2009; Kainz & Ossimitz, 2002; Ossimitz, 2002; Sterman, 2002; Sterman 

& Booth Sweeney, 2002, 2007; Strohhecker, 2009). Once more, it demonstrates a 

fundamental shortcoming in human reasoning: the inability of even smart and well-

educated people to understand the dynamic relationships between stocks and flows, that 

is, the process how flows into and out of a stock accumulate over time—at least, when 

an “abstract” paper/pencil task is considered. 

 

Our proposition P2b suggests that participants are able to perform better in a tangible 

stock/flow experiment than in paper and pencil stock/flow tasks. As the performance 

criteria for the two tasks are obviously not identical, direct comparison is difficult. 

Nevertheless, we try to come closer to an assessment of P2b by using the percentage 

deviation from the target value in both tasks. UoA percentage deviation is determined 

by subtracting the UoA percentage score of correct answers as shown in Figure 4 from a 

target value of 100%. Percentage deviation for the volume variance is calculated by 

dividing the absolute volume variance by the target volume (98 ml). Regarding the 

filling time a percentage deviation from the reference value of five seconds is 

determined analogously. Table 7 compiles the results. It shows that the percentage 

volume deviation from target is much lower for both runs of the funnel and glass tasks 

than for the paper and pencil test. While the filling time deviation is similar for the 

second run, for the first run a much higher mean has to be noted. Standard deviation for 

the filling time measures is more than five times higher than for the volume variance 

deviations.  
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UoA FE_VV+_1 FE_VV+_2 FE_FT_1 FE_FT_2

43.996 20.896 17.761 61.829 38.762

2.777 2.072 1.894 11.994 10.727

50.000 16.327 14.286 28.000 7.200

23.068 17.210 15.734 99.627 89.104

21.649 1.412 1.249 148.610 169.591

28.874 0.289 0.289 28.874 28.874

-34.171 2.453 1.467 241.813 271.991

57.010 0.570 0.570 57.010 57.010

100.00 83.67 70.41 506.40 414.40

.00 .00 .00 -51.20 -46.40

100.00 83.67 70.41 455.20 368.00Maximum

Percentage Deviation from Target

Kurtosis

Std. Error of Kurtosis

Range

Minimum

 

Mean

Std. Error of Mean

Median

SD

Skewness

Std. Error of Skewness

 

Table 7: Descriptive statistics for percentage deviations from target in % values in both the paper-pencil 

and the funnel and glass tasks 

 

Aggregation of the two performance components volume variance and filling time to an 

overall funnel and glass performance measure can be done using either the sum of the 

percentage deviations shown in Table 7 or the percentage shortfall of the actual cash-out 

compared to the maximum of 5 €. Table 8 shows the descriptive statistics for these two 

measures and the two runs. In all four cases the mean deviation from the target is larger 

than in the paper/pencil test. Paired sample T-tests and non-parametric Wilcoxon signed 

rank tests were conducted to investigate if these differences are statistically significant. 

Table 9 compiles the results. The only non-significant difference between paper-pencil 

and tangible stock/flow performance occurs in the second experimental run when the 

aggregate percentage deviation from target measure (FE_FT+VV+_2 = FE_PDT_2) is 

considered. In all other combinations participants perform better in the paper and pencil 

test. Proposition P2b is therefore not supported. 

 

UoA

FE_FT_+

VV+_1

FE_FT_+

VV+_2

FE_

Cashout_1

FE_

Cashout_2

0.440 0.827 0.565 0.698 0.606

0.028 0.117 0.107 0.038 0.043

0.500 0.492 0.315 0.760 0.680

0.231 0.976 0.887 0.316 0.356

0.216 1.355 1.495 -0.648 -0.418

0.289 0.289 0.289 0.289 0.289

-0.342 1.921 2.029 -0.847 -1.182

0.570 0.570 0.570 0.570 0.570

1.00 4.82 4.11 1.04 1.08

.00 -.25 -.37 -.04 -.08

1.00 4.56 3.74 1.00 1.00

Std. Error of Kurtosis

Range

Minimum

Maximum

Std. Deviation

Skewness

Std. Error of Skewness

Kurtosis

Mean

Std. Error of Mean

Median

 

Percentage Deviation from Target

 

Table 8: Descriptive statistics for aggregated percentage deviations from target in % values in both the 

paper-pencil and the funnel and glass tasks 
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UoA_PDT paired with Mean SD t df p Z p

FE_PDT_1 -0.387 0.955 -3.370 68 0.001 2.198 0.028

FE_PDT_2 -0.125 0.907 -1.147 68 0.255 -0.963 0.851

FE_Cashout_PDT_1 -0.258 0.368 -5.818 68 0.000 4.729 0.000

FE_Cashout_PDT_2 -0.166 0.437 -3.150 68 0.002 1.445 0.005

Paired Diff.

Paired sample T-test Related sample Wilcoxon 

Signed Rank Test                                  

 

Table 9: Paired sample sample T-test and Wilcoxon Signed rank test results 

 

Additionally, the null hypothesis was tested—using Friedman’s two-way analysis of 

variance by ranks—that the distributions of each of the pairs shown in Table 9 are the 

same. This hypothesis could only be rejected for UoA_PDT and FE_Cashout_PDT_1, 


2
(1)=23.529, p<0.001. For all other pairs the distributions have to be regarded as equal. 

This finding corroborates the rejection of P2b. 

 

Investigation of the Relation between Paper-Pencil and Tangible Stock/Flow 

Performance 

With proposition P3 we want to investigate if there is a relation between performance in 

naturalistic and in abstract dynamic decision making. Therefore, P3 suggests that 

participants performing well in the tangible stock/flow task will also show a good 

understanding of accumulation in a paper-pencil test and vice versa.  

 

For testing this proposition we use first non-parametric and parametric bivariate 

correlation analysis and second a quasi-experimental approach that is evaluated by both 

T-test and Wilcoxon signed rank test. For P3 to hold, positive correlations between 

performance in paper and pencil test and funnel and glass task have to be found. No or 

significantly negative correlation between funnel and glass task performance and UoA 

would mean that P3 is not supported. 

 

We calculate Spearman’s rank correlation coefficient (and also Pearson correlation) for 

UoA (better performance means higher percentages), absolute volume variance (better 

performance means lower FE_VV+) and filling time (better performance means shorter 

times FE_FT). As can be seen from Table 10, only little or no associations can be 

found; all correlations are non-significant with the exception of a marginal significant 

Pearson correlation coefficient between filling time in the first run and UoA. Based on 

this finding, we have to consider P3 as not supported. 

 

UoA FE_VV+_1 FE_FT_1 FE_VV+_2 FE_FT_2

Spearman 1.000 .016 -.142 .119 -.068

p - .897 .244 .330 .581

Pearson 1.000 .035 -.210 .174 -.071

p - .778 .084* .152 .560

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively.

UoA

 

Table 10: Spearman and Pearson bivariate correlations (N=69) 

 

Rejection of P3 is corroborated when analyzing UoA sub-task results. As with the 

aggregate UoA score, we also do not find significant correlations between FE results 

and sub-task results. There is one exception. In the second experimental run, volume 
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variance is weakly associated with performance in the budget deficit paper and pencil 

task. However, the correlation is positive, meaning, that a better understanding of the 

budget deficit problem results in larger volume variance, which also contradicts P3. 

 

FE_VV+_1 FE_FT_1 FE_VV+_2 FE_FT_2

Correlation .020 -.177 -.032 -.017

p .873 .145 .793 .888

Correlation .044 -.103 -.015 -.003

p .721 .400 .903 .983

Correlation -.056 -.049 .242 -.099

p .648 .686 .045** .416

Correlation .044 -.034 -.002 .085

p .721 .783 .987 .490

Correlation -.087 -.137 .177 -.130

p .477 .262 .147 .288

FE_VV+_1 FE_FT_1 FE_VV+_2 FE_FT_2

Correlation .048 -.278 .052 -.097

p .694 .021** .671 .426

Correlation .079 -.097 -.002 -.107

p .521 .427 .986 .381

Correlation -.053 -.129 .231 -.087

p .667 .289 .056* .479

Correlation .134 -.040 .074 .166

p .272 .746 .548 .173

Correlation -.100 -.085 .120 -.075

p .415 .490 .324 .543

*, **, *** indicates significance at the 90%, 95%, and 99% level, respectively.

UoA_BD

UoA_MC

UoA_BT

Pearson

 

UoA_RWT

UoA_BB

Spearman

UoA_RWT

UoA_BB

UoA_BD

UoA_MC

UoA_BT

 

Table 11: Spearman and Pearson bivariate correlations for UoA sub-task and funnel and glass 

performance (N=69) 

 

This finding holds also when the aggregate percentage deviations from target 

performance measures as introduced in the previous section are used instead of filling 

time and volume variance.  

 

In a final quasi-experimental analysis we assign the cases to two groups based on the 

performance results achieved in the funnel and glass task. For instance, participants that 

have achieved a volume variance in the first run (FE_VV+_1) of less or equal to 10 are 

classed together and all participants that have performed worse are put in the second 

group. This procedure is repeated for the measures, FE_VV+_2, FE_FT_1, and 

FE_FT_2. In the cases of filling time the cut-off point was set to 5 seconds. Independent 

T-tests and Mann Whitney U tests were run testing for differences between the groups 

regarding both the aggregate UoA measure and all five UoA sub-task measures. Not 

once was the null hypothesis significantly rejected that distributions are the same across 

the two groups. Therefore, refutation of P3 is corroborated.  

 

Not finding support for P3 is an interesting result since performance over the complete 

sample of participants is low. However, it seems that not necessarily somebody 

achieving a relatively high score in the UoA test also does well in the tangible test; a 

participant with a low score on the UoA test could well achieve a high performance in 

the tangible part of the experiment. The two tests seem to require different cognitive 
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abilities: although from an abstract structural point of view the two tasks are similar 

(even nearly identical), the difference in their tangibility results in different individual 

performance. 

 

CONCLUSIONS, LIMITATIONS, AND FURTHER RESEARCH  

We used a combination of a tangible stock/flow task with a paper-based understanding 

of accumulation test to assess the validity of three propositions in a laboratory 

experiment. First, we tested whether participants in the tangible test perform well in 

absolute terms. Second, we compared their performance to a benchmark. Third, we try 

to find correlations between the performance in the UoA test and the tangible test. We 

did not find support for any of the three propositions that we stated. As for the classical 

studies in dynamic decision making, also with a tangible task participants do not 

achieve good results. Compared to a paper-pencil or a computer-based understanding of 

accumulation task they do not manage to perform better in the tangible set-up. 

Furthermore, performance in the tangible task cannot be correlated to performance in 

the paper/pencil UoA test. 

 

Proponents of naturalistic decision making claim that people perform better in natural 

situations (compared to the results in laboratory experiments of dynamic decision 

making). Some researchers of dynamic decision making support this but argue that 

today’s complex decisions resemble more the abstract task of the laboratory than the 

daily life examples of naturalistic decision making. However, our study suggests that 

the assumption of increased performance in natural decision making situations does not 

hold for stock/flow tasks with a delay. We see two possible explanations for this 

finding: first, people have not acquired heuristics for this kind of tasks as they have for 

other tasks, which let them perform well in naturalistic settings. There is no heuristic 

“that makes us smart” regarding accumulation processes involving a delay. Second, 

although we used a tangible task for participants to fulfil, we still conducted the 

experiment in a laboratory setting. Thus, benefits of naturalistic decision situations 

could maybe not be achieved in this artificial situation. 

 

In addition, the results regarding the third proposition (no correlation between tangible 

and paper-pencil test) render it doubtful whether performance in the two types of tasks 

should be related at all. Again, we offer two explanations for this result. First, our study 

suggests that people use different cognitive capabilities and that knowledge (or 

heuristics) used in a tangible stock/flow task cannot be transferred to a paper-pencil task 

and vice versa. In this sense, even if people were to achieve good performance in 

naturalistic tasks that would not guarantee that they also do well in abstract tasks and 

the other way around. Thus, as long as both types of tasks exist and are relevant 

decision makings situations, they need to be considered separately. Second, although 

the tasks used in both versions (tangible and paper-pencil) are similar in structural 

terms, they are not absolutely identical in terms of the framing of the task. For example, 

the sub-task from the UoA test that comes closest to the tangible task (the 

manufacturing case MC) uses the context of a production company as compared to the 

rather down-to-earth filling of a glass of water in the tangible test. 
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In summary, our findings corroborate Funke’s (2001) and Bakken’s (2008) conception 

that indeed dynamic decision making and naturalistic decision making have more in 

common than that they are different. The two methodologically-based explanations of 

our findings suggest natural ways for follow up research. Although difficult, striving for 

a more every-day situation could take away the criticism that we actually did not put 

people in a real naturalistic decision making setting. The methodological problems 

related to this, however, are substantial: how can you make people do what you want to 

do outside the laboratory, why would they fill-out a questionnaire there, would you be 

able to measure exactly their performance, are just some of the questions that would 

need to be answered. The second methodological issue could be tackled more easily by 

better aligning the two tests. For instance, in the paper-pencil UoA test a question could 

be included on how much water to fill-in (obviously, the target volume) and how long 

one would need to wait for the water to fill the glass. 
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