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Abstrakt

Hlavním cílem práce je studium vztahu celulárních automatů a diskrétních dynamických sys-
témů na mřížce. Oba nástroje, jak celulární automat tak dynamický systém na mřížce, jsou
zavedeny a jejich základní vlastnosti popsány. Vztah mezi celulárními automaty a dynamickými
systémy na mřížce je podrobně popsán. Hlavním cílem práce je dále použití nástroje celulár-
ního automatu jako matematického vizualizačního prostředku evoluce diskrétních dynamických
systémů. Teorie celulárních automatů je použita na dynamické systémy na mřížce Lamplaceova
typu a implementována v prostředí Java.

Klíčová slova: dynamické systémy na mřížce, celulární automaty, logistický systém zobrazení

Abstract

The main aim of this thesis is the study of cellular automata and discrete dynamical systems on
a lattice. Both tools, cellular automata as well as dynamical systems on a lattice are introduced
and elementary properties described. The relation between cellular automata and dynamical
system on lattice is derived. The main goal of the thesis is also the use of the cellular automata
as that mathematical tool of evolution visualization of discrete dynamical systems. The theory
of cellular automata is applied to the discrete dynamical systems on a lattice Laplacian type
and implemented in Java language.
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1 Introduction

Cellular automaton (CA) is a discrete model used in many scientific fields like computer science,
mathematics, physics, theoretical biology etc. CA contains grid of cells. Those grids could be
n-dimensional but in general are two or three dimensional. Cells have finite number of states
like for example 0 or 1. For each cell is defined a neighborhood, that is a set of cells which could
be defined differently for each CA. Usually neighbor is cell with common edge in grid.

A coupled map lattice (CML) is a model for the time evolution of nonlinear systems. They
are mainly used to model a suitable physical reality and to study the chaotic dynamics of
spatially extended systems, which are extended in space or involve a lot of individual units. For
CML is typical, that they are discrete in time with discrete state and continuous actions.

Very interesting is, that some CA patterns can be observed in nature, for example some
seashells, like the ones in Conus or Cymbiola genus, are generated by cellular automata. Every
cell secretes pigment according to activity of its neighbor cells and obeys a mathematical rule
from nature. As shell was growing, it left a colored pattern. For example Conus textile is colored
according to Wolfram’s rule 30 (Coombes, 2009). See in Figure 1

Figure 1: Conus shell

As mentioned, CA could be used in different branches.
One of the possible application are computer processors.
They are CA’s physical implementations, which process in-
formation. Elements in process are in regular grid of identi-
cal cells. Grid is usually rectangular or made out of tiles and
most likely two or three dimensional (Muhtaroglu, 1996).
Different shapes of cells are possible but not used. States
of cells are determined only by interaction with neighbours.
There is no possible way, that cell will communicate with
distant cell.

Another application is Cryptography. Some of two di-
mensional CA are used as random number generator and for
example Rule 30 was suggested for use in cryptography as a
block cipher. The next generation is quite easy to find, but
previous generation are very difficult to calculate, so we can
use them as private and public keys in cryptography(Tomassini, Sipper, & Perrenoud, 2000).

CA were used also for error correction codes in paper by ((Chowdhury, Basu, Gupta, &
Chaudhuri, 1994))

The main aim of the thesis is to use the tool of cellular automaton as visualization instrument
to show the evolution of the dynamical systems. For this purpose detailed overview of the theory
of cellular automata is deeply researched and applied to the coupled map lattice model of the
Laplacian type. Implementation of the cellular automaton was performed in Java language and
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the output as a flip book is situated in bottom right corner (Figures 2 - 4,6 - 9, 12 - 14 and 16).

This thesis is organized as follows. In the Section 2 a general framework of cellular automa-
ton is given, moreover elementary cellular automata are introduced and the theory of cellular
automata are computed. Section 3 is devoted to the theory of coupled map lattices. The logistic
family is introduced, as well as CML system of the Laplacian type, and the implementation of
CML as CA is delineate, where evolution of CML system generated by CA is derived. Section
4 describes the implementation of CML as CA in Java and Section 5 is closing the thesis with
concluding remarks.
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2 Cellular automata

As mentioned in the previous section, cellular automaton can be interpreted as a computer
model, which is very useful in many ways. The first important principle of CA is its spa-
cial structure. Each square or cell has its location. This could represent for example a city
with buildings and people in it. One cell could be a house. As in real world, each cell has
neighbours. Neighborhood is not always the same for every cellular automaton (Pickover, 2009;
Von Neumann, 1951; Von Neumann & Burks, 1996). Each cellular automaton could have defined
neighborhood differently. For example von Neumann neighborhood consists of four neighbours,
one on the bottom, one on the top, one on the left, and one on the right. Then we have for
example Moore neighborhood, which consists of eight cells so also cells bordering with corners
are considered as neighbors. By defining the neighborhood we decide, how big impact have
interactions between cells(Goles & Martínez, 2013; Kier, Seybold, & Cheng, 2005). For example
a disease in von Neumann neighborhood will spread not as fast as in Moore neighborhood. The
second important principle is local interactions.

In modeling there are another two basic principles. First one is that cells have a state.
This could represent for example an opinion of a person or condition of an organism. State
is typically modeled as a number. Second important principle is that states can change. How
can they change their state depends on both them and their neighbors. For example if people
around you are infected by a disease, you will probably get infected too (Toffoli & Margolus,
1987; Schiff, 2011). In CA time is discrete, so time moves on with steps. In each step CA
controls every cell, if they change its state.

Elementary CA are one-dimensional binary CA with neighborhood of size one.

Figure 2: The eleventh iteration
of the CML model (13) as CA for
µ = 3.8 and ϵ = 0.06

The rule to determine the next state of a cell depends only on
the current state of the cell and its two neighbors. This is one
of the simplest models. There are 8 possible combinations of
cell and its neighbors. The rule specify every combination,
so there is 256 elementary cellular automata. We cannot
predict behavior of CA, we have to observe it. There are
four possible outcomes of CA (Amigó, 2010):

• the configurations converge to a fixed point,

• time evolution yields a sequence of simple stable or
periodic structures,

• the behavior is chaotic,

• time evolution yields localized structures that move
around and interact with each other in very compli-
cated ways.
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The most famous cellular automaton is Conway’s Game of Life. With this CA came up
British mathematician John Horton Conway in 1970. Game of life has two-dimensional grid of
cells, where each cell have one of two possible states, alive or dead (one or zero, populated or
unpopulated,...). Each cell has eight neighbours, this could be also called Moore neighborhood.
Rules are quite simple and are valuated for each cell in every step:

• a cell with two or less neighbours dies due to underpopulation,

• a cell with two or three neighbours continues to live,

• a cell with more than three neighbours dies due to overpopulation,

• a dead cell with exactly three neighbours become alive, as if by reproduction.

Firstly we apply these rules on initial pattern and then on each generation. Game usually
ends with extinction. This game rase interest in CA and in 1980s Stephen Wolfram begin with
systematic study of elementary CA (Gardner, 1970).

A lot of people have asked a question, whether the universe is a cellular automaton. An-
drew Ilachinski (Ilachinski, 2001) argues that the importance of this question may be better
appreciated with a simple observation, which can be stated as follows. Consider the evolution of
rule 110: if it were some kind of “alien physics”, what would be a reasonable description of the
observed patterns? If an observer did not know how the images were generated, that observer
might end up conjecturing about the movement of some particle-like objects. And Ilachinski is
not the only one. For example physicist James Crutchfield (Crutchfield, 1994) has constructed a

Figure 3: The tenth iteration of
the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

mathematical theory based on this idea. Question is whether
our world, which is mostly described, with our current knowl-
edge, by physics, could be a CA at its most basic level with
the gaps in information (Kemeny, 1955; Chapman, 2002;
Mitchell, 2002).

Those discussions and hypothesis led to speculations on
how we can make sense of our world in a discrete frame-
work. Marvin Misnki studied particle interactions using a
four-dimensional CA lattice, Konrad Zuse came up with ir-
regularly organized lattice and asked question of the infor-
mation content of particles. Edvard Fredkin discovered the
finite nature hypothesis. This hypothesis says, that "ulti-
mately every quantity of physics, including space and time,
will turn out to be discrete and finite." Fredkin, together
with Steven Wolfram, are strong promoters of a CA-based
physics.In 2016 Gerard ’t Hooft published an idea of rebuild-
ing quantum mechanics using CA (Hooft, 2016; Berto, Rossi,
& Tagliabue, 2010).
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2.1 Elementary cellular automata

As mentioned earlier, elementary CA are one-dimensional binary CA with neighborhood of size
one and thay can be labeled as follows. We have the local rule

f(p, q, r) = β, (1)

where p, q, r, β ∈ {0, 1}, so we could get eight different configurations in the neighborhood
U1(i) = {i − 1, i, i + 1}, like this:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), ..., (1, 1, 1). (2)

If β0, β1, ..., β7 ∈ {0, 1} are the corresponding values of β, then the cellular automaton with the
local rule f can be conclusively identified by the number

ID =
7∑

i=0
βi2i ∈ {0, 1, ..., 255}. (3)

This means, that there are 256 different elementary CA. Other way to calculate all possible
configuration could be following. To define a local rule, we have to specify the update state of
the central cell given all possible configuration of its local local neighborhood. Since there are
eight such configurations and two states, the amount of all possible assignments is 28 = 256.
For example, the cellular automaton with local rule

Figure 4: The ninth iteration of
the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

f(0, 0, 0) = 0, f(1, 0, 0) = 0,

f(0, 0, 1) = 1, f(1, 0, 1) = 1,

f(0, 1, 0) = 1, f(1, 1, 0) = 1,

f(0, 1, 1) = 1, f(1, 1, 1) = 0,

(4)

is coded as the decimal number

ID = 0 × 20 + 1 × 21 + 1 × 22 + 1 × 23 + 0 × 24

+1 × 25 + 1 × 26 + 0 × 27 = 110.
(5)

We could get the local rule f(p, q, r) = β of an elementary
cellular automaton from its identification number recursively:

β0 = ID mod 2,

βi = ID − β0 − ... − βi−12i−1

2i
mod 2,

1 ≤ i ≤ 7.
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Figure 5: Elementary CA

So, for determining the evolution of these CA, we need only eight bits βi, no closed formula
for f is necessary (Chua, Sbitnev, & Yoon, 2003). Stephen Wolfram studied very deeply behav-
ior of all 256 elementary CA. He calculated the time evolution with each local rule and initial
configuration, until it settled at stable pattern of behaviour (Wolfram, 1984, 2002). Wolfram
sorted elementary CA in four classes (see in Figure 5) by increasing complexity:

1. The configurations converge to fixed point (a)

2. Time evolution yields a sequence of simple stable or periodic
structures (b)

3. The behavior is chaotic (c)

4. Time evolution yields localized structures that move around
and interact witheach other in very complicated ways (d)

2.2 Topological Entropy of CA

Topological entropy is measure of complexity of F and the
spatiotemporal complexity of a cellular automaton can be
measured by that:

htop(F ) = lim
w→∞

lim
x→∞

1
t

log R(w, t), (6)

16
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where F : SZ → SZ and R(w, t) is the number of distinct rectangles of width w and height
(temporal extent) t occurring in a space–time evolution diagram of (SZ, F ) and S a finite al-
phabet from which automaton is taking on values.

This is way, how to calculate htop(F ) by means of the topological entropy of a two-dimensional
interval map. Set Ω = SZ, where S = {0, 1, ..., |S| − 1} in the case of a one-dimensional cellular
automaton with |S| states, and define similar to the map φ|S| = (φ−

|S|, φ+
|S|) : SZ → [0, 1]2,

φ|S| : xt ↦→ (φ−
|S|(x

−
t ), φ+

|S|(x
+
t )), (7)

where xt = (xt(i))n∈Z, (xt(−i))i∈N is the left sequence of xt, x+
t = (xt(i))i∈N0 is the corre-

sponding right sequence, the component maps φ−
|S| : SN → [0, 1], φ+

|S| : SN0 → [0, 1] are given
by

φ−
|S|(x

−
t ) =

∞∑
i=1

xt(−i)
|S|i

, φ+
|S|(x

+
t ) =

∞∑
i=0

xt(i)
|S|i+1 (8)

and the bisequences xt = (x−
t , x+

t ) are lexicographically ordered. The map φ|S| is an order iso-
morphism ([0, 1]2 being lexicographically ordered), up to a measure zero set N which comprises
those bisequences whose left or right sequences terminate in 1, 0∞ or 0, (|S|−1)∞. Also, it is quite
easy to check that φ|S| is a homeomorphism from SZ\N to its range.

Figure 7: The seventh iteration
of the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09
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3 Coupled map lattices

A coupled map lattice (CML) is a dynamical system that models the behavior of non-linear
systems (especially partial differential equations). They are mainly used to study the chaotic
dynamics of spatially extended systems. This includes the dynamics of spatiotemporal chaos
where the number of effective degrees of freedom diverges as the size of the system increases
(Chazottes & Fernandez, 2005). CML is a dynamical system with discrete time, space a con-
tinuous states. Interactions of cells could be done by for example electric charge, vibrations,
magnetism or others. This can be done in several different ways so, we don’t need wires between
elements. This is quite distant from processors used in todays computers. Difference between
CML and CA is also, that state of cells in CA depends on their neighbours, but CML is not
neighbor dependent.

In 1983 the following model was introduced by Kaneko (Chazottes & Fernandez, 2005):

ut+1
s = (1 − ϵ)f(ut

s) + ϵ

2(f(ut
s+1) + f(ut

s−1)), t ∈ N, ϵ ∈ [0, 1] (9)

where ut
s ∈ R and f is a real mapping. Kaneko used this model to study spaciotemporal

complexity (turbulance, convection, etc.).
The mapping f was chosen according to the local behaviour describing the studied phe-

nomenom.
Mapping is a recursive function of two terms, an individual non-linear reaction, and a spatial

interaction of variable intensity. A lot of wok in CML is based in weak coupled systems, where are
studied diffeomorphisms of the state space, which are close to identity.

Figure 8: The sixth iteration of
the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

Weak coupling with monotonic dynamical regimes represents
spatial chaos phenomena and they are also quite popular
in neural models. Weak coupling unimodal maps could be
shown by their stable periodic points and they found use in
gene regulatory network models (Wiener, 1946). Space-time
chaotic phenomena could be shown from chaotic mappings
subject to weak coupling coefficients and their popularity is
high in phase transition phenomena models (Bunimovich &
Sinai, 1988).

Intermediate and strong coupling interactions are not
that popular, because they don’t have much results. With
respect to fronts and traveling waves, riddled basins, riddled
bifurcations, clusters and non-unique phases we study inter-
mediate interactions. For modeling synchronization effects
of dynamic spatial systems we use strong coupling interac-
tions. We cannot catch the global or local coupling nature
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of the interaction with these classifications. They cannot also consider the frequency of the cou-
pling which can exist as a degree of freedom in the system. And they cannot as well distinguish
between sizes of the underlying space or boundary conditions (Courbage & Kamiński, 2015;
Nozawa, 1992; Ho, Hung, & Jiang, 2004).

The principle of CML is in the reductionism in procedure, not in each elementary process.
Physicists often try to adopt the reductionism in its exact sense, and they start from a mi-
croscopic level. We are not going to take such a simple viewpoint. Starting from a suitably
rough description, we are introducing the reductionism in a macroscopic level. This procedural
reductionism has been regard not in physics, but in biology and in artificial intelligence, as a
functional module (Letichevskii & Reshod’ko, 1972; Hedlund, 1969). As far as fyzics is con-
cerned, lets give an example. Assume that we have a phenomenon in fluids, which is created
by a local chaotic process and diffusion. A simple reductionist could start from a microscopic
model, like molecular dynamics or lattice gas cellular automata. Some others may trust only in
equations in a coarse-grained level like Navier-Stokes equation. In CML we take a different look
from both of the two; reductionism in procedure. We try to reduce the phenomena into local
chaos and diffusion processes. Then we select a suitable lattice model in a semi-coarse grained
level for each process. As the simplest choice we can adopt a local logistic map for chaos, and
a discrete Laplacian operator for the diffusion. The former process is given by

x
′
n(i) = f(xn(i)) (10)

where xn(i) is a variable at time n and lattice site i, and x
′
n(i) is introduced as the intermedi-

ate value. For the logistic map f(x) is chosen to be 1 − ax2. The discrete

Figure 9: The fifth iteration of the
CML model (13) as CA for µ =
3.8 and ϵ = 0.09

Laplacian operator for diffusion is given by

xn+1(i) = (1 − ϵ)x′
n(i) + ϵ

2(x′
n(i + 1) + x1

n(i − 1)) (11)

Combining the above two processes, our dynamics is
given by

xn+1(i) =
(
1 − ϵf(xn(i)

)
+ ϵ

2
(
f(xn(i + 1)) + f(xn(i − 1))

)
The above CML has been investigated a lot as a standard

model for spatiotemporal chaos. We notice that the local
chaos and diffusion processes are carried out separately in
the above, which is one of the virtue of our CML (Kaneko,
1991).

The configurations ut
s could be a part of velocity field

or local density of population (Amigó, 2010). So those ex-
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Figure 10: Schematic representation of the phenomenology of CML versus the local map and
the coupling intensity(Chazottes & Fernandez, 2005)

.

amples are bounded sequences, periodic or finite. Sometimes we however require unbounded
configurations. In basic model we can see that CML is determined by two terms, f is a nonlinear
reaction and ϵ is spatial interaction. One dimensional CML has six phases:

1. frozen random patterns,

2. pattern selection and suppression of chaos,

3. Brownian motion of defects,

4. defect turbulence,

5. pattern competition intermittency,

6. fully developed turbulence.

3.1 The logistic family

For the further ideas development some elementary notions
from the theory of discrete dynamical system will be given.
By a discrete dynamical system an ordered pair

(X, f)

is meant (Devaney & Eckmann, 1987). Here X stands for
the state space, classically a compact metric space and f is

20

Figure 12: The fourth iteration of
the CML model (13) as CA for
μ= 3 .8 and ε= 0 .09



Figure 11: Graphs of the logistic map fµ for µ = 1, µ = 2, µ = 3 and µ = 4.

a continuous map.
f : X → X

that is into not necessarily auto. The main aim of the theory of discrete dynamical system focuses
on behaviour of trajectories, that are received by iterations of given f . The n-th iteration of x

under f is defined as
fn(x) = f ◦ f... ◦ f(x)  

n-times

n-fold can position of f . Here f0 stands for identity map on x. The crutial generic example,
that is used in this thesis, is well known logistic family.

Figure 13: The third iteration of
the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

The family of logistic maps fµ : [0, 1] → [0, 1] where
0 ≤ µ ≤ 4, could be defined by:

fµ(x) = µx(1 − x). (12)

The interval Iµ = [f2
µ(1/2), fµ(1/2)] is called the core of

fµ, when µ ∈ (2, 4)]. When the parameter µ ∈ [0, 2], the
interval Iµ does not have that nice properties, but the defi-
nition is still good (Lampart & Oprocha, 2016).For if µ = 0
or µ = 2 the core I0 = {0}, I2 = { 1/2}, respectively, degen-
erates into single point. The core Iµ is strongly invariant,
that is fµ(Iµ) = Iµ, and every point from (0, 1) is attracted
to Iµ. The dynamics on the core can be very rich (Brucks,
Diamond, Otero-Espinar, & Tresser, 1991). For the family
of tent maps the dynamics on the core is topologically exact
for some range of parameters, which, in general, means that
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Figure 15: Graph of fµ for µ = 3.8 and the graph restricted to the core Iµ (bounded by box)

most rich dynamical behavior is present in the core. In those logistic maps, the calculations are
not that simple and spectrum of possible dynamical behaviors is richer. However, it is known
that for some parameters the dynamics on the core of the logistic map is the same (in the sense
of topological conjugacy) as on the core of tent map with slope corresponding to µ.

3.2 CML system of Laplacian type

Figure 14: The second iteration
of the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

By (with coupling constant ϵ) the following map of the
square F : [0, 1]2 → [0, 1]2 is meant,

F (x, y) = (Fx(x, y), Fy(x, y)) (13)

where
Fx(x, y) = (1 − ϵ)fµ(x) + ϵfµ(y), (14)

Fy(x, y) = (1 − ϵ)fµ(y) + ϵfµ(x), (15)

Simple calculations yield that Fix(F ) ⊇ {(0, 0), (pµ, pµ)}
for µ > 1, where pµ = (µ − 1)/µ and they are the only
fixed points of F on the diagonal. Note that the point pµ is
fixed for fµ and is attracting or repulsive for µ ∈ (1, 3) or
µ ∈ (3, 4), respectively. It may happen that Fix(F ) contains
also points outside diagonal, however always # Fix(F ) ≤ 4
(Lampart & Oprocha, 2016; Kendall & Fox, 1998). Here,
as usual, Fix(F ) and Per(F ) stand for the set of all fixed
and periodic points of F , respectively; and the space R2 is
endowed with the Euclidean norm ||.||.
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Let consider the set

R = (µ, ϵ) ∈ [0, 4] × [0, 1] : 1 > µ|1 − 2ϵ|.

then

Proposition 1 (Lampart & Oprocha, 2016) Denote by µ̂ the Feigenbaum constant. For any
x, y ∈ [0, 1] and (µ, ϵ) ∈ R we have:
(1) if µ ≥ µ̂ then
limn→∞ dist(F n(x, y), ∆(Iµ) ∪ {(0, 0)}) = 0,
(2) if µ ∈ (2, µ̂) and (x, y) ∈ [0, 1]2 then either (x, y) ∈ {0, 1}2 or there is z ∈ Iµ ∩ Per(fµ) such
that limn→∞ ||F n(x, y) − F n(z, z)|| = 0.
(3) if µ ∈ (1, 2] and (x, y) ∈ [0, 1]2 then either (x, y) ∈ 0, 12 or limn→∞ F n(x, y) = (pµ, pµ).
(4) if µ ≤ 1 then limn→∞ F n(x, y) = (0, 0).

It is clear that ∆ = {(x, x) : x ∈ [0, 1]} is an invariant subset for F and that F |∆ can be identified
with fµ by natural homeomorphism π : [0, 1] ∋ x → (x, x) ∈ ∆, that is F |∆ ◦ π = π ◦ fµ or
equivalently F |µ = π ◦fµ ◦π −1. It follows that, F is chaotic when µ = 4 and many other values
of µ ∈ [µ̂, 4), where µ̂ ≈ 3.56994... is the Feigenbaum constant (smallest µ where fµ has point
of period 2n for every n ∈ N).

3.3 Coupled map lattices as Cellular automata

The main of the thesis is interpretationof the CML as CA with more than two states.

Figure 16: The first iteration of
the CML model (13) as CA for
µ = 3.8 and ϵ = 0.09

Because state in CML could be any real number, we have to
round to nearest number which computer could use. Main
problem is rounding by computer. Our CA is implemented in
Java language. Rounding causes small discrepancies. CML
is implemented in grid of cells 500x500 and each cell contains
small amount of points. In every step we calculate where
will the cell transfer one of its points. Because the result of
equation is between 0 and 1, we have to multiply the result
by width and height of our grid, which is 500 in our example.
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4 Implementation in Java

This section, as a main result part, is devoted to the implementation of the CML of the Laplacian
type as CA in Java. The first part is import of packages, see in Listing 1. Next is part, where
colours are created. According to colour we could determine the amount of point in one cell, see
in Listing 2. In third part are defined some variables for calculations or arrays which represents
cells, see in Listing 3. In another part we create the space for our CML. We fulfill the cells with
points give them a colour according the amount, see in Listing 4. The last is the main part,
where we iterate our model. Here is defined behaviour of our model, see in Listing 5.

Whole model is implemented in Java language, which is object-oriented language. It is very
easy to learn and easy to understand and can be used for solving variety of problems. This
language is very robust, safe and universal. On the other hand, Java language was not designed
to solve mathematical problems, so it turned out, that is not best choice for this problem.
Implementation could be divided into two main parts. In first part environment and graphic
user interface is created. It is quite simple and straightforward. Second part, implementation,
is in the last listing. Very important is to have more than one point per cell in the beginning,
because without them the model would not depict completely.

package cml;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.ConcurrentModificationException;

import javax.swing.JButton;

import javax.swing.JFrame;

import static javax.swing.JFrame.EXIT_ON_CLOSE;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.Timer;

Listing 1: Import of packages of the CML model in Java.

Here are imported packages.

public class CML extends JFrame{

24



private static final Color white = Color.WHITE, black = Color.BLACK, red =

Color.RED;

private final Color[] colors;

private final Board board;

private final JButton start_pause;

JLabel label_it;

int it = 1; //Iteration counter

public CML(){

// Colors for scaling

colors = new Color[10];

colors[9] = Color.decode("0xff1100");

colors[8] = Color.decode("0xff2200");

colors[7] = Color.decode("0xff3300");

colors[6] = Color.decode("0xff4400");

colors[5] = Color.decode("0xff5500");

colors[4] = Color.decode("0xff6600");

colors[3] = Color.decode("0xff7700");

colors[2] = Color.decode("0xff8800");

colors[1] = Color.decode("0xff9900");

colors[0] = Color.decode("0xffaa00");

board = new Board();

board.setBackground(white);

label_it = new JLabel("Iteration: "+it);

start_pause = new JButton("Start");

start_pause.addActionListener(board);

this.add(board, BorderLayout.NORTH);

this.add(start_pause, BorderLayout.SOUTH);

this.add(label_it, BorderLayout.CENTER);

this.setDefaultCloseOperation(EXIT_ON_CLOSE);

this.pack();

this.setVisible(true);
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}

Listing 2: Creating colours and labels of the CML model in Java.

Second part is where colours are created. Acording to colour we could determine the amount of
point in one cell.

private class Board extends JPanel implements ActionListener{

private final Dimension DEFAULT_SIZE = new Dimension(500, 500); //board

is 500x500 pixels

private final int DEFAULT_CELL = 1, DEFAULT_TIME = 1; //size of

cell in pixels, time is in miliseconds

private final double epsilon = 0.06;

private final double mi = 3.8;

private final Dimension board_size;

private final int cell_size, time;

private boolean run;

private final Timer timer;

private final Color[][] grid; //this contain a color of cell

private final int[][] state; //this contain number of points in cell

Listing 3: Defining variables of the CML model in Java.

In this part are defined some variables for calculations or arrays which represents cells.

public Board(){

board_size = DEFAULT_SIZE;

cell_size = DEFAULT_CELL;

time = DEFAULT_TIME;

run = false;

grid = new Color[board_size.height + 1][board_size.width + 1];

state = new int[board_size.height + 1][board_size.width + 1];

for (int h = 0; h < board_size.height; h++)

for (int w = 0; w < board_size.width; w++){

grid[h][w] = colors[8]; //starting color for 2 points

state[h][w] = 2; //each cell start with two points
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}

timer = new Timer(time, this);

}

@Override

public Dimension getPreferredSize(){

return new Dimension(board_size.height * cell_size, board_size.width

* cell_size);

}

@Override

public void paintComponent(Graphics g){

super.paintComponent(g);

for (int h = 0; h < board_size.height; h++)

for (int w = 0; w < board_size.width; w++){

try{

g.setColor(grid[h][w]);

g.fillRect(h * cell_size, w * cell_size, cell_size,

cell_size);

} catch (ConcurrentModificationException cme){}

}

}

Listing 4: Creating board of the CML model in Java.

In this part is created the space for CML. Cells are fullfiled with points and colour is given to
them according the amount.

@Override

public void actionPerformed(ActionEvent e) {

if (e.getSource().equals(timer)){

repaint();

label_it.setText("Iteration: "+it);

double x;

double y;
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for (int h = board_size.height; h >= 0 ; h--){

for (int w = board_size.width; w >= 0 ; w--){

//converting position in array into position in plane

double x1 = h/(double)board_size.height;

double y1 = w/(double)board_size.width;

//calculating equation, the constant 500 is there because

of rotation

x = ( (1-epsilon)*mi*x1*(1-x1)+epsilon*mi*y1*(1-y1) )*

board_size.height;

y = 500-( (1-epsilon)*mi*y1*(1-y1)+epsilon*mi*x1*(1-x1

) )*board_size.width;

//cutting of the real part, storing whole number

int xInt = (int)x;

int yInt = (int)y;

//value for comparing for rounding

double a = xInt + 0.5;

double b = yInt + 0.5;

//rounding itself

if (x >= a)

{

xInt++;

}

if (y >= b)

{

yInt++;

}

//moving points

if(state[h][w] > 0)

{

state[xInt][yInt] ++;

state[h][w]--;

}
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if ( state[xInt][yInt] > 9)

{

grid[xInt][yInt] = red; //if there is high

concentration of points

if ( state[xInt][yInt] > 100) //if there is very high

concentration of points

grid[xInt][yInt] = black;

}

else if(state[xInt][yInt]==0)

{

grid[xInt][yInt] = white;

}

else

grid[xInt][yInt] = colors[(state[xInt][yInt])/8]; //one

scale for each eight points

grid[h][w] = white;

}

}

it++;

}

else if(e.getSource().equals(start_pause)){

if(run){

timer.stop();

start_pause.setText("Start");

}

else {

timer.restart();

start_pause.setText("Pause");

}

run = !run;

}

}

}

}
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Listing 5: Iteration of the CML model in Java.

This is the main part, where the model is iterated. Here is defined behaviour of this model.
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5 Conclusions

In this thesis, cellular automata and coupled map lattices were studied. Cellular automaton as
mathematical visualization instrument of the evolution of discrete dynamical systems was used.
The theory of cellular automata was deeply studied and than applied to the coupled map lattice
model of the Laplacian type. The main part of thesis implementation of this cellular automaton
was done in Java language for the CML model (13) and variables µ = 3.8 and ϵ = 0.09.

In Section 2 it was given a general framework of cellular automaton. Furthermore, it was
introduced elementary cellular automata and the theory of general cellular automata. Section
3 focused on theory of a coupled map lattices. The logistic family and also CML system of
the Laplacian type was briefly introduced. The evolution of CML system generated by CA
was performed. In Section 4 implementation of CML as CA was done, so we achieved our goal
and manage to use cellular automaton as visualization instrument of the evolution of dynamical
systems, thanks to the algorithm.
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