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Abstrakt

Hlavním cílem bakalářské práce je studium 0-1 testu chaosu, jeho implementace v Matlabu
a následné testování na vhodných modelech. V práci jsou zavedeny základní nástroje analýzy
dynamických systémů, které jsou později použity v části hlavních výsledků. 0-1 test chaosu je
podrobně uveden, řádně definován a implementován v Matlabu. Aplikace je provedena na dvou
jednodimenzionálních diskrétních modelech z nichž jeden je v explicitním a druhý v implicitním
tvaru. V obou případech byly provedeny simulace v závislosti na stavovém parametru a hlavní
výsledky byly demonstrovány formou 0-1 testu chaosu, fázových a bifurkačních diagramů.

Klíčová slova: dynamické systémy, 0-1 test chaosu, bifurkační diagram, populační model

Abstract

The goal of this thesis is to research the 0-1 test for chaos, its application in Matlab, and testing
on suitable models. Elementary tools of the dynamical systems analysis are introduced, that are
later used in the main results part of the thesis. The 0-1 test for chaos is introduced in detail,
defined, and implemented in Matlab. The application is then performed on two one-dimensional
discrete models where the first one is in explicit and the second one in implicit form. In both
cases, simulations in dependence of the state parameter were done and main results are given -
the 0-1 test for chaos, phase, and bifurcation diagrams.
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1 Introduction

Dynamical systems theory has a relatively short history and has drawn interest from many
scientific fields over the years. The techniques used to study nonlinear dynamical systems can
be applied to various problems from physics, chemistry, economics, biology, and ecology. Systems
which were difficult to analyze can now be resolved in a geometric or qualitative solution. Chaos
and random behavior are considered natural to the dynamical systems. In the next part the
evolution of the chaos theory is briefly described.

Modern dynamical systems theory began when H. Poincaré [38] who studied the three-
body problem and was the first to discover a chaotic deterministic system. He also introduced
qualitative techniques for geometrical and topological problems.

A. Lyapunov [31] studied the behavior of points in the neighborhood of the equilibria, in-
troducing the notion of Lyapunov stability. Later, while extending his study to any two in-
finitesimally close points, the notion of Lyapunov exponent was presented. This method for
measuring the rate at which orbits of such points diverge is one of the key methods in studying
and quantifying chaos.

Another important notion regarding dynamical systems, the ergodic theory, concerns the
behavior of the system which is allowed to run for a long time. The greatest contribution in this
field was done by two mathematicians. G. D. Birkhoff, who introduced a notion of transitivity
for flows in [6]. Later on, the Birkhoff Ergodic Theorem was presented in [5]. J. von Neumann
made foundational contributions to the ergodic theory in a series of articles [18] published around
1932, including the proof [44].

The first definition of chaos was set by T. Y. Li and J. A. Yorke [26]. According to them, a
map is chaotic if there is an uncountably infinite set that is scrambled under the map, meaning
that every two points in the set come infinitely close under some iteration of the map without
staying close. The authors also proved that period three implies chaos for continuous self maps
on an interval.

The Sharkovskii’s theorem formulated by A. M. Sharkovskii states that if the continuous
map has a periodic point of period three then it has periodic points of all other periods [8]. It
only holds for maps of the real line and it is not possible to generalize it to all maps and spaces.

A new definition of chaos was brought by R. L. Devaney [8]. In his sense, the map is chaotic
on a set if it has sensitive dependence on initial conditions, is topologically transitive, and the
periodic points are dense in the set. It was later proved that the first assumption is unnecessary
[2].

The notion of distributional chaos was introduced [42] after showing that the chaos in the
sense of Devaney or Li and Yorke is not stable, meaning that some functions can lose the
chaotic behavior under arbitrary small perturbations. Is is defined by a sequence of distribution
functions of distance between the orbits equal to two points.
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There are many other definitions of chaos, for example ω-chaos [25], Block-Coppel’s chaos[20],
Robinson’s chaos[40] or Kato’s chaos[16], whereas all contain unsolved implications[17, 22], so
it can not be determined which one of them is the strongest.

1.1 Organization and goals of the thesis

This thesis focuses mainly on the 0-1 test for chaos introduced by Gottwald and Melbourne in
[12].

Section 2 contains the basic definitions and notions that will be used later in the text.
After that, a short introduction to the 0-1 test for chaos is given in Section 3 together with

an overview of the use of this test with examples from various scientific fields.
Different tools for chaos detection which are used in this thesis are presented in Section 4.

The main goal is on the background of the 0-1 test for chaos (Subsection 4.1), but we will also
take a look at bifurcation theory (Subsection 4.2), since the obtained results of the 0-1 test for
chaos (see Figures 6 and 12) are compared with bifurcation diagrams (see Figures 5 and 11).

The implementation of the tests is described by using information for the test in the previous
section. These are accompanied by direct codes in Matlab for other methods used in this thesis,
for the bifurcation diagram, cobweb diagram, and plots of the models.

The implementations of the test are applied to two models from population biology in Section
6, where the first model given in Subsection 6.1 is in explicit form, while the second one, studied
in Subsection 6.2, in implicit form. In both cases classical analysis of dynamical properties is
performed or applied. The models are chosen from [34].

The goal of this thesis is to study typical maps of discrete dynamical systems by a new method
- the 0-1 test for chaos. The test is implemented in Matlab and the numerical experiments are
done on two models. These results are compared with bifurcation diagrams.
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2 Preliminaries

The basic definitions and propositions from elementary dynamics are set in this section. Many
of them belong in mathematical folklore and can be found in e.g. [8].

By a discrete dynamical system we mean an ordered pair

(X, f)

where X is the state space and f : X → X an onto (not necessarily into) action on X [23].
The map f : X → X is assumed to be continuous in this thesis. There are studied systems

such that f is not continuous, e.g. some weak conditions are assumed, like connected Gδ graphs,
see e.g. [47, 48]. The space X is standardly taken as a compact metric. Nevertheless, some
generalizations or extensions are possible. In the Section 6 the space X is not compact, i.e.
X = [0, ∞), that is not restrictive, since this space is f-invariant, that is f(X) ⊆ X. Hence all
iterations of any point from X remain in X.

The theory of (discrete) dynamical systems focuses on a behavior of state space point move-
ment. That is represented as iterations:

fn(x) = f ◦ f... ◦ f  
n−times

(x)

where fn stands for the n-th iteration of the point x under the map f , here f0 denotes the
identity map on X.

The set Orbf (x) = {fn−1(x)|n ∈ N}, called an orbit of x under the map f .

Definition 1 The point x is a fixed point for f if f(x) = x.
The point x is a periodic point of period n if fn(x) = x. The least positive n for which fn(x) = x

is called the prime period of x.
We denote the set of periodic points of (not necessarilly prime) period n by Pern(f), and the set
of fixed points by Fix(f).
The set of all iterates of a periodic point form a periodic orbit.

Definition 2 Let p be a periodic point of prime period n. The point p is hyperbolic if

|(fn)′(p)| ≠ 1.

The number (fn)′(p) is called the multiplier of the periodic point.

Definition 3 Let p be a hyperbolic periodic point of period n with |(fn)′(p)| < 1. The point p

is called an attracting periodic point (an attractor) or a sink.
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Definition 4 A fixed point p with |f ′(p)| > 1 is called a repelling fixed point (a repellor) or
a source. The neighborhood described in the proposition 1 is called the local unstable set and
denoted W u

loc.

The following statements will be useful tools used in Section 6.

Proposition 1 Let p be a hyperbolic fixed point with |f ′(p)| < 1. Then there is an open interval
U about p such that if x ∈ U , then limn→∞ fn(x) = p.

Proposition 2 Let p be a hyperbolic fixed point with |f ′(p)| > 1. Then there is an open interval
U about p such that if x ∈ U , x ̸= p, then there exists k > 0 such that fk(x) /∈ U .
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3 Overview of the 0-1 test for chaos

The 0-1 test for chaos is one of the methods for distinguishing between regular and chaotic
dynamics of a deterministic system. In contrast to the other approaches, the nature of the
system is irrelevant, so the test can be applied directly onto experimental data, ordinary dif-
ferential equations, or partial differential equations. The results obtained are close to 0 or 1, 0
corresponding to regular dynamics and 1 to chaotic dynamics. With its easy implementation,
evaluation, and wide range of application, using this tool for detecting chaos is becoming more
popular in different fields. In the next section, we offer a few recent examples of the 0-1 test
being used on experimental data, as well as on discrete or continuous time systems.

3.1 Application on experimental data

The 0-1 test for chaos can be used directly on the data, which is what makes it a favourite tool
to use with data obtained experimentally.

In [9] the 0-1 test for chaos is used along with the phase space reconstruction method to
study the combustion process in the premixed natural gas engine. The data are obtained under
different injection timing conditions. The results show that, under different conditions, the
combustion process is chaotic.

A similar problem is discussed in [10] where the real-time series is experimentally obtained
through a piezoelectric transducer. The data of in-cylinder pressure during the combustion
process are analyzed by the 0-1 test, the largest Lyapunov exponent and the phase space re-
construction method. As the results of the 0-1 test Kc were equal to 1, the largest Lyapunov
exponents were positive, and the attractors were limited to the finite range of phase space and
had a twist and folded geometry structure, all the tests indicated chaotic behavior. It was
also possible to observe the complexity and sensitivity on initial conditions of the combustion
process.

Other example of using 0-1 test on experimental data is in [43] where the response of a
piezoelectric material attached to a bistable laminate plate in a broadband piezoelectric based
energy harvesting system is analyzed. The system is examined based on an experimentally
generated voltage time series and it exhibited both periodic and chaotic behavior. To identify
this, the frequency spectrum, bifurcation diagrams and phase portraits were also examined.

Another study of a vibrational energy harvester is shown in [28]. It is composed of a tip
mass and a vertical beam which is excited and the vibrational energy is converted to electrical
power. The tip mass is changed during the experiment. Bifurcations were observed from single
well oscillations, along with regular and chaotic vibrations between the potential wells. The
appearance of chaotic dynamics is shown by the bifurcation diagram, Fourier spectra, phase
portraits and confirmed by the 0-1 test.

A similar example is [19] where a vibrational energy harvester with a bistable beam is studied
to identify the vibration modes and the levels of power in each dynamic mode. During the
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subjuction to harmonic excitations, the system exhibited both periodic and chaotic vibrations.
The chaotic behavior is identified by return maps, multiscale entropy and the 0-1 test.

An interesting use of the test is seen in [21] where solar irradiance data is investigated by
0-1 test as well as by correlation dimension analysis, information entropy, recurrence plot and
recurrence quantification analysis. However, chaotic behavior was not confirmed. The studied
experimental data were collected from the Earth Radiation Budget Satellite during the period
of 19 years.

In [32] data of traffic speed are studied by the 0-1 test for chaos, Lyapunov exponents and the
notion of Shannon entropy. The noise was diminished by wavelet shrinkage and the dynamical
properties are estimated by the 0-1 test, which indicated strong chaos. The values of the maximal
Lyapunov exponent and Shannon entropy are related to the predictability of the system and
changes in dynamics on different time scales.

In [11] the 0-1 test for chaos is compared to other chaos detection methods, like Lyapunov
exponent, conditional entropy of ordinal patterns and permutation largest slope entropy algo-
rithm. The Duffing oscillator and its equivalent electronic circuit was used to generate the data.
The experiment was done using a digital oscilloscope. Although, it concludes that the 0-1 test
worked better with the simulated data then with the experimental data.

3.2 Application on discrete dynamical systems

The 0-1 test is also popular with data modeled by equations describing discrete dynamical sys-
tems. Studying a third-order autonomous memristive chaotic oscillator in [3] led to identifying
periodic, quasi-periodic and chaotic dynamics using different methods. Beginning by modeling
the oscillator, stability analyzes, numerical simulations, time-domain sequence, bifurcation dia-
gram and Lyapunov exponents were calculated. The paper focuses on quasi-periodic behavior
and point-cycle chaotic bursting which were identified by the 0-1 test. The results are confirmed
by hardware experiments.

In [41] shape memory alloy dynamical systems are analyzed focusing on the application of
0-1 test. The study included various constitutive models for the restitution force on single- and
two-degree of freedom oscillators. The results are compared with Lyapunov exponents calculated
with different algorithms and the 0-1 test for chaos is considered a reliable and efficient tool for
chaos detection.

Another example of using the 0-1 test for chaos is in [30]. The Melnikov method was used to
find the necessary conditions for chaos - increase of noise intensity. The amplitude of randomly
disordered periodic was determined by calculating the largest Lyapunov exponent, which was
also used along with phase portraits and Poincaré maps to confirm the effects of noise intensity
on chaotic behavior of the piezoelectric vibration energy harvester system. The 0-1 test for was
used particularly to quantify the responses of the vibration energy harvester.

In [46] the 0-1 test is used to demonstrate chaotic dynamics in a fractional-order switched
system. A fractional-order unstable dissipative system is proposed whose chaotic behavior is
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found with a specific fractional order. Transformed to an equivalent switched system with
augmented states, it is implemented on an ARM system on-chip board. This study combines
both simulated and experimental data, and the 0-1 test is used along with a chaos definition for
finite state sets to demonstrate chaotic dynamics.

Another example with a vibrational energy harvester is [7]. It is shown that the fractional
order of damping considerably affects the power output.The dynamic responses are examined
using phase trajectory, Fourier spectrum, multiscale entropy and 0-1 test. The results show that
the system exhibits both periodic and chaotic motion based on fractional order changes.

3.3 Application on continuous dynamical systems

Although the use of the 0-1 test for chaos is more popular with discrete time systems, we
can mention [35], where the authors discuss some features of the 0-1 test, like resonance and
oversampling, while demonstrating their results for typical chaotic systems such as memristive
circuits.

Another example is the use of the test to monitor chaotic bit generators in [36]. It shows the
chaotic nature of the continuous time signals and proves that it is inherited by the bit sequence
even when using a simple threshold comparator. The results are simulated by the Chua and
Lindberg-Murali-Tamasevicius circuits.

In [24], a mechanical system of a jumping ball is studied regarding dynamic properties. After
considering all the mechanical properties of the system, the motion of the ball is described by
a set of two nonlinear ordinary differential equations solved by the Runge-Kutta method. It is
shown by the 0-1 test, bifurcation diagram and Fourier spectra, that the system exhibits regular,
irregular and chaotic behavior for different choices of parameters.

A cutting process is analyzed in [29] using a two degree of freedom non-smooth model with a
friction component in order to identify chaotic motion. The maximum Lyapunov exponent was
proved to be unreliable due to the non-smoothness of the model. The 0-1 test for chaos, on the
other hand, is not limited regarding smoothness, so it is a good method to study the dynamic
of this system, which is useful in machining technology to improve vibration control and design
relevant system parameters.

Another example is [27] where thermomechanical shape memory oscillators are studied. The
0-1 test is used to reveal the chaotic nature of trajectories in case of neglected temperature
variations. The results were confirmed by the Fourier spectra. Different levels of chaoticity were
analyzed comparing their qualitative difference to different values of the parameter K.
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4 Tools of dynamics detection

As we have seen in Section 3, many tools and their combinations are used to investigate dynamics
of a system. This thesis is focused on the 0-1 test for chaos, but the results are compared to
bifurcation diagrams, therefore these two methods are also briefly described in the section that
follows.

4.1 The 0-1 test for chaos

The 0-1 test is a useful tool for evaluating dynamics in deterministic systems. In this section we
discuss the test and its implementation in more detail.

The idea for the 0-1 test is based on the study of two-dimensional Euclidian extension [4]. The
degrees of freedom introduced by the extension are represented by three scalars (p, q, ϑ), where
p, q are the coordinates of the position in the plane and ϑ is the angle of rotation of the virtual
point. In [12] they are defined by iterating the extended system as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pc(n + 1) = pc(n) + ϕ(n) cos(ϑ(n)),

qc(n + 1) = qc(n) + ϕ(n) sin(ϑ(n)),

ϑc(n + 1) = ϑc(n) + c + αϕ(n).

Later in [14], the version for α = 0 is found which is used in the implementation of the test.
Given the observation ϕ(j) for j = 1, 2, ..., N :

pc(n) =
n∑

j=1
ϕ(j) cos jc, (1)

qc(n) =
n∑

j=1
ϕ(j) sin jc (2)

for n = 1, 2, ..., N .
As it is described in [4], periodic and quasi-periodic motion cause a bounded auxiliary tra-

jectory in the (p, q) plane, whereas chaotic dynamics produce, under wide range of definitions
of chaos [13, 14, 37], an unbounded trajectory. Thus using the 0-1 test to detect chaos is related
to the ability to detect unbounded motion in the (p, q) plane. Along with this unboundedness,
it tends to exhibit an irregular behavior similar to the Brownian motion, for which the proba-
bility distribution of the position of a particle at time t is Gaussian. As the Brownian motion
is an ergodic process, we get the variance of this distribution as the time-averaged mean-square
displacement of any specific trajectory evaluated over some time lag.

The idea for the 0-1 test, first described in [12] says that the boundedness or unboundedness
of the trajectory {(pj , qj)j∈[1,N ]} can be studied through the asymptotic growth rate of its time-
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averaged mean square displacement, which is defined as

M(n) = lim
N→∞

1
N

N∑
j=1

d(j; n)2 (3)

where
d(j; n) =

√
(pj+n − pj)2 + (qj+n − qj)2 (4)

is the time lapse of the duration n (n ≪ N) starting from the position at time j. As it is shown
in [14, 15], it is important to use values of n small enough compared to N , noted ncut, (n ≤ ncut).
A subset of time lags ncut ∈ [1, N/10] is advised for the computation of each Kc.

M(n) is the average of the displacements which can be different depending on the part of
the trajectory. It is evaluated over all time lags.

If the time lag is fixed, the mean square displacement describes only the local behavior of the
trajectory. In order to determine the overall unboundedness, larger values of n must be studied.

For bounded trajectories and regular dynamics M(n) is a bounded function in time, whereas
unbounded trajectories, meaning chaotic dynamics, are described by M(n) growing linearly with
time. Thus we must calculate the asymptotic growth rate of the MSD which correlates with the
unboundedness of the trajectory.

When first proposed in [12], the asymptotic growth rate was defined as the average logarith-
mic growth rate of the MSD

Kc = lim
n→∞

log M(n)
log n

. (5)

In the following paper [14] the authors propose a modified MSD, which is defined as

D(n) = M(n) − E(ϕ)2 1 − cos nc

1 − cos c
(6)

along with a new correlation method for computing the asymptotic growth rate

Kc = lim
n→∞

cov(x, D)√
var(x)var(D)

(7)

which have been proved to give better results than the regression method (5).
It is shown in [37] that the dynamics of the extension is sublinear in case of chaos, which

results in Kc equal either 0 for regular dynamics, or 1 for chaotic behavior of the trajectory.
Kc is dependent on the parameter c, which also has an important role in the computations. Kc

is calculated for all the values of c, then the final indicator K is equal to the median of these
results.

The parameter c determines the studied extension and has a strong effect on the dynamics.
There are exceptional values of c for which the parameter Kc may give false results, because
of the resonance between the base dynamics and its group extension. For this reason Kc is
computed for different, usually at least 100, values of c. As it was already mentioned, the final
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result is
K = median(Kc).

The difficulties with calculating the limits entering the definition of Kc - the length of the signal
N → ∞, appearing in the definition of MSD, and the time lag n → ∞ in the definition of Kc,
do not practically pose a problem, as they are evaluated on time series of finite duration.

4.2 Bifurcation diagram

The bifurcation theory is built around bifurcations, which mean a division in two, a splitting
apart, or a change. Its goal is to study the changes that maps undergo depending on changes
in parameters, usually regarding changes involving the periodic point structure [8]. There are
global bifurcations which are related to larger invariant sets, and local bifurcations which can be
studied in a small neighborhood. Many types of local bifurcation exist, like for example saddle-
node bifurcation, pitchfork bifurcation, period-doubling bifurcation or Hopf bifurcation [1]. The
local bifurcation theory explains two usual ways how, with various values of the parameter,
infinitely many periodic points can arise. It happens via saddle-node (or tangent) bifurcation
or period-doubling bifurcation, which is a typical route to chaos [8]. In the following practical
Section 6, we are going to see the representation of this theory, which is the bifurcation diagram.
It is the plot of the locations of fixed or periodic points in function of the parameter.
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5 On implementation in Matlab

The following codes shows the implementation of the 0-1 test for chaos, the bifurcation diagram
and the cobweb diagram.

The implementation of the 0-1 test for chaos, see Listing 1 is inspired by [14]. Each step in
the computation is commented in the code (in green). The first version was done to calculate the
iterations of the functions directly, which was changed because of the implicitly given function
which had to be computed separately. Now, the function is loaded from the matrix XX, where
every row corresponds to the iterations of the function for one value of the parameter.

1 function[] = testchaos(XX,N,mi1,mistep,mi2,c1,ccount,c2)

2 % XX data matrix

3 % N number of data points / number of iterations per parameter

4 % mi1 first value of the function parameter

5 % mistep increment of the parameter

6 % mi2 last value of the parameter

7 % c1 first value of the parameter c

8 % ccount number of parameters c used

9 % c2 last value of parameter c

10

11 % initialization

12 ncut = N/10;

13 x = zeros(N,1);

14 y = zeros(N,1);

15 z = zeros(N,1);

16 pc = zeros(N,1);

17 qc = zeros(N,1);

18 mctemp = zeros(ncut,1);

19 mc = zeros(ncut,1);

20 vosc = zeros(ncut,1);

21 dc = zeros(ncut,1);

22 xi = zeros(ncut,1);

23 delta = zeros(ncut,1);

24 indexkc = 1;

25 indexk = 1;

26 indexmi = 1;

27

28 % main loop

29 for mi = mi1:mistep:mi2

30 x = XX(indexmi,:); % function

21



31 for c = c1:(c2-c1)/ccount:c2

32 for j = 1:1:N

33 y(j) = x(j)*cos(j*c);

34 z(j) = x(j)*sin(j*c);

35 pc(j) = sum(y); % translation variable pc

36 qc(j) = sum(z); % translation variable qc

37 end

38 E = (1/N)*sum(x);

39 for n = 1:1:ncut

40 for j = 1:1:ncut

41 mctemp(j) = ((pc(j+n)-pc(j))^2)+((qc(j+n)-qc(j))^2);

42 end

43 mc(n) = (1/ncut)*sum(mctemp); % mean square displacement

44 vosc(n) = (E^2)*(1-cos(n*c))/(1-cos(c));

45 dc(n) = mc(n) - vosc(n); % modified mean square displacement

46 end

47 for n = 1:1:ncut

48 xi(n) = n;

49 delta(n) = dc(n);

50 end

51 R = corrcoef(xi,delta); % correlation coefficient

52 kc(indexkc) = R(1,2); % calculation of kc

53 indexkc = indexkc+1;

54 end

55 indexkc = 1;

56 k(indexk) = median(kc); % calculation of the control parameter k

57 indexk = indexk+1;

58 indexmi = indexmi+1;

59 end

60

61 % plot

62 vectormi = mi1:mistep:mi2;

63 scatter(vectormi,k,10,’.’) %scatter plot of k versus the parameter mi

64 end

Listing 1: Code for the 0-1 test for chaos in Matlab.

The following code for the bifurcation diagram, see Listings 2, is based on [45]. The first 500
points on the orbit are omitted in the plot in order to eliminate the early transient behavior.
Each loop represents one iteration and corresponds to one surface plot. In the end the view
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on all the N − 500 surfaces is rotated around the z axis to accommodate only the y and z axis
corresponding to the parameter of the function and the values visited respectively. The final
bifurcation diagram is obtained as the intersection of the surfaces.

1 function mat = bifurMat(XX,mi1,mi2,N)

2

3 % XX data matrix

4 % mi1 the start value of parameter a

5 % mi2 the end value of parameter a

6 % N the number of iterations of the function

7

8 % initialization

9 [inr,inc] = size(XX);

10 mat = zeros(inr,N);

11 mi = linspace(mi1,mi2,inr);

12

13 % main loop

14 format long

15 for i = 1:inr

16 ix = 1;

17 ca = i; % pick one parameter value at each time

18 for j = 1:N % generate a sequence with length L

19 if j == 1

20 pre = ix; % assign initial value

21 for k = 1:500 % throw out bad data

22 nxt = XX(ca,pre);

23 ix = ix +1;

24 pre = ix;

25 end

26 end

27 nxt = XX(ca,pre); % generate sequence

28 mat(i,j) = nxt; % store in mat

29 ix = ix + 1;

30 pre = ix; % use latest value as the initial value for the next round

31 end

32 end

33

34 % plot

35 dcolor = [0,0.45,0.74];

36 [r,c] = meshgrid(1:N,mi); % associated coordinate data
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37 surf(r,c,mat,’Marker’,’.’,’MarkerSize’,1,’FaceColor’,’None’,’MarkerEdgeColor’,

dcolor,’EdgeColor’,’None’)

38 view([90,0,0]) % change camera direction

39 ylim([mi1,mi2]) % fit to data

Listing 2: Code for the bifurcation diagram in Matlab.

The creation of the cobweb plot is shown on Listing 3. The entering functions are shown on
Listings 5 and 8.

1 function cobweb(f,x1,x2,mi,N)

2

3 % f function, as e.g. model1R or model2F

4 % x1 beginning of the interval on which we plot the function

5 % also the initial value of x, x1>0

6 % x2 end of the interval on which we plot the function

7 % mi parameter of the function

8 % N number of values in the interval

9

10 y=zeros(N,1);

11 x=linspace(x1,x2,N);

12

13 for i=1:N

14 y(i)=f(x(i),mi);

15 end

16 hold on;

17 plot(x,y,’Color’,[0 0.45 0.74]); %plot of the function

18 plot(x,x,’k’); %plot of the diagonal

19 for i=1:N

20 x(i+1)=f(x(i),mi);

21 line([x(i),x(i)],[x(i),x(i+1)],’Color’,[0.85 0.33 0.1]);

22 line([x(i),x(i+1)],[x(i+1),x(i+1)],’Color’,[0.85 0.33 0.1]);

23 end

24 hold off;

Listing 3: Code for the cobweb diagram in Matlab.
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6 Application of the test

The implemented test was applied on two models chosen from [34]. The first one (10) is given
in explicit form, while the second one (15) in implicit form.

6.1 Ricker model

The model is inspired by studies of fish population and reproduction in [39]. This classic discrete
population model describes the expected density of individuals Nt+1 in the next generation as
a function of individuals in the previous generation Nt.

The relation is given by the equation

Nt+1 = Nte
r(1−Nt/NT ) (8)

where r is an intrinsic growth rate and NT is the carrying capacity of the environment. As the
variable NT enters the equation only to set the scale of N , we replace it by a dimensionless
variable

Y = N/NT

Hence, we obtain the equation
Yt+1 = Yte

r(1−Yt) (9)

Let (X, Rr) be a discrete dynamical system where X = [0, ∞) and the map Rr : X → X

defined by
Rr(x) = xer(1−x). (10)

If r = 0 the system (10) degenerates into the trivial case of identity, hence for the next
calculations the parameter r will be assumed to be non zero.

Theorem 1 Let (X, Rr) be a discrete dynamical system (10) with r ̸= 0. Then Fix (Rr) =
{0, 1}.

Proof
For the proof it is necessary to solve the equation

Rr(x) = x

that is
x = xer(1−x).
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Omitting the trivial solution x0 = 0 we solve the equation

1 = er(1−x)

that yields
x1 = 1.

Consequently Fix (Rr) = {0, 1}, ending the proof.

The map and its second iteration are depicted on Figure 1 for different values of a positive
parameter r. The fixed point x1 = 1 does not depend on the parameter and can be identified
as the intersection of the graph of Rr with the diagonal i.e. Rr(x) = x. The implementation of
the plot in Matlab is shown on Listing 4.

On Figure 2 the first cobweb diagram for r = 1.5 shows an inward spiral converging to
the fixed point x1 = 1. The other diagram for r = 2.5 depicts an outward spiral ending in a
rectangular shape detecting a period 2 orbit. The creation of the cobweb diagram in Matlab is
shown on Listing 3 while the implementation of the function called, corresponding to (15), is on
Listing 5.

Theorem 2 Let (X, Rr) be a discrete dynamical system defined by (10). Then

1. if r > 0 then the fixed point x0 = 0 is a repelor,

2. if r < 0 then the fixed point x0 = 0 is an attractor.

Proof
By direct calculations one gets

R′
r(x) = er(1−x)(1 − rx). (11)

For r > 0 it is |R′
r(x0)| > 1, hence using Proposition 2 x0 is a repelor.

On the other hand if r < 0 it is |R′
r(x0)| < 1, hence using Proposition 1 x0 is an attractor,

ending the proof.

Theorem 3 Let (X, Rr) be a discrete dynamical system defined by (10). Then

1. if r > 0 then the fixed point x1 = 1 is an attractor,

2. if r < 0 then the fixed point x1 = 1 is a repelor

Proof
Analogically, using (11) for r > 0 it is |R′

r(x1)| < 1, hence by Proposition 1 x1 is an attractor.
On the other hand if r < 0 it is |R′

r(x1)| > 1, hence applying Proposition 2 x1 is a repelor,
ending the proof.
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Figure 1: Plot of first (on the left) and second (on the right) iteration of the function Rr(x) =
xer(1−x) for different values of the parameter r.

The investigation of the dynamics of the system (10) is shown on the next figures. The
simulations were performed for orbits that were calculated in Matlab for the initial value x0 =
√

2/2. In this case 20000 iterations were computed for each parameter r in the range for 2 to 4
by 0.01. The outputs of the test are shown and described in the following.

Figure 5 represents the bifurcation diagram which shows the values visited as a function of
the parameter r ranging from 2 to 4. The points in which the forking occurs are period-doubling
bifurcations. The dark stripes visualize chaos while the light parts, where periodic orbits are
visible, represent regular dynamics.

The following figures are related to the outputs of the 0-1 test for chaos.
Figure 3 shows how pc(n) and qc(n) are bounded if the underlying dynamics are regular.

This can be seen in the second and third picture (for r = 3.15 and r = 3.6) with a symmetric
shape. On the other hand, the first and fourth picture (r = 3 and r = 3.8) depicts a Brownian
motion which is characteristic for chaotic dynamics.

In Figure 4 the control parameter of the 0-1 test Kc is plotted versus c ranging from π

to 2π for four values of r chosen as in the previous Figure 3. The second and third picture
corresponding to regular dynamics show values of Kc close to 0, except for a few isolated values
of c due to resonance. The first and fourth plot show chaotic dynamics, as the values of Kc are
close to 1. In this case the values of Kc are more diverse, nevertheless the majority is close to
1, and the final control parameter K of the test is calculated as the median of these values.

The final result of the test is shown on Figure 6 as the value of K as a function of the
parameter r ranging from 2 to 4 by 0.01. The test was calculated for 100 equally spaced values
of c ∈ [π/5, 4π/5] and for N = 20000. The values of K close to 0 correspond to regular dynamics,
values close to 1 to chaotic dynamics. It is possible to confirm that the test corresponds with
the bifurcation diagram precisely, although we can also observe a few values that are neither 0
nor 1.
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Figure 2: Cobweb diagram of Rr(x) = xer(1−x) for r = 1.5 (on the left) and r = 2.5 (on the
right). It shows the fixed point x1 = 1.
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Figure 3: Plot of p versus q for Rr(x) = xer(1−x), for r = 3, r = 3.15, r = 3.6 and r = 3.8 on
20000 data points and 100 equally spaced values of c, c ∈ [π/5, 4π/5]. The second and third
picture shows regular dynamics for r = 3.15 and r = 3.6, the first and fourth shows chaotic
dynamics for r = 3 and r = 3.8.
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Figure 4: Plot of Kc versus c for Rr(x) = xer(1−x), 20000 data points and 1000 values of c
were used, the parameter r varies as in the previous plots. The second and third picture shows
regular dynamics for r = 3.15 and r = 3.6 - the values of Kc are mostly close to 0, while the
first and fourth shows chaotic dynamics for r = 3 and r = 3.8 - Kc are close to 1.
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Figure 5: Bifurcation diagram of Rr(x) = xer(1−x). We used 20000 datapoints.

Figure 6: Plot of K versus r for Rr(x) = xer(1−x) calculated with 20000 datapoints and 100
values of c ∈ [π/5, 4π/5]. For regular dynamics, K is close to 0, for chaotic dynamics K is close
to 1.
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1 function model1plot(r,x1,x2,N)

2

3 % r parameter of the function

4 % x1 beginning of the interval on which we plot the function

5 % x2 end of the interval on which we plot the function

6 % N number of values in the interval

7

8 x = linspace(x1,x2,N);

9 y = x.*exp(r.*(1-x));

10 plot(x,y);

11 end

Listing 4: Plot of the Ricker model 10 in Matlab.

1 function[y] = model1R(x,r)

2 y= x.*exp(r.*(1-x));

3 end

Listing 5: Code of the equation of the Ricker model 10 in Matlab.
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6.2 Discrete and nonoverlapping generations regulated by microparasites

As it is described in [33] the model is based on populations with discrete, nonoverlapping gener-
ations that have their density regulated by parasitoids - viral, bacterial or protozoan micropar-
asites.

In the studied model for density-dependent regulation of a host population with nonoverlap-
ping generations by a microparasite, the pathogen is assumed to spread through each generation.
The fraction of the host population that has been infected I, is related to the magnitude of the
population N and is modeled by the equation

1 − I = e−IN/NT , (12)

NT is described as a threshold host density.
If N < NT the reproductive rate of the parasitoid is less than 1 and the epidemic cannot be

established. The solution of the equation (12) is I = 0.
If N > NT the epidemic spreads and there exists a nontrivial solution to the equation (12) where
I ̸= 0.

We assume that the pathogen is lethal and it runs its course before reproduction. Thus the
fraction of the population which survived and is able to reproduce is

Nt+1 = λNt[1 − I(Nt)] (13)

where I is given by the equation 12.
The equation 13 describes such a population in generation t + 1 with the host population

of magnitude Nt and an intrinsic per capita reproductive rate λ. As the variable NT enters the
equation only to set the scale of N , we replace it by a dimensionless variable

Y = N/NT

Hence, we obtain the equation
Yt+1 = λYt[1 − I(Yt)] (14)

Let (X, Fλ) be a discrete dynamical system where X = [0, ∞) and the map Fλ : X → X

defined by
Fλ(x) = λx[1 − I(x)] (15)

where I(x):
1 − I = e−Ix (16)
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Theorem 4 Let (X, Fλ) be a discrete dynamical system (15) with λ > 1. Then Fix (Fλ) =
{0, λ ln λ/(λ − 1)}.

Proof
For the proof it is necessary to solve the equation

Fλ(x) = x

that is
xλ = λx[1 − I(x)].

Omitting the trivial solution x0 = 0 we solve the equation

1 = λx[1 − I(x)]

that yields
x1 = λ ln λ

λ − 1 .

Consequently Fix (Fλ) = {0, λ ln λ/(λ − 1)}, ending the proof.

The map and its second iteration are shown on Figure 7 for different values of parameter
λ. This time the fixed point x1 = λ ln λ/(λ − 1) depends on the parameter. This is obvious as
the intersection of the plot with the diagonal Fλ(x) = x varies as the parameter changes. The
implementation of this plot in Matlab is shown on Listing 6.

On Figure 8 the first cobweb diagram for λ = 1.7 shows an outward spiral corresponding
to an unstable fixed point. The same phenomenon is shown on the second cobweb diagram for
λ = 2, which suggests that the system does not have any stable points. The code for the cobweb
diagram in Matlab is shown on Listing 3 while the function called, corresponding to (15), is
shown on Listing 8.

In case of this implicit function we omit further investigation of the attractivity of the fixed
points as it is beyond the scope of this thesis and can be read in [33].

The experimental study of the dynamics was done in Matlab by calculating the orbits for the
initial value x0 =

√
2/2. The calculations were done for on 10000 iterations for each parameter

λ only as the computations for this implicitly implemented function took longer and had to be
done separately. We had 101 equally spaced values of λ ranging from 1.01 to 4.01. Compared
to the study of the first model, it is obvious that the results are less precise. The outputs of the
tests are discussed in the following.

Figure 11 represents the bifurcation diagram which shows the values visited as a function of
the parameter λ ranging from 1.01 to 4.01 by 0.03. The values of X alternate between a band
of high and low values. For small values of λ close to 1, it is possible to distinguish 4 narrow
bands which could correspond to a period 4 orbit, merging into 2 wider bands around λ = 1.7.

33



Figure 7: Plot of the dependence of Xn+1 (left) and Xn+2 (right) on Xn of the function Fλ(x) =
λx[1 − I(x)] for different values of the parameter λ.

By λ reaching the value around 2.9 the two bands merge into one, which means X can reach
any value from the band.

The following figures are related to the outputs of the 0-1 test for chaos.
Figure 9 shows the boundedness of the trajectories in the (p, q)-plane as the dynamics are

regular. This can be seen in the first and the second figure. It is possible to note that the points
on the second plot are less ordered, although we can still see the symmetrical shape, which
correspond to the change from regular to chaotic dynamics. The third and fourth picture shows
the typical Brownian motion characteristic for chaos.

In Figure 10 the control parameter of the 0-1 test Kc is plotted as a function of 1000 values
of c ranging from π to 2π for four values of λ like in the previous Figure 9. The first two figures
show Kc equal to 0 apart from a few points where resonance occurred, which corresponds to
regular dynamics. The other two figures in the second row clearly depicts chaotic dynamics as
the values of Kc are more variable, but they are mostly close to 1.

The result of the 0-1 test for chaos is shown in Figure 12 as the value of K as a function of
the parameter λ ranging from 1.01 to 4.01 by 0.03. The test was again calculated for 100 values
of c, c ∈ [π/5, 4π/5], and for N = 10000. We notice that there are many points between λ equal
to 1.5 and 2 that are not close to either 0 or 1. This may be caused by the small sample and
could have been avoided by calculating more iterations. Based on the test only we could not
conclude whether the dynamics of the system for the parameter λ ∈ [1.5, 2] is regular or chaotic.
Nevertheless, by comparing results of the 0-1 test for chaos in Figure 12 we can conclude that
around λ = 2 the regular dynamics start turning into chaos which is related to the output of
the bifurcation diagram in Figure 11.
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Figure 8: Cobweb diagram of Fλ(x) = λx[1 − I(x)] for λ = 1.7 (on the left) and λ = 2 (on the
right). The function is considered continuous for better visualisation.
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Figure 9: Plot of pc versus qc for Fλ(x) = λx[1 − I(x)], for r = 1.13, r = 1.34, r = 2.48 and
r = 3.38 on 10000 data points and 100 equally spaced values of c, c ∈ [π/5, 4π/5]. The first two
pictures show regular dynamics by bounded trajectories in the (p, q)-plane, the third and fourth
plot correspond to Brownian motion picturing chaotic dynamics.
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Figure 10: Plot of Kc versus c for Fλ(x) = λx[1 − I(x)]. 10000 data points and 1000 values of c
were used, the parameter λ varies as in the previous plots. The first two plots, for λ = 1.13 and
λ = 1.34, show regular dynamics having values of Kc equal to 0, while the figures in the second
row, for λ = 2.48 and λ = 3.38, display chaotic dynamics with values being closer to 1.
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Figure 11: Bifurcation diagram of Fλ(x) = λx[1 − I(x)]. We used 10000 data points.

Figure 12: Plot of K versus λ for Fλ(x) = λx[1 − I(x)] calculated with 10000 data points and
100 values of c ∈ [π/5, 4π/5]. For regular dynamics, K is close to 0, for chaotic dynamics K is
close to 1.
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1 function model2plot(lambda,x0,N)

2

3 % lambda parameter of the function

4 % x0 initial value of x

5 % N number of iterations of the function

6

7 x = zeros(N,1);

8 x(1) = x0;

9 for i = 1:1:N-1

10 x(i+1)= lambda*x(i)*(1-model2I(x(i)));

11 end

12 plot(x(1:1:end-1),x(2:1:end),’.’);

13 end

Listing 6: Plot of the model for discrete and nonoverlapping generations regulated by
microparasites 15 in Matlab.

In the previous code, see Listing 6 the function model2I is called in order to calculate the
value of the implicit function I shown on Listing 7 .

1 function[y] = model2I(x)

2 syms I;

3 f = exp(-I*x)+I-1;

4 y = solve(f,I);

5 end

Listing 7: Code for solving the implicit equation in Matlab.

1 function[y] = model2F(x,lambda)

2 y = lambda.*x.*(1-model2I(x));

3 end

Listing 8: Code of the equation of the model 15.
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7 Conclusions

The goal of this thesis was the study of the 0-1 for chaos, a new method for distinguishing
regular and chaotic dynamics in dynamical systems, introduced in [12], and its applications.
The test was applied on two models from population biology, the Ricker model [39], and a
model of populations with nonoverlapping generations regulated by microparasites, studied by
R. M. May in [33]. The first model was in an explicit form, while the second one was described
by an implicit equation.

After a brief introduction of the dynamical systems and the history of their study, an overview
of application of the 0-1 test for chaos was given. This test was described in detail, together
with its positives, among which we highlight its easy implementation, binary characteristic, the
irrelevant nature of the system on which it is applied and direct application on data of all sorts.

The 0-1 test for chaos is implemented in Matlab (see Listing 1) and used on two models,
(10) and (15). The output of this study of the dynamics is mainly in form of figures. For every
model we can see a comparison of the plots for different values of their parameter (Figures 1 and
7), a cobweb diagram (in Figures 2 and 8) showing the nature of its fixed points, a bifurcation
diagram (in Figures 5 and 11), and figures concerning the result of the 0-1 test for chaos.

In both cases we studied the boundedness of the trajectory in the (p, q)-plane in the plots of
pc versus qc (see Figures 3 and 9), the relation between the control parameter of the test Kc and
c (in Figures 4 and 10), and finally the final result of the test (in Figures 6 and 12), the control
parameter K depending on the parameter of the function r or λ. This result was compared with
the bifurcation diagram, and we can conclude that both methods gave comparable results.

We used a different size of data sample in the experiments, using only half of the data points
N for the second model due to a longer computation time of the implicit function, clearly getting
better results for higher values of N . Therefore, this is an issue for future research, along with
the computation of the maximal Lyapunov exponents for our chosen models, to further compare
the results from the 0-1 test for chaos with known methods for studying dynamical systems.
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