
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Configuration Interface for the Tool
ESPRESO

Konfigurační rozhraní pro nástroj
ESPRESO

2018 Tomáš Panoc

I would like to thank my supervisor Ing. Marek Běhálek, Ph.D. for all his help, advises and
numerous consultations. I am also grateful to Ing. Ondřej Meca for hundreds of answered
questions about ESPRESO. I shall be forever indebted to my parents and family for their
unshakeable faith and continued support. Thank you.

This thesis was supported by student grant SP2018/159 "Hardware acceleration of matrix
assembler and GUI development of ESPRESO library", VŠB - Technical University of Ostrava,
Czech Republic.

Abstrakt

Tématem této práce je vytvoření grafického konfiguračního nástroje pro řešič ESPRESO, který
nahrazuje ruční psaní konfiguračních souborů ve formátu ECF. Text práce začíná představením
řešiče a vychozího způsobu zadávání vstupních dat. Na tuto část navazuje analýza požadavků,
které by měl konfigurační nástroj splňovat, přehled existujicích řešení, a knihoven pro vývoj
grafických rozhraní. Následně jsou čtenáři seznámeni s návrhem a vývojem výsledné aplikace.
Na závěr je funkčnost aplikace demonstrována na jednoduchém příkladu výpočtu přenosu tepla.

Klíčová slova: grafické uživatelské rozhraní, ESPRESO, konfigurační nástroj, Qt, OpenGL,
hybridní paralelizace

Abstract

This thesis deals with the development of a graphical configuration tool for the ESPRESO
solver which eliminates the necessity of writing configuration files (ECF) manually. The text
starts with the introduction to ESPRESO and its default method for the input definition. This
part is followed by the analysis of requirements, that the configuration tool should meet, existing
configuration tools, and libraries for the graphical user interface development. Then, readers get
to know the design and the development of the final application. Finally, the tool functionality
is demonstrated on a practical example of heat transfer computation.

Key Words: graphical user interface, ESPRESO, configuration tool, Qt, OpenGL, hybrid par-
allelization

Contents

List of symbols and abbreviations 9

List of Figures 10

List of Tables 11

Listings 12

1 Introduction 13

2 ESPRESO 14
2.1 Input . 14
2.2 ECF structure . 15
2.3 Output . 18

3 Analysis 19
3.1 Requirements . 19
3.2 Existing solutions . 20
3.3 Libraries and frameworks . 22
3.4 Summary of analysis . 24

4 Functional requirements 26
4.1 Expressions . 26
4.2 3D model . 26
4.3 Parallel execution . 27
4.4 Validation . 27

5 Design 28
5.1 Input structure of ESPRESO . 28
5.2 Basic principles of Qt . 30
5.3 Connection of Qt and ESPRESO . 31
5.4 Prototype of GUI . 33

6 Parallelization 37
6.1 Parallelism in ESPRESO . 37
6.2 Parallelism in GUI . 37
6.3 Integration of MPI in GUI . 38

7

7 Visualisation of 3D model 41
7.1 OpenGL . 41
7.2 OpenGL in Qt . 42
7.3 Implementation . 43

8 Implementation of GUI 47
8.1 Widgets for expressions . 47
8.2 Overview of widgets . 49
8.3 Compilers . 53
8.4 Omitted features . 53

9 Example of heat transfer computation 55
9.1 Cooler example . 55

10 Conclusion 65

References 66

Appendix 69

A Appendix on CD 70

B Figures of existing GUI configuration tools 71

8

List of symbols and abbreviations

2D – Two-Dimensional
3D – Three-Dimensional
API – Application Programming Interface
BEM – Boundary Element Method
CAD – Computer Aided Design
CD – Compact Disc
CPU – Central Processing Unit
ECF – ESPRESO Configuration File
EDT – ESPRESO Development Team
ESPRESO – ExaScale PaRallel FETI SOlver
FEM – Finite Element Method
FETI – Finite Element Tearing and Interconnect
GCC – GNU Compiler Collection
GLSL – OpenGL Shading Language
GPU – Graphic Processing Unit
GTK+ – Gimp ToolKit
GUI – Graphical User Interface
HPC – High Performance Computing
IDE – Integrated Development Environment
JPEG – Joint Photographic Experts Group
JSON – JavaScript Object Notation
MacOS – Macintosh Operating System
MIC – Many Integrated Core
MPI – Message Passing Interface
OpenMP – Open Multi-Processing
OpenGL – Open Graphics Library
PDF – Portable Document Format
QML – Qt Modeling Language
RGB – Red Green Blue
SQL – Structured Query Language
XML – eXtensible Markup Language

9

List of Figures

1 Class diagram of ECF parameters and their structure 29
2 A GUI structure generated by scanning all parameters from Listing 2 30
3 Sequential diagram with a GUI example showing a situation in which the change

of the Input parameter requires redrawing of GUI 32
4 A class diagram of a basic widget wrapping ECFObject 33
5 Early prototype (wireframe) of GUI . 34
6 Class diagram of basic GUI blocks/widgets . 36
7 Extended prototype of GUI . 36
8 Hybrid parallelism with MPI and OpenMP . 38
9 Cooperation of master GUI process and computational workers 39
10 OpenGL pipeline [46] . 42
11 Regular rendering featuring visual effects and basic rendering [38] 45
12 Class diagram of the text input delegate with the universal interface for setting

a validator based on factory design pattern . 50
13 Sequential diagram depicting the creation of a text input for the table cell editing

with delegate and validator . 50
14 Aluminium cooler with region labels . 56
15 Default GUI screen . 59
16 Configuration of the input format . 59
17 Loaded 3D model with regions . 60
18 Aluminium - material configuration . 60
19 Physics configuration . 61
20 Initial temperature configuration . 61
21 Example of table and piecewise function configuration 62
22 Load step configuration . 62
23 Output configuration . 63
24 Example of monitor . 63
25 Result of the heat transfer computation . 64
26 ElmerGUI [3] . 71
27 SALOME [48] . 72
28 CalculiX GraphiX [6] . 73

10

List of Tables

1 An example of a function defined by the table . 27
2 An example of the piece-wise function . 27
3 Selection of abstract data types used in ECF files 33

11

Listings

1 Example of the ECF format structure . 15
2 Simplified example of ECF . 17
3 Comparison of classic OpenGL API and Qt alternative applied on shaders and

shader programs [32, 35] . 43
4 Transferred Table 2 into ExprTK if-statements 48
5 Example of the new notation and the old one for the connect method in Qt . . . 53
6 ECF for the Cooler example . 56

12

1 Introduction

ExaScale PaRallel FETI Solver (ESPRESO) is a parallel framework for computing structural
mechanics tasks. Currently, the ESPRESO solver features a module for heat transfer problems.
To set up a computational task for ESPRESO, one has to use a special configuration file. Since
the number of all possible parameters, that ESPRESO enables to specify, is relatively high
(hundreds), it is quite difficult to create the configuration file without a list of all parameters
with their meaning. The situation is even more complicated, because some of the parameters
can be specified only when some other parameter is present, otherwise, ESPRESO would not
take them into consideration. Naturally, one starts here thinking whether it would be possible
to provide a better way to configure the solver, and also help new users to quickly start using
ESPRESO.

One way to simplify the configuration process might be the introduction of a graphical user
interface (GUI). It would serve as a wizard, which would help users with the configuration.
Development of such tool is the main goal of this thesis.

In Chapter 2, a brief introduction to the ESPRESO framework together with the config-
uration files are presented. Chapter 3 analyses requirements, that the outcome of this thesis
should meet. Also, a few existing graphical configuration tools are examined there, followed by
the overview of libraries enabling programming of GUIs. Functional requirements of GUI are
discussed in detail in Chapter 4. Chapters 5, 6, 7 and 8 describe the development process of the
final application step by step. The functionality of the application is demonstrated on a simple
example in Chapter 9.

13

2 ESPRESO

ESPRESO is a massively parallel framework based on the Finite Element Method for Engineering
Application. The main objective of the ESPRESO framework development team is to create a
robust open-source package applicable for a wide range of complex engineering simulations in
areas such as mechanical engineering, civil engineering, biomechanics, and energy industry.

The ESPRESO framework consists of several logical units for each phase of a specific solution
task. These units include input data pre-processing, computational mesh processing, FEM/BEM
objects builders, solution of the specific physical problem using a massively parallel sparse linear
solver, and finally output data preparation for visualisation of the results. The ESPRESO project
started as an open-source ExaScale PaRallel FETI (a numerical method - finite element tearing
and interconnect) Solver for problems of engineering mechanics developed at the IT4Innovations
center within the FP7 EXA2CT project. At the end of the project, ESPRESO contains several
FETI based domain decomposition algorithms including the Hybrid Total FETI method suitable
for parallel machines with tens or hundreds of thousands of cores. The solver is based on a
highly efficient communication layer on top of pure MPI. Its scalability has been tested up to
18,000 compute nodes of the ORNL Titan supercomputer. ESPRESO supports GPUs and MICs
acceleration. By dynamically tuning several key hardware parameters ESPRESO can save over
20% of its energy consumption. It can also be accelerated by both GPU or Intel Xeon Phi
accelerators to achieve up to 5x higher performance improvements over general purpose CPUs.
With all these properties, it has real potential to efficiently utilise future exascale systems where
both performance and energy efficiency matter.

The ESPRESO team is currently focusing on development of a complex framework, which
will be ready to provide a whole toolchain for solving challenging engineering problems (e.g.,
heat transfer, optimisation in structural mechanics, air and water pollution transport, topology
optimisation, etc.). In Q2 2018, a module for solution of the heat transfer problems via the
ESPRESO framework was completed. A new module for structural mechanics including contact
problems, module for ultrasound propagation, module for topology optimisation, and module
for design of experiment and shape optimisation based on mesh morphing will be developed.

ESPRESO offers hundreds of parameters and options that influence a computation. Also, it
features several numerical methods used in different stages of computation. We are not going
to clarify how these methods work and cooperate, because they are not essential to this thesis.
For us, it will be more beneficial to show some of parameters for computation configuration,
because on the ground of their amount, one understands why GUI is necessary.

2.1 Input

Configuration of ESPRESO is performed by configuration files which use own format ECF
(*.ecf), i.e., ESPRESO Configuration File. The ESPRESO solver expects a path to ECF as the
input argument.

14

ECF is a text file, the structure of which is simple, and one might find it similar to JSON,
but they differ. Basic configuration file element is called parameter. There are two types of
parameters. First, the value is a key-value pair of strings finished with a semicolon. Second,
the object starts with a key string, and its content is enclosed by curly brackets. The content
can be composed of a combination of objects and values. The format supports comments that
begin with hash symbol #. A demonstration of the ECF structure could be seen in Listing 1.
Nevertheless, this example shows a general composition of the ECF format and will not work
with ESPRESO. ESPRESO defines an exact list of values and objects, which could or should
be used according to the given context. At the time of writing this thesis, no complete list was
available as this part of ESPRESO was still in development. On the other hand, this work is
focused on the development of a tool, which will allow us to avoid excessive studying of endless
lists of parameters.

Here lies a comment...

An example of value

VALUE_KEY_1 1024;

An example of object

MY_OBJECT {

MY_VALUE1 1;

MY_VALUE2 HELLO_WORLD;

INNER_OBJECT1 {

MY_VALUE1 TRUE;

}

}

Listing 1: Example of the ECF format structure

2.2 ECF structure

Let us inspect a predefined structure of ECF values and objects. We are not going to examine
every parameter that ESPRESO supports because it is not necessary as we will see in the
following chapters. For now, we just need to know a few objects and values which are essential.
They will help us to understand how ESPRESO works.

Classic formats like XML or JSON usually start with some kind of a root element. That is
not the case of ECF. There is no root object which we should specify. We could imagine that
ECF itself forms the root.

15

2.2.1 Mesh

ESPRESO requires information about a 2D/3D model for which the computations are per-
formed. Thus, a source of this data has to be specified. There is a value parameter called
INPUT which represents an input format of the model data. ESPRESO currently supports:

• ESPRESO mesh generator (GENERATOR).

• ESPRESO binary format (ESDATA).

• Ansys Workbench format (WORKBENCH).

• OpenFOAM format (OPENFOAM).

For all of these options, the solver expects that an object with a key, which is equal to the
content of the INPUT parameter, exists in ECF. We will not go through the details of every
model data format, but we can briefly introduce the formats.

Mesh generator could be used to specify how the mesh should look like, and ESPRESO
generates it accordingly. In the language of ECF, there would be an object GENERATOR,
which would contain predefined parameters describing the mesh. The rest of the formats match
the existing file formats, which include the generated mesh already. The corresponding ECF
object would include a path to such file.

The mesh provides information about the geometry and may divide the model into regions
for which one is able to define another properties and conditions. ESPRESO enables conversion
of all mentioned formats into its own ESDATA binary format.

2.2.2 Physics

The mesh defines what geometry we will be computing with, while physics determines what
computations the solver will perform. The procedure is identical as in the case of the mesh.
There is a PHYSICS value parameter, which currently supports the following physics:

• 2D or 3D heat transfer (HEAT_TRANSFER_2D and HEAT_TRANSFER_3D).

• 2D or 3D structural mechanics (STRUCTURAL_MECHANICS_2D and
STRUCTURAL_MECHANICS_3D).

The settings of physics should be specified in the corresponding object named after the value
in PHYSICS. The object is composed of other objects which will be inspected.

First, materials (MATERIALS) form a set of objects in which one may define a material,
especially its physical properties. The properties differ according to the selected physics. Hence,
depending on physics, different parameters are expected to be present in a material object. The
material could be attached to a region (e.g., a steel would be assigned to a region representing
a car brake plate).

16

Second, users may divide computations into a sequence of steps where a result of the first step
serves as an input for the second step, and the result of the second step goes to the third step, and
so on. These steps are called load steps in ESPRESO, and the value parameter LOAD_STEPS
tells the solver how many load steps will be present. Inside a LOAD_STEPS_SETTINGS
object, a configuration of every load step lies. Within the load step users assign additional
properties (i.e., boundary conditions) to regions and configure the solver. Like in the case of the
material parameters, the load step parameters (especially the properties) depend on the selected
physics.

2.2.3 Output configuration

The last interesting parameter is an OUTPUT object which defines what data will be gathered
during computations, and where the solver will store them.

When we put all previous parameters together we could assemble ECF as it is shown in
Listing 2.

Comment in an imaginary root object

INPUT GENERATOR;

GENERATOR {

Mesh generator details...

Let us assume that we defined here region REGION_1

}

PHYSICS HEAT_TRANSFER_3D;

HEAT_TRANSFER_3D {

MATERIALS {

Material definition lies here...

Let us assume that we defined here material MATERIAL_1

}

Assignment of materials to regions

MATERIAL_SET {

REGION_1 MATERIAL_1;

}

LOAD_STEPS 2;

LOAD_STEPS_SETTINGS {

1 {

Configuration of loadstep 1...

}

2 {

Configuration of loadstep 2...

}

17

}

Here could be other physics parameters...

}

OUTPUT {

Configuration of output...

}

Listing 2: Simplified example of ECF

2.3 Output

ESPRESO’s input is composed of the mesh and ECF which only extends the mesh by the
introduction of materials, physics, properties, etc. The output of ESPRESO is also composed
of a visual part and its description. For example, if we compute a heat transfer the output
will contain information about the heat in all parts of mesh. ESPRESO packs this data into a
proprietary EnSight format which can be opened by a software of the same name. Nevertheless,
this format is supported by open source software including ParaView.

Apart from the computational results, ESPRESO enables gathering of statistical data dur-
ing execution. It can monitor changes of physical properties in selected regions and provide
information about maximum value, minimum value, or average.

18

3 Analysis

In the following sections, we are going to investigate basic demands expected from the final
product (GUI) by the authors of ESPRESO. The following paragraphs give insight into software
packages similar to ESPRESO and their solutions. On the basis of the analysis of demands and
the existing solutions, Chapter 3.3 examines possible programming tools suitable for develop-
ment of the final product.

3.1 Requirements

An essential requirement is the development of a configuration tool which substitutes manual
typing of ESPRESO configuration files. The tool should provide a graphical user interface
that enables users to set all necessary parameters in order to produce a valid configuration
file. GUI should be intuitive and interact with users, e.g., respond to an attempt of invalid
input appropriately. Since ESPRESO performs computations for some input model built from
a 2D/3D mesh, GUI should visualise the mesh.

3.1.1 General constraints

Since ESPRESO represents a kind of framework, integrating GUI into it is limited by the
framework model and philosophy. Let us have a look at a few constraints and recommendations
implied by the usage of ESPRESO. The following list also includes the demands which the
ESPRESO development team (EDT) places on GUI.

1. ESPRESO follows the open source philosophy, thus its source code is available to everyone
and all the third party libraries are open too. GUI should not break this model.

2. Main development language is C++. ESPRESO already implements a parser for the ECF
files featuring functions for reading, writing, and validation. Hence, GUI written in C++
could directly use it, and moreover, the immediate connection with ESPRESO brings a
possibility to execute computations instantly from GUI by calling the solver.

3. GUI should support multiple platforms. Despite the fact that ESPRESO runs only on
the Linux systems, GUI should be ready to work on all common desktop platforms, i.e.,
Windows, macOS, and Linux. This requirement collides with the previous idea of direct
connection with ESPRESO. Nevertheless, from the EDT point of view it would be ac-
ceptable. Thus, the part of ESPRESO with GUI would be platform independent but the
whole ESPRESO would not.

4. ESPRESO is developed for application in the HPC area, i.e., supercomputers and clusters.
GUI should use sources (e.g., third-party libraries) that are commonly found in such
systems.

19

3.1.2 Use case

The main goal of GUI is to produce correct ECF files. A basic scenario leading to a well-formed
configuration file looks as follows:

1. Import of input file with mesh.

2. Mesh 3D visualisation.

3. Selection of physics.

4. Definition of materials.

5. Configuration of physics.

6. Configuration of loadsteps.

7. Configuration of output.

8. Validation of configuration.

9. Export of configuration file.

Steps 3 and 4 may be swapped since a material is a set of properties from which a subset
is chosen according to the selected physics. The points above form a core use case. Other use
cases would just extend individual points in the core one. They are not important for now.

3.2 Existing solutions

We are going to introduce a few open source software packs which are similar to the ESPRESO
solver and already feature GUI. During the reading of the following sections, you may find
Appendix B helpful. It contains figures of all tools.

3.2.1 Elmer

Elmer is an open source multiphysical simulation software developed by CSC - IT Center For
Science in Finland. It supports a variety of physics and mathematical models including heat
transfer, fluid flow, elasticity, etc. The software structure is divided into several mutually coop-
erating independent blocks. [2]

ElmerSolver, which is the core computational part, is similar to ESPRESO. Both perform
the computations with input parameters including the given model with chosen properties.[4]

ElmerGUI is GUI for the solver configuration and represents exactly that kind of application
which is introduced for ESPRESO by this thesis. ElmerGUI features the following:

• Import of several mesh file types and visualisation of mesh.

• Mesh is divided into bodies which have the same meaning as ESPRESO regions.

20

• Definition of equations which are equivalent to selection and configuration of physics in
ESPRESO.

• Definition of materials and conditions (e.g., initial, boundary, body force, etc.). Both can
be attached to a body.

• Saving configuration to a drive.

• Running the solver.

• Post processing with ElmerPost, i.e., another GUI tool, or via a built-in console. There
are consoles for Python and ECMAScript. Both contain ready-made API classes leading
to visualisation of results. [3]

ElmerGUI is not compatible with ESPRESO since both use different mesh and configuration
formats.

3.2.2 CalculiX

CalculiX is another open source tool for multiphysical simulations developed by a team from
MTU Aero Engines in Munich, Germany. It consists of two main parts, CalculiX GraphiX,
and CalculiX CrunchiX. The first one is GUI and the second one is a solver. In contrary to
ElmerGUI, GraphiX does not enable the solver configuration. It is just a visualisation tool which
can draw a mesh in different view modes, perform animations, or export the model to standard
picture formats like JPEG. Also, it can display the results of a computation. On the other hand,
there exists a third party software CalculiX Launcher for the CrunchiX configuration. [5, 6, 7]

3.2.3 SALOME

SALOME is the last software that we will concentrate on. It differs from the previous two,
because it is not a package of programs, but it is a standalone application specialised for pre-
processing and post processing. Pre-processing includes geometry construction and mesh gen-
eration. It features CAD 3D modelling tools, which users are able to construct any geometry
completely from scratch with. Post-processing enables to display the computed results. [8]

SALOME does not include any solver. Nevertheless, its structure is modular, meaning that
the whole application is separated into components such as the geometry creator, the mesh
generator or the post processing visualisation tool. New components can be added by anyone.
Thus, developers could build a module that would add a functionality for setting up a specific
solver inclusive of physics, materials, properties, etc. [8]

There exists a software package including SALOME and a module providing bindings to the
Code_Aster solver. It is called Salome-Meca. The solver module offers standard options such
as physics settings, attaching boundary conditions to regions, and many more. All these options
have slightly different names in Salome-Meca, since Code_Aster uses own work flow. After

21

every important parameter is set, users may run a computation task from GUI, and monitor
the progress through built-in console. When the task is done, output data can be visualised
immediately. [9, 10]

3.2.4 Summary of solutions

From the perspective of this thesis, the least interesting solution is provided by CalculiX since
its GraphiX GUI offers the mesh visualisation only. The solver configuration is missing.

As a beginner in the field of multiphysics solvers with some soft knowledge of ESPRESO
and its purpose, I have found ElmerGUI to be the most intuitive. The reason is that it uses
terminology similar to ESPRESO, and the whole Elmer project has a transparent documenta-
tion that is relatively easy to understand. On the other hand, their GUI is more focused on
functionality than user experience. All settings are hidden in one top menu. If users want to
see, for example, what boundary conditions they set, they have to always open this menu. The
main window shows only mesh, and if users use full screen mode there is still a lot of unused
space which could be used to display properties, materials, etc.

SALOME looks like a real professional tool. It provides many options and modules, and
its derivative Salome-Meca forms a complete multiphysics suite. In my opinion, the entrance
knowledge for using the suite should be the biggest among all mentioned tools. SALOME’s GUI
is really complex, and its documentation is not the best in terms of clear arrangement. However,
this is usually a bottleneck of every complex tool. On the other hand, it offers possibility to
extend it with own modules which could be taken into consideration as an alternative to the
development of GUI for ESPRESO from scratch.

3.3 Libraries and frameworks

In Chapter 3.1.1, we have presented a few points that indicate how the final solution should look
like. Let us focus on the points where C++ and the multiple platform support are mentioned.
In the field of GUI development, there is no standard tool for C++. C++ standard library does
not contain anything like that. Thus, GUIs are commonly developed by using a third party
library. Some of them guarantee platform independence, which is important in our case. Also,
we need an open source library which can be applied in HPC area.

3.3.1 GTK+

GTK+ is a multi-platform toolkit for GUI development. It is an open source, and one can use
it for creating free, or proprietary software. It supports three platforms, i.e., Linux, Windows,
and macOS. [11]

Linux systems have usually GTK+ pre-built and available in a packaging system. In contrary,
Windows does not offer anything like that, thus in order to develop a GTK+ application, one
should use MSYS2 software, which introduces a packaging system called Pacman into Windows

22

providing the GTK+ installation. Every GTK+ program should be packaged with GTK+
binaries, otherwise, it will not work on Windows since the library is not present in the operating
system by default. [12, 13]

Finally, we should not miss macOS support. It requires the greatest effort to make it work.
The GTK+ documentation contains plenty of manuals and instructions, which lead to a suc-
cessful application compilation on macOS. The reason, why the process on the Apple’s system
is little bit more complicated, is that some of GTK+ modules are not kept updated on this
platform. A lot of these problems might be partially avoided by using GTK-OSX tools, that try
to simplify the whole process. [14]

HPC clusters Salomon and Anselm maintained by IT4I offer old GTK+ 2.24 (current is 3.22)
within their module systems, but cluster users are free to compile what they need.

The development of GUI with GTK+ could be simplified via a third-party GUI builder
Glade, which provides a palette of GUI components (e.g., buttons, combo boxes,...). They
could be easily dragged and dropped to a program window. The GTK+ library implements a
GtkBuilder class featuring an ability of loading of an XML document produced by Glade. Glade
is mainly developed for Linux. There exist releases for Windows which are usually older than
the Linux variant. [15]

3.3.2 wxWidgets

wxWidgets is another library which is an open source, and supports all three platforms. In com-
parison with GTK+, wxWidgets is not just a library for creating windows, buttons, and things
like that. It introduces multi-platform sockets, multithreading, or file management. Hence, we
may say that wxWidgets forms a platform independent framework rather than a GUI library. It
is interesting that the framework uses GTK+ for Linux applications. For the rest of platforms,
it provides own modules different from GTK+. [16]

wxWidgets is not integrated in any operating system that we are interested in. For Linux,
there exists an official repository. In the case of Windows, we have to build the library from
source, or use prepared dynamic libraries for specific compiler. MacOS requires compilation
from source. [17]

Salomon and Anselm clusters do not offer any version of wxWidgets. The only possibility is
to compile it one’s own.

There is no official IDE for wxWidgets development. Nevertheless, some third party tools
exist like wxFormBuilder (GUI designer), wxCrafter (plugin for CodeLite IDE), or wxSmith
(plugin for Code::Blocks IDE). The framework accepts XML documents (XRC format) with the
defined GUI structure. [18]

23

3.3.3 Qt

The last library, that we are going to study, is called Qt. It is the most sophisticated tool from
all libraries we have come through, because it supports more platforms than the others. Also, it
has own official, fully-featured Qt Creator IDE, and one may purchase a license with extended
support of Qt team. [19]

Basic variant of Qt is open source with the restriction of distributing applications as open
source. That is sufficient for the needs of ESPRESO. If someone wants to develop a proprietary
software, they have to purchase the Qt license. On the other hand, the official Qt helpdesk
would be provided to such client. Nevertheless, users of the open source license can use official
forums with a large community, where one usually receives a help no later than after one day
from my personal experience. [19]

Qt forms a complete framework providing an interface for file management, sockets, SQL
database management, threading, 3D graphics, and many more. [21]

The framework supports Linux, Windows, macOS, and also Android. Nonetheless, we will
stay focused on the first triplet. The compilation, and the development processes are easier
than in the case of previous libraries, since users have to download a Qt bundle dedicated for
a particular platform. This package contains Qt libraries, compiler, and Qt Creator. After the
package installation, user have available a complete development environment. They can use Qt
Creator with a built-in GUI designer for code writing and creating GUI. Within the same tool,
users may compile the final application. [19, 21, 20]

Salomon and Anselm clusters have pre-installed Qt modules in versions 4.8 and 5.8. Current
version available on the official Qt website is 5.10.

3.3.4 Summary of libraries and frameworks

From the previous lines, it is obvious that Qt offers the most comfortable solution. GTK+
requires more effort to be built on multiple platforms, and IT4I clusters contain the old version.
In the case of wxWidgets, the situation looks better in terms of platform independence with
its system features (e.g., sockets). On the other hand, for all platforms, we should compile the
library from sources, if we take into account that the clusters do not offer any module.

It seems that with Qt all the problems would disappear. A relatively new version is present
on the clusters. Platform independence should be solved by using their IDE. Moreover, the
framework integrates support for 3D graphics, more precisely a universal layer above the OpenGL
technology. Hence, GUI for ESPRESO will be developed with Qt.

3.4 Summary of analysis

We came through several sections examining various topics, which should help us imagine, how
the final product should look like. Let us summarise it in a few points:

• GUI will be written in C++ as a built-in part of ESPRESO library.

24

• The graphical part of the final application will use the Qt framework which guarantees the
platform independence.

• Direct integration of GUI into ESPRESO will violate the platform independence.

• Alternatively, if we added support for SALOME file formats in ESPRESO and imple-
mented an ESPRESO module for SALOME, we could use SALOME as a GUI layer.

25

4 Functional requirements

In this section, we will present another set of features, that are expected from GUI by the
ESPRESO development team.

4.1 Expressions

ESPRESO works with physics and materials, which contain variety of physical quantities. These
quantities could be specified by a value (constant), an expression with a few allowed variables,
or a function defined by a table. GUI should extend it, and add a support for a piece-wise
function. Together, we will have these options:

1. Expression - a mathematical expression with a predefined set of allowed variables. The
value (constant) is also an expression.

2. Table - a table defining a mathematical function, i.e., a set of couples (x, f(x)). See
example in Table 1.

3. Piece-wise function - a function defined by a set of expressions valid for specific interval.
See example in Table 2.

It should be possible to store these structures into a separate abstract container, i.e., a
variable. Such variable should be assignable to an unlimited number of physical quantities.
Thus, it would reduce data redundancy through all quantities, and make GUI more user friendly,
since users would not have to type same thing many times. We may imagine that defining a large
table, or a piece-wise function with same content many times could be really time consuming.

4.2 3D model

GUI should be able to display a model of a geometrical object, for which ESPRESO will perform
the computations. The object could be a cube, a sphere, a car brake, a valve, a CPU cooler,
etc. ESPRESO provides functions for generating a mesh of triangles that forms the object. GUI
should use that for the rendering, and enable basic manipulations with the model including
rotation and zoom.

Since every object is usually divided into more smaller objects called regions, GUI should
colour these regions differently. Also, it is expected that GUI will feature a region hiding,
meaning that one can stop the drawing of specific regions. This implies another functionality
- a region picking. Users will be provided with something similar to a list of regions, in which
they may select a region to hide, or just click on a region causing GUI to highlight the region.

26

Table 1: An example of a function defined by the table

x f(x)

0 10
1 20
2 30.6

Table 2: An example of the piece-wise function

Interval Expression

(-inf, 1> x2

(1, 2.5) x + 1
<2.5, inf) sin(x)

4.3 Parallel execution

We have already mentioned the benefit of embedding GUI in ESPRESO library in Chapter 3.1.1.
GUI could directly call the solver and start a computation. Since ESPRESO’s main feature is
parallel execution, GUI should support such execution of the solver. This functionality requires
extra attention and will be discussed later.

4.4 Validation

GUI should provide users a way to create a correct ECF file. Thus, it should verify user data
and raise an error with an intelligible message about the mistake. In other words, it should not
let users to save an invalid ECF file.

27

5 Design

We have analysed the requirements, the existing solutions, and the tools for the development
of GUIs. In this chapter, we will look closely at the input part of ESPRESO, and Qt. On the
ground of this knowledge, we will design a GUI architecture.

5.1 Input structure of ESPRESO

In Chapter 2.1, we introduce the basic structure of ESPRESO configuration files, i.e., the ECF
format. ESPRESO already contains an interface for working with such files. There is a group of
classes which can load ECF, hold its information, and provide functions for editing, validation,
and storing. Let us inspect them.

5.1.1 Parameters, values, and objects

We know that ECF is composed of parameters. They are represented by an abstract class
ECFParameter which forms an ancestor of every class standing in for a specific parameter (e.g.,
materials). ECFParameter contains a field of ECFMetaData type holding extra information
about parameters such as a description, a data type of its value, and many more.

We have already become familiar with values and objects. In the code, they are imple-
mented as the children of ECFParameter - ECFValue and ECFObject. ECFParameter contains
isV alue() and isObject() methods behaving according to the object type which we call the
method on. An ECFValue instance would return true in the case of isV alue() call and false
in the other case. Naturally, ECFObject would react in the opposite way. This is one of the
main differences between value and object classes. The second variance relates to class fields.
ECFObject features a list of parameters which it is composed of. If we return back to Listing 2
we may intuit that, for example, parameter LOAD_STEPS would be represented by a child of
ECFValue whereas MATERIALS would be implemented as a descendant of ECFObject. Such
intuition is correct but classes representing those parameters would not be the direct descen-
dants. ESPRESO uses extra wrapper classes which are not important for now because GUI will
work with correctly prepared structure of ECFValues and ECFObjects. These abstractions of
concrete parameters are enough for any work with them.

A complete structure of classes that we have introduced may be seen in Figure 1.

5.1.2 Configuration

In the previous section, we have started with the description of the essential classes which the
others inherit from. Now, we will jump to a class that lies at the very top of a class tree. We
are going to talk about a class that wraps whole configuration and represents an ECF file.

ECFRoot is a root class of an ECF. Those who are familiar with XML may imagine it as a
root element in an XML file. In other words, one can access any parameter included in the ECF

28

Figure 1: Class diagram of ECF parameters and their structure

file via parameters of ECFRoot since the class is nothing more than a descendant of ECFObject.
Thus, revisiting Listing 2 again, we may guess that ECFRoot contains parameters for input,
physics, and output. Subsequently, these parameters could be used to reach other parameters.

ECFRoot can directly load an ECF file from a specified path. For saving a configuration, we
should use the ECFReader class which provides the functionality.

5.1.3 Application in GUI

Usage of ECFRoot in GUI is straightforward. The GUI program should scan all parameters
and draw them in an appropriate form on the screen. The abstract ECFParameter class offers
everything we need to get information about each parameter.

In the simplest form, the GUI program could perform a journey through parameters and draw
right GUI elements (e.g., a text input box) according to the parameter’s data type and group the
elements according to the parent ECFObject (e.g., all GUI elements of parameters belonging to
the MATERIALS object would be separated from other elements by a frame with a border). This
scenario is great because it does not require any knowledge of concrete parameters. It works
only with the abstract ECFRoot, ECFParameter, ECFMetaData, ECFValue, and ECFObject
structures. If we applied this strategy on ECF in Listing 2, we would get a window with
structured blocks arranged in a vertical line as it is in Figure 2.

Unfortunately, the proposed strategy leads to bad user experience. We have to distinguish
between some of the parameters in order to give users logically arranged GUI, which will follow
the use case that we introduced in Chapter 3.1.2. With the previous, scenario the use case
is not reasonably practicable as with the knowledge of the five enumerated classes we cannot
guarantee which parameter would appear first on the screen. In this case, we would have to
rely on ESPRESO that it would put parameters into ECFRoot in the correct order. On the
other hand, ESPRESO developers might configure a GUI layout from ESPRESO by changing
the parameter order. To sum up, the knowledge of some parameters will be necessary.

29

ECFConfiguration

GENERATOR

HEAT_TRANSFER_3D

MATERIALS

LOAD_STEPS_SETTINGS

OUTPUT

GENERATORINPUT:

HEAT_TRANSFER_3DPHYSICS:

ECFValue

ECFObject

ECFValue

ECFObject

ECFObject

2LOAD STEPS: ECFValue

ECFObject

ECFObject

Figure 2: A GUI structure generated by scanning all parameters from Listing 2

5.2 Basic principles of Qt

At the end of previous chapter, we have already come up with an early idea of the strategy for
the drawing of graphical elements but we have not showed any details about the elements. Now,
it is time to do it. Since we have decided for Qt, we will inspect the capabilities of this library.

Before we start, it is important to mention that this work follows the documentation of
Qt 5.10. We will use Qt Widgets, which is a classic Qt library using mainly C++, and it is
focused on the development of desktop applications. Alternatively, there is Qt Quick providing
a combination of C++ and QML (a programming language similar to JavaScript). Qt Quick
features a web-like look, and it is more suitable for mobile devices (e.g., Android systems). [22]

5.2.1 Widgets

The QWidget class is an ancestor of all GUI elements in Qt. Thus, from now the widget will
be a synonym for any element. QWidget forms an empty surface, a window with nothing inside
like a clean sheet of paper. Qt offers many basic widgets like buttons, check boxes, or combo
boxes, and I have not faced a situation in which I would miss any elementary widget. Usually,
one needs a combination of a few elements where QWidget is suitable for holding the group of
elements together. [23]

30

Within QWidget it is possible to place an element anywhere. In real cases, one usually needs
some kind of alignment, e.g., all elements lined up in one row or column. Qt uses a system of
layouts. Such layout may be attached to QWidget and control the alignment of elements inside
the widget. There are four types of layout:

• Box layout - items are clustered in one row or a column.

• Form layout - there are two columns of items. It represents classic form where one row
contains label in the first column and text input in the second one.

• Group layout - it arranges items in a grid.

• Stacked layout - it follows a strategy where only one widget is visible and the others are
hidden. A programming interface for the item visibility switching is provided. [23, 24]

Once we have chosen the layout, we can add widgets to it.

5.2.2 Events

We understand widgets which enable us the construction of a static user interface. The word
static means that nothing happens when you try to interact with the interface by mouse clicking.
To bring a life to the elements, Qt uses a system of signals and slots serving as a tool for event
handling, e.g., answering a button click. The signal is a medium for notifying about event
whereas the slot reacts to these notifications. From the developer’s point of view, the signal
and the slot are nothing more than functions. Qt provides extra features beyond classic C++
- signal-slot interconnection and signal emitting. Once an event happens, the corresponding
signal is emitted and caught by the interconnected slot. Imagine that we have a window with a
button which should close the window. The button contains a signal that is emitted when users
click the button. The window implements a slot function closing the window once the signal is
emitted and caught by the slot. [25]

5.3 Connection of Qt and ESPRESO

It is time to finally start building our GUI. We will begin with an introduction of a class that
will form a universal widget which can draw any ECFObject on the screen.

5.3.1 Base class

The class will be abstract providing the possibility of adjustment to specific ECFObject and
related need for different GUI behaviour. Let us call the class ECFObjectWidget.

The main task of our class is to draw the contents of ECFObject, i.e., parameters. A pa-
rameter has assigned a data type which ECFObjectWidget uses to draw an appropriate widget.
The drawing is done in separate methods for each data type. One can override these methods

31

Figure 3: Sequential diagram with a GUI example showing a situation in which the change of
the Input parameter requires redrawing of GUI

to customise the GUI behaviour for a specific ECFObject. Table 3 shows common data types in
ESPRESO.

There exist some closely correlated parameters, the change of any of which influences the
other one. This might require a change in GUI too, thus widgets that could cause such situation
are connected with ECFObjectWidget via a slot. When a corresponding signal is emitted, EC-
FObjectWidget performs a new drawing of its parameters. This behaviour is described in Figure
3 with a simple example of a combo box, the value change of which influences the rest of GUI.

5.3.2 Validation and saving

ECFObjectWidget controls widgets for editing the parameters. Users should not be able to
enter invalid data or at least save them. Therefore, there has to be a way how to prevent
it. We will introduce an interface class IValidatableObject, which will provide methods for
data validation including the check of content correctness and information about a found error.
ECFObjectWidget will implement the interface, and, at the same time, it will also contain a list
of such interfaces since it may contain another widgets requiring the validation.

32

Table 3: Selection of abstract data types used in ECF files

Data type Description

BOOL True/false value
STRING Text string
INTEGER Integer
POSITIVE_INTEGER Positive integer <1, inf)
NONNEGATIVE_INTEGER Integer <0, inf)
FLOAT Real number
OPTION, ENUM_FLAGS Set of values with only one selected
REGION Name of existing region
MATERIAL Name of existing material
EXPRESSION Mathematical expression

Figure 4: A class diagram of a basic widget wrapping ECFObject

If we have valid data in a widget, we can store them. For this purpose, we will present
another interface ISavableObject enabling us to perform a save operation. In our context, it
means that data from GUI elements are copied to the corresponding ECFObject.

Figure 4 contains a class diagram depicting the binding between ECFObjectWidget, IVali-
datableObject and ISavableObject.

5.4 Prototype of GUI

Before we get to particular descendants of ECFObjectWidget, it might be beneficial to clarify
which widgets we will need to be present in GUI. We will not focus on small elementary widgets
like text inputs, but we will concentrate on major logical blocks that are important for the basic
work flow that we showed in Chapter 3.1.2.

If we scan the individual points in the use case, we may identify following blocks:

• 3D model.

• Materials.

33

ESPRESO

Materials

Steel

Wood

Regions

Cube

Sphere

3D

Physics Load step 1 Output

Contents depend on selected tab

Figure 5: Early prototype (wireframe) of GUI

• Physics.

• Load steps.

• Output.

This set of blocks could be still reduced. First, physics, load steps, and output form one block
since together they define a task that will be computed. Second, materials form an individual
unit, even though their properties depend on physics. Nevertheless, we will see them as a library
of materials that can be applied in various numerical tasks. Third, the 3D model will represent a
block consisting of the model itself and the list of regions we have already mentioned in Chapter
4.2. A complete prototype of GUI is depicted in Figure 5.

5.4.1 Widget decomposition

On the previous lines, we have defined three main blocks - 3D model, materials, and work flow.
The last one unites physics, load steps, and output.

The 3D model block takes care of the visualisation. Basically, we will need two widgets. The
first one will control the 3D model rendering and the second one will contain a list of regions.
From Chapter 4.2 we know that both widgets should be interconnected because of the region
hiding and picking. With signals and slots, it is simple. When someone clicks on an object in
3D model, a signal is emitted and same happens when users change a state of any check box in
the region widget. In terms of class dependencies, the signal-slot interconnection may be done
within one of the widgets, thus only one widget will have to hold information about the other.

34

In this case it does not matter which one will maintain the interconnection. We will choose the
region widget.

The materials should form some kind of a library independent of the current computation
task. Nevertheless, this block will be more general and will represent a place where any reusable
data can be defined. Hence, we may imagine that variables discussed in Chapter 4.1 will be
located there too. The block name materials becomes misleading, therefore we will call it data
sets.

The work flow forms a structure that takes control of a few other widgets. As we may see
in Figure 5 it is a tabbed widget where every tab contains a part of ESPRESO configuration.
These tabs will be the descendants of ECFObjectWidget. The figure with the prototype contains
physics, load steps, and output. However, this is not the final list of tabs that will be present.
We will need one more tab for an input mesh configuration where users will be able to choose
the input format or directly configure the 3D model via the generator. This tab corresponds
with the part of ECF that we discussed in Chapter 2.2.1.

3D model, data sets, and work flow are basic blocks/widgets which form our GUI. Never-
theless, we need something that would stick and hold them together. We will wrap them into
another widget. Let us call it work space. It will not be just a wrapper that will take care of
their positions only. Work space will resolve a communication between the individual blocks,
i.e., reacting to signals. For example, if users change the input file in the mesh tab, a new 3D
model should be drawn. Work space will be a mediator catching the mesh change signal and
informing the 3D model. Additionally, we will add two new buttons into the work flow, one for
a loading of an existing ECF and the second for storing of current configuration to ECF.

Let us finish this section with two figures. First, Figure 6 shows a class diagram of all widgets
that we have introduced in this section. Second, Figure 7 contains a prototype of GUI extended
with the captions of blocks and new widgets.

35

Figure 6: Class diagram of basic GUI blocks/widgets

ESPRESO

Materials

Steel

Wood

Regions

Cube

Sphere

3D

Physics Load step 1 Output

Contents depend on selected tab

Mesh

Open ECF Save ECF

3D model

Data sets

Work flow

Work space

Figure 7: Extended prototype of GUI

36

6 Parallelization

In Chapter 4.3, we briefly specified the requirement of parallelization. In this section, we will
explicate techniques which ESPRESO uses to run in parallel, and we will show concrete steps
necessary for enabling the parallel execution of the solver directly in GUI.

6.1 Parallelism in ESPRESO

ESPRESO combines two parallel paradigms leading to a hybrid parallelism. The first paradigm
is shared memory computing. A main process of application creates several smaller working units
(i.e., threads) sharing one memory. This strategy uses the OpenMP (Open Multi-Processing)
library providing the ability of the task division into threads. The main disadvantage of shared
memory computing is the memory being accessible by any thread. Data inconsistencies might
occur when two threads are trying to access same part of memory, and one of them wants to
change the content. This situation is called race condition, and it is possible to solve it in several
ways. However, we are not going to dive into it since it is not necessary for our purpose. [26]

Distributed memory computing is the second method of parallelization. In contrary to
threading, application is divided into processes at the beginning of execution. Each process
has own isolated memory. ESPRESO uses MPI (Message Passing Interface) library to enable
distributed computation. MPI divides our program into specified number of processes which
is immutable during the whole execution. Since the processes are isolated already from the
application start we need some tool to exchange data between them. MPI provides functions
for sending and receiving primitive data types like integers, bytes or doubles between processes.
The distributed programming does not suffer from race conditions, on the other hand, data
exchanges may be slow if communicating processes run on different computers and data has to
go through their interconnection. [26]

Hybrid parallelism starts with the distribution into processes, then, every process could
divide itself into threads. Figure 8 shows the distribution procedure.

6.2 Parallelism in GUI

GUI will only extend ESPRESO, meaning that the present code base of ESPRESO will be
extended by GUI source codes. This close link between ESPRESO and GUI allows us to use the
classes for the ECF manipulation, but, generally, we may access any class including the solver.
In order to utilise all features of solver concerning the parallelism, it is not enough to just call
the corresponding classes.

Support of threading does not require much work. Threads are created and destroyed dy-
namically during run time. We have to compile GUI with OpenMP support, i.e., add one extra
flag (-fopenmp) to compiler, and before the execution environmental variables have to be set
specifying how many threads should be used. [27, 28]

37

Figure 8: Hybrid parallelism with MPI and OpenMP

In the case of MPI, we will have to do more work. MPI application has to be compiled with
a special compiler. Also, if we want to launch a program with more than one process, we have
to use special command, which will distribute the program into more instances. [29]

If we launch GUI on n processes, there will be n opened windows. Obviously, this is not the
behaviour that we want. We would like to run GUI in parallel, but it should be displayed on
one process, and the rest of processes should be reserved for the computation. Thus, they will
be idle until a computation is launched. There are more questions that we have to consider,
therefore the following section is dedicated only for this topic.

6.3 Integration of MPI in GUI

We have come to the conclusion that one process will take care of GUI, and the rest will be
computing. Nevertheless, it is not clear, whether users should launch GUI on n or n+1 processes,
if they want to perform computation on n processes. In other words, we should decide if there
should be a strict separation of GUI and computation processes, or if all processes would be
computational, and one of them would also run GUI. Thus, when users start the solver, GUI
would not respond to user events for the time of task. The confusion about the number of
processes could be fixed by running GUI in a separated thread, therefore one process will be
shared by GUI and the calculation. The final number of processes is n.

Let us move to the implementation. Processes are numbered from zero, therefore GUI will
be always under the supervision of process zero. Thus, everything concerning GUI should be
hidden for other processes. This is commonly achieved by wrapping the code that we want to
hide into if statement which checks the number of current process. [29]

We will need a tool for controlling processes and exchanging messages between them. GUI
lies in a master process which controls everything. It should wake up the computational processes
and give them a command to start computation. Therefore, we will introduce a new MpiManager
class providing methods for the process controlling.

38

Figure 9: Cooperation of master GUI process and computational workers

6.3.1 MpiManager class

Every process has own instance of MpiManager. The master process (i.e., GUI) uses Mpi-
Manager ’s methods for controlling and sending messages to the slaves (i.e., computational pro-
cesses). A slave’s scenario is simple - waiting for command, executing command and waiting
again. Thus, this strategy forms the loop. The command is distributed via a broadcast message
(MPI_Bcast) to every slave. On the basis of received command, a corresponding operation is
performed by slaves. These operations are implemented by MpiManager, which also provides
the loop method. Commands are represented by master methods in MpiManager, i.e., methods
which may be called only by GUI.

A complete scheme of the cooperation between master and slaves is depicted in Figure 9.
The method masterOperation() represents any possible operation.

6.3.2 Distributed operations

Now, we will show the work we are going to give out to slaves. Following list specifies basic
operations:

• Each computational process requires complete information about the configuration. Thus,
ECFRoot which users edit via GUI has to be copied to slaves.

• After every slave obtained the complete configuration data, the solver could be launched.

• ESPRESO’s mesh generator defines which part of mesh should be present on a particular
process. Hence, when GUI loads an ECF with a mesh produced by the generator, it should

39

obtain mesh parts from each process and build a complete 3D model that can be visualised.
More about mesh rendering in Chapter 7.

40

7 Visualisation of 3D model

We have became familiar with many libraries and technologies including ESPRESO, Qt, MPI,
and many more. This chapter provides a brief overview of OpenGL (Open Graphics Library),
its usage within Qt, and application in GUI together with ESPRESO.

7.1 OpenGL

OpenGL is an API specification for manipulation with graphics and images. It specifies a large
set of functions and defines exact output of each function. Usually, developers from graphics
card manufacturer companies implement these functions. [30]

Today’s modern OpenGL is based on version 3.3, which was released in 2010 and brought
a different programming model from earlier versions. All new versions after the release of 3.3
only extend API and do not change it. Hence, GUI will not support lower versions of OpenGL
than 3.3. [30]

Following sections give a brief overview of OpenGL principles to an inexperienced reader.
On the other hand, the overview does not explain everything necessary to perform rendering in
OpenGL. If you need more information, there is a very good guide in [31].

7.1.1 State machine

OpenGL behaves as a large state machine. The programming starts with the setting of various
options and flags, which define what will be rendered, and how the drawing will be performed.
After the configuration, programmers can call the functions designated for the rendering. [30]

7.1.2 Primitives

Vertex is a basic graphical element that is used in OpenGL, i.e., a vector of coordinates x, y,
and z which define a point in 3D space. When we have a set of vertices, we may choose if
OpenGL should draw points, lines or triangles. In the case of lines, vertices are processed in
pairs, whereas, if we wanted triangles, the vertices would be processed in triplets. Points, lines
and triangles1 form a basic set of shapes that OpenGL can draw. They are called primitives. If
we needed to draw more complex shape, we would have to build it with these primitives. The
triangles are the most used to construct larger objects. There are several reasons why a triangle
is the best option, and you may find it for example in [33] (p. 108, section Triangles). [32]

1OpenGL supports also various combinations of same primitive, e.g., a loop constructed from lines, a stripe
of triangles or lines, etc. Older OpenGL APIs before version 3.1 enabled to draw squares (quads), but this
functionality has been removed from newer versions. [47]

41

Figure 10: OpenGL pipeline [46]

7.1.3 Shaders and programs

Every vertex sent to a graphics card is processed by a set of shaders. Shader is a program that
is executed on the card. It is programmed by a special language, OpenGL Shading Langugage
(GLSL), which uses similar syntax to C++. Different shader types are ordered in pipeline (see
Figure 10). Every shader in the pipeline produces an output that is used as an input for the
subsequent shader. Every vertex goes through every single shader in the pipeline, before it is
finally drawn on the screen. Each shader type has a specific role, e.g., fragment shader takes
care of the final colouring of pixels, before they are rendered. We may use default shaders or
replace them with own shaders described with GLSL. In order to make the replacement, we have
to construct shader program which represents the pipeline. Then, we can assign our shaders to
the program and tell the card to use it instead of the default shaders. [32]

So far, we have presented fragment shader. It controls the pixel colouring. Also, it is the
right place for computing special effects, i.e. shading. The pipeline consists of more shaders but
they are not important for our needs. [32]

7.2 OpenGL in Qt

Qt provides tools for working with OpenGL. The classic OpenGL API does not follow object
oriented paradigm. It is a set of functions, thus it looks more like a library for C language
than for C++. Nevertheless, Qt introduces a set of classes which tries to bring object oriented
principles. It does not substitute the classic API completely, rather it simplifies work in some
situations. [34]

Typical example is the creation of shader program. In classic API, one has to create it via a
special function, which returns an identification number of the new program. When programmers
want to manipulate with it, they have to call an appropriate function and pass the identification
as an argument. In the case of Qt, one can create an instance of shader program class and call
methods for the manipulation. This approach frees programmers from calling concrete OpenGL
functions, instead of them more abstract methods are provided hiding the usage of OpenGL.
Qt authors offer this abstraction to ease cross-platform development for mobile and embedded
devices. For desktop application development, it brings at least a benefit in the form of object
oriented approach. [32, 35]

42

Listing 3 shows a manipulation with shader program and fragment shader via both, the
classic OpenGL API and the Qt object oriented alternative.

// COMMON PART FOR BOTH APPROACHES

const char * fragmentShaderSource = "... shader source code in GLSL ...";

// Classic OpenGL API

unsigned int fragmentShader;

fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);

glCompileShader(fragmentShader);

unsigned int shaderProgram;

shaderProgram = glCreateProgram();

glAttachShader(shaderProgram, fragmentShader);

glLinkProgram(shaderProgram);

// Qt

QOpenGLShaderProgram shaderProgram;

shaderProgram.addShaderFromSourceCode(QOpenGLShader::Fragment, &

fragmentShaderSource);

shaderProgram.link();

Listing 3: Comparison of classic OpenGL API and Qt alternative applied on shaders and shader
programs [32, 35]

7.2.1 OpenGL and widgets

We have already become friendly with the cornerstone of Qt GUI, i.e., widgets. Qt features a
special QOpenGLWidget widget class for handling manipulations with OpenGL. It introduces
three methods initializeGL(), paintGL(), and resizeGL(), that can be overriden. Only within
these methods, one is allowed to perform any operation with OpenGL. First, initializeGL() is
executed only once at the beginning of QOpenGLWidget initialization, thus it is suitable for the
3D scene preparation purposes. Second, paintGL() is called periodically to render 3D objects
when necessary, therefore it should be used for regular drawing of 3D objects. Third, resizeGL()
should carry out any requisite task when the widget is resized. [36]

7.3 Implementation

In Chapter 5.4.1, we presented the class MeshWidget without any specific details. This class is
a descendant of QOpenGLWidget resolving 3D model rendering via OpenGL.

43

7.3.1 Decomposing model into triangles

Before we can start drawing 3D objects on the screen, we must have prepared model data in
an appropriate form, i.e., a 3D object defined by a set of vertex triplets representing triangles.
ESPRESO implements functions for the decomposition of a 3D model into triangles. We will
use them.

We know that a model may be divided into regions. ESPRESO provides tools to distinguish
where each triangle belongs. Thus, we will maintain a dictionary of regions, which will contain
information about a region name and a list of its triangles. Since in Chapter 6.3.2 we clarified that
in the case of parallel execution the mesh could be divided into same number of parts as running
processes, the whole conversion of model into triangles cannot be done only in MeshWidget in
GUI process. We will have to perform the conversion in every process and gather the results in
the master (GUI) process, which will render it.

7.3.2 Regions

In the previous section, we have introduced the dictionary of regions. The dictionary can be
used in combination with RegionPickerWidget (Figure 6) to determine which region should be
visible on the screen, and which one should be hidden. This is an expected feature that we
declared in Chapter 4.2. Moreover, every region has to have a different colour, therefore we add
this information to the dictionary.

7.3.3 Model manipulation

All software, which features 3D model visualisation, usually enables model rotation and zooming.
Our GUI is not be an exception. Since this manipulation is something that was programmed
many times, we adopt an approach from [37] (sections Mouse input and Zoom).

7.3.4 Region picking

Region picking cannot be handled completely by the signal-slot system, because only QWidgets
and their derivatives may use it. Although, QOpenGLWidget inherits from QWidget, it is only
capable of detecting a mouse event (e.g., a mouse click) with the information about a precise
position (i.e., coordinates x and y), where the event occurred, but there is no built-in tool for the
recognition of concrete 3D object hit by mouse. 3D objects are not QWidgets. They represent
only a set of coloured pixels drawn in QOpenGLWidget. Thus, we have to provide own strategy
to detect whether users clicked on a region. [36]

This issue can be solved by an algorithm based on colour coding described in [38]. This
method colours every pickable object with a different colour. Qt provides information about a
click position, and OpenGL features a function for obtaining the colour of a pixel in specific
position. If we painted every region with different colour, we would solve the region picking
problem.

44

Figure 11: Regular rendering featuring visual effects and basic rendering [38]

The proposed method suffers from the possible lack of colours, if the number of regions would
be extremely high. OpenGL uses classic the RGB (Red Green Blue) colour model, where each
colour component is represented by a number from 0 to 255, thus total number2 of all possible
colours is 16581375, i.e., 256 possibilities per each component = 2563. If we decrease this number
by one, we get a limit of region count, because higher number of region would result in a colour
collision. We decreases 16581375 to 16581374, since one colour is reserved for the background
colour. ESPRESO development team agreed with this limitation. Computational tasks, which
they currently solve, contain tens of regions.

One may notice that we have already spoken about colouring each region distinctly in Chap-
ters 4.2 and 7.3.2. Thus, it might seem that we have already stood halfway to the solution.
However, we have not. The colouring for the region picking will be performed separately, i.e.,
hidden for users’ eyes. The reason is that the regular painting features variety of visual effects
such as a light to provide better look. Unfortunately, the effects imply a possible change in
region colour. In other words, the colour of a region might vary in different parts of the region
due to the effects. Therefore, when users click on 3D model, GUI draws the regions with a
fragment shader freed from the effects, then, it obtains a colour of pixel which users selected,
and compares it with a list of region colours. If there is a match, MeshWidget emits a signal
informing about the picked region. The signal is caught by RegionPickerWidget.

The difference between the regular rendering with visual effects and the basic drawing is
depicted in Figure 11. Each chessman might be understood as a region. We may see that the
surface of chessmen has variety of colours due to the light effect. In contrary, the right part of
the figure features chessmen, each with one solid colour.

2The reference article [38] shows a procedure with only one colour component. We extend it by all three
components, i.e., red, green, and blue.

45

To sum up, for the region picking we need to introduce own procedure that combines features
of Qt and OpenGL. We implement a method based on the colour coding. Because of the visual
effects included in the regular painting of 3D model, we have to switch to new fragment shader
specialised for the picking, that does not apply the effects which influence colours.

46

8 Implementation of GUI

Source codes of GUI are available on the attached CD, the content of which is described in Ap-
pendix A. This chapters shows more details concerning the implementation of the final solution.

8.1 Widgets for expressions

In Chapter 4.1, we specified three structures, i.e., the expression, the table, and the piece-wise
function.

Rules for defining expressions proceed from a notation used by the ExprTK library [39],
which ESPRESO applies internally for the validation and the evaluation of expressions. The
notation is very simple. For example, we could show a simple quadratic function: x^2 + x + 1.

Generally, the expression is a relatively short string, thus we can represent it by a text input
(QLineEdit [40] class in Qt) and check its correctness via ExprTK, before it is saved into the
corresponding ECFValue.

8.1.1 Table

We determined that the table is a set of couples (x, f(x)). Both x and f(x) are specific values,
i.e., real numbers defining the function. Graphically, each of them is a column in the table. For
displaying data in tables, Qt offers the QTableView widget. In order to restrict table contents
only to real numbers, one may use delegates. The delegate (QItemDelegate [41]) is a structure
which is called whenever users try to edit a table cell. Delegate is responsible for creating a
widget for cell editing. The default widget is the QLineEdit text input. This class enables to
restrict its contents via regular expressions. Thus, we may create own delegate offering a text
input guarded by a regular expression forcing users to type real numbers only. Qt uses the Perl
notation [42] for regular expressions. Our expression for real numbers would look as following:
^[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?\$.

Let us return to ECF files. ESPRESO uses a simple notation for tables. Every table starts
with TABULAR keyword followed by the list of (x, f(x)) couples. If we transferred Table 1 into
a raw ECF form, we would obtain: TABULAR [0,10; 1,20; 2,30.6].

All this behaviour is hidden in the TableTypeWidget class.

8.1.2 Piece-wise function

The piece-wise function does not differ from the table too much. From the graphical point of
view, it is just another table with more columns. If we look in Table 2, we may observe these
important components:

1. Left parentheses/angle brackets - left-open/left-closed

2. Value of left bound

47

3. Value of right bound

4. Right parentheses/angle brackets - right-open/right-closed

5. Expression/function

The individual points above represent columns. Basically, cells of all columns are only text
inputs. Nevertheless, in order to provide better user comfort and validation, a special delegate
for each column was developed. For columns 2 and 3, delegates are same as in the case of the
table from the previous section. For columns 1 and 4, we need a new delegate which displays a
combo box with two options, i.e., "(", "<" or ")", ">". The last column should provide a basic
text input for the expression. It is validated by ExprTK when users attempt to save the whole
piece-wise function. Thus, the last column does not require any delegate.

The piece-wise function is not currently supported by ECF format. Nevertheless, apart from
the expressions, ExprTK provides control structures like if-statement known from programming
languages. We can easily represent the piece-wise function with a combination of several if-
statements. Listing 4 shows an example of transferring Table 2 into the ExprTK format. This
way of implementing the piece-wise function does not require any changes in the ECF format
and ESPRESO, since the function will behave like the expression. Only GUI has to distinguish
the piece-wise function from the expression, but this is not difficult. If we consider that the
function contains keyword if, whereas the expression does not.

The piece-wise function is implemented by the PiecewiseTypeWidget class.

// FIRST ROW

if (x > -inf and x <= 1)

{

x^2;

}

// SECOND ROW

if (x > 1 and x < 2.5)

{

x + 1;

}

// THIRD ROW

if (x >= 2.5 and x < inf)

{

sin(x);

}

Listing 4: Transferred Table 2 into ExprTK if-statements

48

8.1.3 Generalisation

Since the table and the piece-wise function are graphically just special cases of a table with
different number of columns and data type inside them, we may construct a more general class
(widget), which would wrap the QTableView class and take control of common behaviour of the
table and the piece-wise function, i.e., mainly the manipulation with the data inside the table
widget. This widget has name TableWidget.

8.1.4 Delegates

In closing, we return to delegates. In the case of the table and the piece-wise function, we have
used them to validate cells with real numbers. Because Qt use them very often, I have considered
beneficial to construct a delegate with text input that provides an universal interface for the
specification of allowed input data. In Chapter 8.1.1, we used the regular expression for that.
Regular expressions are represented by the QRegExpValidator class in Qt, and this class inherits
from the QValidator class [43]. The text input class QLineEdit enables us to assign it QValidator,
which features functions for the determination of forbidden input data. Our universal delegate
accepts any QValidator ’s descendant. It is important to take into consideration that every time
users attempt to modify a cell, a new QLineEdit object together with QValidator are created.
Therefore, we have to deliver an interface offering the creation of appropriate QValidator to the
delegate. This could be smartly solved by factory design pattern. Resulting class diagram and
communication scheme of the new classes are depicted in Figures 12 and 13.

8.2 Overview of widgets

In the previous chapters, we have introduced several widgets which together create complete
GUI. In this section, we are going to summarise them and present a few new elements that have
been implemented during the implementation phase of the GUI development. The following sub-
chapters try to provide a comprehensive view for any interested reader, who would like to study
the source codes of GUI. On the other hand, they do not form a fully-fledged documentation of
code.

8.2.1 Main blocks

This section gives an overview of widgets that we got acquainted with in Chapter 5.4.1.

• WorkspaceWindow - it represents the main window which connects all subsequent widgets
together.

• WorkflowWidget - it is a tabbed widget that unites widgets for the configuration of input
(InputWidget), physics (PhysicsWidget), load steps (LoadstepWidget), and output (Out-
putConfigurationWidget).

49

Figure 12: Class diagram of the text input delegate with the universal interface for setting a
validator based on factory design pattern

Figure 13: Sequential diagram depicting the creation of a text input for the table cell editing
with delegate and validator

50

• DataSetsWidget - this widget provides a tree-like structure of its content, and it is intended
for the definition for any reusable data during the configuration of ECF. Currently, one is
able to define materials there.

• MeshWidget - a place where all 3D rendering of input mesh/model is performed. It accepts
a signal from RegionPickerWidget notifying which region should be hidden.

• RegionPickerWidget - it contains a list of all regions. Users are able to select regions that
will be rendered by MeshWidget. It accepts a signal from MeshWidget notifying which
region users clicked on and informs users about that.

8.2.2 Abstract structures

In Chapter 5.3.1, we devised the ECFObjectWidget class, which represents an ancestor of all
widgets that should take care of a specific ECFObject. The following classes and widgets are
designed to form starting point for a whole range of complex structures.

• IValidatableObject - this interface unifies structures, the contents of which can be validated,
e.g., a form for configuring physics implements this interface to provide a possibility to
check the correctness of input data.

• ISavableObject - this interface constitutes a basis for any object requiring methods for
saving its state. Specifically, in our case, it creates a tool for moving data from GUI
elements into ECFObjects and ECFValues.

• ECFObjectWidget - an abstract class which enables rendering of ECFObject.

• FixedECFObjectWidget - it inherits from ECFObjectWidget, and it is the simplest widget
that can be directly used to draw an ECFObject. It is suitable for applications in all areas
where enough space for all elements inside FixedECFObjectWidget is guaranteed. If it is
not, some elements might stay hidden to user’s eyes.

• ScrollECFObjectWidget - it is an alternative to FixedECFObjectWidget which solves the
issue of a want of space by the implementation of a scroll bar. Thus, users may scroll to
reach hidden elements.

• ECFObjectTreeWidget - some ECFObjects behave as a container for other ECFObjects.
Materials are a typical example. They consist of one object serving as the container which
contains particular materials. Imagine, that we have several different containers, and
we want to display them together inside one GUI element but their contents should be
separated. A tree seems to be the most suitable widget for this case in Qt. Each container
would be a direct child of the tree root, and the objects located inside the container would
be children of the container node. In practise, it looks like the data sets block in Figure 7,

51

where materials represent the container node, and steel and wood are the children nodes.
ECFObjectTreeWidget wraps the Qt tree widget with general functions for working with
ECFObjects including possibilities of adding a new one, editing existing ones, and deleting
them. This class is abstract and DataSetsWidget implements it.

8.2.3 Widgets for blocks of ECFValues

The configuration of ESPRESO includes many parameters which are represented by ECFValues
in the simplest form. Usually, these parameters are located in an ECFObject in a number greater
than one. For such groups of ECFValues, I implemented the ECFParameterTreeWidget class
that arranges the parameters into a tree. Every tree node features a GUI element appropriate
to the parameter’s data type (see Table 3), e.g., in the case of OPTION, it displays a combo
box with an expandable list of options.

8.2.4 Widgets for region properties and boundary conditions

There exists a special group of ECFObjects which behave as a dictionary, i.e., a structure with
key-value pairs. Such ECFObject features two data types or two descriptions inside its metadata.
In C++, the dictionary is implemented by the std::map class.

The main difference between a classic ECFObject and the dictionary ECFObject resides in
a homogeneity of their contents. The dictionary guarantees that all its contents are of same
parameter type (i.e., ECFValue or ECFObject) and data type, whereas the classic object may
contain a mixture of values and objects with various data types.

Region properties and boundary conditions are typical examples of dictionaries. In both
cases, the key-value pair is the property/condition, and the key is always a name of region. The
value is the expression in the case of ECFValue, but if a property is a dictionary of ECFObjects,
the value is represented by all parameters of that object. There is one dictionary for every single
property/condition, i.e., one property is a key-value pair of a region (key) and the specification
(value) of the property. GUI features following classes for the drawing of region properties and
boundary conditions:

• RegionPropertyWidget - a descendant of ECFObjectTreeWidget. It arranges the properties
into a tree. The children of root are the properties, and their children are the regions with
assigned definition of the property.

• RegionPairDialog - it is a dialog window that appears on the screen whenever a users want
to add a new property or edit existing one.

52

8.3 Compilers

ESPRESO officially supports the compilation with two distinct compilers, i.e., GCC and Intel.
GCC has to be combined with a MPI compiler such as OpenMPI or MPICH. On the other hand,
Intel offers a complete suite with compilers for both C/C++ and MPI.

During the implementation of GUI, I have encountered one issue regarding Qt compiled by
the Intel compiler. We have already mentioned the signals and slots that are used for event
handling in Qt. If we want to link signal and slot, we have to apply a connect method. There
exist two syntaxes of the method, a new one (functor-based) introduced with Qt 5, and an old
one (string-based). Listing 5 shows both notations. The old one is still fully supported, thus
developers may choose which one they would use. Nevertheless, in the case of Qt compiled
by the Intel compiler, the new syntax does not work, meaning that it is possible to perform
the compilation, however, the connection of signals and slots fail during runtime. The reason,
why this happens, is described in [44]. In short, it is a problem of linker and different memory
arrangement in comparison to GCC. According to Qt’s bug tracker [45], it seems that this issue
has been fixed by version 5.9.0, and if someone use an older version they have to rebuild it with
a special flag turned on. Nonetheless, I together with EDT have decided to use the old notation,
since it does not suffer from the problem, and during the development, I have not come across
any limitations. Moreover, this solution does not place any demands on users, who would have
to rebuild Qt in the case of the use of the new syntax.

// We create a button that changes contents of a text input

// when someone clicks on it. We have an imaginary widget

// with a function changeTextInputContent() which performs the change.

QPushButton* button = new QPushButton;

MyWidget* widget = new MyWidget;

// OLD SYNTAX

connect(button, SIGNAL(pressed()), widget, SLOT(changeTextInputContent()));

// NEW SYNTAX

connect(button, &QPushButton::pressed, widget, &MyWidget::

changeTextInputContent);

Listing 5: Example of the new notation and the old one for the connect method in Qt

8.4 Omitted features

In Chapters 3.1.1 and 4, we determined various requirements that GUI should meet. This section
summarises features, which have not been implemented yet.

53

8.4.1 Variables

In Chapter 4.1, we discussed expressions together with the variables, which behave as a reusable
container for the expression data types that may be applied everywhere, where an expression is
expected, just like a variable in classic programming languages.

Variables have not been implemented. Nevertheless, it is expected that users would be able
to define them in the data sets block. The ECF format supports the variables, however, they
can hold any string. In other words, their content is not limited to expressions only.

8.4.2 Parallelism

The current version of GUI implements the MpiManager class that we introduced in Chapter
6.3.1. However, I have integrated only the last point concerning the mesh distribution from
the list in Chapter 6.3.2. Also, the sharing of zero process between GUI and a calculation has
not been included yet. The sharing will be necessary for the remaining points in the list of
distributed operations.

54

9 Example of heat transfer computation

This chapter demonstrates the main output of this thesis, i.e., GUI for the ESPRESO configu-
ration. GUI capabilities are demonstrated on a basic computation example of heat transfer.

9.1 Cooler example

This example shows how to compute linear temperature distribution in an aluminium cooler
with GUI. The cooler is shown in Figure 14. The cooler’s body is divided into two regions, i.e.,
BOTTOM_NODE_SET and FACE_SET_01 3. The additional PART_01 region, which is not
depicted in the figure, represents the whole cooler.

BOTTOM_NODE_SET has constant temperature 80◦C, whereas FACE_SET_01 starts
with temperature 22◦C. The goal is to compute heat transfer from BOTTOM_NODE_SET to
the rest of cooler’s body. The computation requires additional physical properties to be specified.
They are summarised in the list below. Their meaning is not important in the context of this
thesis. The main aim is to show how one can set these properties via classic ECF and via GUI.

• 3D linear steady state problem

• Material configuration:

– Aluminium alloy

– Isotropic model

– Thermal conductivity λ = 154 [W ∗ m−1 ∗ K−1]

– Set to the PART_01 region

• Uniform initial temperature 293.15 [K]

• Constant temperature 80 [◦C], set to the BOTTOM_NODE_SET region

• Convection

– Set to the FACE_SET_01 region

– Ambient temperature Tamb = 22 [◦C]

– Heat transfer coefficient HTC = 80 [W ∗ m−2 ∗ K−1]
3ESPRESO uses two distinct groups of regions, i.e., element regions and boundary regions. Boundary

regions can divided into subgroups, i.e., face regions, edge regions, and node regions. For example, BOT-
TOM_NODE_SET is a node region, FACE_SET_01 is a face region, and PART_01 is an element region.
The meaning of these terms is out of the scope of this thesis. However, it is important to mention that the face
regions and the element regions can be directly drawn with the OpenGL triangles which GUI is prepared for.
The rest is not currently supported by GUI.

55

Figure 14: Aluminium cooler with region labels

9.1.1 Configuration via ECF

Listing 6 shows the ECF file for the Cooler example. It contains several parameters that we
have not met yet. Let us not pay attention to them and notice only those that are accompanied
by a comment.

DECOMPOSITION {

DOMAINS 16;

}

INPUT WORKBENCH;

PHYSICS HEAT_TRANSFER_3D;

WORKBENCH {

PATH cooler_linear.dat; # Path to the 3D model file

}

HEAT_TRANSFER_3D { # Heat transfer in 3D

LOAD_STEPS 1;

MATERIALS {

ALUMINIUM { # Aluminium alloy

THERMAL_CONDUCTIVITY {

MODEL ISOTROPIC; # Isotropic model

KXX 154; # Thermal conductivity

}

}

56

}

MATERIAL_SET {

PART_01 ALUMINIUM; # Aluminium alloy set to PART_01

}

INITIAL_TEMPERATURE {

ALL_ELEMENTS 22 + 273.15; # Uniform initial temperature

}

LOAD_STEPS_SETTINGS {

1 {

DURATION_TIME 1;

TYPE STEADY_STATE; # steady state problem

MODE LINEAR; # Linear

SOLVER FETI;

FETI {

PRECONDITIONER DIRICHLET;

PRECISION 1E-08;

MAX_ITERATIONS 200;

ITERATIVE_SOLVER ORTHOGONALPCG;

REGULARIZATION ALGEBRAIC;

}

TEMPERATURE {

BOTTOM_NODE_SET 80 + 273.15; # Constant temperature

}

CONVECTION { # Convection

FACE_SET_01 { # in FACE_SET_01

HEAT_TRANSFER_COEFFICIENT 80; # Heat transfer coefficient

EXTERNAL_TEMPERATURE 22 + 273.15; # Ambient temperature

}

}

}

}

}

OUTPUT {

PATH results;

FORMAT ENSIGHT;

RESULTS_STORE_FREQUENCY EVERY_TIMESTEP;

MONITORS_STORE_FREQUENCY EVERY_TIMESTEP;

STORE_RESULTS ALL;

}

57

Listing 6: ECF for the Cooler example

9.1.2 Configuration via GUI

Default GUI screen, which appears when one runs the program, is shown in Figure 15. It
corresponds with the GUI prototype in Figure 7.

We should begin with the loading of 3D model. The cooler’s geometry data were created in
Ansys Workbench. We can load it in the work flow block on the right. In the Mesh tab, we
have to change the input format to Ansys and set the path to the file with the geometry. The
correct setting is in Figure 16. After one clicks on the Load button, the 3D model together
with the information about regions are loaded. See the result4 in Figure 17.

Next, we might define a new material, i.e., aluminium in our case. In the Data sets block,
we should right click on materials and choose New. In the newly opened dialog window, we
have to specify Name, Description and KXX as it is in Figure 18.

Now, we move to the Physics tab. The first data container with the Property column can
be set straightforward according to Figure 19. In the Element region properties container,
we have to specify initial_temperature for the ALL_ELEMENTS region. It works same as
materials. One should right click on it and select New. A dialog window should appear and
the fields inside should be filled same as in Figure 20.

Let us digress from the Cooler example configuration for a while and recall the table and
the piecewise function. In the previous dialog window screen shot, we may see the Type field.
Changing the field value, one might switch to the table or the piecewise function. Example of
both is in Figure 21.

The example configuration continuous in the Materials tab. The assignment of a material
to regions is performed there. In our case, we attach the aluminium to PART_01 by right
clicking on material_set.

Another important step is the load step configuration. In the Physics tab, we have leaved
the number of load steps set to one. Thus, we have to fill the Load step 1 tab. The complete
configuration may be seen in Figure 22, where the red circles mark the attributes that we
should fill in. In the section named Boundary conditions, we have to add one region for
the temperature condition, and second one for the convection condition. Again, the add
operation can be done via a context menu, which appears when you perform a right click.

This is almost everything necessary before we can export ECF. Nevertheless, the last tab,
i.e. Output, has not been presented yet. It is the configuration interface for everything that has
been introduced in Chapter 2.3. In short, we may define there, what results ESPRESO should
produce, and where they should be saved. For the Cooler example, the output configuration
would be same as in Figure 23. In Chapter 2.3, we have also discussed the possibility of the

4The BOTTOM_NODE_SET region is not depicted due to the reasons discussed in Footnote 3.

58

Figure 15: Default GUI screen

Figure 16: Configuration of the input format

statistical data measurement. List of monitors is used for setting these measurements. For
example, if we wanted to monitor an average temperature of FACE_SET_01, we would add a
new monitor via the Add button and fill the fields. Figure 24 demonstrates this example.

If we run the solver with the constructed ECF file, we would obtain a graphical result of the
heat transfer as shown in Figure 25.

59

Figure 17: Loaded 3D model with regions

Figure 18: Aluminium - material configuration

60

Figure 19: Physics configuration

Figure 20: Initial temperature configuration

61

Figure 21: Example of table and piecewise function configuration

Figure 22: Load step configuration

62

Figure 23: Output configuration

Figure 24: Example of monitor

63

Figure 25: Result of the heat transfer computation

64

10 Conclusion

At the beginning, the ESPRESO frameworks was presented. The input layer was brought into
focus including the description of the ECF files. In Chapters 3 and 4, the requirements and
options of the final solution were analysed. In the following chapters, various parts of the new
application (GUI) were described and documented. During these chapters, one gets acquainted
with many frameworks, libraries, and technologies including Qt, hybrid parallelization with MPI
and OpenMP, OpenGL, and ExprTK. All of them were used to create the final application, which
was demonstrated in Chapter 9.

The outcome of this thesis is an application, which is directly connected to the ESPRESO
solver, and uses its functions for parsing the ECF files. On the basis of the ECF structure,
GUI draws appropriate graphical elements via Qt. A change of the ECF structure (i.e. a new
parameter added) has automatically an impact on the GUI layout, since the application scans
all parameters. The 3D model is rendered via OpenGL using the ESPRESO input layer, which
generates a set of triangles representing the rendered object. GUI can be run in parallel via
MPI and perform the parallel processing of the ECF files.

In Chapter 8.4, one may find a list of not implemented features in the current version of
GUI, which is attached to this thesis. Nevertheless, necessary steps for their implementation
were shown. Apart from these functions, one may think of many other improvements. Let us
show some examples. The 3D model would deserve better implementation of the zoom and the
rotation. Also, a graphical region highlighting with a border or a glare could be considered, when
users put the mouse cursor over a region. The current version of GUI uses default visual style
of the Qt widgets combining white and gray colours. This combination works, however, it looks
too ordinary. A better variation could be pondered together with the layout of GUI elements
including spacing between them, borders, font size, font colour, etc. In short, user experience
might be improved. Besides the visual aspects, one may try diverse technical possibilities of the
GUI and the solver interaction, e.g., the direct execution presented in Chapter 6, or a remote
execution with the solver located on a remote server.

To sum up, the final solution is an open source application with GUI featuring 3D rendering
with OpenGL. GUI dynamically reacts to the changed in the ECF structure. This thesis includes
a complete documentation of the application development including the analysis, the design and
the implementation. The application was demonstrated on a basic example of heat transfer. In
the paragraph above, the possible future work is summarised. Thus, all requirements specified
in the thesis assignment should be fulfilled.

65

References

[1] Fast Solver for HPC users. IT4I Espreso [online]. [cited 2018-02-07]. <http://espreso.

it4i.cz/>

[2] CSC - IT CENTER FOR SCIENCE LTD. Elmer [online]. [cited 2018-01-29]. <https:

//www.csc.fi/web/elmer/elmer>

[3] LYLY, Mikko. ElmerGUI manual v. 0.4 [online]. CSC – IT Center for Science, last revi-
sion 22nd May 2017 [cited 2018-01-29]. <http://www.nic.funet.fi/pub/sci/physics/

elmer/doc/ElmerguiManual.pdf>

[4] MALINEN, Mika. RABACK, Peter. Overview of Elmer [online]. CSC – IT Center for
Science, last revision 22nd May 2017 [cited 2018-01-29]. <http://www.nic.funet.fi/pub/

sci/physics/elmer/doc/ElmerOverview.pdf>

[5] DHONDT, Guido. WITTIG, Klaus. CalculiX - A Free Software Three-Dimensional Struc-
tural Finite Element Program [online]. [cited 2018-01-29]. <http://www.dhondt.de/>

[6] WITTIG, Klaus. CalculiX USER’S MANUAL - CalculiX GraphiX, Version 2.13 - [online].
Last revision 7th October 2017 [cited 2018-01-29]. <http://www.dhondt.de/cgx_2.13.

pdf>

[7] Calculix Launcher. Calculix - Free Finite Element Software [online]. [cited 2018-01-29].
<http://calculixforwin.blogspot.cz/2015/05/calculix-launcher.html>

[8] OPEN CASCADE. What is SALOME?. SALOME [online]. [cited 2018-01-29]. <http:

//www.salome-platform.org/>

[9] EDF R&D. Code_Aster - Analysis of Structures and Thermomechanics for Studies &
Research [online]. [cited 2018-01-29]. <https://www.code-aster.org/V2/UPLOAD/DOC/

Presentation/plaquette_aster_en.pdf>

[10] EDF R&D. Presentation of code_aster and Salome-Meca [online]. [cited 2018-01-29].
<https://www.code-aster.org/V2/UPLOAD/DOC/Formations/01-overview-2.pdf>

[11] GTK+ Features. The GTK+ Project [online]. [cited 2018-01-29]. <https://www.gtk.org/

features.php>

[12] GTK+ Download: GNU/Linux. The GTK+ Project [online]. [cited 2018-01-29]. <https:

//www.gtk.org/download/linux.php>

[13] GTK+ Download: Windows. The GTK+ Project [online]. [cited 2018-01-29]. <https:

//www.gtk.org/download/windows.php>

66

http://espreso.it4i.cz/
http://espreso.it4i.cz/
https://www.csc.fi/web/elmer/elmer
https://www.csc.fi/web/elmer/elmer
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerguiManual.pdf
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerguiManual.pdf
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerOverview.pdf
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerOverview.pdf
http://www.dhondt.de/
http://www.dhondt.de/cgx_2.13.pdf
http://www.dhondt.de/cgx_2.13.pdf
http://calculixforwin.blogspot.cz/2015/05/calculix-launcher.html
http://www.salome-platform.org/
http://www.salome-platform.org/
https://www.code-aster.org/V2/UPLOAD/DOC/Presentation/plaquette_aster_en.pdf
https://www.code-aster.org/V2/UPLOAD/DOC/Presentation/plaquette_aster_en.pdf
https://www.code-aster.org/V2/UPLOAD/DOC/Formations/01-overview-2.pdf
https://www.gtk.org/features.php
https://www.gtk.org/features.php
https://www.gtk.org/download/linux.php
https://www.gtk.org/download/linux.php
https://www.gtk.org/download/windows.php
https://www.gtk.org/download/windows.php

[14] GTK+ Download: Mac OS X. The GTK+ Project [online]. [cited 2018-01-29]. <https:

//www.gtk.org/download/macos.php>.

[15] Glade - A User Interface Designer [online]. Last revision 8th January 2018 [cited 2018-01-
29]. <https://glade.gnome.org>

[16] Overview. wxWidgets Cross-Platform GUI Library [online]. [cited 2018-01-29]. <https:

//www.wxwidgets.org/about/>

[17] Download. wxWidgets Cross-Platform GUI Library [online]. [cited 2018-01-29]. <https:

//www.wxwidgets.org/downloads/>

[18] List of Integrated Development Environments. wxWiki [online]. Last revision 2nd Jan-
uary 2015 [cited 2018-01-29]. <https://wiki.wxwidgets.org/List_of_Integrated_

Development_Environments>

[19] Get Qt. Qt [online]. [cited 2018-01-29]. <https://www.qt.io/download>

[20] Supported Platforms. Qt Documentation [online]. [cited 2018-01-29]. <http://doc.qt.io/

qt-5/supported-platforms.html>

[21] Qt APIs & Tools, Libraries and Qt Creator IDE. Qt [online]. [cited 2018-
01-29]. <https://www.qt.io/qt-features-libraries-apis-tools-and-ide/

?hsCtaTracking=5132775e-e46e-4d37-a8ef-72ffc974b5b9%

7Ca12ac986-23df-4dd4-85e1-b244030056f8>

[22] Create Your First Applications. Qt Documentation [online]. [cited 2018-01-31]. <https:

//doc.qt.io/qt-5.10/gettingstarted.html#create-your-first-applications>

[23] QWidget Class. Qt Documentation [online]. [cited 2018-01-31]. http://doc.qt.io/qt-5/

qwidget.html

[24] Layout Management. Qt Documentation [online]. [cited 2018-01-31]. http://doc.qt.io/

qt-5/layout.html

[25] Signals & Slots. Qt Documentation [online]. [cited 2018-01-31]. <http://doc.qt.io/qt-5/

signalsandslots.html>

[26] Hybrid Parallelism: Parallel Distributed Memory and Shared Memory Com-
puting. Intel (R) Software Developer Zone [online]. Last revision 12th May
2016 [cited 2018-01-31]. <https://software.intel.com/en-us/articles/

hybrid-parallelism-parallel-distributed-memory-and-shared-memory-computing>

[27] Set up the Environment. Installation of the library ESPRESO. ESPRESO 0.9 documen-
tation [online]. [cited 2018-01-31]. <http://espreso.it4i.cz/doc/installation.html#

set-up-the-environment>

67

https://www.gtk.org/download/macos.php
https://www.gtk.org/download/macos.php
https://glade.gnome.org
https://www.wxwidgets.org/about/
https://www.wxwidgets.org/about/
https://www.wxwidgets.org/downloads/
https://www.wxwidgets.org/downloads/
https://wiki.wxwidgets.org/List_of_Integrated_Development_Environments
https://wiki.wxwidgets.org/List_of_Integrated_Development_Environments
https://www.qt.io/download
http://doc.qt.io/qt-5/supported-platforms.html
http://doc.qt.io/qt-5/supported-platforms.html
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/?hsCtaTracking=5132775e-e46e-4d37-a8ef-72ffc974b5b9%7Ca12ac986-23df-4dd4-85e1-b244030056f8
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/?hsCtaTracking=5132775e-e46e-4d37-a8ef-72ffc974b5b9%7Ca12ac986-23df-4dd4-85e1-b244030056f8
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/?hsCtaTracking=5132775e-e46e-4d37-a8ef-72ffc974b5b9%7Ca12ac986-23df-4dd4-85e1-b244030056f8
https://doc.qt.io/qt-5.10/gettingstarted.html#create-your-first-applications
https://doc.qt.io/qt-5.10/gettingstarted.html#create-your-first-applications
http://doc.qt.io/qt-5/qwidget.html
http://doc.qt.io/qt-5/qwidget.html
http://doc.qt.io/qt-5/layout.html
http://doc.qt.io/qt-5/layout.html
http://doc.qt.io/qt-5/signalsandslots.html
http://doc.qt.io/qt-5/signalsandslots.html
https://software.intel.com/en-us/articles/hybrid-parallelism-parallel-distributed-memory-and-shared-memory-computing
https://software.intel.com/en-us/articles/hybrid-parallelism-parallel-distributed-memory-and-shared-memory-computing
http://espreso.it4i.cz/doc/installation.html#set-up-the-environment
http://espreso.it4i.cz/doc/installation.html#set-up-the-environment

[28] OpenMP Compilers & Tools. OpenMP [online]. [cited 2018-01-31]. <http://www.openmp.

org/resources/openmp-compilers/>

[29] BARNEY, Blaise. Message Passing Interface (MPI) [online]. Lawrence Livermore National
Laboratory, last revision 20th June 2017 [cited 2018-01-31]. <https://computing.llnl.

gov/tutorials/mpi/#LLNL>

[30] DE VIRES, Joey. OpenGL. Learn OpenGL [online]. [cited 2018-01-31]. <https://

learnopengl.com/Getting-started/OpenGL>

[31] DE VIRES, Joey. Learn OpenGL [online]. [cited 2018-01-31]. <https://learnopengl.

com/>

[32] DE VIRES, Joey. Hello Triangle. Learn OpenGL [online]. [cited 2018-01-31]. <https://

learnopengl.com/Getting-started/Hello-Triangle>

[33] HAWKINS, Kevin. a Dave. ASTLE. OpenGL game programming. Roseville, CA: Prima
Tech, 2001. ISBN 0-7615-3330-3.

[34] OpenGL and OpenGL ES Integration. Qt GUI. Qt Documentation [on-
line]. [cited 2018-01-31]. <http://doc.qt.io/qt-5/qtgui-index.html#

opengl-and-opengl-es-integration>

[35] QOpenGLShaderProgram Class. Qt Documentation [online]. [cited 2018-01-31]. <http:

//doc.qt.io/qt-5/qopenglshaderprogram.html>

[36] QOpenGLWidget Class. Qt Documentation [online]. [cited 2018-01-31]. <http://doc.qt.

io/qt-5/qopenglwidget.html>

[37] DE VIRES, Joey. Camera. Learn OpenGL [online]. [cited 2018-01-31]. <https://

learnopengl.com/Getting-started/Camera>

[38] OpenGL Picking Tutorial. Lighthouse3d.com [online]. [cited 2018-01-31]. <http://www.

lighthouse3d.com/tutorials/opengl-selection-tutorial/>

[39] PARTOW, Arash. C++ Mathematical Expression Library [online]. [cited 2018-02-07].
<http://partow.net/programming/exprtk/>

[40] QLineEdit class. Qt Documentation [online]. [cited 2018-02-07]. <http://doc.qt.io/

qt-5/qlineedit.html>

[41] QItemDelegate class. Qt Documentation [online]. [cited 2018-02-07]. <http://doc.qt.io/

qt-5/qitemdelegate.html>

[42] QRegularExpression class. Qt Documentation [online]. [cited 2018-02-07]. <http://doc.

qt.io/qt-5/qregularexpression.html>

68

http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/
https://computing.llnl.gov/tutorials/mpi/#LLNL
https://computing.llnl.gov/tutorials/mpi/#LLNL
https://learnopengl.com/Getting-started/OpenGL
https://learnopengl.com/Getting-started/OpenGL
https://learnopengl.com/
https://learnopengl.com/
https://learnopengl.com/Getting-started/Hello-Triangle
https://learnopengl.com/Getting-started/Hello-Triangle
http://doc.qt.io/qt-5/qtgui-index.html#opengl-and-opengl-es-integration
http://doc.qt.io/qt-5/qtgui-index.html#opengl-and-opengl-es-integration
http://doc.qt.io/qt-5/qopenglshaderprogram.html
http://doc.qt.io/qt-5/qopenglshaderprogram.html
http://doc.qt.io/qt-5/qopenglwidget.html
http://doc.qt.io/qt-5/qopenglwidget.html
https://learnopengl.com/Getting-started/Camera
https://learnopengl.com/Getting-started/Camera
http://www.lighthouse3d.com/tutorials/opengl-selection-tutorial/
http://www.lighthouse3d.com/tutorials/opengl-selection-tutorial/
http://partow.net/programming/exprtk/
http://doc.qt.io/qt-5/qlineedit.html
http://doc.qt.io/qt-5/qlineedit.html
http://doc.qt.io/qt-5/qitemdelegate.html
http://doc.qt.io/qt-5/qitemdelegate.html
http://doc.qt.io/qt-5/qregularexpression.html
http://doc.qt.io/qt-5/qregularexpression.html

[43] QValidator class. Qt Documentation [online]. [cited 2018-02-07]. <http://doc.qt.io/

qt-5/qvalidator.html>

[44] MACIEIRA, Thiago. Linux-icc: always compile applications as position-independent execs.
Qt Code Review [online]. Last revision 26th January 2017 [cited 2018-02-13]. <https:

//codereview.qt-project.org/#/c/183454/>

[45] New Qt5 signal/slot syntax not working with Intel Compiler 16. Qt Bug Tracker [online].
Last revision 11th May 2017 [cited 2018-02-13]. <https://bugreports.qt.io/browse/

QTBUG-52439>

[46] Modern OpenGL. GLUMPY [online]. [cited 2018-02-20]. <https://glumpy.github.io/

modern-gl.html>

[47] Primitive. OpenGL Wiki [online]. Last revision 31st December 2017 [cited 2018-04-06].
<https://www.khronos.org/opengl/wiki/Primitive>

[48] SALOME Desktop. Salome Platform Documentation [online]. [cited 2018-04-20]. <http:

//docs.salome-platform.org/latest/gui/GUI/salome_desktop_page.html>

69

http://doc.qt.io/qt-5/qvalidator.html
http://doc.qt.io/qt-5/qvalidator.html
https://codereview.qt-project.org/#/c/183454/
https://codereview.qt-project.org/#/c/183454/
https://bugreports.qt.io/browse/QTBUG-52439
https://bugreports.qt.io/browse/QTBUG-52439
https://glumpy.github.io/modern-gl.html
https://glumpy.github.io/modern-gl.html
https://www.khronos.org/opengl/wiki/Primitive
http://docs.salome-platform.org/latest/gui/GUI/salome_desktop_page.html
http://docs.salome-platform.org/latest/gui/GUI/salome_desktop_page.html

A Appendix on CD

Files

• cooler.dat - 3D mesh with the Cooler example in the Ansys Workbench format.

• espreso.zip - a ZIP archive with the Git repository of ESPRESO including GUI. For this
thesis, the important subdirectory is espreso/src/gui, where the main source code of GUI
is located.

• guide.pdf - installation guide of ESPRESO.

• thesis.pdf - PDF copy of this thesis.

70

B Figures of existing GUI configuration tools

Figure 26: ElmerGUI [3]

71

Figure 27: SALOME [48]

72

Figure 28: CalculiX GraphiX [6]

73

	List of symbols and abbreviations
	List of Figures
	List of Tables
	Listings
	Introduction
	ESPRESO
	Input
	ECF structure
	Output

	Analysis
	Requirements
	Existing solutions
	Libraries and frameworks
	Summary of analysis

	Functional requirements
	Expressions
	3D model
	Parallel execution
	Validation

	Design
	Input structure of ESPRESO
	Basic principles of Qt
	Connection of Qt and ESPRESO
	Prototype of GUI

	Parallelization
	Parallelism in ESPRESO
	Parallelism in GUI
	Integration of MPI in GUI

	Visualisation of 3D model
	OpenGL
	OpenGL in Qt
	Implementation

	Implementation of GUI
	Widgets for expressions
	Overview of widgets
	Compilers
	Omitted features

	Example of heat transfer computation
	Cooler example

	Conclusion
	References
	Appendix
	Appendix on CD
	Figures of existing GUI configuration tools

