

VŠB — TECHNICAL UNIVERSITY OF OSTRAVA

FACULTY OF ECONOMICS

DEPARTMENT OF FINANCE

Srovnání vybraných metod pro oceňování opcí pomocí C++

Comparison of Selected Methods for Option Pricing Using C++

Student: Lun Gao

Supervisor of the diploma thesis: doc. Ing. Tomáš Tichý, Ph.D.

Ostrava 2018

 3

Contents

1 Introduction………………………………………………………………………….5

2. Analysis of financial derivatives and their pricing…………………………………7

 2.1 Wiener process……………………………………………………...…………..9

 2.2 General Wiener process…………………………………………....……...…...1é

 2.3 Ito calculus and Ito’s Lemma…………………………………………………..11

 2.4 The behavior process of stock price without dividend…………………………13

 2.5 Levy process. ……………………………………………………...…………..15

 2.6 Normal Inverse Gaussian Distribution…………………………………………16

3. Description of selected methods for option pricing………………………………..20

 3.1 Black-Scholes option pricing theory……………………...……………………20

 3.2 The numerical method of option pricing………………………………….……26

 3.2.1 Monte Carlo method………………………………………………………26

 3.2.2 Binomial tree method………………………………………..……………33

 3.2.3 Finite-difference method………………………………………………….37

4. Evaluation of selected method……………………………………………………..43

 4.1 The analytical solution of Black-Scholes model……………………………….44

 4.2 The numerical solution of Black-Scholes model………………………………45

 4.2.1 The Monte Carlo Method………………………………………………..46

 4.2.2 The binomial tree method………………………………………………..48

 4.2.3 The finite difference method……………………………………………..52

 4.3 The option pricing of American options……………………………...………..57

 4

 4.4 Application of option pricing model in real market……………………………64

5.Conclusion………………………………………………………………....………72

Bibliography………………………………………………………………....………74

List of Abbreviations………………………………………………………………...78

Declaration of Utilization of Results from the Diploma Thesis

List of Annexes

Annexes

 5

Chapter 1. Introduction

As we all know, the world financial market is developing rapidly. Various types of

transactions are complex and increasingly sophisticated. After going through several

global financial crises, how to properly price financial derivatives has become an

increasingly important topic in the financial sector today. Among them, the study of

options is even more hot. In the study of option pricing, the pricing methods are mainly

divided into two major categories of backward stochastic differential equations and

martingale method. The widely used Black-Scholes partial differential equation is a

special backward stochastic differential equation. Because its complexity determines

the pricing of options is very difficult.

Since the scope of this topic is very broad, there are many aspects to be studied

and it is impossible to cover everything. It is important to study the direction and ideas.

So the main objective of this diploma thesis is to compare different options pricing

methods and their application in the real market.

This thesis is divided into five main sections:

The first part of thesis is an introduction that focuses on explaining the main goals

of this thesis and the structure of the article.

The second part of thesis will provide basic preliminary knowledge of option

pricing such as the origin and development of the Black-Scholes model, the relationship

between the option price and the underlying asset price, etc.

The third part of the article will focus on the methods that thesis chose to use. It

mainly includes the establishment background of the Black-Scholes equation, the

 6

derivation and solution of partial differential equations, and the intrinsic deficiencies of

the Black-Scholes option pricing model. At the same time, several common numerical

methods in option pricing are introduced in detail, such as binomial tree method, Monte

Carlo simulation method and finite difference method.

The fourth chapter of thesis can be divided into two parts. The first part focuses

on using the sample data of the Chicago Board of Trade to calculate with different

pricing methods. The results from different numerical methods are compared with the

analytical solutions, and the most accurate method in the numerical solution can be

obtained. At the same time, sensitivity analysis is also used to determine the impact of

simulation times on the accuracy of the pricing model. The second part will use the

Hong Kong Stock Exchange's stock and stock option data to calculate the theoretical

price of European and American options. Then compare the resulting theoretical price

with the real market price.

The fifth part is the conclusion which will explain the deviation between the

market price and the theoretical price, also the comparison of several pricing models

will be concluded.

 7

Chapter 2. Analysis of financial derivatives and their pricing

A derivative is a financial contract that derives its value from an underlying asset.

The buyer agrees to purchase the asset on a specific date at a specific price.

Derivatives are often used for commodities, such as oil, gasoline or gold. Another

asset class is currencies, often the U.S. dollar. There are derivatives based on stocks or

bonds. Still others use interest rates, such as the yield on the 10-year Treasury note.

The contract's seller doesn't have to own the underlying asset. He can fulfill the

contract by giving the buyer enough money to buy the asset at the prevailing price. He

can also give the buyer another derivative contract that offsets the value of the first.

This makes derivatives much easier to trade than the asset itself.

Many different types of derivatives have different pricing mechanisms. The most

common derivative types are futures contracts, forward contracts, options and swaps.

More exotic derivatives can be based on factors such as weather or carbon emissions.

A derivative is a financial contract with a value based on an underlying asset.

Options on stocks and exchange-traded funds are also common derivative

contracts. Options give the buyer the right, as opposed to the obligation, to buy or sell

100 shares of a stock at a strike price for a predetermined amount of time. The best-

known pricing model for options is the Black-Scholes method. This method considers

the underlying stock price, option strike price, time until the option expires, underlying

stock volatility and risk-free interest rate to provide a value for the option.

There are many types of options. Divided by exercise time, there are three types

of European options, American options, Bermuda options. European option is an option

 8

that can only exercise at the end of its life, at its time. European options tend to

sometimes trade at a discount to their comparable American option because American

options allow investors more opportunities to exercise the contract. European options

Normally trade over the counter, while American options usually trade on standardized

exchanges. An American option is an option that can be exercised anytime during its

life. American options allow option holders to exercise the option at any time prior to

and including its maturity date, thus increasing the value of the option to the holder

relative to European options, which can only be exercised at maturity. The majority of

exchange-traded options are American. A Bermuda option is a type of exotic option

that can be exercised only on predetermined dates, typically every month. Bermuda

options are a combination of American and European options; they are exercisable at

the date of expiration, and on certain specified dates that occur between the purchase

date and the date of expiration. In addition, there are more complex derivative than

regular options (standard European or American options). These are the exotic options

just mentioned (barrier options, lookback options, shout options, Asian options…).

We often use two different methods in the pricing of options: series of methods

derived from the normal distribution of the underlying asset prices and series of

methods derived from the fat tail distribution and skewness distribution of the

underlying asset price.

Classically, the factors affecting the pricing of options are price of underlying asset,

exercise price, expiry date, volatility of underlying asset price, risk free rate and size of

the proposed dividend. These factors have different influence on different kinds of

 9

options. In fact, price of underlying asset is the key variable influence the option price.

2.1 Wiener process

The change in the stock price is uncertain so it is suitable to be described in a

stochastic process. First of all we will introduce the Markov process. In Markov process

the change of a variable depends only on the state of the variable in the first instant.

When variables follow a Markov process, the variances of the variables in the adjacent

time are additive, but the standard deviation does not have additivity. The most

important feature of Markov process is independent and identically distributed of

random changes of variables.

The Wiener process could be seen as a special form of Markov process. If the

variable obeys the Wiener process the expected value of the variable is 0 and the

variance is 1. The stock price model is usually expressed in the Wiener process. In

physics this process is also called the Brownian movement.

If the variable 𝑧 = 𝑧(𝑡) obey the Wiener process its increment 𝛥𝑧 must met the

following two basic properties.

Property 2.1.1

The relationship between ∆𝑧	and ∆𝑡 satisfaction:

 (2.1.1)

The 𝜀	is a random value extracted from the standard normal distribution. The simplest

case of a normal distribution is known as the standard normal distribution. This is a

special case when 𝜇 = 0	and 𝜎 = 1, and it is described by this probability density

function:

Δz = ε Δt

 10

The normal distribution is the only absolutely continuous distribution whose

cumulants beyond the first two (i.e., other than the mean and variance) are zero. It is

also the continuous distribution with the maximum entropy for a specified mean and

variance. Assume that the mean and variance are finite, that the normal distribution is

the only distribution where the mean and variance calculated from a set of independent

draws are independent of each other.

Property 2.1.2

The value of ∆𝑧	and ∆𝑡 at any two different time intervals is independent.

From the properties 2.1.1 we can get that ∆𝑧 is the normal distribution which

obey the expected value is 0, variance equals to ∆𝑡, the standard deviation is √∆𝑡. The

properties 2.1.2 means the variable 𝑧 = 𝑧(𝑡) obey the Markov process.

Again, by properties 2.1.2, when ∆𝛵 → 0 the differential form of ∆𝑧 is:

 (2.1.2)

where 𝜀 is a random value extracted from the standard normal distribution.

2.2 General Wiener process

Variable 𝑥 are subject to the general Wiener process as follows:

 (2.2.1)

Among them, 𝑎	and 𝑏 are constant.	𝑎 is the expected drift rate of the general Wiener

process and 𝑏 is the volatility.

The formula (2.2.1) is made up of two parts, if do not consider the 𝑏𝑑𝑧, then exist:

ϕ(x) = 1
2π

e
−1
2
x2

dz = ε dt

dx = adt + bdz

 11

 or

The 𝑥5 is the value of the 𝑥 at the time 0, after 𝑡 time, the increment of the 𝑥 is 𝑎𝑡.

If only 𝑏𝑑𝑧 is considered, then exist:

𝑏𝑑𝑧 can be seen as a noise or fluctuation attached to the trail of a variable 𝑥, these

noises or fluctuations are the 𝑏 times of the Wiener process.

Take 𝑎𝑑𝑡 and 𝑏𝑑𝑧 into consideration, there exist:

After the time increment of ∆𝑡, the increment of the 𝑥 is:

 (2.2.2)

Bring the formula (2.2.1) into (2.2.2) can get:

 (2.2.3)

As mentioned in the previous article, 𝜀 is random sampling value derived from the

standardized normal distribution. So the 𝑥 obeys the normal distribution. Its average

value is 𝑎Δ𝑡, variance is 𝑏6Δ𝑡 and the standard deviation is 𝑏√∆𝑡.

From the above discussion, we can conclude that after at any time 𝑡, the change

of the 𝑥 also obeys the normal distribution of average value is 𝑎∆𝑡, variance is 𝑏6∆𝑡

and the standard deviation is 𝑏√∆𝑡.

2.3 Ito calculus and Ito’s Lemma

If the 𝑎 and 𝑏 are functions of 𝑥 and	𝑡 in stochastic process which mentioned

in chapter 2.2. We can get Ito calculus:

dx = adt x = x0 + at

dx = bdz

dx = adt + bdz

Δx = aΔt + bΔz

Δx = aΔt + bε Δt

 12

 (2.3.1)

The expected drift rate and volatility in the Ito process vary with time.

Theorem 2.3.1 (Ito’s Lemma)

Assume that the variable 𝑥 obeys the Ito calculus:

𝑑𝑧 is the Wiener process, suppose that the 𝐺 = 𝐺(𝑥, 𝑡) is the twice continuously

differentiable function of the 𝑥, then the 𝐺 = 𝐺(𝑥, 𝑡) follows the following process:

 (2.3.2)

Mathematical proof:

From the Taylor expansion formula of the binary function

 (2.3.3)

 (2.3.4)

 (2.3.5)

From formula (2.3.4), can get

 (2.3.6)

Take formula (2.3.4), (2.3.5) and (2.3.6) into (2.3.3), can get

Make ∆𝑡 → 0, can get

dx = a(x,t)dt + b(x,t)dz

dx = a(x,t)dt + b(x,t)dz

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

ΔG = ∂G
∂x

Δx + ∂G
∂t

Δt + 1
2
⋅ ∂

2G
∂x2 Δx

2 + ∂2G
∂x∂t

ΔxΔt + 1
2
⋅ ∂

2G
∂t2

Δt2 + ⋅⋅⋅

∵

Δx = a(x,t)Δt + b(x,t)ε Δt

∴

Δx2 = b2ε 2Δt + o(Δt)

ΔxΔt = a(x,t)Δt2 + b(x,t)ε (Δt3) = o(Δt)

ΔG = ∂G
∂x

Δx + ∂G
∂t

Δt + 1
2
⋅ ∂

2G
∂x2 b

2Δt + o(Δt)

 13

 (2.3.7)

Then take 𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧 into formula (2.3.7),can get

 (2.3.8)

Quod erat demonstrandum.

From the Ito lemma will know, if 𝑥, 𝑡 obey the Ito calculus, in that way the

function of 𝑥, 𝑡. 𝐺 also obey the Ito calculus, but the drift rate and the fluctuation rate

are

and ,

respectively.

2.4 The behavior process of stock price without dividend

Assume that the stock price obeys the general Wiener process, there is a constant

expected drift rate and volatility, which is not fix the reality. So, it is generally assumed

that the proportion of the stock price changes 𝑑𝑆/𝑆 obeys the general Wiener process,

that is

 (2.4.1)

Therefore, the stock price 𝑆 can be described by the Ito calculus of the drift rate 𝜇𝑆

and the volatility 𝜎𝑆.

That is

 (2.4.2)

Its dispersed form is

ΔG = ∂G
∂x

dx + ∂G
∂t

dt + 1
2
⋅ ∂

2G
∂x2 b

2dt

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2 ∂G
∂x

b
⎛
⎝⎜

⎞
⎠⎟

2

dS
S

= µdt +σ dz

ΔS = µSdt +σ Sdz

 14

 (2.4.3)

If 𝜇 and 𝜎 are constant, the formula (2.4.2) is called the geometric Brownian motion

which is the most widely used model to describe the behavior of stock prices.

If 𝑆 obeys the Ito calculus, the function 𝐺 of 𝑆 and 𝑡 also subject to the Ito

calculus :

 (2.4.4)

Where both 𝑆 and 𝐺 are affected by 𝑑𝑧. Define 𝐺 = 𝑙𝑛𝑆.

, ,

 Simplify the formula (2.4.4)

 (2.4.5)

 𝜇 and 𝜎 and y are constant

Formula (2.4.5) is also the Wiener process, the drift rate and the fluctuation rate are

 and .

Therefore the change of the 𝑙𝑛𝑆 between the 𝑡 and the 𝑇 times follows the normal

distribution. The expectation and variance are

and .

Which means

ΔS = µSΔt +σ SΔz

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

= ∂G
∂S

µS + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂S
σ Sdz

∵

∂G
∂S

= 1
S

∂2G
∂S 2 = − 1

S 2

∂G
∂t

= 0

∴

dG = (µ − σ 2

2
)dt +σ dz

∵

∴

µ − σ 2

2
σ

dG = µ − σ 2

2
⎛
⎝⎜

⎞
⎠⎟
dt +σ dz σ 2(T − t)

 15

or

 (2.4.6)

Where 𝑁(𝑚, 𝑠) means the normal distribution which the expected value is 𝑚 and the

variance is 𝑠.

The above is the analysis and inference of the option pricing methods based on the

underlying asset price fix the Gaussian distribution. With the development of

mathematical sciences, a deeper level of research has found that the price of the

underlying asset does not strictly adhere to the standard normal distribution. The data

often shows partial peaks and fat tails.

2.5 Levy process

 More and more studies can prove that the price fluctuation and the rate of return

of financial assets are contrary to the geometric Brownian motion. At the same time,

the assumption of the Black-Scholes model is too strict. So we will introduce the Levy

process which is a stochastic process with independent, stationary increments: it

represents the motion of a point whose successive displacements are random and

independent, and statistically identical over different time intervals of the same length.

A Levy process may thus be viewed as the continuous-time analog of a random walk.

The definition of Levy process: The stochastic process 𝐿𝐿C{𝐿C:𝑡 ≥ 0} defined in the

probability space (Ω, 𝐹, 𝑃) which satisfies the following three conditions called Levy

process.

lnST − lnS ∼ N (µ − σ 2

2
)(T − t),σ 2(T − t)

⎛
⎝⎜

⎞
⎠⎟

lnST ∼ N lnS + (µ − σ 2

2
)(T − t),σ 2(T − t)

⎛
⎝⎜

⎞
⎠⎟

 16

1. 𝐿C has independent increments, i.e. 𝐿C − 𝐿K is independent of 𝐹K for any

0 ≤ 𝑠 < 𝑡 ≤ 𝑇.

2. 𝐿C has stationary increments, i.e. for any 0 ≤ 𝑠,	𝑡 ≤ 𝑇 the distribution of

𝐿KNC − 𝐿C does not depend on 𝑡.

3. 𝐿C is stochastically continuous, i.e. for every 0 ≤ 𝑡 ≤ 𝑇 and 𝜖 > 0 :

lim
K→C

𝑃(|𝐿C − 𝐿K| > 𝜖) = 0.

If 𝐿 is Levy process, the distribution 𝐿 = 𝐿C − 𝐿5 is infinite divisible.

2.6 Normal Inverse Gaussian Distribution

 The normal inverse Gaussian distribution (NIG) is a continuous probability

distribution, which is defined as the normal variance-average mixture with an inverse

Gaussian distribution (IG). The IG process is a normal stochastic time distribution

process. The time increment of a random variable with a normal distribution for the

first time to a certain critical value is used as the distribution of the new random variable.

Its density function is:

 . (2.6.1)

Its characteristic function is:

 (2.6.2)

 NIG model use IG process as a dependent process and use it to drive the Brownian

motion of the time variable. The NIG model can be defined by two ways, as well. The

first one utilize the characteristic function (𝛼 > 0,−𝛼 < 𝛽 < 𝛼, 𝛿 > 0):

f (x) = aeab

2π
x
−3
2
−1
2
(a3x−1+b2x)

E(eiuX) =ϕ(u;a,b) = e−a(−2iu+b2 −b)

 17

 . (2.6.3)

Then, the density function is given as follows:

 , (2.6.4)

where 𝐾Y(𝑥) is modified Bessel function:

 . (2.6.5)

Alternatively, following the definition of the Brownian motion driven by inverse

Gaussian process, i.e. process 𝐿(𝑡; 𝑣) with drift 𝑣, which at time 𝐿~𝐼𝐺[𝑡; 𝑣] reaches

level 𝑡, as follows:

 . (2.6.6)

In this case we can formulate the characteristic function as follows:

 , (2.6.7)

which result into:

 , and . (2.6.8)

Similarly to variance gamma model also in the case of the NIG model particular

parameters allows us to fit the skewness and kurtosis. We can see on next table.

ϕNIG(x,t;α ,β ,δ) = exp −tδ (α 2 − (β + ιx)2 − α 2 − β 2)⎡
⎣⎢

⎤
⎦⎥

fNIG (x,t;α ,β ,δ) =
αδ
π

exp δ α 2 − β 2 + βx() K1(α δ 2 + x2)

δ 2 + x2

Kλ (x) =
1
2

yλ−1 exp − 1
2
x(y + y−1)

⎛
⎝⎜

⎞
⎠⎟
dy

0

−∞

∫

NIG(L(t;v);θ;ϑ) = θLt +ϑZ(Lt) = θLt +ϑ Ltε

φNIG(x;v,θ ,ϑ) = exp
1
v
− 1
v
(1+ x2ϑ 2v − 2θvι)⎡

⎣
⎢

⎤

⎦
⎥

θ = δβ
α 2 − β 2 ϑ =

δ α 2 − β 2

α − β α + β
v = 1

δ α 2 − β 2

 18

Model NIG

Parameter

Mean

Variance

Skewness

Kurtosis

 Table 2.6.1 Comparison of basic moments for NIG model.

 While Black-Scholes model is based on the geometric Brownian motion, and thus

the unrealistic assumption of Gaussian distribution, more advance NIG model allows

us to fit also the skewness and excess kurtosis of the returns. Recall NIG process

𝑁𝐼𝐺(𝐿(𝑡; 𝑣); 𝜃; 𝜗):

 . (2.6.9)

The above is the analysis of two kinds of distributions that are commonly used in option

pricing. In this diploma thesis we will only price options for hypothetical underlying

asset price distributions that conform to Gaussian distributions.

 Since the B-S model was first published in the Journal of Political Economy in

1973, the traders at the Chicago Board Options Exchange immediately realized its

importance, and soon programmed the B-S model into computers for use in the newly

opened Chicago Options Exchange. The application of this formula expands with the

advancement of computer and communication technology. To this day, the model and

some of its variants have been widely used by options dealers, investment banks,

NIG(L(t;v);θ ,ϑ)

θ

ϑ 2 + vθ 2

3θv(ϑ 2 + vθ 2)
−1
2

3vθ
2(1+5v)+ϑ 2(1+ v)

ϑ 2 + vθ 2

NIGt = θLt +ϑZ(Lt) = θLt +ϑ Ltε

 19

financial managers, insurers, and so on. The expansion of derivatives has made the

international financial market more efficient, but it has also made the global market

more volatile. The creation of new technologies and new financial instruments has

strengthened the interdependence of markets and market participants, not only in one

country but also in other countries or even multiple countries. The result is that a market

or a country's volatility or financial crisis is most likely to be rapidly transmitted to

other countries and even the entire world economy. The result is that a market or a

country's volatility or financial crisis is most likely to be rapidly transmitted to other

countries and even the entire world economy. Therefore, it is necessary to cultivate risk-

averse financial derivatives markets. It is also necessary to explore derivative markets.

Although there are many advantages in the Black-Scholes option pricing model, its

derivation process is difficult for people to accept. In 1979, Ross et al. used a relatively

simple method to design a pricing model for options, known as the Binomial tree

method.

 In thesis Monte Carlo simulations, least-squares Monte Carlo simulations,

binomial methods, and finite difference methods will be used to analyze the options

price.

 20

Chapter 3. Description of selected methods for option pricing

Financial option is a kind of contract which gives the buyer (the owner or holder

of the option) the right, but not the obligation, to buy or sell an underlying asset or

instrument at a specified strike price on a specified date, depending on the form of the

option. The holder of call option has the right to buy the underlying asset or instrument;

the holder of put option has right to sell the underlying asset or instrument. The holder

of European option can only exercise the option at the end of its life, at its maturity.

American options allow option holders to exercise the option at any time prior to and

including its maturity date. Through the introduction of the partial differential equations

and Wiener process in Chapter 2, we can draw the Black-Scholes model.

3.1 Black-Scholes option pricing theory

The price of derivatives of non-dividend paying stock must be satisfied the Black

Scholes partial differential equation. The Black Scholes partial differential equation is

based on the following hypothesis:

1. The stock price follows the geometric Brownian motion.

2. Allow short selling of derived securities.

3. Without transaction costs or taxes, all securities are highly separable.

4. In the period of validity of derived securities, the underlying assets will not pay

dividends.

5. There is no chance of risk-free arbitrage.

6. The transaction of securities is continuous.

7. The riskless interest rate 𝑟 is constant and same for all maturity days.

 21

According to hypothesis 1:

 (3.1.1)

In formula (3.1.1) 𝑧 is a Wiener process, 𝜇 is the expected rate of return on stock

prices, 𝜎 is the volatility of the stock price.

Suppose that the derivative securities price 𝑓 depends on the underlying asset

price 𝑆, so 𝑓 must be a function of 𝑆 and time 𝑡.

From Ito's lemma:

 . (3.1.2)

The discrete forms of formula (3.1.1) and (3.1.2) are:

 , (3.1.3)

 , (3.1.4)

In these two formulas, ∆𝑓 and ∆𝑆 are variation of 𝑓 and 𝑆 after a short interval of

time ∆𝑡 . Since 𝑓 and 𝑆 comply with the same Wiener process, the ∆𝑧 of two

formula (3.1.3) and (3.1.4) should be the same. So, a proper selection of stock and

derivative portfolio can eliminate the uncertainty ∆𝑧.

 In order to eliminate the ∆𝑧 , we can build a portfolio with one unit derived

securities short position and de
df

 units of securities long position. 𝛱 represents the

value of the portfolio, and there is a result:

.

After ∆𝑡 time, the value of the portfolio changes to:

dS = µSdt +σ Sdz

df = ∂ f
∂S

µS + ∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
dt + ∂ f

∂S
σ Sdz

ΔS = µSΔt +σ SΔz

Δf = ∂ f
∂S

µS + ∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt + ∂ f

∂S
σ SΔz

Π = − f + ∂ f
∂S

S

 22

 (3.1.5)

Substituting ∆𝑆 and ∆𝑓 into formula (3.1.5), get:

 . (3.1.6)

 Because formula (3.1.7) does not contain 𝛥𝑧, the value of the portfolio after the

time interval ∆𝑡 must be no risk, the instantaneous rate of return after ∆𝑡 is equal to

the risk-free rate. Otherwise, the arbitrage can gain a risk-free rate by arbitrage, so the

result should be:

 . (3.1.7)

Take formula (3.1.7) into (3.1.6), get:

After finishing, get:

 . (3.1.8)

The formula (3.1.8) is the Black-Scholes partial differential equation. This equation

applies to all derivative securities pricing that depends on the price of the underlying

asset price 𝑆. There are many solutions to the equation. To ensure that it has a unique

solution, we need to give the boundary conditions that meet the derivative securities.

 For European call options, the key boundary conditions are:

 , (3.1.9)

When 𝑆(𝑡) = 0, the options have no value, so the boundary condition is:

 . (3.1.10)

ΔΠ = −Δf + ∂ f
∂S

ΔS

ΔΠ = − ∂ f
∂t

− 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt

ΔΠ = rΠΔt

∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt = r f − ∂ f

∂S
S

⎛
⎝⎜

⎞
⎠⎟
Δt

∂ f
∂t

+ rS ∂ f
∂S

+ 1
2
⋅σ 2S 2 ∂2 f

∂S 2 = rf

c(S ,t) = max S − X ,0{ } t = T

c(0,t) = 0

 23

When 𝑆(𝑡) → +∞, 𝑐(𝑆, 𝑡) → +∞ the value of the option becomes the value of the

stock. That is:

 , (3.1.11)

According to the boundary condition formula (3.1.9), (3.1.10) and (3.1.11), the

equation (3.1.8) can be solved.

 The equation (3.1.8) is similar to the diffusion equation, but it has more items. For

the convenience of getting solution, we set:

The equation (3.1.8) changes to:

 , (3.1.12)

At this time the termination condition is transformed into the initial condition.

The equation (3.1.12) only have one parameter k, so we make:

.

Here α and β are undetermined constants, take into (2.5.12) so that can get the new

equation:

 (3.1.13)

Now choose α and β and make them satisfied:

 ，

 .

c(S ,t) ∼ S S→∞

S = Xex ,t = T − 1
2
τσ 2 , f = Xυ(x,τ).

∂υ
∂t

= (k −1) ∂υ
∂x

+ ∂2υ
∂x2 − kυ k = r / 1

2
σ 2⎛

⎝⎜
⎞
⎠⎟

υ(x,0) = max ex −1,0{ }

υ = eαx+βτu(x,τ)

βu + ∂u
∂τ

=α 2u + 2α ∂u
∂x

+ ∂2u
∂x 2 + k +1() αu + ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟
− ku

β =α 2 + (k −1)α − k

0 = 2α − (k −1)

 24

So that can get:

 , .

So

 , (3.1.14)

the 𝑢 in equation (3.1.14) satisfied:

 , , ,

subject to

 .

 From the knowledge of differential equation, get:

 .

Change to 𝑥n = (𝑥 − 𝑠)/√2𝜏, so:

 , (3.1.15)

here

α = − 1
2
(k −1) β = − 1

4
(k −1)2

υ(x,τ) = exp − 1
2
(k −1)x − 1

4
(k +1)2τ⎡

⎣
⎢

⎤

⎦
⎥u(x,τ)

∂u
∂τ

= ∂2u
∂x2

−∞ < x < +∞ τ > 0

u(x,0) = u0(x) = max exp
1
2
(k +1)x

⎡

⎣
⎢

⎤

⎦
⎥ − exp

1
2
(k −1)x

⎡

⎣
⎢

⎤

⎦
⎥ ,0

⎧
⎨
⎩

⎫
⎬
⎭

u(x,τ) = 1
2 πτ

u0(s)exp − 1
4τ

(x − s)2
⎡

⎣
⎢

⎤

⎦
⎥ds−∞

+∞

∫

u(x,τ) = 1
2 π

u0(′x 2τ + x)exp − 1
2

′x 2⎡

⎣
⎢

⎤

⎦
⎥ds−∞

+∞

∫

= 1
2 π

exp
1
2
(k +1)(x + ′x 2τ)− 1

2
′x 2⎡

⎣
⎢

⎤

⎦
⎥d ′x

− x/ 2τ

+∞

∫

− 1
2 π

exp
1
2
(k −1)(x + ′x 2τ)− 1

2
′x 2⎡

⎣
⎢

⎤

⎦
⎥d ′x

− x/ 2τ

+∞

∫

= I1 − I2

I1 =
1

2 π
exp

1
2
(k +1)(x + ′x 2τ)− 1

2
′x 2⎡

⎣
⎢

⎤

⎦
⎥d ′x

− x/ 2τ

+∞

∫

=
exp

1
2
(k +1)x⎡

⎣⎢
⎤
⎦⎥

2 π
exp

1
4
(k +1)2τ − 1

2
(′x − 1

2
(k +1) 2τ)2⎡

⎣
⎢

⎤

⎦
⎥d ′x

− x/ 2τ

+∞

∫

 25

,

at this place

,

is the cumulative distribution function of the Gaussian distribution. Change (𝑘 + 1)

to (𝑘 − 1) can get

,

.

 Take 𝐼r and 𝐼6 into equation (3.5.15), then use

, , ,

,

so

 .

 From the formula above, we can get the Black-Scholes option pricing formula. For

=
exp

1
2
(k +1)x + 1

4
(k +1)2τ⎡

⎣⎢
⎤
⎦⎥

2 / π
exp(− 1

2
ρ2)dρ

− x/2 τ −1
2
(k+1) 2τ

+∞

∫

= exp
1
2
(k +1)x + 1

4
(k +1)2τ⎡

⎣
⎢

⎤

⎦
⎥N (d1)

N (d1) =
1
2π

exp(− 1
2
s2)ds

−∞

d1∫

d1 =
x

2 τ
+ 1
2
(k +1) 2τ

I2 = exp
1
2
(k −1)x + 1

4
(k −1)2τ⎡

⎣
⎢

⎤

⎦
⎥N (d2)

d2 =
x

2 τ
+ 1
2
(k −1) 2τ

x = ln(S
X
) τ = 1

2
σ 2(T − t) c = Xυ(X ,τ)

υ(x,τ) = exp − 1
2
(k −1)x − 1

4
(k +1)2τ⎡

⎣
⎢

⎤

⎦
⎥u(x,τ)

d1 =
ln(S / X)+ (r +σ 2 / 2)(T − t)

σ T − t

d2 =
ln(S / X)+ (r −σ 2 / 2)(T − t)

σ T − t

= d1 −σ T − t

 26

the European call option that obeys the geometric Brownian movement which

expiration time is T, exercise price is X, underlying asset price is S, the pricing formula

is:

 (3.1.16)

According to the parity relationship between European call options and put options, it

is easy to get the pricing formula of European put option:

 (3.1.17)

Before using formula (3.1.16) and formula (3.1.17), we need to solve the calculate of

𝑁(𝑥) . The 𝑁(𝑥) is the cumulative distribution function of the standard normal

distribution. In this thesis we will apply it in C++.

 The code (Program 1) is an approximate solution way to the cumulative

distribution function of normal normal distribution. Then we can programe the formula

(3.1.16) and formula (3.1.17). Save the C++ programme of cumulative distribution

function of normal normal distribution as ‘normdist.h’ so we can directly invoke the

cumulative distribution function of normal normal distribution 's header file in

programming.

3.2 The numerical method of option pricing

 Sometimes some complex derivative securities cannot give analytical solutions,

so the numerical method is needed.

3.2.1 Monte Carlo method

 The Monte Carlo method is a numerical method to solve the option price by

simulating the movement of the underlying asset price. The basic ideal of Monte Carlo

c = SN (d1)− Xe−r (T−t)N (d2)

p = Xe−r (T−t)N (−d2)− SN (−d1)

 27

Method is: in the risk nature situation, we randomly generate the possible path of the

underlying asset price and get the expected value of the option earning. After that,

discount the price by risk free rate then we can get the option price.

 Assume that in the world of risk nature, the variable 𝜃 obey the geometric

Brownian motion with the standard deviation of 𝑠 and the expected rate of return is

, that is:

 (3.2.1)

where 𝜀 is one random sample extracted from the normal distribution.

 In order to simulate the path of the variable 𝜃 and considering the discrete form

of (3.2.1), we divide the life of derivative security into 𝑛 fragments with length ∆𝑡:

 (3.2.2)

From this formula, we can get a path of the variable 𝜃, its final value corresponds to a

sample final value of the derivative price. It could be seen as a random sample in a set

of final values. Using the same method, we can get a large number of sample final

prices, and get the average value of the number, then get the approximate value of the

final price of the derivatives. The price of derivative securities can be obtained by

discounting the final value at risk free interest rate.

 Assuming the European call option which price of the underlying asset is 𝑆,

exercise price is 𝑋 at the date of expiry the price is

 (3.2.3)

 In a risk neutral world, we use the risk-free rate 𝑟 to discount to get the price of

⌢m

dθ = ⌢mθdt + sθε dt

dθ = ⌢mθΔt + sθε Δt

cT = max 0,ST − X{ }

 28

the option at the 𝑡 moment

 (3.2.4)

 In formula (3.2.4), only 𝑆t has relationship with 𝑐t. The value of the underlying

asset price during 𝑇 − 𝑡 is independent from 𝑐t. So just simulate 𝑆tto get a series of

values: 𝑆tr, 	𝑆t6, 𝑆tu, …,𝑆tv. Then replace 𝑆tw (𝑖 = 1,2,3,… , 𝑛) into formula (3.2.4) to

get all value of 𝑐C. Then calculate the arithmetic mean of 𝑐C, after that use risk free rate

to discount to get the price of European call option

 (3.2.5)

The same method can get the price of a European put option

 (3.2.6)

 To apply the program of Monet Carlo Method we need to apply the program of

Random number function. See in appendix (Program 4) The above Monte Carlo method

can only be used to price European-style options, but in recent years, with the

development of mathematical finance, there have been some algorithms that use the

Monte Carlo method to simulate the pricing of American options. The most widely

used is the Least Squares Monte Carlo simulation proposed by Longstaff and Schwartz.

The basic principle is: at a limited number of discrete time points, according to the

cross-sectional data of the simulated sample path of the target asset price at each

moment, use least squares regression to find the expected return on continued holding

options. And compare it with the proceeds that were immediately exercised at that

moment. If the immediately exercise is greater than continued holding, it will

cT = e−r (T−t)E(max 0,ST − X{ })

ĉT = e−r (T−t)

n
E(max 0,STi

− X{ })
i=1

n

∑

p̂T = e−r (T−t)

n
E(max STi

− X ,0{ })
i=1

n

∑

 29

immediately exercise or it will continue to hold. Suppose the option expiration date is

𝑇, the exercise time is 𝑇{. The basic steps of Least Squares Monte Carlo simulation

are similar as the European option. But should notice that the European option can only

be exercised at expiry date that is 𝑇 = 𝑇{ but for American option 𝑇{ ∈ [0, 𝑇], that

is, the option can be exercise at any time before the expiration date. As the proceeds at

the time of exercise are not only affected by the asset price, but also affected by the

path taken by the asset price from the issue date (𝑡 = 0) to the maturity date 𝑇. For

European options, it has been mentioned how to calculate. But for American options,

we need to compare the instantaneous income (intrinsic value) immediately exercise at

that moment and the expected return to continue holding when determining the optimal

exercise time. What needs to be established is the value to continued holding the option

𝐹(𝜔, 𝑡~). According to no arbitrage principle:

 (3.2.7)

 Where 𝑟(𝜔, 𝑠) is riskless discount rate, the expectation is taken conditional on

the information set. 𝐹C at time 𝑡~ ,. With this representation, the problem of optimal

exercise reduces to comparing the immediate exercise value with this conditional

expectation, and then exercising as soon as the immediate exercise value is positive and

greater than or equal to the conditional expectation. The LSM method is to calculate

the expected condition in formula (3.2.7). For example, if this conditional expectation

function belongs to the Hilbert space 𝐿6, the value of continuing to hold the option

𝐹(𝜔, 𝑡~Är) can be expressed as follows:

F(ω ,tk) = EQ[exp(− r(ω ,s)dsC(ω ,t j ;tk ,T) Ftk]tk

t j∫j=k+1

K∑

 30

 (3.2.8)

Where is 𝑋 a Markov process, 𝑎Å is a constant and 𝐿Å is a set of basic functions. In

practical applications, the infinite-dimensional space will not be discussed. The usual

choice is based on the previous 𝑀 basis functions to calculate 𝐹É(𝜔, 𝑡~Är) instead

of 𝐹(𝜔, 𝑡~Är). The statistical estimate 𝐹ÖÉ(𝜔, 𝑡~Är) can be calculated by the

𝐶(𝜔, 𝑠; 𝑡~Är, 𝑇) through a mapping or regression. In the following use, weighted

Lagrange polynomials will be used as regression basis functions.

…

. (3.2.9)

 Once the function 𝐹É(𝜔, 𝑡~Är) is determined, the coefficients before each basis

function are determined accordingly. From this, the value of 𝐹ÖÉ(𝜔, 𝑡~Är) can be

calculated and compared immediately with the gain of the execution of the option and

make the decision on whether to exercise American options here. Then continue to

iterate until the initial moment to find an optimal execution moment. Then discount it

to get the value of the option.

 The LSM algorithm provides a simple and elegant way of approximating the

optimal early exercise strategy for an American-style option. While the ultimate test of

F(ω ,tk−1) = ajLj (X)
j=0

∞∑

L0(X) = exp(− X
2
)

L1(X) = exp(− X
2
)(1− X)

L2(X) = exp(− X
2
)(1− 2X + X 2

2
)

Ln(X) = exp(− X
2
)
eX

n!
d n

dX n (X
ne− X)

 31

the algorithm is how well it performs using a realistic number of paths and basic

functions, it is also useful to examine what can be said about the theoretical

convergence of the algorithm to the true value 𝑉(𝑋) of the American option.

 The first convergence result addresses the bias of the LSM algorithm and is

applicable even when the American option is continuously exercisable.

 Proposition 1. For any finite choice of 	𝑀,𝐾 and 𝑣𝑒𝑐𝑡𝑜𝑟𝜃 ∈ 𝑅É×(åÄr)

representing the coefficients for the 𝑀 basis functions at each of the 𝐾 − 1 early

exercise dates, let 𝐿𝑆𝑀(𝜔;𝑀, 𝐾) denote the discounted cash flow resulting from

following the LSM rule of exercising when the immediate exercise value is positive

and greater than or equal to 𝐹Éç(𝜔w; 𝑡~) as defined by 𝜃. Then the following inequality

holds almost surely,

 . (3.2.10)

 The intuition for this result is easily understood. The LSM algorithm results in a

stopping rule for an American-style option. The value of an American-style option,

however, is based on the stopping rule that maximizes the value of the option; all other

stopping rules, including the stopping rule implied by the LSM algorithm, result in

values less than or equal to that implied by the optimal stopping rule.

 This result is particularly useful since it provides an objective criterion for

convergence. For example, this criterion provides guidance in determining the number

of basic functions needed to obtain an accurate approximation; simply increase 𝑊

until the value implied by the LSM algorithm no longer increases. This useful and

V (X) ≥ lim
N→∞

1
N

LSM (ω i;M ,K)
i=1

N

∑

 32

important property is not shared by algorithms that simply discount back functions

based on the estimated continuation value.

 By its nature, providing a general convergence result for the LSM algorithm is

difficult since we need to consider limits as the number of discretization points 𝐾, the

number of basic functions 𝑀, and the number of paths 𝑁 go to infinity. In addition,

we need to consider the effects of propagating the estimating stopping rule backwards

through time from 𝑡åÄr, to 𝑡r. In the case where the American option can only be

exercised at 𝐾 = 2 discrete points in time, however, convergence of the algorithm is

more easily demonstrated. As an example, consider the following proposition.

 Proposition 2. Assume that the value of an American option depends on a single

state variable X with support on (0,∞) which follows a Markov process. Assume

further that the option can only be exercised at times 𝑡r , and 𝑡6 , and that the

conditional expectation function 𝐹(𝜔; 𝑡r) which is absolutely continuous and

Then for any ∈> 0, there exists an 𝑀 < ∞ such that

 (3.2.11)

Intuitively this result means that by selecting 𝑀 large enough and letting 𝑁 → ∞, the

LSM algorithm results in a value for the American option within ∈ of the true value.

Thus the LSM algorithm converges to any desired degree of accuracy since ∈ is

arbitrary. The key to this result is that the convergence of 𝐹É(𝜔, 𝑡r) to 𝐹(𝜔; 𝑡r) is

e− X F 2(ω ;t1)dX < ∞
0

∞

∫

e− X FX
2(ω ;t1)dX < ∞

0

∞

∫

lim
N→∞

Pr V (X)− 1
N

LSM (ω i;M ,K)
i=1

N

∑ >∈
⎡

⎣
⎢

⎤

⎦
⎥ = 0

 33

uniform on (0,∞) when the indicated integrability conditions are met. In summary

the American put option can be written as

(3.2.12)

For technical reasons, programming here is performed by R.

3.2.2 Binomial tree method

 The basic principle of the binomial tree method is: Assume that the probability

and magnitude of the motion of the target variable only move up or down. It is also

assumed that the probability and magnitude of each upward or downward movement

of the target variable does not change throughout the investigation period. Divide the

period into several stages. According to the historical volatility of the target variable,

we simulate all possible development paths of the target variables in the whole

inspection period, the price of the 0 moment is obtained at the same time by the

discounting method. If face the problem of advance exercise, it is necessary to check at

each node of the binomial tree to see if it is more advantageous than the next node on

this point, and then repeat the process.

 Consider a stock option that does not pay

dividends. We divide the period of maturity of

the option into many small time intervals, each

of the intervals is ∆𝑡 . Assume that in each

interval the stock price changes from the

PutAme(0,S0,K ,T) = PutEur(0,S0,K ,T)E[K − S
t*
e−rt

*

− PutEur(t*,S
t*
,K ,T)e−rt

*

]

 S

P

1-P

𝑆è

𝑆ê

Figure (3.2.1) change of stock price in ∆𝑡

 34

beginning of 𝑆 to two new prices 𝑆è and 𝑆ê, and also assume 𝑢 > 1, 𝑑 < 1, so 𝑆

to Sí is a process of rising prices, and the probability of rising is 𝑃; 𝑆 to Sì is a

process of falling prices, and the probability of rising is 1 − 𝑃.

 In a risk neutral world, the expected return rate of stock is risk free rate 𝑟. Then

the expected value of the stock price at the end of the time interval ∆𝑡 is 𝑆𝑒î∆C where

𝑆 is the initial stock price of the time interval. So, we have a result:

which can be written as:

 . (3.2.13)

Since the previous hypothesis is the behavior model of the stock price, the variance of

stock price change in the time interval ∆t is 𝑆6𝜎6∆𝑡. According to the definition of

variance, the variance of the variable 𝑋 is equal to	E(𝑋6) − [𝐸(𝑋)]6. So, then

 (3.2.14)

The formula (3.2.7) and (3.2.8) provide two conditions and the third condition

 , (3.2.15)

So, we get the result:

 (3.2.16)

 (3.2.17)

 (3.2.18)

where

 . (3.2.19)

SerΔt = PSu + (1− P)Sd

erΔt = Pu + (1− P)d

σ 2Δt = Pu2 + (1− P)d 2 − Pu + (1− P)d⎡⎣ ⎤⎦
2

u = 1
d

P = a − d
u − d

u = eσ Δt

d = e−σ Δt

a = erΔt

 35

 From formula (3.2.9) to (3.2.13), the tree structure of the stock price can be

constructed, which is called the binomial tree of the stock. As shown in figure (3.2.2).

In the picture, the stock price of the 0 moment is 𝑆, and at ∆𝑡 time, there are two

possibilities for the stock price:	𝑆è and 𝑆ê; at 2∆𝑡 time, there are three possibilities

for the stock price 𝑆𝑢6,		𝑆èê and 𝑆𝑑6. By analogy, in general, in the 𝑖∆𝑡 moments,

the price of the stock are 𝑖 + 1 possibilities,

 (3.2.20)

 Figure 3.6.2 Binomial tree of stock price

 Assumed that the period of an American put option that does not pay dividends is

divided into a small time period of N length of ∆𝑡. Suppose 𝑓wÅ is the option price of

the stock price of 𝑆𝑢Å𝑑wÄÅ, (0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑖) at i∆t moment, also known as the

option price at node (𝑖, 𝑗). Because the price of American put option at maturity is

𝑚𝑎𝑥{𝑋 − 𝑆t, 0} , so

Su jd i− j , j = 0,1,2,...,i

𝑆

𝑆è

𝑆ê

𝑆𝑢6

𝑆

𝑆𝑑6

𝑆𝑢u

𝑆è

𝑆ê

𝑆𝑑u

 36

 (3.2.21)

 Assumed that the probability of moving the node (𝑖 + 1, 𝑗 + 1) from the node

(𝑖, 𝑗) to the (𝑖 + 1)∆𝑡 moment at the 𝑖∆𝑡 moment is 𝑃; the probability of moving

the node (𝑖 + 1, 𝑗) from the node (𝑖, 𝑗) to the (𝑖 + 1)∆𝑡 moment at the 𝑖∆𝑡

moment is (1 − 𝑃). Without exercise in advance and in the risk neutral world, the

price of the option is

 . (3.2.22)

 If consider the exercise in advance, 𝑓wÅmust be compared to the intrinsic value of

the put option

 (3.2.23)

 According to the above basic principles and analytical expressions, we get the

basic steps of the binomial tree method:

1. Divide the validity time of the derivative securities into 𝑁 equal interval time

periods, step length is ∆𝑡. So we need to consider 𝑁 + 1 time points:

0, ∆𝑡, 2∆𝑡, … , 𝑇.

2. Calculating the parameters 𝑃, 𝑢	and 𝑑 of the binomial tree.

3. Construction of binomial tree.

4. Calculating the price of option by discount binomial trees.

 American option has a problem of exercise in advance, therefore, on the basis

program of the above European option pricing procedure, the statement of checking

exercise in advance is needed.

fij = max X − Su jd N−i ,0{ }, j = 0,1,...,N

fij = e−rΔt Pfi+1, j+1 + (1− P) fi+1, j⎡⎣ ⎤⎦ ,0 ≤ i ≤ N −1,0 ≤ i ≤ j

fij = max X − Su jd j−i ,e−rΔt Pfi+1, j+1 + (1− P) fi+1, j⎡⎣ ⎤⎦{ }

 37

3.2.3 Finite-difference method

 In most cases, it is almost impossible to require an exact solution of a partial

differential equation. At this time it is necessary to use the finite difference

approximation. The basic idea of the difference method is to replace the partial

derivative in a partial differential equation by Taylor expansion in a certain point.

According to the definition:

Now 𝛿𝜏 is not regarded as a variable that tends to 0, but as a small amount which

greater than 0, an approximate. We can obtain an approximate

 (3.2.24)

 This is called the finite difference approximation of dè
dô

. The smaller the time

interval, the more accurate the approximation is. What considered here is the time

change from 𝜏 to 𝜏 + 𝛿𝜏, often referred to as the forward difference.

 If do the following approximation:

 (3.2.25)

then it is called the backward difference.

 Also, the central difference can be defined as

 . (3.2.26)

∂u
∂τ

(x,τ) = lim
δτ→0

u(x,τ +δτ)
δτ

∂u
∂τ

(x,τ) ≈ u(x,τ +δτ)− u(x,τ)
δτ

+O(δτ)

∂u
∂τ

(x,τ) ≈ u(x,τ)− u(x,τ −δτ)
δτ

+O(δτ)

∂u
∂τ

(x,τ) ≈ u(x,τ +δτ)− u(x,τ −δτ)
2δτ

+O((δτ)2)

 38

Figure 3.2.3 Forward, backward and central difference

 When applied to the diffusion equation, the forward difference approximation

leads to the explicit difference method, and the backward difference approximation

leads to the full implicit difference method. The center difference approximation shown

in formula (3.2.20) is rarely used because it often causes bad behavior in the solution

process. In the commonly used Crank-Nicolson difference method, the central

difference defined by the next formula

 . (3.2.27)

In the same way, for 𝑥, the central difference approximate of one partial derivative is

 . (3.2.28)

And the symmetric center difference of the second derivative is

 .

(3.2.29)

∂u
∂τ

(x,τ) ≈ u(x,τ +δτ / 2)− u(x,τ −δτ / 2)
2δτ

+O((δτ)2)

∂u
∂x

(x,τ) ≈ u(x +δτ ,τ)− u(x −δτ ,τ)
2δ x

+O((δ x)2)

∂2u
∂x2 (x,τ) ≈

u(x +δτ ,τ)− 2u(x,τ)− u(x −δτ ,τ)
(δ x)2

+O((δ x)2)

 39

 The difference method is equivalent to dividing the 𝑥 axis into a space segment

with an equidistance of 𝛿𝑥 and the 𝜏 axis into a time interval with 𝛿𝜏 as an

equidistance. Thus, the (𝑥, 𝜏) plane is divided into a grid.

 Considering a stock option that does not pay dividends, the partial differential

equation of the option price is (3.1.8). Suppose it's the 0 moment at present, we divide

time from 0 to the expiration date 𝑇 into 𝑁 interval time intervals, each step is	∆𝑡 =

𝑇/𝑁, so there is a total of 𝑁 + 1 time points.

 Assuming 𝑆 is the maximum value that the stock price can reach, the price step

is defined as	∆𝑆 = 𝑆/𝑀, and	𝑀 is a given price step, so there is a total of 𝑀 + 1 price

points.

 The above price points and time points form a grid of (𝑀 + 1) × (𝑁 + 1)

coordinate points. For any point (𝑖, 𝑗) in the grid the corresponding time is 𝑖∆𝑡 and

the stock price is 𝑗∆𝑆.

 We use 𝑓wÅ to indicate the option price of point (𝑖, 𝑗), in this way, we can use

discrete operators to approach de
dC
, de
df
, d

öe
dfö

 so the partial differential equation is

converted into a discrete equation.

 By performing differential processing on the Black-Scholes partial differential

equation, we can derive the expression of the explicit finite difference method.

0,Δt,2Δt,3Δt,...,T .

0,Δs,2Δs,3Δs,...,S.

 40

(3.2.30)

where

 ，

 ，

 .

 Next we will use the explicit finite difference method to solve the American option.

First of all we need to set the key boundary conditions.

 For the American call option:

The value of the option at expiration date is 𝑚𝑎𝑥{𝑆t − 𝑋, 0}, in which 𝑆t is the stock

price at the time of 𝑇. So

.

When the stock price is 0, the price of the call option is 0. So

When the stock price is 𝑆 = 𝑆õúù, the price of the call option is 𝑆õúù. So

 For the American put option:

The value of the option at expiration date is 𝑚𝑎𝑥{𝑋 − 𝑆t, 0}, in which 𝑆t is the stock

price at the time of 𝑇. So

.

aj fi+1, j−1 + bj fi+1, j + cj fi+1, j+1 = fij

aj =
1

1+ rΔt
(− 1

2
rjΔt + 1

2
σ 2 j2Δt)

bj =
1

1+ rΔt
(1−σ 2 j2Δt)

cj =
1

1+ rΔt
(1
2
rjΔt + 1

2
σ 2 j2Δt)

fNj = max jΔS − X ,0{ }

fi0 = 0,i = 0,1,2,...,N ;

fiM = Smax ,i = 0,1,2,...,N .

fNj = max X − jΔS ,0{ }

 41

When the stock price is 0, the price of the call option is 𝑋. So

When the price of stock tends to infinity, the price of the put option is 0. So

 From the key boundary conditions of American option we can do the program.

See appendix (Program 9).

 Because of the existence of the rounding error in the explicit finite difference

method, so sometimes the solution of the difference equation does not converge to the

solution of the partial differential equation. To solve this problem we will introduce the

implicit finite difference method. It can solve more 𝑋 nodes at the same time step.

Through the differential treatment of the Black Scholes partial differential equation, we

can get the expression of the implicit finite difference method.

 (3.2.31)

where

,

,

 .

 In the implicit finite difference method, the calculation of 𝑓w,Å by 𝑓wNr,Å needs to

solve 𝑀+ 1 equations at the same time the amount of calculation is very large. So the

matrix library needs to be introduced in the program. The details are showing in

fi0 = X ,i = 0,1,2,...,N ;

fiM = 0,i = 0,1,2,...,N .

aj fi, j−1 + bj fij + cj fi, j+1 = fi+1, j ,

aj =
1
2
rjΔt − 1

2
σ 2 j2Δt

bj = 1+σ
2 j2Δt + rΔt

cj =
1

1+ rΔt
(1
2
rjΔt + 1

2
σ 2 j2Δt)

 42

appendix (Program 10)

 Similar with the explicit finite difference method, we use the same key boundary

conditions in the implicit finite difference method. So we can apply the program.See

appendix (Program 11)

 In addition, the Crank-Nicolson finite difference method can also be used, which

is essentially the mean of explicit and implicit finite difference methods. In this thesis

we do not introduce too much about this method.

 43

Chapter 4. Evaluation of selected method

In this chapter we will use the method introduced in the last chapter to calculate

the price of options. The paper uses data download from the sample data base of

Chicago Board of Trade. First, we will calculate the analytical solution of the Black-

Scholes model. In the programs we set S as the price of underlying asset which means

the stock price of this option, X as the exercise price means the price at which an

underlying security can be purchased (call option) or sold (put option). r as the risk free

rate which is the rate of return of a hypothetical investment with no risk of financial

loss, over a given period of time. sigma as the implied volatility which is the estimated

volatility, or gyrations, of a security's price and is most commonly used when pricing

options. In general, implied volatility increases while the market is bearish, when

investors believe the asset's price will decline over time, and decreases when the market

is bullish, when investors believe that the price will rise over time. This is due to the

common belief that bearish markets are riskier than bullish markets. Implied volatility

is a way of estimating the future fluctuations of a security's worth based on certain

predictive factors. Implicit volatility is usually calculated by the stock price, but the

data collected in this paper already contains the implied volatility, so it is no needed to

calculate. In the mathematical sense, the movement of financial asset prices is random,

and the volatility reflects the volatility of this stochastic path. It describes the statistical

distribution characteristics of asset returns and is usually represented by the standard

deviation of asset returns. And t as the period of rights. The programs described in

appendix can only calculate the price of one option once a time. In order to allow the

 44

program to continuously calculate option prices in a loop, we design the following loops.

The column data shown in this chapter is only the first six groups of sample data.

4.1 The analytical solution of Black-Scholes model

 After finishing the programming of the loop we can calculate the options price.

The first method we apply is the analytical solution of B-S partial differential equation.

Call option

S X r sigma time Black-Scholes

14.575 10 0.21 1.4094 0.02 4.64252

14.575 10.5 0.21 1.2383 0.02 4.14305

14.575 11 0.21 1.0838 0.02 3.64458

14.575 11.5 0.21 0.9506 0.02 3.14833

14.575 12 0.21 0.7994 0.02 2.649

14.575 12.5 0.21 0.6621 0.02 2.15129

Put option

S X r sigma time Black-Scholes

14.575 10 0.21 2.2815 0.02 0.311095

14.575 10.5 0.21 1.8378 0.02 0.152188

14.575 11 0.21 1.5005 0.02 0.11019

14.575 11.5 0.21 1.2454 0.02 0.0890074

14.575 12 0.21 0.9886 0.02 0.0645449

14.575 12.5 0.21 0.7804 0.02 0.0509957

Table 4.1 Analytical solutions of the Black-Scholes

 45

 The above example tables show the analytical solutions of the Black-Scholes

partial differential equation obtained by program (2.5.2), (2.5.3). After checking with

Excel, we can conclude that the computational accuracy of C++ meets the research

needs. At the same time the calculation is very fast compare to the using of Excel. The

specific data is in appendix (table 1). Accurately speaking, volatility describes the

degree of fluctuation of financial asset prices, which is a measure of the uncertainty of

asset returns and is commonly used to reflect the level of risk of financial assets. The

higher the volatility, the greater the volatility of financial asset prices and the greater

the uncertainty of asset returns. The lower the volatility, the smoother the fluctuation of

the financial asset price, and the stronger the certainty of asset returns. From the table

above we get when the exercise price rises and the implied volatility falls, the estimated

price of either the call or the put option will decline.

4.2 The numerical solution of Black-Scholes model

Because there are many quite complex derivative securities that cannot give

analytical solutions we will use the numerical method of option pricing to calculate the

numerical solution of the option price. Normally we think the numerical solution is a

value calculated by approximate calculation under certain conditions and the analytical

solution is the analytic formula of the function, and any corresponding value can be

calculated from the expression of the solution. We usually think that analytical solutions

are more accurate than numerical solutions. Next we will perform sensitivity analysis

on numerical methods, then compare it with the analytical solution of partial differential

equations.

 46

4.2.1 The Monte Carlo method

First we will start on the Monte Carlo Method, and we will use the different

simulation times to do the sensitivity analysis to evaluate the accuracy of numerical

solutions derived from Monte Carlo simulations.

European Call option

B-S MC50 MC1000 MC10000 MC50000

4.64252 4.65235 4.65235 4.65235 4.65235

4.14305 4.18337 4.05996 4.1538 4.15782

3.64458 3.56816 3.70136 3.6403 3.64479

3.14833 3.08868 3.1357 3.14918 3.15287

2.649 2.72959 2.64618 2.64103 2.65809

2.15129 2.15344 2.17803 2.15466 2.15032

Table 4.2.1 European call option Black-Scholes numerical solution in Monte Carlo

It can be seen from the data that the more the number of simulation, the smaller

the deviation and the analytical solution of the numerical solution. But we can't get a

complete and accurate conclusion from a small number of samples. Here we calculate

the price of the put option. Then calculate and compare the average error values and

maximum error of different simulate steps. Which the error means the absolute value

of the difference between the numerical solution and the analytical solution. The

average error is the mean of absolute value error and the maximum error is the

maximum of absolute value error (the maximum value of the absolute value of the

difference between the analytical solution and the numerical solution).

 47

European put option

B-S MC50 MC1000 MC10000 MC50000

0.311095 0.2137 0.242663 0.219319 0.225429

0.152188 0.277804 0.145098 0.15777 0.152949

0.11019 0.134721 0.100421 0.112334 0.108977

0.0890074 0.119097 0.0903439 0.0902059 0.088398

0.0645449 0.0981901 0.0484329 0.0650068 0.0630125

0.0509957 0.0821978 0.0490903 0.052366 0.050724

Table 4.2.2 European put option Black-Scholes numerical solution in Monte Carlo

 The specific data is in appendix (table 2). By observing the above data, it is found

that the error of the numerical solution will be significantly reduced when the number

of simulation is increased. The numerical solution given by Monte Carlo method

gradually approximated the analytical solution given by the option pricing formula.

However, the computing speed of the C++ program also drops dramatically at same

time.

Call option 50 steps 1000steps 10000steps 50000steps

Maximum error 0.07642 0.08309 0.00797 0.00526

Mean 0.006115083 0.003010634 -0.003130817 -0.000473584

Put option 50 steps 1000steps 10000steps 50000steps

Maximum error 0.3973 0.0965 0.091776 0.085666

Mean 0.017662173 0.008184492 0.001335953 0.001660199

Table 4.2.3 Maximum error and mean of error of Monte Carlo method

Analysis of data through Microsoft Excel can get the conclusions that the

calculation accuracy increases with the number of simulated times, because the average

error is significantly reduced and the maximum absolute error is significantly reduced.

Through the sensitivity analysis, we can predict that the error of the numerical solution

 48

and the analytical solution can be ignored when the Monte Carlo simulation step trends

to be an infinite value.

Figure 4.2.1 Convergence figure of Monte Carlo simulation

The above figure shows the convergence of the Monte Carlo simulation method.

It reflects the difference between the numerical solution and the analytical solution as

the number of simulations increases. It can be seen from the figure that when the

number of simulations is less than 1500 times, the difference between the numerical

solution and the analytical solution fluctuates greatly, but with the increase of the

number of simulations, the fluctuation gradually becomes stable. When the number of

simulations is greater than 25,000, the numerical solution is basically stable at or very

close to the analytical solution.

4.2.2 The binomial tree method

Next we will use the binomial tree method to calculate the numerical solution of

the option price. The binomial tree method is similar to the Monte Carlo method which

Simulate the possible path of the price and then discount it. Same as the previous steps,

first introduce Loop (4.1) to solve the loop calculation problem, then perform multiple

4

4.2

4.4

4.6

4.8

5

5.2

5 15 25 35 45 55 65 75 85 95 15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

15
00

25
00

35
00

45
00

55
00

65
00

75
00

85
00

95
00

15
00

0
25

00
0

35
00

0
45

00
0

55
00

0
65

00
0

75
00

0
85

00
0

95
00

0

Convergence figure of Monte Carlo simulation

Analytical solution Monte Carlo method

 49

sets of calculations to detect sensitivity of binomial tree method.

European call option

Black-Scholes BinTree50 BinTree1000 BinTree10000 BinTree50000

4.64252 4.64235 4.64255 4.6426 4.6426

4.14305 4.14293 4.14304 4.14305 4.14305

3.64458 3.64457 3.64452 3.64458 3.64458

3.14833 3.14831 3.1483 3.14833 3.14833

2.649 2.64896 2.64897 2.64899 2.649

2.15129 2.15128 2.15125 2.15128 2.15129

 Table 4.2.4 European call option Black-Scholes numerical solution in binomial tree

Through observation, it can be found that the higher the number of binary tree

steps, the closer the numerical solution to the analytical solution. Also, because the

sample size is too small, the price of the put option needs to be calculated for analysis.

Next we will use the binomial method to calculate the price of a put option.

European put option

Black-Scholes BinTree50 BinTree1000 BinTree10000 BinTree50000

0.311095 0.222508 0.225031 0.224938 0.224932

0.152188 0.153442 0.152029 0.152176 0.152185

0.11019 0.110673 0.110048 0.110191 0.110189

0.0890074 0.0889809 0.0890055 0.0890071 0.0890078

0.0645449 0.063288 0.0644442 0.0645472 0.0645451

0.0509957 0.0499729 0.0509105 0.0509972 0.0509958

 Table 4.2.4 European put option Black-Scholes numerical solution in binomial tree

Comparing the numerical solutions between the analytic solution of the partial

differential equations and the binomial tree method, it can be found that as the number

of binomial tree steps increases, the numerical solution will more closely approximate

the analytical solution. However, because the binary tree method is essentially an

 50

exhaustive method, and you need to check on each node whether the exercise is more

favorable than exercise in the next node. This will consume a lot of Central Processing

Unit (CPU) power count. So, as the number of steps increases, the efficiency drops

significantly. The C++ program does not reduce computing time when large amounts

of data require large number of steps. Because the binomial tree model itself does not

involve very complicated calculation formulas. Therefore, if using the binomial tree

method to calculate option prices, it is recommended to use a more computationally

intensive Graphics Processing Unit (GPU). At the same time, compared to the Monte

Carlo model described above, binomial tree model is more accurate and more

approximates the value of the analytical solution.

call option 50 steps 1000steps 10000steps 50000steps

Maximum error 0.00100 0.00050 0.00003 0.00001

Mean 0.000125 0.000071 0.000002 0.000000

put option 50 steps 1000steps 10000steps 50000steps

Maximum error 0.088587 0.086064 0.086157 0.086163

Mean 0.001273 0.001124 0.001117 0.001119

Table 4.2.5 Maximum error and mean of error of binomial tree method

From the table 4.2.2 above. In call option pricing, the accuracy of the binomial

tree method is very high and can be further increased with the increase in the number

of steps. However, when the number of steps exceeds 50,000 steps, the efficiency is

greatly reduced but the accuracy improved little. Therefore, in the calculation of pricing,

the number of simulation steps should be less than 50,000 or even less than 20,000. At

this time, we can still obtain very high accuracy. In the calculation of the put option

price, there is a slight deviation in the C++ program. It does not come to the result that

 51

the expected precision gradually increases with the increase of the number of steps. At

this point the accuracy increases into the bottleneck period but the calculation efficiency

still decreases as the number of steps increases. After a more detailed calculation and

sensitivity analysis, the put option price calculation in binomial tree method step should

be less than 15000 steps in order to achieve a balance between accuracy and efficiency.

It is precisely because of the extremely high accuracy of the binomial tree method, and

it is possible to add a code to check the advance exercise in the program so the binomial

tree method can be used to calculate the price of American options which will be apply

in the following after the analysis of numerical Solution of European Options.

Figure 4.2.2 Convergence figure of Binomial tree method

Figure (4.2.2) is a convergence plot for the binomial tree method, which reflects

the error between the numerical solution of the Black-Scholes partial differential

equation solved by the binomial tree method and the analytical solution. It can be seen

from the figure that the fluctuation of the error has stabilized at 90 steps, and the

numerical solution calculated by the binomial tree method after 450 steps is already

very close to the analytical solution. It can be said that the error of the binomial tree

4.63
4.632
4.634
4.636
4.638
4.64

4.642
4.644

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

Convergence figure of Binomal tree method

Analytical solution Binomial tree

 52

method is very small.

4.2.3 The finite difference method

 The Black-Scholes partial differential equation numerical solution is not limited

to the Monte Carlo method and the binomial tree method, but also includes the finite

difference method. Next, we will use the finite difference method to calculate the

numerical solution of BS partial differential equations.

 At first we will apply the explicit finite difference method in European option

pricing. The calculation of explicit difference method is relatively simple. Adding loop

(4.1) to the main program it is easy to get the conclusion. Here we assume that the steps

of the prices is equal to the time step, so it is convenient for the sensitivity analysis.

Call option

Black-Scholes explicit10 10 explicit20 20 explicit200 200 explicit2000 2000

4.64252 4.6676 4.64012 1.73E+164 nan

4.14305 4.16763 4.14979 1.06E+140 nan

3.64458 3.66051 3.65428 2.85E+114 nan

3.14833 3.15274 3.15095 2.61E+88 nan

2.649 2.68306 2.66202 1.13E+52 nan

2.15129 2.20735 2.16505 2.20E+08 nan

 Table 4.2.6 European call option s numerical solution in explicit finite difference

 Where nan means the program can not calculate the result and inf means the

conclusion trends to infinite. It can be seen directly from the results that when the

number of simulated steps is relatively small, the numerical solution is similar to the

analytic solution. The accuracy of the numerical solution at this time is acceptable.

However, with the increase of the number of simulation steps, the numerical solutions

 53

have overflow. Because the calculation process of the difference scheme is pushed by

layer by layer, the approximate value of the N layer is used in the calculation of the

approximate value of the N + 1 layer, until it is related to the initial value. If there are

rounding errors in the preceding layers, it will inevitably affect the values of the latter

layers. If the influence of errors is bigger and bigger, the appearance of the exact

solutions of the difference schemes will be completely concealed. This is why the

numerical solution overflow. So in this case we think that explicit finite difference

method is unstable. The same result will also appear in the pricing of the put option.

Put option

Black-Scholes explicit 10 10 explicit 20 20 explicit 200 200 explicit 2000 2000

0.311095 0.271463 0.224174 3.63E+188 nan

0.152188 0.190018 0.157399 -1.38E+151 nan

0.11019 0.125888 0.121602 -6.57E+115 nan

0.0890074 0.0807608 0.08757 1.99E+81 nan

0.0645449 0.0965918 0.0769244 3.18E+34 nan

0.0509957 0.113626 0.0658148 5.10E-02 nan

 Table 4.2.7 European put options numerical solution in explicit finite difference

Figure 4.2.3 Convergence figure of Explicit FDM method

4.55

4.6

4.65

4.7

4.75

4.8

4.85

1 5 10 15 20 25 30 35 40

Convergence figure of Explicit FDM method

Analytical solution Explicit FDM

 54

The converging graph shown in the above figure has an overflow effect when the

calculated time steps and price steps is 41 steps, because the error will accumulate as

the number of steps increases, so only the data before 41 steps are plotted. It can be

clearly seen from Figure 4.2.3 that the analytical solution of the explicit finite difference

method is more volatile than other methods.

By the price of the call and put options, we conclude that the calculation of explicit

difference method will have overflow effects when the number of simulated steps is too

large, so the method is unstable for calculate. The maximum and mean value of the

error can not be compared at this time. Because under the limited number of steps, the

explicit difference method calculation precision can not reach the requirement we turn

to use implicit difference method to calculate. First we will calculate the European put

option.

Put option

Black-Scholes implicit 10,10 implicit 20,20 implicit 100, 100 implicit 200, 200

0.31110 0.31234 0.29999 0.22543 0.22494

0.15219 0.13253 0.13108 0.15237 0.15154

0.11019 0.07891 0.09889 0.11055 0.11034

0.08901 0.05985 0.08102 0.08907 0.08919

0.06454 0.04548 0.06061 0.06372 0.06439

0.05100 0.03596 0.04794 0.05032 0.05087

 Table 4.2.8 European put option s numerical solution in implicit finite difference

From the put option calculation, implicit method has a good precision and still has

no overflow when the number of simulated steps is 200. Now we will calculate the call

option to do more analysis.

 55

Call option

Black-Scholes implicit10 10 implicit20 20 implicit100 100 implicit200 200

4.64252 4.65235 4.64235 4.64212 4.64235

4.14305 4.13678 4.14098 4.14292 4.14291

3.64458 3.64055 3.642 3.64424 3.64425

3.14833 3.14701 3.14579 3.14809 3.14833

2.649 2.64873 2.64786 2.649 2.64885

2.15129 2.15184 2.15139 2.15109 2.1513

 Table 4.2.9 European call option s numerical solution in implicit finite difference

By analyzing the above calculation results, we can conclude that implicit

difference method can achieve quite high accuracy at less simulated steps. At the same

time, unlike explicit difference method, implicit difference method can eliminate the

limit of stability. It means in the same time steps, more nodes can be solved if used the

implicit difference method. The shortcomings of implicit difference method are also

obvious. Because the matrix is introduced in the calculation, the calculation is very

cumbersome. In the writing of C++ programs, the problem is debug for the external

matrix library, at present, two widely used matrix libraries are NEWMAT and IT++ and

this thesis also introduces the two matrix Libraries.

Figure 4.2.4 Convergence figure of Implicit FDM method

4.6

4.61

4.62

4.63

4.64

4.65

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Convergence figure of Implicit FDM method

Analytical solution Explicit FDM

 56

From the above figure, we can see that when the number of simulations is less than

50 steps, that is, the number of time steps and price steps is less than 50 steps, the

numerical solution fluctuates greatly. When the number of simulation steps is greater

than 50 steps, the numerical solution approaches the analytical solution.

 Next we will perform sensitivity analysis on the infinite difference method.

Compare the average error and the maximum error between the analytical solution and

the numerical solution.

call option implicit 10 implicit 20 implicit 100 implicit 200

Average error 0.0056 0.0026 0.0004 0.0002

Max error 0.0455 0.0218 0.0040 0.0023

put option implicit 10 implicit 20 implicit 100 implicit 200

Average error 0.0022 0.0025 0.0010 0.0011

Max error 0.0655 0.0456 0.0857 0.0862

Table 4.2.10 Maximum error and mean of error of finite difference method

 From the maximum error and the average error, the error of implicit difference

method is fully conformed to the requirements. This thesis only focuses on full implicit

difference and explicit difference methods. There are also the semi implicit difference

and the central difference method in the finite difference method. In the paper, we will

not to say more about it. What needs to be mentioned is the mean of explicit difference

and implicit difference called Crank-Nicolson method. In general, the Crank-Nicolson

method is stable when the explicit method is overflow, and is more accurate than the

implicit method. This method has not been realized in this paper for technical reasons.

Through the above three numerical methods of calculation and analysis. And after

comparing with the Black-Scholes partial differential equation's analytical solution. We

 57

can conclude that as the number of calculations increases, the accuracy of the numerical

solution increases. However, due to the accumulation of errors, the explicit finite

difference method does not meet the above conclusions. At the same time, because the

binomial tree method is a computational approximation similar to the exhaustive

method. So the binomial tree method has the highest accuracy. But at the same time,

because the calculation is too cumbersome, it leads to the lowest efficiency. In actual

production and life, it is recommended to use a small number of simulations of the

binomial tree method or implicit finite difference method to let the calculation accuracy

and calculation efficiency reach the optimal combination.

4.3 The option pricing of American options

 The difficulty of American option calculation is that due to the existence of

advance exercise, the traditional Black-Scholes model cannot be used to solve the

American put option price. Because the exercise date is a very important parameter in

the Black-Scholes model, unlike the European option, the exercise date of the American

option is more flexible. The usual calculation of American option prices can use Barone

Adesi & Whaley Model (BAM model), least-squares Monte Carlo simulation(LSMC

model), binomial tree method and finite difference method. Because BAM model

requires the introduction of a bivariate normal distribution and the cumulative

distribution function to get the approximate analytical solution.

 The program design is too cumbersome, so it will not be introduced here. In the

previous section, we know that the binomial method has a high accuracy, so we will

first calculate the price of the American option using the binomial tree method. We

 58

assume the most exact solution is the 50,000 step simulation of the binomial tree. For

comparison, here we will use the same data as the previous European options.

American call option

S X r sigma time BinTree50000

14.575 10 0.21 1.4094 0.02 4.6426

14.575 10.5 0.21 1.2383 0.02 4.14305

14.575 11 0.21 1.0838 0.02 3.64458

14.575 11.5 0.21 0.9506 0.02 3.14833

14.575 12 0.21 0.7994 0.02 2.649

14.575 12.5 0.21 0.6621 0.02 2.15129

Table 4.3.1 American call option price

 Similar to previous conclusions, the computational efficiency of the binomial tree

method is very low at large simulation times. Next is the American put option pricing.

American put option

S X r sigma time BinTree50000

14.575 10 0.21 2.2815 0.02 0.225212

14.575 10.5 0.21 1.8378 0.02 0.152414

14.575 11 0.21 1.5005 0.02 0.11039

14.575 11.5 0.21 1.2454 0.02 0.0892056

14.575 12 0.21 0.9886 0.02 0.0647286

14.575 12.5 0.21 0.7804 0.02 0.0511868

Table 4.3.2 American put option price

As we can above is the American put option price. At this time we take the same

method but the European option price to compare the difference. The table below shows

the specific differences between American option and the European option.

 59

Comparison of European and American option

European call American call European put American put

4.6426 4.6426 0.224932 0.225212

4.14305 4.14305 0.152185 0.152414

3.64458 3.64458 0.110189 0.11039

3.14833 3.14833 0.0890078 0.0892056

2.649 2.649 0.0645451 0.0647286

2.15129 2.15129 0.0509958 0.0511868

Table 4.3.3 Comparison between European and American option

 Although the data given in Table 4.2.13 is only a small part of the complete data

(Detailed data see in appendix). We can still see that there is no difference between the

price of the American call option and the price of the European call option when using

the same calculation method. This is because the non-dividend American call options

generally do not exercise before the maturity. Strictly speaking, not only the American

option, but all the "convex" interest free American call derivatives are all the sub-

martingale, that is, their expectation at 𝑇 + 1 is greater than or equal to the value of

𝑇 time, so they should never be exercised advance. Which is:

Define convex:

 (4.3.1)

 The payoff Max	(𝑆 − 𝐾, 0) of American call options is obviously convex. For a

function with an initial value of 0 (which Max	(0 − 𝐾, 0) 	= 0), the convex definition

can also be "linearized":

 (4.3.2)

 We give a 𝑥 as a martingale discounting measure, that is, there is no excess return

∀t ∈[0,1], f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t) f (x2)

∀t ∈[0,1], f (tx) ≤ tf (x)

 60

except 1/𝑃[0,1] − 1. The 𝑇of the upper form can be replaced by a discount factor

belonging to [0,1],

 (4.3.3)

Let's give a filtration so there are:

 (4.3.4)

For convex functions, the Jensen inequality can be used

 (4.3.5)

The most left function of the equation is already under the	X discounting measure, so

it is a directly martingale:

 (4.3.6)

So in the 𝑠 filtration, even if the discounted measure is given, the expected value of

the future is larger than the current period:

 (4.3.7)

At this point, 𝑓 is a sub-martingale, which means that its expectation value will only

add, so it will not be exercise advance.

 This is why there is no difference between American call options and European

call options, because there is no exercise advance.

 Now let us compare the European put options and the American put options, from

the table 4.3.3 or the data in appendix we can conclude under the same condition the

price of an American put option is always higher than the price of the European put

∀t ∈[0,1], f (P(0,t)xt) ≤ P(0,t) f (xt)

Fs
! ,s < t

∀t ∈[0,1], !E(f (P(s,t)xt) | Fs
!) ≤ !E(P(s,t) f (xt) | Fs

!)

∀t ∈[0,1], f (!E(P(s,t)xt | Fs
!)) ≤ !E(f (P(s,t)xt) | Fs

!) ≤ !E(P(s,t) f (xt) | Fs
!)

!E(P(s,t)x | Fs
!) = xs

∀t ∈[0,1], f (xs) ≤ !E(P(s,t) f (xt) | Fs
!)

 61

option.

Since this paper focuses on the pricing of non-dividends stock options, and American

call options do not exercise advance. Therefore, the following calculations will only

focus on American put options.

 Next, we will use the finite difference method to price American options. In the

same way likes European option we will use the explicit finite difference method and

implicit difference method to calculate the option prices. The design of the program is

also quite simple. It is only necessary to add a statement that checks the exercise on the

basic of the original European option pricing model.

American put option

FDM EX 10 FDM EX 20 FDM EX 100 FDM EX200

0.271636 0.224332 1.71E+44 3.83E+148

0.190094 0.157585 -4.075 -4.075

0.125917 0.121694 -3.575 -3.575

0.0808651 0.0876486 0.272587 1.22E+55

0.0967486 0.0770379 0.0647022 1.98E+20

0.113696 0.0658942 0.0509992 0.0511809

Table 4.3.4 American put option price in explicit finite difference method

Figure 4.3.1 Convergence figure of Explicit FDM method in American option

4.3

4.35
4.4

4.45

4.5
4.55

4.6

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

Convergence figure of Explicit FDM method

Analytical solution Explicit FDM

 62

 From the above figure, it could be seen that comparing with European option the

explicit finite difference method is more suitable for calculating the price of American

options because the value calculated when the time step and the price step simulation

number is 3 is equal to the 50,000 times simulation binomial tree method (without

considering small errors). Of course, the disadvantages of the explicit finite difference

method also exist at the same time. That is, the overflow effect begins when the time

step is longer than the price step and the simulation is to 130 steps.

 Similar to the conclusion obtained in the calculation of European option prices,

when the number of simulation steps is small, the calculation accuracy is in an

acceptable range, but as the number of simulation steps increases, the cumulative error

increases and the calculation result overflows. Table 4.3.4 shows that the results have

been significantly different from the real values in 200 steps. From the above results,

we can use the explicit finite difference method to divide the right period into small

steps when the calculation accuracy requirement is not particularly high. However, this

method cannot be used if there is a high requirement for calculation accuracy. The

following will use another form of the finite difference method the implicit finite

difference method. Also, because the calculation volume is too large, it is necessary to

introduce an exogenous matrix library and some codes about check whether or not to

exercise in advance. Since the principle of implicit finite difference method is similar

to the principle of explicit finite difference method, it is only slightly different in the

calculation method. Due to the implicit finite difference method use the

computationally intensive matrix operations to avoids the overflow effect and the

 63

precision is similar to the explicit FDM. So no convergence analysis will be done here.

American put option

FDM IM 10 FDM IM20 FDM IM 100 FDM IM 200

0.0246463 0.0177993 0.0242112 0.0256316

0.023181 0.0178893 0.022428 0.023972

0.0226994 0.0195644 0.0213696 0.0235232

0.0238995 0.0239306 0.0236072 0.0251829

0.0221137 0.0235546 0.0232184 0.0237446

0.0212015 0.0245754 0.0242078 0.0239952

Table 4.3.5 American put option price in implicit finite difference method

The calculation of the implied difference method of the American option has no

overflow similar to that of the European option. Also, the calculation accuracy also

reached expectations. However the finite difference method and the binomial tree

method have common disadvantages, that is, the calculation process is too complicated

and inefficient. With the development of mathematics and financial science, scientists

have also studied the use of least square Monte Carlo method to calculate American put

option prices. Assume that the discrete time interval number is 10 which means that

there are 10 time points during the rights period to exercise to simulate American

options. Due to technical limitations and the too short expiration time, it is not possible

to simulate too many times.

American put option

S X r sigma time LSM

14.575 10 0.21 2.2815 0.02 0.2266601

14.575 10.5 0.21 1.8378 0.02 0.1520834

14.575 11 0.21 1.5005 0.02 0.1117332

14.575 11.5 0.21 1.2454 0.02 0.09138384

14.575 12 0.21 0.9886 0.02 0.0637418

14.575 12.5 0.21 0.7804 0.02 0.04974608

Table 4.3.6 American put option price in Least Square Monte Carlo

 After using the same data for calculation, we can compare with the results obtained

 64

by other methods before. It can be found that the LSM model can obtain better

calculation accuracy and the calculation speed is faster at smaller simulation times.

4.4 Application of option pricing model in real market

First we will apply the pricing of European options. We have downloaded relevant

data on the stock options of China Construction Bank (HK.0939) from the derivatives

database of the official website of the Hong Kong Stock Exchange. The stock price of

HK.0939 in 1.04.2018 is 8.06HK$. We selected several stock options with different

execution prices and active trading volume for empirical analysis. Through the query

of relevant data we set the risk-free interest rate to 0.015 meanwhile the three different

expiration dates are April 18 (0.0439 years till now), May 18 (0.1315 years till now)

and June 18 (0.21643 years till now). Implied volatility of options is in Appendix.

T Strike price Real price BS MC BT FDM

t=0.0439 7.75 0.505 0.42910 0.42103 0.42036 0.42434

 8 0.38 0.25207 0.24264 0.24229 0.19459

 8.25 0.212 0.13500 0.12515 0.12543 0.10784

 8.5 0.124 0.06351 0.05437 0.05480 0.06655

t=0.1315 7.75 0.572 0.52946 0.53049 0.52983 0.53188

 8 0.418 0.37795 0.37797 0.37837 0.34656

 8.25 0.314 0.25715 0.25694 0.25753 0.24368

t=0.2164 8 0.481 0.46959 0.47114 0.47007 0.44764

 8.25 0.407 0.35958 0.35950 0.35979 0.35133

 8.5 0.28 0.25412 0.25430 0.25400 0.25654

Table 4.4.1 Call option price of CCB

 65

Chart 4.4.1 Call option price of CCB

T Strike price Real price BS MC BT FDM

t=0.0439 7.75 0.151 0.09788 0.09764 0.09789 0.102205

 8 0.244 0.18229 0.18265 0.18229 0.13506

 8.25 0.352 0.30343 0.30385 0.30342 0.286317

 8.5 0.59 0.49657 0.49646 0.49657 0.50744

t=0.1315 7.75 0.24 0.21057 0.21014 0.21056 0.213006

 8 0.314 0.30218 0.30162 0.30218 0.270798

 8.25 0.501 0.42859 0.42876 0.42858 0.414984

t=0.21643 8 0.424 0.37922 0.37943 0.37921 0.356878

 8.25 0.535 0.50347 0.50396 0.50347 0.494331

 8.5 1.055 1.05590 1.05449 1.05590 1.04975

Table 4.4.2 Put option price of CCB

0.000

0.100

0.200

0.300

0.400

0.500

0.600

7.5 8 8.5 9

Call option price
t=0.0439

Real price BS

MC BT

FDM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

7.6 7.8 8 8.2 8.4

Call option price
t=0.1315

Real price BS

MC BT

FDM

0

0.1

0.2

0.3

0.4

0.5

0.6

7.5 8 8.5 9

Call option price
t=0.21643

Real price BS

MC BT

FDM

 66

Chart 4.4.2 Put option price of CCB

Calculate the degree of deviation based on the theoretical price and the actual price.

The definition of the degree of deviation is as follows: 𝐵𝐼 = 𝑄/𝑃 − 1 where 𝐵𝐼 is

deviation degree, 𝑄 is the market price and 𝑃 is theoretical price. We will compare

the maximum, minimum, and mean deviations between various methods in both the

call and put options.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

7.5 8 8.5 9

Put option price
t=0.0439

Real price BS

MC BT

FDM

0

0.1

0.2

0.3

0.4

0.5

0.6

7.5 8 8.5

Put option price
t=0.1315

Real price BS

MC BT

FDM

0

0.2

0.4

0.6

0.8

1

1.2

7.5 8 8.5 9

Put option price

t=0.21643

Real price BS

MC BT

FDM

 67

T Strike price BS MC BT FDM

t=0.0439 7.75 -0.15030 -0.16628 -0.16761 -0.15972

 8 -0.33666 -0.36148 -0.36241 -0.48791

 8.25 -0.36321 -0.40968 -0.40837 -0.49133

 8.5 -0.48779 -0.56156 -0.55803 -0.46331

t=0.1315 7.75 -0.07437 -0.07257 -0.07372 -0.07014

 8 -0.09582 -0.09576 -0.09481 -0.17091

 8.25 -0.18106 -0.18172 -0.17985 -0.22396

t=0.21643 8 -0.02373 -0.02050 -0.02273 -0.06936

 8.25 -0.11650 -0.11670 -0.11600 -0.13679

 8.5 -0.09241 -0.09178 -0.09284 -0.08380

 Maximum -0.02373 -0.02050 -0.02273 -0.06936

 Minimum -0.48779 -0.56156 -0.55803 -0.49133

 Mean -0.19219 -0.20780 -0.20764 -0.23572

Table 4.4.3 Call option degree of deviation of CCB

T Strike price BS MC BT FDM

t=0.0439 7.75 -0.35176 -0.35340 -0.35175 -0.32315

 8 -0.25292 -0.25143 -0.25293 -0.44648

 8.25 -0.13800 -0.13680 -0.13800 -0.18660

 8.5 -0.15836 -0.15855 -0.15835 -0.13993

t=0.1315 7.75 -0.12265 -0.12442 -0.12266 -0.11248

 8 -0.03763 -0.03944 -0.03764 -0.13759

 8.25 -0.14454 -0.14419 -0.14455 -0.17169

t=0.21643 8 -0.10562 -0.10513 -0.10563 -0.15831

 8.25 -0.05894 -0.05802 -0.05894 -0.07602

 8.5 0.00085 -0.00048 0.00085 -0.00498

 Maximum 0.00085 -0.00048 0.00085 -0.00498

 Minimum -0.35176 -0.35340 -0.35175 -0.44648

 Mean -0.13696 -0.13719 -0.13696 -0.17572

Table 4.4.4 Put option degree of deviation of CCB

From the analysis of the simulation results and deviation degree methods, our

 68

theoretical prices tend to be the same as the market prices. On the premise of different

maturity dates and different exercise prices, the degree of deviation between the

analytical solution and the approximate solution of the B-S partial differential equation

is mostly negative. This shows that the market price is higher than the theoretical price.

The market price is overestimate to some extent. The deviation of the analytical solution

of the B-S partial differential equation is the smallest, and it can be considered that

using the analytical solution in the pricing of the European option can get the theoretical

price closest to the market value.

In the following, we will transfer the research object to the empirical analysis of

American put option pricing. Here we choose HSBC Holdings (HK.0005) as our object.

We will study the prices of eight HSBC stock American put options. The stock price of

HK.0005 in 1.04.2018 is 74 HK$. Through the query of relevant data we set the risk-

free interest rate to 0.015 meanwhile the expiration dates is September18 (0.41918

years till now), Implied volatility of options is in Appendix.

T Strike price Real price LSM MC BT FDM

t=0.41918 65 0.91 0.5037872 0.513894 0.51127

 67.5 1.44 0.8369717 0.844566 0.847237

 70 2.07 1.36331 1.36444 1.36591

 72.5 3.11 2.231524 2.23591 2.22645

 75 4.47 3.384697 3.40177 3.40199

 77.5 6.11 4.897231 4.90927 4.90949

 85 12.35 11.07543 11.1263 11.1254

Table 4.4.5 American Put option of HSBC Holding

 69

Chart 4.4.2 Put option price of CCB

It can be seen from Tables 4.4.5 and 4.4.2 that the actual value of HSBC Options

is higher than the theoretical value predicted by the algorithm, but the actual value is

close to the theoretical value, which means that the algorithm is real and effective.

However, there are some problems in the selection of calculation data. When the

exercise date is too short, the price of the American put option cannot be calculated by

the least squares Monte Carlo simulation. The reason for this problem caused by the

debug analysis should be because in the program, the optimal stopping time (similar to

Bermuda option) is determined by artificially setting the number of exercise. When the

distance to maturity date is too short, the computer cannot calculate the too small value.

Resulting in an error.

0

2

4

6

8

10

12

14

0 20 40 60 80 100

American put option price

Real price LSM MC BT FDM

 70

Strike price LSM MC BT FDM

65 -0.44639 -0.43528 -0.43816

67.5 -0.41877 -0.41350 -0.41164

70 -0.34140 -0.34085 -0.34014

72.5 -0.28247 -0.28106 -0.28410

75 -0.24280 -0.23898 -0.23893

77.5 -0.19849 -0.19652 -0.19648

85 -0.10320 -0.09909 -0.09916

Maximum -0.10320 -0.09909 -0.09916

Minimum -0.44639 -0.43528 -0.43816

Mean -0.29050 -0.28647 -0.28694

Table 4.4.5American Put option degree of deviation of HSBC Holding

Table 4.4.5 shows the degree of deviation between the real market value and the

approximate solution of the least square Monte Carlo Simulation, binomial tree model

and the finite difference method is mostly negative. This also shows that the market

price is high than the theoretical price. The market price is overestimate to some extent.

From the average deviation of degree, the simulate option price calculate by binomial

method of large steps have the smallest deviation with the real market price. This means

that the binomial method has a very high precision in the pricing of American options.

 71

Chapter 5. Conclusion

In order to study the method of option pricing and its calculation accuracy, this

thesis introduces the stochastic process and the Black-Scholes partial differential

equation that can be used for European option pricing, and uses C++ programming to

calculate its analytic solution. The Monte Carlo method and the binomial tree method,

as well as the finite difference method and their calculation methods are also introduced.

Because Black-Scholes partial differential equations and general Monte Carlo

simulation can not consider the advance exercise problems. It is not suitable to solve

the American option price.

The thesis also introduces the least squares Monte Carlo simulation together with

the binomial tree method and the finite difference method calculate the American

option price. In the empirical analysis, several stock options of Construction Bank

(HK.0939) and HSBC Holdings (HK.0005) were selected for research. The article uses

several models to simulate the European option path of China Construction Bank's

stock and the American option path of HSBC Holdings to obtain the option price.

The experimental results show that the direct solution to the analytical solution of

partial differential equations in the pricing of European options yields the option price

closest to the real value of the option. However, due to the inability to directly obtain

analytical solutions in the face of more complex partial differential equations, a

binomial method with large step numbers is required because the accuracy of the

binomial method is very close to that of BS partial differential equations at larger steps.

In addition, in the American option price simulation, it is also the binomial method with

 72

the highest accuracy, and the closest to the market real value.

However, in empirical analysis simulations, we find that the theoretical price of

derivatives is always lower than the real market price, which means that the market is

overestimated to some extent. We think the reasons may have the following:

1. In recent years, the stock prices of China Construction Bank and HSBC Holdings

have been at a high level and the return on net assets has risen (Construction Bank

(HK.0939): 13.16% and HSBC Holdings (HK.0005): 5.68% in 2017). Investors are

optimistic about the stock's outlook and the option price is overvalued.

2. According to modern financial theory, when the price of financial assets seriously

deviates from the theoretical price, the market will have opposite expectations. If

the issuer or market makers are allowed to sell short, it may create a constraint on

the price trend of the financial asset. The model of option pricing itself assumes that

there is a short selling mechanism in the market. However, virtually no short-selling

mechanism exists in the securities markets of the Chinese mainland or the Hong

Kong Special Administrative Region. The unilateral nature of the market

mechanism has made it difficult for the securities market to form an effective

spontaneous restraint mechanism. As a result, effective suppression of market

prices has not been applied.

3. Even though the Hong Kong Special Administrative Region is an international

financial center with an extremely sophisticated financial system, many individual

investors still have a lot of blinding and following trends in investment behavior,

 73

the ability to identify and judge risks is insufficient, so there is inevitable blindness

in the investment process.

Due to the limited ability of author, there are still many places that are worth

discussing. It can be perfected through deeper research. First, the thesis considers only

Black-Scholes partial differential equations. However, with the development of

mathematical sciences, more and more studies tend to think that financial asset price

distribution has fat tails and skewness, which are not suitable for normal distribution.

Due to the programming technique reasons, the article did not include a variance

gamma distribution model (VG) or a normal inverse Gaussian distribution model (NIG)

for comparison studies. Finally, this thesis does not correct some of the limitations of

the Monte Carlo simulation method.

 74

Bibliography

1. BARNDORFF-NIELSEN OLE E. Normal Inverse Gaussian Distributions and

Stochastic Volatility Modelling. Scandinavian Journal of Statistics 24: 1–13 1997.

2. BOYLE Phelim P. Options: A Monte Carlo approach. Journal of Financial

Economics, 4:323–38, 1977.

3. CHEN Yu. Options pricing theory and its applications. China Financial Publishing

House, 1998, 183p. ISBN: 9787504920287.

4. DUFFY Daniel J. Finite Difference Methods in Financial Engineering: A Partial

Differential Equation Approach. Wiley, 2013, 464p. ISBN: 9781118856482.

5. DUFFY Daniel J., J KIENITZ. Monte Carlo Frameworks: Building Customisable

High-performance C++ Applications.Wiley,2009,776p ISBN: 9780470060698.

6. DUFFY Daniel J. Introduction to C++ for Financial Engineers. Wiley, 2006, 438p.

ISBN:9780470015384.

7. DUFFY Daniel J. Financial Instrument Pricing Using C++. Wiley, 2004, 432p.

ISBN:9780470855096.

8. HULL John C. Options, Futures and Other Derivatives 8th Edition. Pearson, 2011,

872p. ISBN: 9780273759072.

9. IACUS Stefano M. Option Pricing and Estimation of Financial Models with R.

John Wiley & Sons, 2011, 472p. ISBN:9781119990208.

10. JOSHI M. S. C++ Design Patterns and Derivatives Pricing. Cambridge, 2008,

306p. ISBN:9780521721622.

 75

11. JOY Corwin, Phelim P. BOYLE, KEN Seng Tan. Quasi-Monte Carlo methods in

numerical finance. Management Science, vol. 42, pp. 926-938, June 1996.

12. LONGSTAFF	Francis A., Eduardo S. SCHWARTZ. Valuing American options by

simulation: A simple least-squares approach. The Review of Financial Studies, Vol.

14, No. 1. (Spring, 2001), pp. 113-147.

13. LONDON Justin. Modeling Derivatives in C++.John Wiley & Sons, 2005, 840p.

ISBN:9780471681892.

14. MEYER Christian. Recursive Numerical Evaluation of the Cumulative Bivariate

Normal Distribution. Journal of Statistical Software, March 2013.Volume 52, Issue

10.

15. MOROKOFF W. J., R. E. Caflisch. Quasi-Monte Carlo Integration. Journal of

Computational Physics, 1995, 122,218-230.

16. MERTON Robert C. An analytic derivation of the efficient portfolio frontier.

Journal of Financial and Quantitative Analysis, 7:1851–72, September 1972.

17. MCDONALD Robert L. Derivatives Markets. Pearson, third edition, 2013, 904p.

ISBN:9781292021256.

18. ODEGAARD Bernt Arne. Financial Numerical Recipes in C++. 2014.89-98.

19. PENA Alonso. Advanced Quantitative Finance with C++. Packt Publishing, 2014,

124p. ISBN: 9781782167235.

20. PLATEN Eckhard, David HEATH. A Benchmark Approach to Quantitative

Finance. Springer Finance, 2006, 700p.ISBN:9783540478560.

 76

21. PHILIP Peter. Numerical Methods for Mathematical Finance. August 7, 2016.

Lecture Notes.

22. PRATA Stephen. C++ Primer Plus (6th Edition). Addison-Wesley Professional,

2011, 1200p. ISBN:9780321776402.

23. SHREVE, Steven. E. Stochastic Calculus for Finance II: Continuous-Time

modeling. Springer-Verlag New York, 2004, 550p. ISBN: 9781441923110.

24. TICHY Tomas. Lattice Models- Pricing and Hedging at (In)complete Markets.

VSB-Technical University, Faculty of Economics, 2008,

150p.ISBN:9788024817033.

25. TICHY Tomas. Levy Processes in Finance: Selected Applications with Theoretical

Background. VSB-Technical University, Faculty of Economics, 2011. ISBN:

9788024825366

26. TANKOV Peter. Financial Modelling with Jump Processes. CRC Press, 2003,

552p. ISBN:9781135437947.

27. TANKOV Peter. Financial modeling with Levy processes. Lecture notes.

28. TIAN Wenzhao. Pricing Theory and Numerical Calculation of Financial Assets.

Peking University Press, 2011, 277P. ISBN:9787301159903.

29. WILMOTT Pau, Sam HOWISON, Jeff DEWYNNE. The Mathematics of Financial

Derivatives: A Student Introduction. Cambridge University Press, 1995, 317p.

ISBN: 9780521497893.

30. WILMOTT Pau. Paul Wilmott Introduces Quantitative Finance. John Wiley &

Sons, 2013,728p. ISBN:9781118836798.

 77

31. YANG Haijun, YANG Lei. Valuing American Options by Weighted Least-Squares

Quasi-Monte Carlo. Journal of systems engineering, vol.23 No.5 Oct.2008.

32. ZMESKAL Zdenek, Dana DLUHOSOVA, Tomas TICHY. Financial models.

Ostrava: VSB-Technical University, Faculty of Economics, 2004, 254p.

ISBN:9788024807546.

Electronic literature

1. http://itpp.sourceforge.net/4.3.1/

2. http://www.robertnz.net/nm_intro.htm

3. http://www.hkex.com.hk/Market-Data/Futures-and-Options-Prices/Equity-

Index/Hang-Seng-Index-Futures-and-Options?sc_lang=zh-HK#&product=HSI

4. http://www.cmegroup.com/market-data.html/

5. https://github.com

 78

List of abbreviations

X: strike price.

𝑆5: current stock price.

𝑆C: stock price at time t.

T: time to maturity.

Sigma/σ: implied volatility.

c: European call option price.

p: European put option price.

C: American call option price.

P: American put option price.

B-S: Black-Scholes function.

LSM: least square Monte Carlo simulation method.

 79

 80

List of annexes

1. Code of the pricing program

Program 1. Normal distribution.

Program 2. European call option pricing

Program 3. European put option pricing

Program 4. Function of random number

Program 5. Monte Carlo Method

Program 6. Binomial Tree method for European option pricing

Program 7. Binomial Tree method for American option pricing

Program 8. Explicit finite-difference method on European option pricing

Program 9. Explicit finite-difference method on American option pricing

Program 10. Implicit finite-difference method on European option pricing

Program 11. Implicit finite-difference method on American option pricing

Program 12. Loop of calculation

Program 13. Least square Monte Carlo method

2. Table of calculation results

Table 1. Black-Scholes analytical solution

Table 2. Black-Scholes numerical solution in Monte Carlo

Table 3. Black-Scholes numerical solution in binomial tree

Table 4. Black-Scholes numerical solution in explicit finite difference method

Table 5. Black-Scholes numerical solution in implicit finite difference method

Table 6. Numerical solution in binomial tree method of American option

 81

Table 7. Numerical solution in explicit FDM method of American option

Table 8. Numerical solution in implicit FDM method of American option

Annexes

1.Code of the pricing program

Program 1. Normal distribution.

#include <math.h>

#include <iostream>

double N(const double &x)

{

 if (x>6.0) {return 1.0;};if (x<-6.0) {return 0.0;};

 double b1 = 0.31938153; double b2 = -0.356563782;

 double b3 = 1.781477937;double b4 = -1.821255978;

 double b5 = 1.330274492;double p = 0.2316419;

 double c2 = 0.3989423;double a =fabs(x);

 double t = 1.0/(1.0+a*p);double b = c2*exp((-x)*(x/2.0));

 double n =((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t;

 n=1.0-b*n;

 if(x<0.0)n=1.0-n;

return n;

}

Program 2. European call option pricing

#include <math.h>

#include"normdist.h"

#include <iostream>

double option_price_call_black_scholes(const double &S,//underlying asset price

 const double &X,//exercise price

 const double &r,//risk free rate

 const double &sigma,//volatility

 const double &time)//period of exercise

{

 double time_sqrt = sqrt(time);

 double d1 = (log(S/X)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;//d1

 double d2 =d1-(sigma*time_sqrt);//d2

 double c = S*N(d1)-X*exp(-r*time)*N(d2);//call

 return c;

}

Program 3. European put option pricing

double option_price_put_black_scholes(const double &S,//underlying asset price

 const double &X,//exercise price

 const double &r,//risk free rate

 const double &sigma,//volatility

 const double &time)//period of exercise

{

 double time_sqrt = sqrt(time);

 double d1 = (log(S/X)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;//d1

 double d2 =d1-(sigma*time_sqrt);//d2

 double p = X*exp(-r*time)*N(-d2)-S*N(-d1);//put

 return p;

}

Program 4. Function of random number

#include <cstdlib>

#include <cmath>

using namespace std;

double random_normal()

{

double result;double x;

double y;double xysquare;

 do

{

 x = 2.0*rand()/static_cast<double>(RAND_MAX)-1;

 y = 2.0*rand()/static_cast<double>(RAND_MAX)-1;

 xysquare = x*x + y*y;

 }

 while

 (xysquare >= 1.0);

 result = x*sqrt(-2*log(xysquare)/xysquare);

 return result;

}

Program 5. Monte Carlo Method

#include <iostream>

#include <math.h>

#include "normdist.h"

#include "random.h"

double max(double a,double b)

{

 if(a>b) return a;

 else return b;

}

void option_price_european_simulated(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const double &no_sims,

 double &call_option,

 double &put_option)

{

 double R = (r-0.5*pow(sigma,2))*time;

 double SD = sigma*sqrt(time);

 double sum_payoffs1 = 0.0;

 double sum_payoffs2 = 0.0;

 for (int n = 1;n<=no_sims;n++)

 {

 double S_T = S*exp(R+SD* random_normal());

 sum_payoffs1 += max(0.0,S_T-X);

 sum_payoffs2 += max(X-S_T,0.0);

 }

 call_option = exp(-r*time)*(sum_payoffs1/double(no_sims));

 put_option = exp(-r*time)*(sum_payoffs2/double(no_sims));

}

Program 6. Binomial Tree method for European option pricing

#include <iostream>

#include <math.h>

#include <vector>

#include "normdist.h"

#include "random.h"

double max (double x,

 double y)

{

 if (x>y) return x;

 else return y;

}

double option_price_call_european_binomia(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &steps)

{

 double R = exp(r*(time/steps));

 double Rinv = 1.0/R;

 double u = exp(sigma*sqrt(time/steps));

 double uu = u*u;

 double d = 1.0/u;

 double p_up = (R-d)/(u-d);

 double p_down = 1.0-p_up;

 vector<double> prices(steps+1);

 prices[0] = S*pow(d,steps);

 for (int i = 1;i<=steps; ++i) prices[i] = uu*prices[i-1];

 vector<double> call_values(steps+1);

 for (int j = 0;j<=steps; ++j) call_values[j] = max(0.0,(prices[j]-X));

 for (int step = steps-1;step >=0; --step)

 {

 for (int i=0;i<= step; ++i)

 {

 call_values[i] = (p_up*call_values[i+1]+p_down*call_values[i])*Rinv;

 }

 }

 return call_values[0];

}

double option_price_put_european_binomia(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &steps)

{

 double R = exp(r*(time/steps));

 double Rinv = 1.0/R;

 double u = exp(sigma*sqrt(time/steps));

 double uu = u*u;

 double d = 1.0/u;

 double p_up = (R-d)/(u-d);

 double p_down = 1.0-p_up;

 vector<double> prices(steps+1);

 prices[0] = S*pow(d,steps);

 for (int i = 1;i<=steps; ++i) prices[i] = uu*prices[i-1];

 vector<double> put_values(steps+1);

 for (int j = 0;j<=steps; ++j) put_values[j] = max(0.0,(X-prices[j]));

 for (int step = steps-1;step >=0; --step)

 {

 for (int i=0;i<= step; ++i)

 {

 put_values[i] = (p_up*put_values[i+1]+p_down*put_values[i])*Rinv;

 }

 }

 return put_values[0];

}

Program 7. Binomial Tree method for American option pricing

#include <iostream>

#include "normdist.h"

#include <math.h>

#include "random.h"

#include <vector>

using namespace std;

double max(double x,double y)

{

 if(x>y) return x;

 else return y;

}

double option_price_call_american_binomial(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &steps)

{

 double R = exp(r*(time/steps));

 double Rinv = 1.0/R;

 double u = exp(sigma*sqrt(time/steps));

 double uu = u*u;

 double d = 1.0/u;

 double p_pu = (R-d)/(u-d);

 double p_down = 1.0-p_pu;

 vector<double> prices(steps+1);

 vector<double> call_values(steps+1);

 prices[0] = S*pow(d,steps);

 for (int i = 1; i<=steps;i++) prices[i] = uu*prices[i-1];

 for (int i = 0; i<=steps;++i) call_values[i] = max(0.0,(prices[i]-X));

 for (int step = steps-1; step>=0;--step)

 {

 for (int i = 0; i<=step; ++i)

 {

 call_values[i] = (p_pu*call_values[i+1]+p_down*call_values[i])*Rinv;

 prices[i] = d*prices[i+1];

 call_values[i] = max(call_values[i],prices[i]-X);//checking exercise

 }

 }

 return call_values[0];

}

double option_price_put_american_binomial(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &steps)

{

 double R = exp(r*(time/steps));

 double Rinv = 1.0/R;

 double u = exp(sigma*sqrt(time/steps));

 double uu = u*u;

 double d = 1.0/u;

 double p_pu = (R-d)/(u-d);

 double p_down = 1.0-p_pu;

 vector<double> prices(steps+1);

 prices[0] = S*pow(d,steps);

 for (int i = 1; i<=steps;i++) prices[i] = uu*prices[i-1];

 vector<double> put_values(steps+1);

 for (int i = 0; i<=steps;++i) put_values[i] = max(0.0,(X-prices[i]));

 for (int step = steps-1; step>=0;--step)

 {

 for (int i = 0; i<=step; ++i)

 {

 put_values[i] = (p_pu*put_values[i+1]+p_down*put_values[i])*Rinv;

 prices[i] = d*prices[i+1];

 put_values[i] = max(put_values[i],X-prices[i]); //checking exercise

 }

 }

 return put_values[0];

}

Program 8. Explicit finite-difference method on European option pricing

#include <iostream>

#include <vector>

#include <iostream>

using namespace std;

double max(double x,double y)

{

 if(x>y) return x;

 else return y;

}

double option_price_call_european_finite_different_explicit(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 unsigned int M;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1);

 for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 vector<double> a(M);

 vector<double> b(M);

 vector<double> c(M);

 double r1 = 1.0/(1.0+r*delta_t);

 double r2 = delta_t/(1.0+r*delta_t);

 for (unsigned int j=1; j<M; j++)

 {

 a[j] = r2*0.5*j*(-r+sigma_sqr*j);

 b[j] = r1*(1.0-sigma_sqr*j*j*delta_t);

 c[j] = r2*0.5*j*(r+sigma_sqr*j);

 }

 vector<double> f_next(M+1);

 for (unsigned int n = 0; n<=M; ++n){f_next[n] = max(0.0,S_values[n]-X);};

 vector<double> f(M+1);

 for (int t=N-1; t>=0; --t)

 {

 f[0] = 0;

 for (unsigned m = 1; m<M; ++m)

 {

 f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1];

 }

 f[M] = 0;

 for (unsigned n = 0; n<=M; ++n){f_next[n] = f[n];};

 }

 double C = f[M/2];

 return C;

}

double option_price_put_european_finite_different_explicit(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 unsigned int M;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1);

 for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 vector<double> a(M);

 vector<double> b(M);

 vector<double> c(M);

 double r1 = 1.0/(1.0+r*delta_t);

 double r2 = delta_t/(1.0+r*delta_t);

 for (unsigned int j=1; j<M; j++)

 {

 a[j] = r2*0.5*j*(-r+sigma_sqr*j);

 b[j] = r1*(1.0-sigma_sqr*j*j*delta_t);

 c[j] = r2*0.5*j*(r+sigma_sqr*j);

 }

 vector<double> f_next(M+1);

 for (unsigned int n = 0; n<=M; ++n){f_next[n] = max(0.0,X-S_values[n]);};

 vector<double> f(M+1);

 for (int t=N-1; t>=0; --t)

 {

 f[0] = 0;

 for (unsigned m = 1; m<M; ++m)

 {

 f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1];

 }

 f[M] = 0;

 for (unsigned n = 0; n<=M; ++n){f_next[n] = f[n];};

 }

 double P = f[M/2];

 return P;

}

Program 9. Explicit finite-difference method on American option pricing

#include <iostream>

#include <vector>

#include <math.h>

#include <fstream>

using namespace std;

double max(double x,double y)

{

 if(x>y) return x;

 else return y;

}

double option_price_call_american_finite_different_explicit(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 int M = no_S_steps;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1,0.0);

 for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 vector<double> a(M,0.0);

 vector<double> b(M,0.0);

 vector<double> c(M,0.0);

 double r1 = 1.0/(1.0+r*delta_t);

 double r2 = delta_t/(1.0+r*delta_t);

 for (int j=1; j<M; j++)

 {

 a[j] = r2*0.5*j*(-r+sigma_sqr*j);

 b[j] = r1*(1.0-sigma_sqr*j*j*delta_t);

 c[j] = r2*0.5*j*(r+sigma_sqr*j);

 }

 vector<double> f_next(M+1,0.0);

 for (int n = 0; n<=M; ++n){f_next[n] = max(0.0,S_values[n]-X);};

 vector<double> f(M+1,0.0);

 for (int t=N-1; t>=0; --t)

 {

 f[0] = 0;

 for (int m = 1; m<M; ++m)

 {

 f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1];

 f[m] = max(f[m],S_values[m]-X);

 }

 f[M] = S_values[M]-X;

 for (int n = 0; n<=M; ++n){f_next[n] = f[n];};

 }

 double C = f[M/2];

 return C;

}

double option_price_put_american_finite_different_explicit(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 int M = no_S_steps;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1);

 for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 vector<double> a(M);

 vector<double> b(M);

 vector<double> c(M);

 double r1 = 1.0/(1.0+r*delta_t);

 double r2 = delta_t/(1.0+r*delta_t);

 for (int j=1; j<M; j++)

 {

 a[j] = r2*0.5*j*(-r+sigma_sqr*j);

 b[j] = r1*(1.0-sigma_sqr*j*j*delta_t);

 c[j] = r2*0.5*j*(r+sigma_sqr*j);

 }

 vector<double> f_next(M+1);

 for (int n = 0; n<=M; ++n){f_next[n] = max(0.0,X-S_values[n]);};

 vector<double> f(M+1);

 for (int t=N-1; t>=0; --t)

 {

 f[0] = 0;

 for (int m = 1; m<M; ++m)

 {

 f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1];

 f[m] = max(f[m],X-S_values[m]);

 }

 f[M] = 0;

 for (int k = 0; k<=M; ++k){f_next[k] = f[k];};

 }

 double P = f[M/2];

 return P;

}

Program 10. Implicit finite-difference method on European option pricing

#include <math.h>

#include "newmat.h"

#include "normdist.h"

#include <vector>

#include <iostream>

using namespace std;

double max(double x,double y)

{

 if(x>y) return x;

 else return y;

}

double option_price_call_european_finite_different_implict(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 int M = no_S_steps;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1,0.0);

 for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 BandMatrix A (M+1,1,1);A = 0.0;

 A.element(0,0) = 1.0;

 for (int j = 1; j<M; ++j)

 {

 A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j);

 A.element(j,j) = 1.0+delta_t*(r-sigma_sqr*j);

 A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j);

 }

 A.element(M,M) = 1.0;

 ColumnVector B(M+1);

 for (int m=0; m<=M; ++m){B.element(m) = max(0.0,S_values[m]-X);};

 ColumnVector F = A.i()*B;

 for (int t = N-1; t>0;--t)

 {

 B = F;

 F = A.i()*B;

 }

 return F.element(M/2);

}

double option_price_put_european_finite_different_implict(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 int M = no_S_steps;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1,0.0);

 for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 BandMatrix A (M+1,1,1);A = 0.0;

 A.element(0,0) = 1.0;

 for (int j = 1; j<M; ++j)

 {

 A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j);

 A.element(j,j) = 1.0+delta_t*(r-sigma_sqr*j);

 A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j);

 }

 A.element(M,M) = 1.0;

 ColumnVector B(M+1);

 for (int n=0; n<=M; ++n){B.element(n) = max(0.0,X-S_values[n]);};

 ColumnVector F = A.i()*B;

 for (int t = N-1; t>0;--t)

 {

 B = F;

 F = A.i()*B;

 }

 return F.element(M/2);

}

Program 11. Implicit finite-difference method on American option pricing

#include <iostream>

#include "newmat10/newmat.h"

#include <math.h>

#include "normdist.h"

#include "vector"

using namespace std;

double max(double x,double y)

{

 if(x>y) return x;

 else return y;

}

double option_price_call_american_finite_different_implict(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 unsigned int M;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1);

 for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 BandMatrix A (M+1,1,1);A = 0.0;

 A.element(0,0) = 1.0;

 for (int j = 1; j<M; ++j)

 {

 A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j);

 A.element(j,j) = 1.0+delta_t*(r-sigma_sqr*j);

 A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j);

 }

 A.element(M,M) = 1.0;

 ColumnVector B(M+1);

 for (unsigned n = 0; n<=M; ++n){B.element(n) = max(0.0,S_values[n]-X);};

 ColumnVector F = A.i()*B;

 for (int t = N-1; t>0; --t)

 {

 B = F;

 F = A.i()*B;

 for (unsigned m = 1; m<M; ++m)

 {

 F.element(m) = max(F.element(m),S_values[m]-X);

 }

 }

 return F.element(M/2);

}

double option_price_put_american_finite_different_implict(const double &S,

 const double &X,

 const double &r,

 const double &sigma,

 const double &time,

 const int &no_S_steps,

 const int &no_t_steps)

{

 double sigma_sqr = sigma*sigma;

 unsigned int M;

 if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;};

 double delta_S = 2.0*S/M;

 vector<double> S_values(M+1,0.0);

 for (int m = 0;m<=M;m++){S_values[m] = m*delta_S;};

 int N = no_t_steps;

 double delta_t = time/N;

 BandMatrix A (M+1,1,1);A = 0.0;

 A.element(0,0) = 1.0;

 for (int j = 1; j<M; ++j)

 {

 A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j);

 A.element(j,j) = 1.0+delta_t*(r-sigma_sqr*j);

 A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j);

 }

 A.element(M,M) = 1.0;

 ColumnVector B(M+1);

 for (int n = 0; n<=M; ++n){B.element(n) = max(0.0,X-S_values[n]);};

 ColumnVector F = A.i()*B;

 for (int t = N-1; t>0; --t)

 {

 B = F;

 F = A.i()*B;

 for (unsigned m = 1; m<M; ++m)

 {

 F.element(m) = max(F.element(m),X-S_values[m]);

 }

 }

 return F.element(M/2);

}

Program 12. Loop of calculation

int main()

{

 int j;

 double S[100],X[100],r[100],sigma[100],time[100];

 ifstream inf("/Users/ /data1.txt"); // Assume data is saved in c:\da.txt

file

 double data[100000]; // An array to hold the read out number

 int i=0;

 while (inf>>data[i]) // Read the number in the inf file into the data

array

 ++i;

 inf.close(); // After reading, close the file

 /*for (int j=0; j<i; j++)

 { // The number stored in the output data array (ie c:\da.txt file).

 cout<<data[j]<<'\t';

 }*/

 int s=0,x=0,p=0,sig=0,ti=0;

 for(j=0;j<i;j++)

 {

 if(j%5==0)

 {

 S[s]=data[j];//cout<<S[m]<<'\t';

 s++;

 }

 if(j%5==1)

 {

 X[x]=data[j];//cout<<X[m]<<'\t';

 x++;

 }

 if(j%5==2)

 {

 r[p]=data[j];//cout<<r[m]<<'\t';

 p++;

 }

 if(j%5==3)

 {

 sigma[sig]=data[j];//cout<<sigma[m]<<'\t';

 sig++;

 }

 if(j%5==4)

 {

 time[ti]=data[j];//cout<<time[m]<<'\t';

 ti++;

 }

 }

 //for(int s = 0; s <5; s++)

//cout<<S[s]<<'\t'; //return 0;

Program 13. Least square Monte Carlo method

LSM <- function(n, d, S0, K, sigma, r, T) {

 s0 <- S0/K

 dt <- T/d

 z <- rnorm(n)

 s.t <- s0 * exp((r - 1/2 * sigma^2) * T + sigma * z * (T^0.5))

 s.t[(n + 1):(2 * n)] <- s0 * exp((r - 1/2 * sigma^2) * T -

 sigma * z * (T^0.5))

 CC <- pmax(1 - s.t, 0)

 payoffeu <- exp(-r * T) * (CC[1:n] + CC[(n + 1):(2 * n)])/2 * K

 euprice <- mean(payoffeu)

 for (k in (d - 1):1) {

 z <- rnorm(n)

 mean <- (log(s0) + k * log(s.t[1:n]))/(k + 1)

 vol <- (k * dt/(k + 1))^0.5 * z

 s.t.1 <- exp(mean + sigma * vol)

 mean <- (log(s0) + k * log(s.t[(n + 1):(2 * n)]))/(k +1)

 s.t.1[(n + 1):(2 * n)] <- exp(mean - sigma * vol)

 CE <- pmax(1 - s.t.1, 0)

 idx <- (1:(2 * n))[CE > 0]

 discountedCC <- CC[idx] * exp(-r * dt)

 basis1 <- exp(-s.t.1[idx]/2)

 basis2 <- basis1 * (1 - s.t.1[idx])

 basis3 <- basis1 * (1 - 2 * s.t.1[idx] + (s.t.1[idx]^2)/2)

 p <- lm(discountedCC ~ basis1 + basis2 + basis3)$coefficients

 estimatedCC <- p[1] + p[2] * basis1 + p[3] * basis2 +

 p[4] * basis3

 EF <- rep(0, 2 * n)

 EF[idx] <- (CE[idx] > estimatedCC)

 CC <- (EF == 0) * CC * exp(-r * dt) + (EF == 1) * CE

 s.t <- s.t.1

 }

 payoff <- exp(-r * dt) * (CC[1:n] + CC[(n + 1):(2 * n)])/2

 usprice <- mean(payoff * K)

 error <- 1.96 * sd(payoff * K)/sqrt(n)

 earlyex <- usprice - euprice

 data.frame(usprice, error, euprice)

 }

S0 <- 36

K <- 30

T <- 1

r <- 0.05

sigma <- 0.4

LSM(10000, 3, S0, K, sigma, r, T)

Table of calculation results

Table 1. Black-Scholes analytical solution

Call option

S X r sigma time Black-Scholes

14.575 10 0.21 1.4094 0.02 4.64252

14.575 10.5 0.21 1.2383 0.02 4.14305

14.575 11 0.21 1.0838 0.02 3.64458

14.575 11.5 0.21 0.9506 0.02 3.14833

14.575 12 0.21 0.7994 0.02 2.649

14.575 12.5 0.21 0.6621 0.02 2.15129

14.575 13 0.21 0.613 0.02 1.67633

14.575 13.5 0.21 0.6165 0.02 1.24814

14.575 14 0.21 0.6601 0.02 0.906659

14.575 14.5 0.21 0.7313 0.02 0.668617

14.575 15 0.21 0.7526 0.02 0.461753

14.575 16 0.21 0.9005 0.02 0.2772

14.575 17 0.21 0.9621 0.02 0.146352

14.575 18 0.21 1.1134 0.02 0.112278

14.575 19 0.21 1.1457 0.02 0.0608679

14.575 20 0.21 1.1811 0.02 0.0339717

14.575 21 0.21 1.3255 0.02 0.0337002

14.575 22 0.21 1.4599 0.02 0.0334443

14.575 23 0.21 1.565 0.02 0.0304943

14.575 24 0.21 1.6845 0.02 0.0305528

14.575 25 0.21 1.797 0.02 0.030546

14.575 26 0.21 1.9035 0.02 0.0305165

14.575 27 0.21 2.006 0.02 0.0306195

14.575 28 0.21 2.1025 0.02 0.0305827

14.575 29 0.21 2.1961 0.02 0.0306898

14.575 30 0.21 2.2849 0.02 0.030706

14.575 32.5 0.21 2.4927 0.02 0.0308383

14.575 35 0.21 2.6817 0.02 0.0309451

14.575 37.5 0.21 2.8551 0.02 0.0310447

14.575 40 0.21 3.0152 0.02 0.0311349

Put option

S X r sigma time Black-Scholes

14.575 10 0.21 2.2815 0.02 0.311095

14.575 10.5 0.21 1.8378 0.02 0.152188

14.575 11 0.21 1.5005 0.02 0.11019

14.575 11.5 0.21 1.2454 0.02 0.0890074

14.575 12 0.21 0.9886 0.02 0.0645449

14.575 12.5 0.21 0.7804 0.02 0.0509957

14.575 13 0.21 0.6906 0.02 0.0730808

14.575 13.5 0.21 0.6664 0.02 0.14302

14.575 14 0.21 0.6889 0.02 0.293736

14.575 14.5 0.21 0.7349 0.02 0.535775

14.575 15 0.21 0.7314 0.02 0.806737

14.575 16 0.21 0.8233 0.02 1.58444

14.575 17 0.21 0.8318 0.02 2.44278

14.575 18 0.21 0.9194 0.02 3.39937

14.575 19 0.21 0.9022 0.02 4.36127

14.575 20 0.21 0.8903 0.02 5.34574

14.575 21 0.21 0.9623 0.02 6.33992

14.575 22 0.21 1.024 0.02 7.33467

14.575 23 0.21 1.0685 0.02 8.32969

14.575 24 0.21 1.1158 0.02 9.3251

14.575 25 0.21 1.1573 0.02 10.3207

14.575 26 0.21 1.1947 0.02 11.3163

14.575 27 0.21 1.2274 0.02 12.312

14.575 28 0.21 1.2568 0.02 13.3078

14.575 29 0.21 1.2833 0.02 14.3035

14.575 30 0.21 1.3069 0.02 15.2993

14.575 32.5 0.21 1.358 0.02 17.7888

14.575 35 0.21 1.3977 0.02 20.2783

14.575 37.5 0.21 1.4309 0.02 22.7678

14.575 40 0.21 1.4583 0.02 25.2574

14.575 42.5 0.21 1.4803 0.02 27.7469

14.575 45 0.21 1.4984 0.02 30.2364

Table 2. Black-Scholes numerical solution in Monte Carlo

Call option

MCarlo50 MCarlo1000 MCarlo10000 MCarlo50000

4.65235 4.65235 4.65235 4.65235

4.18337 4.05996 4.1538 4.15782

3.56816 3.70136 3.6403 3.64479

3.08868 3.1357 3.14918 3.15287

2.72959 2.64618 2.64103 2.65809

2.15344 2.17803 2.15466 2.15032

1.7208 1.62676 1.68907 1.67487

1.192 1.27307 1.2569 1.25015

0.886319 0.895331 0.906307 0.90489

0.653438 0.713174 0.682706 0.671256

0.504526 0.406528 0.472554 0.462941

0.302568 0.297165 0.283866 0.282341

0.118608 0.134037 0.14344 0.149526

0.0929043 0.127157 0.119404 0.11407

0.0669014 0.0879925 0.061345 0.0617177

0.037268 0.0412407 0.0308473 0.0310582

0.0517506 0.0277222 0.0355566 0.0348945

0.0254658 0.0243404 0.0348823 0.0323416

0.0722633 0.0376004 0.0299929 0.0323629

0.0182184 0.0454621 0.0344832 0.0314231

0.0171045 0.00851379 0.0341984 0.0301797

0.0461339 0.019146 0.0311904 0.0296153

0.00158227 0.0450202 0.0335682 0.0320004

0.0690685 0.0291123 0.0342634 0.0287716

0.0238286 0.0449729 0.0306608 0.0307597

0.0325739 0.0154194 0.0360878 0.030258

0.0528498 0.0130879 0.0290923 0.0331503

0.00370223 0.0202905 0.0288721 0.0267708

0.0655619 0.0524024 0.0313402 0.0273229

0.039017 0.0221714 0.039819 0.0316094

put option

MonteCarlo50 MonteCarlo1000 MCarlo10000 MCarlo50000

0.2137 0.242663 0.219319 0.225429

0.277804 0.145098 0.15777 0.152949

0.134721 0.100421 0.112334 0.108977

0.119097 0.0903439 0.0902059 0.088398

0.0981901 0.0484329 0.0650068 0.0630125

0.0821978 0.0490903 0.052366 0.050724

0.0746992 0.0792378 0.0718467 0.072564

0.214533 0.157358 0.142136 0.142863

0.131578 0.281672 0.299963 0.292311

0.5239 0.507535 0.532672 0.535283

0.748091 0.820577 0.797485 0.813182

1.86999 1.61453 1.56132 1.58375

2.58932 2.47811 2.46404 2.44783

3.65502 3.33164 3.41722 3.40263

4.04825 4.39862 4.37456 4.35069

4.99796 5.30014 5.33896 5.36887

6.19633 6.24342 6.3221 6.34001

7.76876 7.35538 7.34277 7.33526

8.16181 8.35414 8.33572 8.31181

9.55775 9.25111 9.30802 9.31483

10.3593 10.4759 10.298 10.3065

11.4879 11.3099 11.3094 11.2996

12.2476 12.2967 12.2656 12.3154

13.3147 13.3003 13.3224 13.3173

14.818 14.2383 14.2931 14.3047

14.902 15.2696 15.3347 15.3142

17.7014 17.7177 17.7798 17.8032

20.5232 20.4266 20.2997 20.2786

22.7726 22.6855 22.7491 22.7745

25.7226 25.3068 25.2304 25.2697

Table 3. Black-Scholes numerical solution in binomial tree

Call option

BinTree50 BinTree1000 BinTree10000 BinTree50000

4.64235 4.64255 4.6426 4.6426

4.14293 4.14304 4.14305 4.14305

3.64457 3.64452 3.64458 3.64458

3.14831 3.1483 3.14833 3.14833

2.64896 2.64897 2.64899 2.649

2.15128 2.15125 2.15128 2.15129

1.67633 1.67631 1.67632 1.67633

1.24813 1.2481 1.24814 1.24814

0.90669 0.906676 0.906669 0.906659

0.668906 0.668667 0.668632 0.66862

0.461485 0.461836 0.461769 0.461754

0.277204 0.277314 0.27721 0.277198

0.146444 0.146281 0.146359 0.146354

0.111954 0.112236 0.112263 0.112277

0.0608242 0.060793 0.0608618 0.0608649

0.0338632 0.0338794 0.033968 0.0339701

0.0336088 0.0336481 0.0336978 0.0336985

0.0333677 0.033425 0.0334401 0.0334416

0.0302823 0.0304692 0.030484 0.0304935

0.030493 0.0304619 0.0305489 0.0305507

0.0304482 0.0305168 0.0305383 0.0305453

0.0302739 0.0303825 0.0305136 0.0305159

0.0305143 0.0305776 0.0306154 0.0306171

0.0305124 0.0305291 0.030576 0.0305824

0.0305586 0.0305527 0.0306837 0.0306893

0.0304247 0.0306519 0.030701 0.0307052

0.0307452 0.0306941 0.0308322 0.0308382

0.030755 0.0308982 0.0309416 0.0309449

0.030828 0.0308754 0.0310302 0.031045

0.0310227 0.031078 0.0311305 0.0311353

0.0310688 0.031132 0.0312331 0.031238

Put option

BinTree50 BinTree1000 BinTree10000 BinTree50000

0.222508 0.225031 0.224938 0.224932

0.153442 0.152029 0.152176 0.152185

0.110673 0.110048 0.110191 0.110189

0.0889809 0.0890055 0.0890071 0.0890078

0.063288 0.0644442 0.0645472 0.0645451

0.0499729 0.0509105 0.0509972 0.0509958

0.0723853 0.0731178 0.0730846 0.0730801

0.142535 0.143003 0.143026 0.14302

0.29607 0.293853 0.293745 0.293736

0.536222 0.535828 0.53579 0.535778

0.804097 0.806866 0.806734 0.806736

1.58426 1.58451 1.58443 1.58444

2.44332 2.4428 2.44279 2.44278

3.39906 3.39937 3.39937 3.39937

4.36085 4.36123 4.36127 4.36127

5.34531 5.34573 5.34574 5.34574

6.3397 6.33991 6.33991 6.33992

7.33434 7.33465 7.33467 7.33467

8.32955 8.32968 8.32969 8.32969

9.32496 9.3251 9.3251 9.3251

10.3206 10.3207 10.3207 10.3207

11.3162 11.3163 11.3163 11.3163

12.312 12.312 12.312 12.312

13.3077 13.3078 13.3078 13.3078

14.3035 14.3035 14.3035 14.3035

15.2993 15.2993 15.2993 15.2993

17.7888 17.7888 17.7888 17.7888

20.2783 20.2783 20.2783 20.2783

22.7678 22.7678 22.7678 22.7678

25.2574 25.2574 25.2574 25.2574

Table 4. Black-Scholes numerical solution in explicit finite difference method

Call option

explicit10 10 explicit20 20 explicit200 200 explicit2000 2000

4.6676 4.64012 1.73E+164 nan

4.16763 4.14979 1.06E+140 nan

3.66051 3.65428 2.85E+114 nan

3.15274 3.15095 2.61E+88 nan

2.68306 2.66202 1.13E+52 nan

2.20735 2.16505 2.20E+08 nan

1.73409 1.67317 1.67635 nan

1.27502 1.26589 1.24833 nan

0.842215 0.911424 3.54E+07 nan

0.44434 0.603048 1.09E+32 nan

0.343242 0.447423 3.73E+38 nan

0.302427 0.250262 1.62E+77 nan

0.167061 0.153346 4.85E+90 nan

0.111988 0.115123 2.98E+119 nan

0.0809906 0.0578896 8.85E+124 nan

0.0443477 0.0361063 5.38E+130 nan

0.0365465 0.0336728 2.85E+152 nan

0.0368831 0.028844 2.04E+170 nan

0.0254017 0.0240648 9.86E+182 nan

0.0203698 0.0195948 2.00E+196 nan

0.0175297 0.0135372 7.70E+207 nan

0.0101867 0.00897262 1.29E+218 nan

0.00710948 0.00609445 3.82E+227 nan

0.00480988 0.019408 -2.11E+236 inf

0.000765764 0.0347681 6.68E+243 nan

Put option

explicit 10 10 explicit 20 20 explicit 200 200 explicit 2000 2000

0.271463 0.224174 3.63E+188 nan

0.190018 0.157399 -1.38E+151 nan

0.125888 0.121602 -6.57E+115 nan

0.0807608 0.08757 1.99E+81 nan

0.0965918 0.0769244 3.18E+34 nan

0.113626 0.0658148 5.10E-02 nan

0.134609 0.0659368 7.31E-02 nan

0.168802 0.158105 1.43E-01 nan

0.227459 0.298464 2.93E-01 nan

0.311574 0.470643 5.36E-01 nan

0.689501 0.79181 8.07E-01 nan

1.61596 1.55921 -3.57E+16 nan

2.47429 2.45297 2.53E+24 nan

3.40953 3.40487 -2.43E+52 nan

4.38115 4.36247 2.15E+52 nan

5.35567 5.34838 -1.51E+52 nan

6.34492 6.34139 -1.70E+74 nan

7.33967 7.33518 5.87E+90 nan

8.33226 8.33016 -1.67E+102 nan

9.32662 9.32538 1.52E+113 nan

10.322 10.3208 -1.27E+122 nan

11.317 11.3164 1.32E+127 nan

12.3124 12.3121 2.00E+136 nan

13.308 13.3078 -7.95E+141 nan

14.3035 14.3035 4.64E+145 nan

15.2991 15.2992 6.75E+148 nan

17.7877 17.7883 3.85E+156 nan

20.2758 20.277 1.51E+162 nan

22.7634 22.7654 4.75E+166 nan

25.2506 25.2533 1.95E+170 nan

Table 5. Black-Scholes numerical solution in implicit finite difference method

Call option

implicit10 10 implicit20 20 implicit100 100 implicit200 200

4.65235 4.64235 4.64212 4.64235

4.13678 4.14098 4.14292 4.14291

3.64055 3.642 3.64424 3.64425

3.14701 3.14579 3.14809 3.14833

2.64873 2.64786 2.649 2.64885

2.15184 2.15139 2.15109 2.1513

1.6713 1.67377 1.67653 1.67637

1.25293 1.24446 1.24866 1.24817

0.915577 0.902191 0.906632 0.906251

0.662274 0.667004 0.669348 0.669229

0.475801 0.468597 0.462941 0.461472

0.273664 0.282572 0.278137 0.277166

0.147067 0.149644 0.146813 0.145517

0.101805 0.103628 0.112392 0.112473

0.061652 0.0608706 0.0602689 0.0608875

0.0229546 0.0314312 0.0338433 0.0338829

0.0237426 0.0320292 0.0333568 0.0334855

0.0246872 0.0322204 0.0323438 0.0330048

0.023904 0.0293373 0.0300723 0.0303773

0.0245548 0.0290223 0.0302828 0.0302574

0.0250395 0.0284206 0.0302396 0.0299109

0.0253966 0.0276008 0.0300025 0.030158

0.0257514 0.0267864 0.029767 0.0304037

0.0259181 0.0256459 0.0292433 0.0304087

0.0261206 0.024579 0.029482 0.0304613

0.0261832 0.0232717 0.0297621 0.030335

0.0261616 0.0241651 0.0302785 0.0302054

0.0258141 0.0250533 0.0304612 0.0306187

0.0252126 0.0257729 0.0303821 0.0307834

0.0243965 0.0263481 0.0300807 0.0307367

Put option

implicit 10，10 implicit 20，20 implicit 100 100 implicit 200 200

0.31234 0.29999 0.22543 0.22494

0.13253 0.13108 0.15237 0.15154

0.07891 0.09889 0.11055 0.11034

0.05985 0.08102 0.08907 0.08919

0.04548 0.06061 0.06372 0.06439

0.03596 0.04794 0.05032 0.05087

0.07420 0.07158 0.07284 0.07313

0.15547 0.14594 0.14235 0.14317

0.27607 0.30403 0.29303 0.29345

0.56559 0.52936 0.53650 0.53639

0.81386 0.82057 0.80801 0.80618

1.60101 1.58740 1.58287 1.58481

2.42173 2.43265 2.44311 2.44273

3.39272 3.40005 3.39869 3.39940

4.35661 4.35799 4.36110 4.36118

5.34118 5.34306 5.34563 5.34566

6.33698 6.33821 6.33980 6.33980

7.33279 7.33368 7.33454 7.33459

8.32860 8.32902 8.32958 8.32965

9.32441 9.32442 9.32504 9.32508

10.32020 10.32020 10.32060 10.32060

11.31600 11.31600 11.31630 11.31630

12.31180 12.31180 12.31200 12.31200

13.30760 13.30760 13.30770 13.30770

14.30350 14.30350 14.30350 14.30350

15.29930 15.29930 15.29930 15.29930

17.78880 17.78880 17.78880 17.78880

20.27830 20.27830 20.27830 20.27830

22.76780 22.76780 22.76780 22.76780

25.25740 25.25740 25.25740 25.25740

Table 6. Numerical solution in binomial tree method of American option

American call option

S X r sigma time BinTree50000

14.575 10 0.21 1.4094 0.02 4.6426

14.575 10.5 0.21 1.2383 0.02 4.14305

14.575 11 0.21 1.0838 0.02 3.64458

14.575 11.5 0.21 0.9506 0.02 3.14833

14.575 12 0.21 0.7994 0.02 2.649

14.575 12.5 0.21 0.6621 0.02 2.15129

14.575 13 0.21 0.613 0.02 1.67633

14.575 13.5 0.21 0.6165 0.02 1.24814

14.575 14 0.21 0.6601 0.02 0.906659

14.575 14.5 0.21 0.7313 0.02 0.66862

14.575 15 0.21 0.7526 0.02 0.461754

14.575 16 0.21 0.9005 0.02 0.277198

14.575 17 0.21 0.9621 0.02 0.146354

14.575 18 0.21 1.1134 0.02 0.112277

14.575 19 0.21 1.1457 0.02 0.0608649

14.575 20 0.21 1.1811 0.02 0.0339701

14.575 21 0.21 1.3255 0.02 0.0336985

14.575 22 0.21 1.4599 0.02 0.0334416

14.575 23 0.21 1.565 0.02 0.0304935

14.575 24 0.21 1.6845 0.02 0.0305507

14.575 25 0.21 1.797 0.02 0.0305453

14.575 26 0.21 1.9035 0.02 0.0305159

14.575 27 0.21 2.006 0.02 0.0306171

14.575 28 0.21 2.1025 0.02 0.0305824

14.575 29 0.21 2.1961 0.02 0.0306893

14.575 30 0.21 2.2849 0.02 0.0307052

14.575 32.5 0.21 2.4927 0.02 0.0308382

14.575 35 0.21 2.6817 0.02 0.0309449

14.575 37.5 0.21 2.8551 0.02 0.031045

14.575 40 0.21 3.0152 0.02 0.0311353

14.575 42.5 0.21 3.1641 0.02 0.031238

14.575 45 0.21 3.3035 0.02 0.0313676

14.575 47.5 0.21 3.4322 0.02 0.0313401

American put option

S X r sigma time BinTree50000

14.575 10 0.21 2.2815 0.02 0.225212

14.575 10.5 0.21 1.8378 0.02 0.152414

14.575 11 0.21 1.5005 0.02 0.11039

14.575 11.5 0.21 1.2454 0.02 0.0892056

14.575 12 0.21 0.9886 0.02 0.0647286

14.575 12.5 0.21 0.7804 0.02 0.0511868

14.575 13 0.21 0.6906 0.02 0.0734243

14.575 13.5 0.21 0.6664 0.02 0.14383

14.575 14 0.21 0.6889 0.02 0.295625

14.575 14.5 0.21 0.7349 0.02 0.539518

14.575 15 0.21 0.7314 0.02 0.813307

14.575 16 0.21 0.8233 0.02 1.59876

14.575 17 0.21 0.8318 0.02 2.47049

14.575 18 0.21 0.9194 0.02 3.43915

14.575 19 0.21 0.9022 0.02 4.425

14.575 20 0.21 0.8903 0.02 5.425

14.575 21 0.21 0.9623 0.02 6.425

14.575 22 0.21 1.024 0.02 7.425

14.575 23 0.21 1.0685 0.02 8.425

14.575 24 0.21 1.1158 0.02 9.425

14.575 25 0.21 1.1573 0.02 10.425

14.575 26 0.21 1.1947 0.02 11.425

14.575 27 0.21 1.2274 0.02 12.425

14.575 28 0.21 1.2568 0.02 13.425

14.575 29 0.21 1.2833 0.02 14.425

14.575 30 0.21 1.3069 0.02 15.425

14.575 32.5 0.21 1.358 0.02 17.925

14.575 35 0.21 1.3977 0.02 20.425

14.575 37.5 0.21 1.4309 0.02 22.925

14.575 40 0.21 1.4583 0.02 25.425

14.575 42.5 0.21 1.4803 0.02 27.925

14.575 45 0.21 1.4984 0.02 30.425

14.575 47.5 0.21 1.5142 0.02 32.925

Table 7. Numerical solution in explicit FDM method of American option

American put option

FDM EX 10 FDM EX 20 FDM EX 100 FDM EX200

0.271636 0.224332 1.71E+44 3.83E+148

0.190094 0.157585 -4.075 -4.075

0.125917 0.121694 -3.575 -3.575

0.0808651 0.0876486 0.272587 1.22E+55

0.0967486 0.0770379 0.0647022 1.98E+20

0.113696 0.0658942 0.0509992 0.0511809

0.134653 0.066039 0.074007 0.073433

0.168842 0.1586 0.144248 0.144016

0.227729 0.299188 0.293807 0.295412

0.313874 0.472194 0.539412 0.539894

0.692306 0.795294 0.813709 0.813232

1.61982 1.57009 1.59817 1.29E+07

2.47883 2.4711 2.47037 6.39E+11

3.4332 3.43597 3.43897 1.36E+30

4.425 4.425 4.425 1.98E+30

5.425 5.425 5.425 1.72E+30

6.425 6.425 6.425 1.60E+45

7.425 7.425 27.2226 4.17E+59

8.425 8.425 210876 8.425

9.425 9.425 1.03E+09 6.14E+78

10.425 10.425 1.02E+13 10.425

11.425 11.425 1.18E+16 5.14E+93

12.425 12.425 9.26E+18 1.67E+99

13.425 13.425 5.59E+20 13.425

14.425 14.425 2.57E+22 2.54E+108

15.425 15.425 15.425 15.425

17.925 17.925 17.925 17.925

20.425 20.425 20.425 20.425

22.925 22.925 22.925 22.925

25.425 25.425 25.425 25.425

Table 8. Numerical solution in implicit FDM method of American option

American put option

FDM IN 10 FDM IN20 FDM IN 100 FDM IN 200

0.0246463 0.0177993 0.0242112 0.0256316

0.023181 0.0178893 0.022428 0.023972

0.0226994 0.0195644 0.0213696 0.0235232

0.0238995 0.0239306 0.0236072 0.0251829

0.0221137 0.0235546 0.0232184 0.0237446

0.0212015 0.0245754 0.0242078 0.0239952

0.0351479 0.0419567 0.0470163 0.0470936

0.129673 0.122095 0.119228 0.117277

0.257366 0.284698 0.279508 0.274882

0.567881 0.530434 0.542439 0.536901

0.838148 0.845976 0.83224 0.830166

1.66826 1.64916 1.65235 1.6481

2.52667 2.52384 2.5244 2.52227

3.47181 3.48634 3.48942 3.49026

4.448 4.44916 4.44756 4.4468

5.42521 5.425 5.42872 5.42906

6.425 6.425 6.42854 6.42868

7.425 7.425 7.42814 7.42829

8.425 8.425 8.42632 8.42683

9.425 9.425 9.42581 9.42666

10.425 10.425 10.4252 10.4264

11.425 11.425 11.425 11.4262

12.425 12.425 12.425 12.4261

13.425 13.425 13.425 13.4259

14.425 14.425 14.425 14.4257

15.425 15.425 15.425 15.4256

17.925 17.925 17.925 17.9253

20.425 20.425 20.425 20.4251

22.925 22.925 22.925 22.925

25.425 25.425 25.425 25.425

