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Chapter 1. Introduction 

As we all know, the world financial market is developing rapidly. Various types of 

transactions are complex and increasingly sophisticated. After going through several 

global financial crises, how to properly price financial derivatives has become an 

increasingly important topic in the financial sector today. Among them, the study of 

options is even more hot. In the study of option pricing, the pricing methods are mainly 

divided into two major categories of backward stochastic differential equations and 

martingale method. The widely used Black-Scholes partial differential equation is a 

special backward stochastic differential equation. Because its complexity determines 

the pricing of options is very difficult.  

Since the scope of this topic is very broad, there are many aspects to be studied 

and it is impossible to cover everything. It is important to study the direction and ideas. 

So the main objective of this diploma thesis is to compare different options pricing 

methods and their application in the real market. 

This thesis is divided into five main sections: 

The first part of thesis is an introduction that focuses on explaining the main goals 

of this thesis and the structure of the article. 

The second part of thesis will provide basic preliminary knowledge of option 

pricing such as the origin and development of the Black-Scholes model, the relationship 

between the option price and the underlying asset price, etc. 

The third part of the article will focus on the methods that thesis chose to use. It 

mainly includes the establishment background of the Black-Scholes equation, the 
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derivation and solution of partial differential equations, and the intrinsic deficiencies of 

the Black-Scholes option pricing model. At the same time, several common numerical 

methods in option pricing are introduced in detail, such as binomial tree method, Monte 

Carlo simulation method and finite difference method. 

The fourth chapter of thesis can be divided into two parts. The first part focuses 

on using the sample data of the Chicago Board of Trade to calculate with different 

pricing methods. The results from different numerical methods are compared with the 

analytical solutions, and the most accurate method in the numerical solution can be 

obtained. At the same time, sensitivity analysis is also used to determine the impact of 

simulation times on the accuracy of the pricing model. The second part will use the 

Hong Kong Stock Exchange's stock and stock option data to calculate the theoretical 

price of European and American options. Then compare the resulting theoretical price 

with the real market price. 

The fifth part is the conclusion which will explain the deviation between the 

market price and the theoretical price, also the comparison of several pricing models 

will be concluded. 
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Chapter 2. Analysis of financial derivatives and their pricing 

A derivative is a financial contract that derives its value from an underlying asset. 

The buyer agrees to purchase the asset on a specific date at a specific price.  

Derivatives are often used for commodities, such as oil, gasoline or gold. Another 

asset class is currencies, often the U.S. dollar. There are derivatives based on stocks or 

bonds. Still others use interest rates, such as the yield on the 10-year Treasury note. 

The contract's seller doesn't have to own the underlying asset. He can fulfill the 

contract by giving the buyer enough money to buy the asset at the prevailing price. He 

can also give the buyer another derivative contract that offsets the value of the first. 

This makes derivatives much easier to trade than the asset itself.  

Many different types of derivatives have different pricing mechanisms. The most 

common derivative types are futures contracts, forward contracts, options and swaps. 

More exotic derivatives can be based on factors such as weather or carbon emissions. 

A derivative is a financial contract with a value based on an underlying asset. 

Options on stocks and exchange-traded funds are also common derivative 

contracts. Options give the buyer the right, as opposed to the obligation, to buy or sell 

100 shares of a stock at a strike price for a predetermined amount of time. The best-

known pricing model for options is the Black-Scholes method. This method considers 

the underlying stock price, option strike price, time until the option expires, underlying 

stock volatility and risk-free interest rate to provide a value for the option. 

There are many types of options. Divided by exercise time, there are three types 

of European options, American options, Bermuda options. European option is an option 



 

 8 

that can only exercise at the end of its life, at its time. European options tend to 

sometimes trade at a discount to their comparable American option because American 

options allow investors more opportunities to exercise the contract. European options 

Normally trade over the counter, while American options usually trade on standardized 

exchanges. An American option is an option that can be exercised anytime during its 

life. American options allow option holders to exercise the option at any time prior to 

and including its maturity date, thus increasing the value of the option to the holder 

relative to European options, which can only be exercised at maturity. The majority of 

exchange-traded options are American. A Bermuda option is a type of exotic option 

that can be exercised only on predetermined dates, typically every month. Bermuda 

options are a combination of American and European options; they are exercisable at 

the date of expiration, and on certain specified dates that occur between the purchase 

date and the date of expiration. In addition, there are more complex derivative than 

regular options (standard European or American options). These are the exotic options 

just mentioned (barrier options, lookback options, shout options, Asian options…). 

We often use two different methods in the pricing of options: series of methods 

derived from the normal distribution of the underlying asset prices and series of 

methods derived from the fat tail distribution and skewness distribution of the 

underlying asset price. 

Classically, the factors affecting the pricing of options are price of underlying asset, 

exercise price, expiry date, volatility of underlying asset price, risk free rate and size of 

the proposed dividend. These factors have different influence on different kinds of 
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options. In fact, price of underlying asset is the key variable influence the option price.  

2.1 Wiener process 

The change in the stock price is uncertain so it is suitable to be described in a 

stochastic process. First of all we will introduce the Markov process. In Markov process 

the change of a variable depends only on the state of the variable in the first instant. 

When variables follow a Markov process, the variances of the variables in the adjacent 

time are additive, but the standard deviation does not have additivity. The most 

important feature of Markov process is independent and identically distributed of 

random changes of variables. 

The Wiener process could be seen as a special form of Markov process. If the 

variable obeys the Wiener process the expected value of the variable is 0 and the 

variance is 1. The stock price model is usually expressed in the Wiener process. In 

physics this process is also called the Brownian movement. 

If the variable 𝑧 = 𝑧(𝑡) obey the Wiener process its increment 𝛥𝑧 must met the 

following two basic properties. 

Property 2.1.1  

The relationship between ∆𝑧	and ∆𝑡 satisfaction: 

                                                  (2.1.1) 

The 𝜀	is a random value extracted from the standard normal distribution. The simplest 

case of a normal distribution is known as the standard normal distribution. This is a 

special case when 𝜇 = 0	and 𝜎 = 1, and it is described by this probability density 

function: 

Δz = ε Δt
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The normal distribution is the only absolutely continuous distribution whose 

cumulants beyond the first two (i.e., other than the mean and variance) are zero. It is 

also the continuous distribution with the maximum entropy for a specified mean and 

variance. Assume that the mean and variance are finite, that the normal distribution is 

the only distribution where the mean and variance calculated from a set of independent 

draws are independent of each other. 

Property 2.1.2 

The value of ∆𝑧	and ∆𝑡 at any two different time intervals is independent. 

From the properties 2.1.1 we can get that ∆𝑧 is the normal distribution which 

obey the expected value is 0, variance equals to ∆𝑡, the standard deviation is √∆𝑡. The 

properties 2.1.2 means the variable 𝑧 = 𝑧(𝑡) obey the Markov process. 

Again, by properties 2.1.2, when ∆𝛵 → 0 the differential form of ∆𝑧 is: 

                                                      (2.1.2) 

where 𝜀 is a random value extracted from the standard normal distribution. 

2.2 General Wiener process 

Variable 𝑥 are subject to the general Wiener process as follows: 

                                                   (2.2.1) 

Among them, 𝑎	and 𝑏 are constant.	𝑎 is the expected drift rate of the general Wiener 

process and 𝑏 is the volatility. 

The formula (2.2.1) is made up of two parts, if do not consider the 𝑏𝑑𝑧, then exist: 

ϕ(x) = 1
2π

e
−1
2
x2

dz = ε dt

dx = adt + bdz
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 or  

The 𝑥5 is the value of the 𝑥 at the time 0, after 𝑡 time, the increment of the 𝑥 is 𝑎𝑡. 

If only 𝑏𝑑𝑧 is considered, then exist: 

 

𝑏𝑑𝑧 can be seen as a noise or fluctuation attached to the trail of a variable 𝑥, these 

noises or fluctuations are the 𝑏 times of the Wiener process. 

Take 𝑎𝑑𝑡 and 𝑏𝑑𝑧 into consideration, there exist: 

 

After the time increment of ∆𝑡, the increment of the 𝑥 is: 

                                                   (2.2.2) 

Bring the formula (2.2.1) into (2.2.2) can get: 

                                                (2.2.3) 

As mentioned in the previous article, 𝜀 is random sampling value derived from the 

standardized normal distribution. So the 𝑥 obeys the normal distribution. Its average 

value is 𝑎Δ𝑡, variance is 𝑏6Δ𝑡 and the standard deviation is 𝑏√∆𝑡. 

From the above discussion, we can conclude that after at any time 𝑡, the change 

of the 𝑥 also obeys the normal distribution of average value is 𝑎∆𝑡, variance is 𝑏6∆𝑡 

and the standard deviation is 𝑏√∆𝑡. 

2.3 Ito calculus and Ito’s Lemma 

If the 𝑎 and 𝑏 are functions of 𝑥 and	𝑡 in stochastic process which mentioned 

in chapter 2.2. We can get Ito calculus: 

dx = adt x = x0 + at

dx = bdz

dx = adt + bdz

Δx = aΔt + bΔz

Δx = aΔt + bε Δt
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                                           (2.3.1) 

The expected drift rate and volatility in the Ito process vary with time. 

Theorem 2.3.1 (Ito’s Lemma) 

Assume that the variable 𝑥 obeys the Ito calculus: 

 

𝑑𝑧  is the Wiener process, suppose that the 𝐺 = 𝐺(𝑥, 𝑡) is the twice continuously 

differentiable function of the 𝑥, then the 𝐺 = 𝐺(𝑥, 𝑡) follows the following process: 

                            (2.3.2) 

Mathematical proof:  

From the Taylor expansion formula of the binary function 

           (2.3.3) 

 

                                         (2.3.4) 

 

                                              (2.3.5) 

From formula (2.3.4), can get 

                             (2.3.6) 

Take formula (2.3.4), (2.3.5) and (2.3.6) into (2.3.3), can get 

    

Make ∆𝑡 → 0, can get 

dx = a(x,t)dt + b(x,t)dz

dx = a(x,t)dt + b(x,t)dz

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

ΔG = ∂G
∂x

Δx + ∂G
∂t

Δt + 1
2
⋅ ∂

2G
∂x2 Δx

2 + ∂2G
∂x∂t

ΔxΔt + 1
2
⋅ ∂

2G
∂t2

Δt2 + ⋅⋅⋅

∵

Δx = a(x,t)Δt + b(x,t)ε Δt

∴

Δx2 = b2ε 2Δt + o(Δt)

ΔxΔt = a(x,t)Δt2 + b(x,t)ε (Δt3) = o(Δt)

ΔG = ∂G
∂x

Δx + ∂G
∂t

Δt + 1
2
⋅ ∂

2G
∂x2 b

2Δt + o(Δt)
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                                   (2.3.7) 

Then take 𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧 into formula (2.3.7),can get 

                            (2.3.8) 

Quod erat demonstrandum. 

From the Ito lemma will know, if 𝑥, 𝑡  obey the Ito calculus, in that way the 

function of 𝑥, 𝑡. 𝐺 also obey the Ito calculus, but the drift rate and the fluctuation rate 

are 

and , 

respectively. 

2.4 The behavior process of stock price without dividend 

Assume that the stock price obeys the general Wiener process, there is a constant 

expected drift rate and volatility, which is not fix the reality. So, it is generally assumed 

that the proportion of the stock price changes 𝑑𝑆/𝑆 obeys the general Wiener process, 

that is 

                                                  (2.4.1) 

Therefore, the stock price 𝑆 can be described by the Ito calculus of the drift rate 𝜇𝑆 

and the volatility 𝜎𝑆. 

That is 

                                                (2.4.2) 

Its dispersed form is 

ΔG = ∂G
∂x

dx + ∂G
∂t

dt + 1
2
⋅ ∂

2G
∂x2 b

2dt

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2 ∂G
∂x

b
⎛
⎝⎜

⎞
⎠⎟

2

dS
S

= µdt +σ dz

ΔS = µSdt +σ Sdz
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                                               (2.4.3) 

If 𝜇 and 𝜎 are constant, the formula (2.4.2) is called the geometric Brownian motion 

which is the most widely used model to describe the behavior of stock prices. 

If 𝑆  obeys the Ito calculus, the function 𝐺  of 𝑆  and 𝑡  also subject to the Ito 

calculus : 

 

                          (2.4.4) 

Where both 𝑆 and 𝐺 are affected by 𝑑𝑧. Define 𝐺 = 𝑙𝑛𝑆.  

 

, ,  

 Simplify the formula (2.4.4) 

                                            (2.4.5) 

 𝜇 and 𝜎 and y are constant 

Formula (2.4.5) is also the Wiener process, the drift rate and the fluctuation rate are 

 and . 

Therefore the change of the 𝑙𝑛𝑆 between the 𝑡 and the 𝑇 times follows the normal 

distribution. The expectation and variance are  

and . 

Which means 

ΔS = µSΔt +σ SΔz

dG = ∂G
∂x

a + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂x2 b

2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂x
bdz

= ∂G
∂S

µS + ∂G
∂t

+ 1
2
⋅ ∂

2G
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
dt + ∂G

∂S
σ Sdz

∵

∂G
∂S

= 1
S

∂2G
∂S 2 = − 1

S 2

∂G
∂t

= 0

∴

dG = (µ − σ 2

2
)dt +σ dz

∵

∴

µ − σ 2

2
σ

dG = µ − σ 2

2
⎛
⎝⎜

⎞
⎠⎟
dt +σ dz σ 2(T − t)
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or 

                            (2.4.6) 

Where 𝑁(𝑚, 𝑠) means the normal distribution which the expected value is 𝑚 and the 

variance is 𝑠. 

The above is the analysis and inference of the option pricing methods based on the 

underlying asset price fix the Gaussian distribution. With the development of 

mathematical sciences, a deeper level of research has found that the price of the 

underlying asset does not strictly adhere to the standard normal distribution. The data 

often shows partial peaks and fat tails. 

2.5 Levy process 

    More and more studies can prove that the price fluctuation and the rate of return 

of financial assets are contrary to the geometric Brownian motion. At the same time, 

the assumption of the Black-Scholes model is too strict. So we will introduce the Levy 

process which is a stochastic process with independent, stationary increments: it 

represents the motion of a point whose successive displacements are random and 

independent, and statistically identical over different time intervals of the same length. 

A Levy process may thus be viewed as the continuous-time analog of a random walk. 

The definition of Levy process: The stochastic process 𝐿𝐿C{𝐿C:𝑡 ≥ 0} defined in the 

probability space (Ω, 𝐹, 𝑃) which satisfies the following three conditions called Levy 

process. 

lnST − lnS ∼ N (µ − σ 2

2
)(T − t),σ 2(T − t)

⎛
⎝⎜

⎞
⎠⎟

lnST ∼ N lnS + (µ − σ 2

2
)(T − t),σ 2(T − t)

⎛
⎝⎜

⎞
⎠⎟
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1. 𝐿C has independent increments, i.e. 𝐿C − 𝐿K is independent of 𝐹K for any 

0 ≤ 𝑠 < 𝑡 ≤ 𝑇. 

2. 𝐿C has stationary increments, i.e. for any 0 ≤ 𝑠,	𝑡 ≤ 𝑇 the distribution of 

𝐿KNC − 𝐿C does not depend on 𝑡. 

3. 𝐿C  is stochastically continuous, i.e. for every 0 ≤ 𝑡 ≤ 𝑇  and 𝜖 > 0 : 

lim
K→C

𝑃(|𝐿C − 𝐿K| > 𝜖) = 0. 

If 𝐿 is Levy process, the distribution 𝐿 = 𝐿C − 𝐿5 is infinite divisible. 

2.6 Normal Inverse Gaussian Distribution  

    The normal inverse Gaussian distribution (NIG) is a continuous probability 

distribution, which is defined as the normal variance-average mixture with an inverse 

Gaussian distribution (IG). The IG process is a normal stochastic time distribution 

process. The time increment of a random variable with a normal distribution for the 

first time to a certain critical value is used as the distribution of the new random variable. 

Its density function is: 

                        .                  (2.6.1) 

Its characteristic function is: 

                                    (2.6.2) 

    NIG model use IG process as a dependent process and use it to drive the Brownian 

motion of the time variable. The NIG model can be defined by two ways, as well. The 

first one utilize the characteristic function (𝛼 > 0,−𝛼 < 𝛽 < 𝛼, 𝛿 > 0): 

f (x) = aeab

2π
x
−3
2
−1
2
(a3x−1+b2x )

E(eiuX ) =ϕ(u;a,b) = e−a( −2iu+b2 −b)
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              . (2.6.3) 

Then, the density function is given as follows: 

           ,    (2.6.4) 

where 𝐾Y(𝑥) is modified Bessel function: 

                  .           (2.6.5) 

Alternatively, following the definition of the Brownian motion driven by inverse 

Gaussian process, i.e. process 𝐿(𝑡; 𝑣) with drift 𝑣, which at time 𝐿~𝐼𝐺[𝑡; 𝑣] reaches 

level 𝑡, as follows: 

                 .       (2.6.6) 

In this case we can formulate the characteristic function as follows: 

                 ,      (2.6.7) 

which result into: 

             ,  and .    (2.6.8) 

Similarly to variance gamma model also in the case of the NIG model particular 

parameters allows us to fit the skewness and kurtosis. We can see on next table. 

 

 

 

 

ϕNIG(x,t;α ,β ,δ ) = exp −tδ ( α 2 − (β + ιx)2 − α 2 − β 2 )⎡
⎣⎢

⎤
⎦⎥

fNIG (x,t;α ,β ,δ ) =
αδ
π

exp δ α 2 − β 2 + βx( ) K1(α δ 2 + x2 )

δ 2 + x2

Kλ (x) =
1
2

yλ−1 exp − 1
2
x( y + y−1)

⎛
⎝⎜

⎞
⎠⎟
dy

0

−∞

∫

NIG(L(t;v);θ;ϑ ) = θLt +ϑZ(Lt ) = θLt +ϑ Ltε

φNIG(x;v,θ ,ϑ ) = exp
1
v
− 1
v
( 1+ x2ϑ 2v − 2θvι )⎡

⎣
⎢

⎤

⎦
⎥

θ = δβ
α 2 − β 2 ϑ =

δ α 2 − β 2

α − β α + β
v = 1

δ α 2 − β 2
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Model NIG 

Parameter  

Mean  

Variance  

Skewness 
 

Kurtosis 
 

        Table 2.6.1 Comparison of basic moments for NIG model. 

    While Black-Scholes model is based on the geometric Brownian motion, and thus 

the unrealistic assumption of Gaussian distribution, more advance NIG model allows 

us to fit also the skewness and excess kurtosis of the returns. Recall NIG process 

𝑁𝐼𝐺(𝐿(𝑡; 𝑣); 𝜃; 𝜗): 

                     .             (2.6.9) 

The above is the analysis of two kinds of distributions that are commonly used in option 

pricing. In this diploma thesis we will only price options for hypothetical underlying 

asset price distributions that conform to Gaussian distributions. 

    Since the B-S model was first published in the Journal of Political Economy in 

1973, the traders at the Chicago Board Options Exchange immediately realized its 

importance, and soon programmed the B-S model into computers for use in the newly 

opened Chicago Options Exchange. The application of this formula expands with the 

advancement of computer and communication technology. To this day, the model and 

some of its variants have been widely used by options dealers, investment banks, 

NIG(L(t;v);θ ,ϑ )

θ

ϑ 2 + vθ 2

3θv(ϑ 2 + vθ 2 )
−1
2

3vθ
2(1+5v)+ϑ 2(1+ v)

ϑ 2 + vθ 2

NIGt = θLt +ϑZ(Lt ) = θLt +ϑ Ltε
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financial managers, insurers, and so on. The expansion of derivatives has made the 

international financial market more efficient, but it has also made the global market 

more volatile. The creation of new technologies and new financial instruments has 

strengthened the interdependence of markets and market participants, not only in one 

country but also in other countries or even multiple countries. The result is that a market 

or a country's volatility or financial crisis is most likely to be rapidly transmitted to 

other countries and even the entire world economy. The result is that a market or a 

country's volatility or financial crisis is most likely to be rapidly transmitted to other 

countries and even the entire world economy. Therefore, it is necessary to cultivate risk-

averse financial derivatives markets. It is also necessary to explore derivative markets. 

Although there are many advantages in the Black-Scholes option pricing model, its 

derivation process is difficult for people to accept. In 1979, Ross et al. used a relatively 

simple method to design a pricing model for options, known as the Binomial tree 

method. 

    In thesis Monte Carlo simulations, least-squares Monte Carlo simulations, 

binomial methods, and finite difference methods will be used to analyze the options 

price. 

  



 

 20 

Chapter 3. Description of selected methods for option pricing 

Financial option is a kind of contract which gives the buyer (the owner or holder 

of the option) the right, but not the obligation, to buy or sell an underlying asset or 

instrument at a specified strike price on a specified date, depending on the form of the 

option. The holder of call option has the right to buy the underlying asset or instrument; 

the holder of put option has right to sell the underlying asset or instrument. The holder 

of European option can only exercise the option at the end of its life, at its maturity. 

American options allow option holders to exercise the option at any time prior to and 

including its maturity date. Through the introduction of the partial differential equations 

and Wiener process in Chapter 2, we can draw the Black-Scholes model. 

3.1 Black-Scholes option pricing theory 

The price of derivatives of non-dividend paying stock must be satisfied the Black 

Scholes partial differential equation. The Black Scholes partial differential equation is 

based on the following hypothesis: 

1. The stock price follows the geometric Brownian motion. 

2. Allow short selling of derived securities. 

3. Without transaction costs or taxes, all securities are highly separable. 

4. In the period of validity of derived securities, the underlying assets will not pay 

dividends. 

5. There is no chance of risk-free arbitrage. 

6. The transaction of securities is continuous. 

7. The riskless interest rate 𝑟 is constant and same for all maturity days. 
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According to hypothesis 1: 

                                                (3.1.1) 

In formula (3.1.1) 𝑧 is a Wiener process, 𝜇 is the expected rate of return on stock 

prices, 𝜎 is the volatility of the stock price. 

Suppose that the derivative securities price 𝑓 depends on the underlying asset 

price 𝑆, so 𝑓 must be a function of 𝑆 and time 𝑡.  

From Ito's lemma: 

  .         (3.1.2) 

The discrete forms of formula (3.1.1) and (3.1.2) are: 

                          ,                     (3.1.3) 

 ,        (3.1.4) 

In these two formulas, ∆𝑓 and ∆𝑆 are variation of 𝑓 and 𝑆 after a short interval of 

time ∆𝑡 . Since 𝑓  and 𝑆  comply with the same Wiener process, the ∆𝑧  of two 

formula (3.1.3) and (3.1.4) should be the same. So, a proper selection of stock and 

derivative portfolio can eliminate the uncertainty ∆𝑧. 

    In order to eliminate the ∆𝑧 , we can build a portfolio with one unit derived 

securities short position and de
df

 units of securities long position. 𝛱 represents the 

value of the portfolio, and there is a result: 

. 

After ∆𝑡 time, the value of the portfolio changes to: 

dS = µSdt +σ Sdz

df = ∂ f
∂S

µS + ∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
dt + ∂ f

∂S
σ Sdz

ΔS = µSΔt +σ SΔz

Δf = ∂ f
∂S

µS + ∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt + ∂ f

∂S
σ SΔz

Π = − f + ∂ f
∂S

S
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                                               (3.1.5) 

Substituting ∆𝑆 and ∆𝑓 into formula (3.1.5), get: 

                         .            (3.1.6) 

    Because formula (3.1.7) does not contain 𝛥𝑧, the value of the portfolio after the 

time interval ∆𝑡 must be no risk, the instantaneous rate of return after ∆𝑡 is equal to 

the risk-free rate. Otherwise, the arbitrage can gain a risk-free rate by arbitrage, so the 

result should be: 

                              .                       (3.1.7) 

Take formula (3.1.7) into (3.1.6), get: 

    

After finishing, get: 

                        .             (3.1.8) 

The formula (3.1.8) is the Black-Scholes partial differential equation. This equation 

applies to all derivative securities pricing that depends on the price of the underlying 

asset price 𝑆. There are many solutions to the equation. To ensure that it has a unique 

solution, we need to give the boundary conditions that meet the derivative securities. 

    For European call options, the key boundary conditions are: 

                      ,                 (3.1.9) 

When 𝑆(𝑡) = 0, the options have no value, so the boundary condition is: 

                             .                         (3.1.10) 

ΔΠ = −Δf + ∂ f
∂S

ΔS

ΔΠ = − ∂ f
∂t

− 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt

ΔΠ = rΠΔt

∂ f
∂t

+ 1
2
⋅ ∂

2 f
∂S 2 σ

2S 2⎛
⎝⎜

⎞
⎠⎟
Δt = r f − ∂ f

∂S
S

⎛
⎝⎜

⎞
⎠⎟
Δt

∂ f
∂t

+ rS ∂ f
∂S

+ 1
2
⋅σ 2S 2 ∂2 f

∂S 2 = rf

c(S ,t) = max S − X ,0{ } t = T

c(0,t) = 0
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When 𝑆(𝑡) → +∞, 𝑐(𝑆, 𝑡) → +∞ the value of the option becomes the value of the 

stock. That is: 

                          ,                     (3.1.11) 

According to the boundary condition formula (3.1.9), (3.1.10) and (3.1.11), the 

equation (3.1.8) can be solved. 

    The equation (3.1.8) is similar to the diffusion equation, but it has more items. For 

the convenience of getting solution, we set: 

   

The equation (3.1.8) changes to: 

                    ,         (3.1.12) 

At this time the termination condition is transformed into the initial condition. 

 

The equation (3.1.12) only have one parameter k, so we make: 

.                        

Here α and β are undetermined constants, take into (2.5.12) so that can get the new 

equation: 

                   (3.1.13) 

Now choose α and β and make them satisfied: 

   ， 

  . 

c(S ,t) ∼ S S→∞

S = Xex ,t = T − 1
2
τσ 2 , f = Xυ(x,τ ).

∂υ
∂t

= (k −1) ∂υ
∂x

+ ∂2υ
∂x2 − kυ k = r / 1

2
σ 2⎛

⎝⎜
⎞
⎠⎟

υ(x,0) = max ex −1,0{ }

υ = eαx+βτu(x,τ )

βu + ∂u
∂τ

=α 2u + 2α ∂u
∂x

+ ∂2u
∂x 2 + k +1( ) αu + ∂u

∂x
⎛
⎝⎜

⎞
⎠⎟
− ku

β =α 2 + (k −1)α − k

0 = 2α − (k −1)
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So that can get: 

    , . 

So 

                 ,        (3.1.14) 

the 𝑢 in equation (3.1.14) satisfied: 

   , , , 

subject to   

       . 

    From the knowledge of differential equation, get: 

  . 

Change to 𝑥n = (𝑥 − 𝑠)/√2𝜏, so: 

     

                 

                  

 ,                                  (3.1.15) 

here  
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, 

at this place 

, 

 

is the cumulative distribution function of the Gaussian distribution. Change (𝑘 + 1) 

to (𝑘 − 1) can get  

, 

. 

    Take 𝐼r and 𝐼6 into equation (3.5.15), then use 

, , , 

, 

so 

 

 

                       . 

    From the formula above, we can get the Black-Scholes option pricing formula. For 
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the European call option that obeys the geometric Brownian movement which 

expiration time is T, exercise price is X, underlying asset price is S, the pricing formula 

is: 

                                        (3.1.16) 

According to the parity relationship between European call options and put options, it 

is easy to get the pricing formula of European put option: 

                                     (3.1.17) 

Before using formula (3.1.16) and formula (3.1.17), we need to solve the calculate of 

𝑁(𝑥) . The 𝑁(𝑥)  is the cumulative distribution function of the standard normal 

distribution. In this thesis we will apply it in C++. 

    The code (Program 1) is an approximate solution way to the cumulative 

distribution function of normal normal distribution. Then we can programe the formula 

(3.1.16) and formula (3.1.17). Save the C++ programme of cumulative distribution 

function of normal normal distribution as ‘normdist.h’ so we can directly invoke the 

cumulative distribution function of normal normal distribution 's header file in 

programming. 

3.2 The numerical method of option pricing 

    Sometimes some complex derivative securities cannot give analytical solutions, 

so the numerical method is needed. 

3.2.1 Monte Carlo method 

    The Monte Carlo method is a numerical method to solve the option price by 

simulating the movement of the underlying asset price. The basic ideal of Monte Carlo 

c = SN (d1)− Xe−r (T−t )N (d2 )

p = Xe−r (T−t )N (−d2 )− SN (−d1)
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Method is: in the risk nature situation, we randomly generate the possible path of the 

underlying asset price and get the expected value of the option earning. After that, 

discount the price by risk free rate then we can get the option price. 

    Assume that in the world of risk nature, the variable 𝜃  obey the geometric 

Brownian motion with the standard deviation of 𝑠 and the expected rate of return is 

, that is:  

                                              (3.2.1) 

where 𝜀 is one random sample extracted from the normal distribution. 

    In order to simulate the path of the variable 𝜃 and considering the discrete form 

of (3.2.1), we divide the life of derivative security into 𝑛 fragments with length ∆𝑡: 

                                              (3.2.2) 

From this formula, we can get a path of the variable 𝜃, its final value corresponds to a 

sample final value of the derivative price. It could be seen as a random sample in a set 

of final values. Using the same method, we can get a large number of sample final 

prices, and get the average value of the number, then get the approximate value of the 

final price of the derivatives. The price of derivative securities can be obtained by 

discounting the final value at risk free interest rate. 

    Assuming the European call option which price of the underlying asset is 𝑆, 

exercise price is 𝑋 at the date of expiry the price is 

                                              (3.2.3) 

    In a risk neutral world, we use the risk-free rate 𝑟 to discount to get the price of 

⌢m

dθ = ⌢mθdt + sθε dt

dθ = ⌢mθΔt + sθε Δt

cT = max 0,ST − X{ }
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the option at the 𝑡 moment 

                 (3.2.4) 

    In formula (3.2.4), only 𝑆t has relationship with 𝑐t. The value of the underlying 

asset price during 𝑇 − 𝑡 is independent from 𝑐t. So just simulate 𝑆tto get a series of 

values: 𝑆tr, 	𝑆t6, 𝑆tu, …,𝑆tv. Then replace 𝑆tw (𝑖 = 1,2,3,… , 𝑛) into formula (3.2.4) to 

get all value of 𝑐C. Then calculate the arithmetic mean of 𝑐C, after that use risk free rate 

to discount to get the price of European call option 

                                   (3.2.5) 

The same method can get the price of a European put option 

                                   (3.2.6) 

    To apply the program of Monet Carlo Method we need to apply the program of 

Random number function. See in appendix (Program 4) The above Monte Carlo method 

can only be used to price European-style options, but in recent years, with the 

development of mathematical finance, there have been some algorithms that use the 

Monte Carlo method to simulate the pricing of American options. The most widely 

used is the Least Squares Monte Carlo simulation proposed by Longstaff and Schwartz. 

The basic principle is: at a limited number of discrete time points, according to the 

cross-sectional data of the simulated sample path of the target asset price at each 

moment, use least squares regression to find the expected return on continued holding 

options. And compare it with the proceeds that were immediately exercised at that 

moment. If the immediately exercise is greater than continued holding, it will 

cT = e−r (T−t )E(max 0,ST − X{ })

ĉT = e−r (T−t )

n
E(max 0,STi

− X{ })
i=1

n

∑

p̂T = e−r (T−t )

n
E(max STi

− X ,0{ })
i=1

n

∑
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immediately exercise or it will continue to hold. Suppose the option expiration date is 

𝑇, the exercise time is 𝑇{. The basic steps of Least Squares Monte Carlo simulation 

are similar as the European option. But should notice that the European option can only 

be exercised at expiry date that is 𝑇 = 𝑇{ but for American option 𝑇{ ∈ [0, 𝑇], that 

is, the option can be exercise at any time before the expiration date. As the proceeds at 

the time of exercise are not only affected by the asset price, but also affected by the 

path taken by the asset price from the issue date (𝑡 = 0) to the maturity date 𝑇. For 

European options, it has been mentioned how to calculate. But for American options, 

we need to compare the instantaneous income (intrinsic value) immediately exercise at 

that moment and the expected return to continue holding when determining the optimal 

exercise time. What needs to be established is the value to continued holding the option 

𝐹(𝜔, 𝑡~). According to no arbitrage principle: 

                  (3.2.7) 

    Where 𝑟(𝜔, 𝑠) is riskless discount rate, the expectation is taken conditional on 

the information set. 𝐹C at time 𝑡~ ,. With this representation, the problem of optimal 

exercise reduces to comparing the immediate exercise value with this conditional 

expectation, and then exercising as soon as the immediate exercise value is positive and 

greater than or equal to the conditional expectation. The LSM method is to calculate 

the expected condition in formula (3.2.7). For example, if this conditional expectation 

function belongs to the Hilbert space 𝐿6, the value of continuing to hold the option 

𝐹(𝜔, 𝑡~Är) can be expressed as follows: 

F(ω ,tk ) = EQ[ exp(− r(ω ,s)dsC(ω ,t j ;tk ,T ) Ftk ]tk

t j∫j=k+1

K∑
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                                          (3.2.8) 

Where is 𝑋 a Markov process, 𝑎Å is a constant and 𝐿Å is a set of basic functions. In 

practical applications, the infinite-dimensional space will not be discussed. The usual 

choice is based on the previous 𝑀 basis functions to calculate 𝐹É(𝜔, 𝑡~Är) instead 

of 𝐹(𝜔, 𝑡~Är). The statistical estimate 𝐹ÖÉ(𝜔, 𝑡~Är)  can be calculated by the 

𝐶(𝜔, 𝑠; 𝑡~Är, 𝑇)  through a mapping or regression. In the following use, weighted 

Lagrange polynomials will be used as regression basis functions. 

 

 

 

… 

.              (3.2.9) 

    Once the function 𝐹É(𝜔, 𝑡~Är) is determined, the coefficients before each basis 

function are determined accordingly. From this, the value of 𝐹ÖÉ(𝜔, 𝑡~Är)  can be 

calculated and compared immediately with the gain of the execution of the option and 

make the decision on whether to exercise American options here. Then continue to 

iterate until the initial moment to find an optimal execution moment. Then discount it 

to get the value of the option. 

    The LSM algorithm provides a simple and elegant way of approximating the 

optimal early exercise strategy for an American-style option. While the ultimate test of 

F(ω ,tk−1) = ajLj (X )
j=0

∞∑

L0(X ) = exp(− X
2
)

L1(X ) = exp(− X
2
)(1− X )

L2(X ) = exp(− X
2
)(1− 2X + X 2

2
)

Ln(X ) = exp(− X
2
)
eX

n!
d n

dX n (X
ne− X )
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the algorithm is how well it performs using a realistic number of paths and basic 

functions, it is also useful to examine what can be said about the theoretical 

convergence of the algorithm to the true value 𝑉(𝑋) of the American option. 

    The first convergence result addresses the bias of the LSM algorithm and is 

applicable even when the American option is continuously exercisable. 

    Proposition 1. For any finite choice of 	𝑀,𝐾  and 𝑣𝑒𝑐𝑡𝑜𝑟𝜃 ∈ 𝑅É×(åÄr) 

representing the coefficients for the 𝑀 basis functions at each of the 𝐾 − 1 early 

exercise dates, let 𝐿𝑆𝑀(𝜔;𝑀, 𝐾)  denote the discounted cash flow resulting from 

following the LSM rule of exercising when the immediate exercise value is positive 

and greater than or equal to 𝐹Éç(𝜔w; 𝑡~) as defined by 𝜃. Then the following inequality 

holds almost surely, 

                       .           (3.2.10) 

    The intuition for this result is easily understood. The LSM algorithm results in a 

stopping rule for an American-style option. The value of an American-style option, 

however, is based on the stopping rule that maximizes the value of the option; all other 

stopping rules, including the stopping rule implied by the LSM algorithm, result in 

values less than or equal to that implied by the optimal stopping rule. 

    This result is particularly useful since it provides an objective criterion for 

convergence. For example, this criterion provides guidance in determining the number 

of basic functions needed to obtain an accurate approximation; simply increase 𝑊 

until the value implied by the LSM algorithm no longer increases. This useful and 

V (X ) ≥ lim
N→∞

1
N

LSM (ω i;M ,K )
i=1

N

∑
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important property is not shared by algorithms that simply discount back functions 

based on the estimated continuation value. 

    By its nature, providing a general convergence result for the LSM algorithm is 

difficult since we need to consider limits as the number of discretization points 𝐾, the 

number of basic functions 𝑀, and the number of paths 𝑁 go to infinity. In addition, 

we need to consider the effects of propagating the estimating stopping rule backwards 

through time from 𝑡åÄr, to 𝑡r. In the case where the American option can only be 

exercised at 𝐾 = 2 discrete points in time, however, convergence of the algorithm is 

more easily demonstrated. As an example, consider the following proposition. 

    Proposition 2. Assume that the value of an American option depends on a single 

state variable X with support on (0,∞) which follows a Markov process. Assume 

further that the option can only be exercised at times 𝑡r , and 𝑡6 , and that the 

conditional expectation function 𝐹(𝜔; 𝑡r) which is absolutely continuous and 

 

 

Then for any ∈> 0, there exists an 𝑀 < ∞ such that 

                         (3.2.11) 

Intuitively this result means that by selecting 𝑀 large enough and letting 𝑁 → ∞, the 

LSM algorithm results in a value for the American option within ∈ of the true value. 

Thus the LSM algorithm converges to any desired degree of accuracy since ∈  is 

arbitrary. The key to this result is that the convergence of 𝐹É(𝜔, 𝑡r) to 𝐹(𝜔; 𝑡r) is 

e− X F 2(ω ;t1)dX < ∞
0

∞

∫

e− X FX
2(ω ;t1)dX < ∞

0

∞

∫

lim
N→∞

Pr V (X )− 1
N

LSM (ω i;M ,K )
i=1

N

∑ >∈
⎡

⎣
⎢

⎤

⎦
⎥ = 0
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uniform on (0,∞) when the indicated integrability conditions are met. In summary 

the American put option can be written as  

 

(3.2.12) 

For technical reasons, programming here is performed by R. 

3.2.2 Binomial tree method 

    The basic principle of the binomial tree method is: Assume that the probability 

and magnitude of the motion of the target variable only move up or down. It is also 

assumed that the probability and magnitude of each upward or downward movement 

of the target variable does not change throughout the investigation period. Divide the 

period into several stages. According to the historical volatility of the target variable, 

we simulate all possible development paths of the target variables in the whole 

inspection period, the price of the 0 moment is obtained at the same time by the 

discounting method. If face the problem of advance exercise, it is necessary to check at 

each node of the binomial tree to see if it is more advantageous than the next node on 

this point, and then repeat the process. 

    Consider a stock option that does not pay 

dividends. We divide the period of maturity of 

the option into many small time intervals, each 

of the intervals is ∆𝑡 . Assume that in each 

interval the stock price changes from the 

PutAme(0,S0,K ,T ) = PutEur(0,S0,K ,T )E[K − S
t*
e−rt

*

− PutEur(t*,S
t*
,K ,T )e−rt

*

]

       S 

P 

1-P 

𝑆è 

𝑆ê 

Figure (3.2.1) change of stock price in ∆𝑡  
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beginning of 𝑆 to two new prices 𝑆è and 𝑆ê, and also assume 𝑢 > 1, 𝑑 < 1, so 𝑆 

to Sí is a process of rising prices, and the probability of rising is 𝑃; 𝑆 to Sì is a 

process of falling prices, and the probability of rising is 1 − 𝑃.                      

    In a risk neutral world, the expected return rate of stock is risk free rate 𝑟. Then 

the expected value of the stock price at the end of the time interval ∆𝑡 is 𝑆𝑒î∆C where 

𝑆 is the initial stock price of the time interval. So, we have a result: 

 

which can be written as: 

                           .                   (3.2.13) 

Since the previous hypothesis is the behavior model of the stock price, the variance of 

stock price change in the time interval ∆t is 𝑆6𝜎6∆𝑡. According to the definition of 

variance, the variance of the variable 𝑋 is equal to	E(𝑋6) − [𝐸(𝑋)]6. So, then 

                            (3.2.14) 

The formula (3.2.7) and (3.2.8) provide two conditions and the third condition 

  ,                        (3.2.15) 

So, we get the result: 

                                                      (3.2.16) 

                                                      (3.2.17) 

                                                      (3.2.18) 

where 

                                 .                       (3.2.19) 

SerΔt = PSu + (1− P)Sd

erΔt = Pu + (1− P)d

σ 2Δt = Pu2 + (1− P)d 2 − Pu + (1− P)d⎡⎣ ⎤⎦
2

u = 1
d

P = a − d
u − d

u = eσ Δt

d = e−σ Δt

a = erΔt
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    From formula (3.2.9) to (3.2.13), the tree structure of the stock price can be 

constructed, which is called the binomial tree of the stock. As shown in figure (3.2.2). 

In the picture, the stock price of the 0 moment is 𝑆, and at ∆𝑡 time, there are two 

possibilities for the stock price:	𝑆è and 𝑆ê; at 2∆𝑡 time, there are three possibilities 

for the stock price 𝑆𝑢6,		𝑆èê and 𝑆𝑑6. By analogy, in general, in the 𝑖∆𝑡 moments, 

the price of the stock are 𝑖 + 1 possibilities, 

                                             (3.2.20) 

 

 

 

 

 

 

 

 

 

              Figure 3.6.2 Binomial tree of stock price 

    Assumed that the period of an American put option that does not pay dividends is 

divided into a small time period of N length of ∆𝑡. Suppose 𝑓wÅ  is the option price of 

the stock price of 𝑆𝑢Å𝑑wÄÅ, (0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑖) at i∆t moment, also known as the 

option price at node (𝑖, 𝑗). Because the price of American put option at maturity is 

𝑚𝑎𝑥{𝑋 − 𝑆t, 0} , so 
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                              (3.2.21) 

    Assumed that the probability of moving the node (𝑖 + 1, 𝑗 + 1) from the node 

(𝑖, 𝑗) to the (𝑖 + 1)∆𝑡 moment at the 𝑖∆𝑡 moment is 𝑃; the probability of moving 

the node (𝑖 + 1, 𝑗) from the node (𝑖, 𝑗) to the (𝑖 + 1)∆𝑡 moment at the 𝑖∆𝑡 

moment is (1 − 𝑃). Without exercise in advance and in the risk neutral world, the 

price of the option is 

             .     (3.2.22) 

    If consider the exercise in advance, 𝑓wÅmust be compared to the intrinsic value of 

the put option 

                     (3.2.23) 

    According to the above basic principles and analytical expressions, we get the 

basic steps of the binomial tree method: 

1. Divide the validity time of the derivative securities into 𝑁 equal interval time 

periods, step length is ∆𝑡. So we need to consider 𝑁 + 1 time points: 

0, ∆𝑡, 2∆𝑡, … , 𝑇. 

2. Calculating the parameters 𝑃, 𝑢	and 𝑑 of the binomial tree. 

3. Construction of binomial tree. 

4. Calculating the price of option by discount binomial trees. 

    American option has a problem of exercise in advance, therefore, on the basis 

program of the above European option pricing procedure, the statement of checking 

exercise in advance is needed. 

fij = max X − Su jd N−i ,0{ }, j = 0,1,...,N

fij = e−rΔt Pfi+1, j+1 + (1− P) fi+1, j⎡⎣ ⎤⎦ ,0 ≤ i ≤ N −1,0 ≤ i ≤ j

fij = max X − Su jd j−i ,e−rΔt Pfi+1, j+1 + (1− P) fi+1, j⎡⎣ ⎤⎦{ }
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3.2.3 Finite-difference method 

    In most cases, it is almost impossible to require an exact solution of a partial 

differential equation. At this time it is necessary to use the finite difference 

approximation. The basic idea of the difference method is to replace the partial 

derivative in a partial differential equation by Taylor expansion in a certain point. 

According to the definition: 

 

Now 𝛿𝜏 is not regarded as a variable that tends to 0, but as a small amount which 

greater than 0, an approximate. We can obtain an approximate 

                              (3.2.24) 

    This is called the finite difference approximation of dè
dô

. The smaller the time 

interval, the more accurate the approximation is. What considered here is the time 

change from 𝜏 to 𝜏 + 𝛿𝜏, often referred to as the forward difference. 

    If do the following approximation: 

                              (3.2.25) 

then it is called the backward difference. 

    Also, the central difference can be defined as 

                  .      (3.2.26) 

∂u
∂τ

(x,τ ) = lim
δτ→0

u(x,τ +δτ )
δτ

∂u
∂τ

(x,τ ) ≈ u(x,τ +δτ )− u(x,τ )
δτ

+O(δτ )

∂u
∂τ

(x,τ ) ≈ u(x,τ )− u(x,τ −δτ )
δτ

+O(δτ )

∂u
∂τ

(x,τ ) ≈ u(x,τ +δτ )− u(x,τ −δτ )
2δτ

+O((δτ )2 )
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Figure 3.2.3 Forward, backward and central difference 

    When applied to the diffusion equation, the forward difference approximation 

leads to the explicit difference method, and the backward difference approximation 

leads to the full implicit difference method. The center difference approximation shown 

in formula (3.2.20) is rarely used because it often causes bad behavior in the solution 

process. In the commonly used Crank-Nicolson difference method, the central 

difference defined by the next formula 

              .     (3.2.27) 

In the same way, for 𝑥, the central difference approximate of one partial derivative is  

                .        (3.2.28) 

And the symmetric center difference of the second derivative is  

               .    

(3.2.29) 

∂u
∂τ

(x,τ ) ≈ u(x,τ +δτ / 2)− u(x,τ −δτ / 2)
2δτ

+O((δτ )2 )

∂u
∂x

(x,τ ) ≈ u(x +δτ ,τ )− u(x −δτ ,τ )
2δ x

+O((δ x)2 )

∂2u
∂x2 (x,τ ) ≈

u(x +δτ ,τ )− 2u(x,τ )− u(x −δτ ,τ )
(δ x)2

+O((δ x)2 )
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    The difference method is equivalent to dividing the 𝑥 axis into a space segment 

with an equidistance of 𝛿𝑥  and the 𝜏  axis into a time interval with 𝛿𝜏  as an 

equidistance. Thus, the (𝑥, 𝜏) plane is divided into a grid. 

    Considering a stock option that does not pay dividends, the partial differential 

equation of the option price is (3.1.8). Suppose it's the 0 moment at present, we divide 

time from 0 to the expiration date 𝑇 into 𝑁 interval time intervals, each step is	∆𝑡 =

𝑇/𝑁, so there is a total of 𝑁 + 1 time points. 

 

    Assuming 𝑆 is the maximum value that the stock price can reach, the price step 

is defined as	∆𝑆 = 𝑆/𝑀, and	𝑀 is a given price step, so there is a total of 𝑀 + 1 price 

points. 

 

    The above price points and time points form a grid of (𝑀 + 1) × (𝑁 + 1) 

coordinate points. For any point (𝑖, 𝑗) in the grid the corresponding time is 𝑖∆𝑡 and 

the stock price is 𝑗∆𝑆. 

    We use 𝑓wÅ  to indicate the option price of point (𝑖, 𝑗), in this way, we can use 

discrete operators to approach de
dC
, de
df
, d

öe
dfö

 so the partial differential equation is 

converted into a discrete equation. 

    By performing differential processing on the Black-Scholes partial differential 

equation, we can derive the expression of the explicit finite difference method. 

0,Δt,2Δt,3Δt,...,T .

0,Δs,2Δs,3Δs,...,S.
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(3.2.30) 

where 

     ， 

    ， 

  . 

    Next we will use the explicit finite difference method to solve the American option. 

First of all we need to set the key boundary conditions.  

    For the American call option: 

The value of the option at expiration date is 𝑚𝑎𝑥{𝑆t − 𝑋, 0}, in which 𝑆t is the stock 

price at the time of 𝑇. So 

. 

When the stock price is 0, the price of the call option is 0. So 

 

When the stock price is 𝑆 = 𝑆õúù, the price of the call option is 𝑆õúù. So 

 

    For the American put option: 

The value of the option at expiration date is 𝑚𝑎𝑥{𝑋 − 𝑆t, 0}, in which 𝑆t is the stock 

price at the time of 𝑇. So 

. 

aj fi+1, j−1 + bj fi+1, j + cj fi+1, j+1 = fij

aj =
1

1+ rΔt
(− 1

2
rjΔt + 1

2
σ 2 j2Δt)

bj =
1

1+ rΔt
(1−σ 2 j2Δt)

cj =
1

1+ rΔt
(1
2
rjΔt + 1

2
σ 2 j2Δt)

fNj = max jΔS − X ,0{ }

fi0 = 0,i = 0,1,2,...,N ;

fiM = Smax ,i = 0,1,2,...,N .

fNj = max X − jΔS ,0{ }
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When the stock price is 0, the price of the call option is 𝑋. So 

 

When the price of stock tends to infinity, the price of the put option is 0. So 

 

    From the key boundary conditions of American option we can do the program. 

See appendix (Program 9). 

    Because of the existence of the rounding error in the explicit finite difference 

method, so sometimes the solution of the difference equation does not converge to the 

solution of the partial differential equation. To solve this problem we will introduce the 

implicit finite difference method. It can solve more 𝑋 nodes at the same time step. 

Through the differential treatment of the Black Scholes partial differential equation, we 

can get the expression of the implicit finite difference method. 

                                      (3.2.31) 

where 

, 

, 

  . 

    In the implicit finite difference method, the calculation of 𝑓w,Å by 𝑓wNr,Å  needs to 

solve 𝑀+ 1 equations at the same time the amount of calculation is very large. So the 

matrix library needs to be introduced in the program. The details are showing in 

fi0 = X ,i = 0,1,2,...,N ;

fiM = 0,i = 0,1,2,...,N .

aj fi, j−1 + bj fij + cj fi, j+1 = fi+1, j ,

aj =
1
2
rjΔt − 1

2
σ 2 j2Δt

bj = 1+σ
2 j2Δt + rΔt

cj =
1

1+ rΔt
(1
2
rjΔt + 1

2
σ 2 j2Δt)



 

 42 

appendix (Program 10) 

    Similar with the explicit finite difference method, we use the same key boundary 

conditions in the implicit finite difference method. So we can apply the program.See 

appendix (Program 11) 

    In addition, the Crank-Nicolson finite difference method can also be used, which 

is essentially the mean of explicit and implicit finite difference methods. In this thesis 

we do not introduce too much about this method. 
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Chapter 4. Evaluation of selected method 

In this chapter we will use the method introduced in the last chapter to calculate 

the price of options. The paper uses data download from the sample data base of 

Chicago Board of Trade. First, we will calculate the analytical solution of the Black-

Scholes model. In the programs we set S as the price of underlying asset which means 

the stock price of this option, X as the exercise price means the price at which an 

underlying security can be purchased (call option) or sold (put option). r as the risk free 

rate which is the rate of return of a hypothetical investment with no risk of financial 

loss, over a given period of time. sigma as the implied volatility which is the estimated 

volatility, or gyrations, of a security's price and is most commonly used when pricing 

options. In general, implied volatility increases while the market is bearish, when 

investors believe the asset's price will decline over time, and decreases when the market 

is bullish, when investors believe that the price will rise over time. This is due to the 

common belief that bearish markets are riskier than bullish markets. Implied volatility 

is a way of estimating the future fluctuations of a security's worth based on certain 

predictive factors. Implicit volatility is usually calculated by the stock price, but the 

data collected in this paper already contains the implied volatility, so it is no needed to 

calculate. In the mathematical sense, the movement of financial asset prices is random, 

and the volatility reflects the volatility of this stochastic path. It describes the statistical 

distribution characteristics of asset returns and is usually represented by the standard 

deviation of asset returns. And t as the period of rights. The programs described in 

appendix can only calculate the price of one option once a time. In order to allow the 
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program to continuously calculate option prices in a loop, we design the following loops. 

The column data shown in this chapter is only the first six groups of sample data.  

4.1 The analytical solution of Black-Scholes model 

    After finishing the programming of the loop we can calculate the options price. 

The first method we apply is the analytical solution of B-S partial differential equation.  

Call option 

S X r sigma time Black-Scholes 

14.575 10 0.21 1.4094 0.02  4.64252 

14.575 10.5 0.21 1.2383 0.02  4.14305 

14.575 11 0.21 1.0838 0.02  3.64458 

14.575 11.5 0.21 0.9506 0.02  3.14833 

14.575 12 0.21 0.7994 0.02  2.649 

14.575 12.5 0.21 0.6621 0.02  2.15129 

Put option 

S X r sigma time Black-Scholes 

14.575 10 0.21 2.2815 0.02  0.311095 

14.575 10.5 0.21 1.8378 0.02  0.152188 

14.575 11 0.21 1.5005 0.02  0.11019 

14.575 11.5 0.21 1.2454 0.02  0.0890074 

14.575 12 0.21 0.9886 0.02  0.0645449 

14.575 12.5 0.21 0.7804 0.02  0.0509957 

Table 4.1 Analytical solutions of the Black-Scholes 
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    The above example tables show the analytical solutions of the Black-Scholes 

partial differential equation obtained by program (2.5.2), (2.5.3). After checking with 

Excel, we can conclude that the computational accuracy of C++ meets the research 

needs. At the same time the calculation is very fast compare to the using of Excel. The 

specific data is in appendix (table 1). Accurately speaking, volatility describes the 

degree of fluctuation of financial asset prices, which is a measure of the uncertainty of 

asset returns and is commonly used to reflect the level of risk of financial assets. The 

higher the volatility, the greater the volatility of financial asset prices and the greater 

the uncertainty of asset returns. The lower the volatility, the smoother the fluctuation of 

the financial asset price, and the stronger the certainty of asset returns. From the table 

above we get when the exercise price rises and the implied volatility falls, the estimated 

price of either the call or the put option will decline. 

4.2 The numerical solution of Black-Scholes model 

Because there are many quite complex derivative securities that cannot give 

analytical solutions we will use the numerical method of option pricing to calculate the 

numerical solution of the option price. Normally we think the numerical solution is a 

value calculated by approximate calculation under certain conditions and the analytical 

solution is the analytic formula of the function, and any corresponding value can be 

calculated from the expression of the solution. We usually think that analytical solutions 

are more accurate than numerical solutions. Next we will perform sensitivity analysis 

on numerical methods, then compare it with the analytical solution of partial differential 

equations.  
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4.2.1 The Monte Carlo method 

First we will start on the Monte Carlo Method, and we will use the different 

simulation times to do the sensitivity analysis to evaluate the accuracy of numerical 

solutions derived from Monte Carlo simulations. 

European Call option 

B-S MC50 MC1000 MC10000 MC50000 

4.64252 4.65235 4.65235 4.65235 4.65235 

4.14305 4.18337 4.05996 4.1538 4.15782 

3.64458 3.56816 3.70136 3.6403 3.64479 

3.14833 3.08868 3.1357 3.14918 3.15287 

2.649 2.72959 2.64618 2.64103 2.65809 

2.15129 2.15344 2.17803 2.15466 2.15032 

Table 4.2.1 European call option Black-Scholes numerical solution in Monte Carlo 

It can be seen from the data that the more the number of simulation, the smaller 

the deviation and the analytical solution of the numerical solution. But we can't get a 

complete and accurate conclusion from a small number of samples. Here we calculate 

the price of the put option. Then calculate and compare the average error values and 

maximum error of different simulate steps. Which the error means the absolute value 

of the difference between the numerical solution and the analytical solution. The 

average error is the mean of absolute value error and the maximum error is the 

maximum of absolute value error (the maximum value of the absolute value of the 

difference between the analytical solution and the numerical solution). 
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European put option 

B-S MC50 MC1000 MC10000 MC50000 

0.311095 0.2137 0.242663 0.219319 0.225429 

0.152188 0.277804 0.145098 0.15777 0.152949 

0.11019 0.134721 0.100421 0.112334 0.108977 

0.0890074 0.119097 0.0903439 0.0902059 0.088398 

0.0645449 0.0981901 0.0484329 0.0650068 0.0630125 

0.0509957 0.0821978 0.0490903 0.052366 0.050724 

Table 4.2.2 European put option Black-Scholes numerical solution in Monte Carlo 

    The specific data is in appendix (table 2). By observing the above data, it is found 

that the error of the numerical solution will be significantly reduced when the number 

of simulation is increased. The numerical solution given by Monte Carlo method 

gradually approximated the analytical solution given by the option pricing formula. 

However, the computing speed of the C++ program also drops dramatically at same 

time. 

Call option 50 steps 1000steps 10000steps 50000steps 

Maximum error 0.07642 0.08309 0.00797 0.00526 

Mean 0.006115083 0.003010634 -0.003130817 -0.000473584 

Put option 50 steps 1000steps 10000steps 50000steps 

Maximum error 0.3973 0.0965 0.091776 0.085666 

Mean 0.017662173 0.008184492 0.001335953 0.001660199 

Table 4.2.3 Maximum error and mean of error of Monte Carlo method 

Analysis of data through Microsoft Excel can get the conclusions that the 

calculation accuracy increases with the number of simulated times, because the average 

error is significantly reduced and the maximum absolute error is significantly reduced. 

Through the sensitivity analysis, we can predict that the error of the numerical solution 
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and the analytical solution can be ignored when the Monte Carlo simulation step trends 

to be an infinite value.  

 

Figure 4.2.1 Convergence figure of Monte Carlo simulation 

The above figure shows the convergence of the Monte Carlo simulation method. 

It reflects the difference between the numerical solution and the analytical solution as 

the number of simulations increases. It can be seen from the figure that when the 

number of simulations is less than 1500 times, the difference between the numerical 

solution and the analytical solution fluctuates greatly, but with the increase of the 

number of simulations, the fluctuation gradually becomes stable. When the number of 

simulations is greater than 25,000, the numerical solution is basically stable at or very 

close to the analytical solution. 

4.2.2 The binomial tree method 

Next we will use the binomial tree method to calculate the numerical solution of 

the option price. The binomial tree method is similar to the Monte Carlo method which 

Simulate the possible path of the price and then discount it. Same as the previous steps, 

first introduce Loop (4.1) to solve the loop calculation problem, then perform multiple 
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sets of calculations to detect sensitivity of binomial tree method. 

European call option 

Black-Scholes BinTree50 BinTree1000 BinTree10000 BinTree50000 

4.64252 4.64235 4.64255 4.6426 4.6426 

4.14305 4.14293 4.14304 4.14305 4.14305 

3.64458 3.64457 3.64452 3.64458 3.64458 

3.14833 3.14831 3.1483 3.14833 3.14833 

2.649 2.64896 2.64897 2.64899 2.649 

2.15129 2.15128 2.15125 2.15128 2.15129 

 Table 4.2.4 European call option Black-Scholes numerical solution in binomial tree 

Through observation, it can be found that the higher the number of binary tree 

steps, the closer the numerical solution to the analytical solution. Also, because the 

sample size is too small, the price of the put option needs to be calculated for analysis. 

Next we will use the binomial method to calculate the price of a put option. 

European put option 

Black-Scholes BinTree50 BinTree1000 BinTree10000 BinTree50000 

0.311095 0.222508 0.225031 0.224938 0.224932 

0.152188 0.153442 0.152029 0.152176 0.152185 

0.11019 0.110673 0.110048 0.110191 0.110189 

0.0890074 0.0889809 0.0890055 0.0890071 0.0890078 

0.0645449 0.063288 0.0644442 0.0645472 0.0645451 

0.0509957 0.0499729 0.0509105 0.0509972 0.0509958 

 Table 4.2.4 European put option Black-Scholes numerical solution in binomial tree 

Comparing the numerical solutions between the analytic solution of the partial 

differential equations and the binomial tree method, it can be found that as the number 

of binomial tree steps increases, the numerical solution will more closely approximate 

the analytical solution. However, because the binary tree method is essentially an 
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exhaustive method, and you need to check on each node whether the exercise is more 

favorable than exercise in the next node. This will consume a lot of Central Processing 

Unit (CPU) power count. So, as the number of steps increases, the efficiency drops 

significantly. The C++ program does not reduce computing time when large amounts 

of data require large number of steps. Because the binomial tree model itself does not 

involve very complicated calculation formulas. Therefore, if using the binomial tree 

method to calculate option prices, it is recommended to use a more computationally 

intensive Graphics Processing Unit (GPU). At the same time, compared to the Monte 

Carlo model described above, binomial tree model is more accurate and more 

approximates the value of the analytical solution. 

call option 50 steps 1000steps 10000steps 50000steps 

Maximum error 0.00100 0.00050 0.00003 0.00001 

Mean 0.000125 0.000071 0.000002 0.000000 

put option 50 steps 1000steps 10000steps 50000steps 

Maximum error 0.088587 0.086064 0.086157 0.086163 

Mean 0.001273 0.001124 0.001117 0.001119 

Table 4.2.5 Maximum error and mean of error of binomial tree method 

From the table 4.2.2 above. In call option pricing, the accuracy of the binomial 

tree method is very high and can be further increased with the increase in the number 

of steps. However, when the number of steps exceeds 50,000 steps, the efficiency is 

greatly reduced but the accuracy improved little. Therefore, in the calculation of pricing, 

the number of simulation steps should be less than 50,000 or even less than 20,000. At 

this time, we can still obtain very high accuracy. In the calculation of the put option 

price, there is a slight deviation in the C++ program. It does not come to the result that 
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the expected precision gradually increases with the increase of the number of steps. At 

this point the accuracy increases into the bottleneck period but the calculation efficiency 

still decreases as the number of steps increases. After a more detailed calculation and 

sensitivity analysis, the put option price calculation in binomial tree method step should 

be less than 15000 steps in order to achieve a balance between accuracy and efficiency. 

It is precisely because of the extremely high accuracy of the binomial tree method, and 

it is possible to add a code to check the advance exercise in the program so the binomial 

tree method can be used to calculate the price of American options which will be apply 

in the following after the analysis of numerical Solution of European Options. 

 

Figure 4.2.2 Convergence figure of Binomial tree method 

Figure (4.2.2) is a convergence plot for the binomial tree method, which reflects 

the error between the numerical solution of the Black-Scholes partial differential 

equation solved by the binomial tree method and the analytical solution. It can be seen 

from the figure that the fluctuation of the error has stabilized at 90 steps, and the 

numerical solution calculated by the binomial tree method after 450 steps is already 

very close to the analytical solution. It can be said that the error of the binomial tree 

4.63
4.632
4.634
4.636
4.638
4.64

4.642
4.644

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

Convergence figure of Binomal tree method

Analytical solution Binomial tree



 

 52 

method is very small. 

4.2.3 The finite difference method 

    The Black-Scholes partial differential equation numerical solution is not limited 

to the Monte Carlo method and the binomial tree method, but also includes the finite 

difference method. Next, we will use the finite difference method to calculate the 

numerical solution of BS partial differential equations. 

    At first we will apply the explicit finite difference method in European option 

pricing. The calculation of explicit difference method is relatively simple. Adding loop 

(4.1) to the main program it is easy to get the conclusion. Here we assume that the steps 

of the prices is equal to the time step, so it is convenient for the sensitivity analysis. 

Call option 

Black-Scholes explicit10 10 explicit20 20 explicit200 200 explicit2000 2000 

4.64252 4.6676 4.64012 1.73E+164 nan 

4.14305 4.16763 4.14979 1.06E+140 nan 

3.64458 3.66051 3.65428 2.85E+114 nan 

3.14833 3.15274 3.15095 2.61E+88 nan 

2.649 2.68306 2.66202 1.13E+52 nan 

2.15129 2.20735 2.16505 2.20E+08 nan 

 Table 4.2.6 European call option s numerical solution in explicit finite difference 

    Where nan means the program can not calculate the result and inf means the 

conclusion trends to infinite. It can be seen directly from the results that when the 

number of simulated steps is relatively small, the numerical solution is similar to the 

analytic solution. The accuracy of the numerical solution at this time is acceptable. 

However, with the increase of the number of simulation steps, the numerical solutions 



 

 53 

have overflow. Because the calculation process of the difference scheme is pushed by 

layer by layer, the approximate value of the N layer is used in the calculation of the 

approximate value of the N + 1 layer, until it is related to the initial value. If there are 

rounding errors in the preceding layers, it will inevitably affect the values of the latter 

layers. If the influence of errors is bigger and bigger, the appearance of the exact 

solutions of the difference schemes will be completely concealed. This is why the 

numerical solution overflow. So in this case we think that explicit finite difference 

method is unstable. The same result will also appear in the pricing of the put option. 

Put option 

Black-Scholes explicit 10 10 explicit 20 20 explicit 200 200 explicit 2000 2000 

0.311095 0.271463 0.224174 3.63E+188 nan 

0.152188 0.190018 0.157399 -1.38E+151 nan 

0.11019 0.125888 0.121602 -6.57E+115 nan 

0.0890074 0.0807608 0.08757 1.99E+81 nan 

0.0645449 0.0965918 0.0769244 3.18E+34 nan 

0.0509957 0.113626 0.0658148 5.10E-02 nan 

 Table 4.2.7 European put options numerical solution in explicit finite difference 

  

Figure 4.2.3 Convergence figure of Explicit FDM method 
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The converging graph shown in the above figure has an overflow effect when the 

calculated time steps and price steps is 41 steps, because the error will accumulate as 

the number of steps increases, so only the data before 41 steps are plotted. It can be 

clearly seen from Figure 4.2.3 that the analytical solution of the explicit finite difference 

method is more volatile than other methods. 

By the price of the call and put options, we conclude that the calculation of explicit 

difference method will have overflow effects when the number of simulated steps is too 

large, so the method is unstable for calculate. The maximum and mean value of the 

error can not be compared at this time. Because under the limited number of steps, the 

explicit difference method calculation precision can not reach the requirement we turn 

to use implicit difference method to calculate. First we will calculate the European put 

option. 

Put option 

Black-Scholes implicit 10,10 implicit 20,20 implicit 100, 100 implicit 200, 200 

0.31110 0.31234 0.29999 0.22543 0.22494 

0.15219 0.13253 0.13108 0.15237 0.15154 

0.11019 0.07891 0.09889 0.11055 0.11034 

0.08901 0.05985 0.08102 0.08907 0.08919 

0.06454 0.04548 0.06061 0.06372 0.06439 

0.05100 0.03596 0.04794 0.05032 0.05087 

 Table 4.2.8 European put option s numerical solution in implicit finite difference 

From the put option calculation, implicit method has a good precision and still has 

no overflow when the number of simulated steps is 200. Now we will calculate the call 

option to do more analysis. 
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Call option 

Black-Scholes implicit10 10 implicit20 20 implicit100 100 implicit200 200 

4.64252 4.65235 4.64235 4.64212 4.64235 

4.14305 4.13678 4.14098 4.14292 4.14291 

3.64458 3.64055 3.642 3.64424 3.64425 

3.14833 3.14701 3.14579 3.14809 3.14833 

2.649 2.64873 2.64786 2.649 2.64885 

2.15129 2.15184 2.15139 2.15109 2.1513 

 Table 4.2.9 European call option s numerical solution in implicit finite difference 

By analyzing the above calculation results, we can conclude that implicit 

difference method can achieve quite high accuracy at less simulated steps. At the same 

time, unlike explicit difference method, implicit difference method can eliminate the 

limit of stability. It means in the same time steps, more nodes can be solved if used the 

implicit difference method. The shortcomings of implicit difference method are also 

obvious. Because the matrix is introduced in the calculation, the calculation is very 

cumbersome. In the writing of C++ programs, the problem is debug for the external 

matrix library, at present, two widely used matrix libraries are NEWMAT and IT++ and 

this thesis also introduces the two matrix Libraries. 

 
Figure 4.2.4 Convergence figure of Implicit FDM method 
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From the above figure, we can see that when the number of simulations is less than 

50 steps, that is, the number of time steps and price steps is less than 50 steps, the 

numerical solution fluctuates greatly. When the number of simulation steps is greater 

than 50 steps, the numerical solution approaches the analytical solution. 

    Next we will perform sensitivity analysis on the infinite difference method. 

Compare the average error and the maximum error between the analytical solution and 

the numerical solution. 

call option implicit 10 implicit 20 implicit 100 implicit 200 

Average error 0.0056 0.0026 0.0004 0.0002 

Max error 0.0455 0.0218 0.0040 0.0023 

put option implicit 10 implicit 20 implicit 100 implicit 200 

Average error 0.0022 0.0025 0.0010 0.0011 

Max error 0.0655 0.0456 0.0857 0.0862 

Table 4.2.10 Maximum error and mean of error of finite difference method 

    From the maximum error and the average error, the error of implicit difference 

method is fully conformed to the requirements. This thesis only focuses on full implicit 

difference and explicit difference methods. There are also the semi implicit difference 

and the central difference method in the finite difference method. In the paper, we will 

not to say more about it. What needs to be mentioned is the mean of explicit difference 

and implicit difference called Crank-Nicolson method. In general, the Crank-Nicolson 

method is stable when the explicit method is overflow, and is more accurate than the 

implicit method. This method has not been realized in this paper for technical reasons. 

Through the above three numerical methods of calculation and analysis. And after 

comparing with the Black-Scholes partial differential equation's analytical solution. We 
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can conclude that as the number of calculations increases, the accuracy of the numerical 

solution increases. However, due to the accumulation of errors, the explicit finite 

difference method does not meet the above conclusions. At the same time, because the 

binomial tree method is a computational approximation similar to the exhaustive 

method. So the binomial tree method has the highest accuracy. But at the same time, 

because the calculation is too cumbersome, it leads to the lowest efficiency. In actual 

production and life, it is recommended to use a small number of simulations of the 

binomial tree method or implicit finite difference method to let the calculation accuracy 

and calculation efficiency reach the optimal combination. 

4.3 The option pricing of American options 

    The difficulty of American option calculation is that due to the existence of 

advance exercise, the traditional Black-Scholes model cannot be used to solve the 

American put option price. Because the exercise date is a very important parameter in 

the Black-Scholes model, unlike the European option, the exercise date of the American 

option is more flexible. The usual calculation of American option prices can use Barone 

Adesi & Whaley Model (BAM model), least-squares Monte Carlo simulation(LSMC 

model), binomial tree method and finite difference method. Because BAM model 

requires the introduction of a bivariate normal distribution and the cumulative 

distribution function to get the approximate analytical solution. 

    The program design is too cumbersome, so it will not be introduced here. In the 

previous section, we know that the binomial method has a high accuracy, so we will 

first calculate the price of the American option using the binomial tree method. We 
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assume the most exact solution is the 50,000 step simulation of the binomial tree. For 

comparison, here we will use the same data as the previous European options. 

American call option 

S X r sigma time BinTree50000 

14.575 10 0.21 1.4094 0.02  4.6426 

14.575 10.5 0.21 1.2383 0.02  4.14305 

14.575 11 0.21 1.0838 0.02  3.64458 

14.575 11.5 0.21 0.9506 0.02  3.14833 

14.575 12 0.21 0.7994 0.02  2.649 

14.575 12.5 0.21 0.6621 0.02  2.15129 

Table 4.3.1 American call option price 

    Similar to previous conclusions, the computational efficiency of the binomial tree 

method is very low at large simulation times. Next is the American put option pricing. 

American put option 

S X r sigma time BinTree50000 

14.575 10 0.21 2.2815 0.02  0.225212 

14.575 10.5 0.21 1.8378 0.02  0.152414 

14.575 11 0.21 1.5005 0.02  0.11039 

14.575 11.5 0.21 1.2454 0.02  0.0892056 

14.575 12 0.21 0.9886 0.02  0.0647286 

14.575 12.5 0.21 0.7804 0.02  0.0511868 

Table 4.3.2 American put option price 

As we can above is the American put option price. At this time we take the same 

method but the European option price to compare the difference. The table below shows 

the specific differences between American option and the European option. 
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Comparison of European and American option 

European call American call European put American put 

4.6426 4.6426 0.224932 0.225212 

4.14305 4.14305 0.152185 0.152414 

3.64458 3.64458 0.110189 0.11039 

3.14833 3.14833 0.0890078 0.0892056 

2.649 2.649 0.0645451 0.0647286 

2.15129 2.15129 0.0509958 0.0511868 

Table 4.3.3 Comparison between European and American option 

    Although the data given in Table 4.2.13 is only a small part of the complete data 

(Detailed data see in appendix). We can still see that there is no difference between the 

price of the American call option and the price of the European call option when using 

the same calculation method. This is because the non-dividend American call options 

generally do not exercise before the maturity. Strictly speaking, not only the American 

option, but all the "convex" interest free American call derivatives are all the sub-

martingale, that is, their expectation at 𝑇 + 1 is greater than or equal to the value of 

𝑇 time, so they should never be exercised advance. Which is: 

Define convex: 

      (4.3.1) 

    The payoff Max	(𝑆 − 𝐾, 0) of American call options is obviously convex. For a 

function with an initial value of 0 (which Max	(0 − 𝐾, 0) 	= 0), the convex definition 

can also be "linearized": 

                                            (4.3.2) 

    We give a 𝑥 as a martingale discounting measure, that is, there is no excess return 

∀t ∈[0,1], f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )

∀t ∈[0,1], f (tx) ≤ tf (x)
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except 1/𝑃[0,1] − 1. The 𝑇of the upper form can be replaced by a discount factor 

belonging to [0,1], 

                                  (4.3.3) 

Let's give a filtration  so there are: 

                       (4.3.4) 

For convex functions, the Jensen inequality can be used 

      (4.3.5) 

The most left function of the equation is already under the	X discounting measure, so 

it is a directly martingale: 

                                               (4.3.6) 

So in the 𝑠 filtration, even if the discounted measure is given, the expected value of 

the future is larger than the current period: 

                                 (4.3.7) 

At this point, 𝑓 is a sub-martingale, which means that its expectation value will only 

add, so it will not be exercise advance.  

    This is why there is no difference between American call options and European 

call options, because there is no exercise advance. 

    Now let us compare the European put options and the American put options, from 

the table 4.3.3 or the data in appendix we can conclude under the same condition the 

price of an American put option is always higher than the price of the European put 

∀t ∈[0,1], f (P(0,t)xt ) ≤ P(0,t) f (xt )

Fs
! ,s < t

∀t ∈[0,1], !E( f (P(s,t)xt ) | Fs
! ) ≤ !E(P(s,t) f (xt ) | Fs

! )

∀t ∈[0,1], f ( !E(P(s,t)xt | Fs
! )) ≤ !E( f (P(s,t)xt ) | Fs

! ) ≤ !E(P(s,t) f (xt ) | Fs
! )

!E(P(s,t)x | Fs
! ) = xs

∀t ∈[0,1], f (xs ) ≤ !E(P(s,t) f (xt ) | Fs
! )
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option.  

Since this paper focuses on the pricing of non-dividends stock options, and American 

call options do not exercise advance. Therefore, the following calculations will only 

focus on American put options. 

    Next, we will use the finite difference method to price American options. In the 

same way likes European option we will use the explicit finite difference method and 

implicit difference method to calculate the option prices. The design of the program is 

also quite simple. It is only necessary to add a statement that checks the exercise on the 

basic of the original European option pricing model. 

American put option 

FDM EX 10 FDM EX 20 FDM EX 100 FDM EX200 

0.271636 0.224332 1.71E+44 3.83E+148 

0.190094 0.157585 -4.075 -4.075 

0.125917 0.121694 -3.575 -3.575 

0.0808651 0.0876486 0.272587 1.22E+55 

0.0967486 0.0770379 0.0647022 1.98E+20 

0.113696 0.0658942 0.0509992 0.0511809 

Table 4.3.4 American put option price in explicit finite difference method 

  

Figure 4.3.1 Convergence figure of Explicit FDM method in American option 
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    From the above figure, it could be seen that comparing with European option the 

explicit finite difference method is more suitable for calculating the price of American 

options because the value calculated when the time step and the price step simulation 

number is 3 is equal to the 50,000 times simulation binomial tree method (without 

considering small errors). Of course, the disadvantages of the explicit finite difference 

method also exist at the same time. That is, the overflow effect begins when the time 

step is longer than the price step and the simulation is to 130 steps. 

    Similar to the conclusion obtained in the calculation of European option prices, 

when the number of simulation steps is small, the calculation accuracy is in an 

acceptable range, but as the number of simulation steps increases, the cumulative error 

increases and the calculation result overflows. Table 4.3.4 shows that the results have 

been significantly different from the real values in 200 steps. From the above results, 

we can use the explicit finite difference method to divide the right period into small 

steps when the calculation accuracy requirement is not particularly high. However, this 

method cannot be used if there is a high requirement for calculation accuracy. The 

following will use another form of the finite difference method the implicit finite 

difference method. Also, because the calculation volume is too large, it is necessary to 

introduce an exogenous matrix library and some codes about check whether or not to 

exercise in advance. Since the principle of implicit finite difference method is similar 

to the principle of explicit finite difference method, it is only slightly different in the 

calculation method. Due to the implicit finite difference method use the 

computationally intensive matrix operations to avoids the overflow effect and the 
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precision is similar to the explicit FDM. So no convergence analysis will be done here. 

American put option 

FDM IM 10 FDM IM20 FDM IM 100 FDM IM 200 

0.0246463 0.0177993 0.0242112 0.0256316 

0.023181 0.0178893 0.022428 0.023972 

0.0226994 0.0195644 0.0213696 0.0235232 

0.0238995 0.0239306 0.0236072 0.0251829 

0.0221137 0.0235546 0.0232184 0.0237446 

0.0212015 0.0245754 0.0242078 0.0239952 

Table 4.3.5 American put option price in implicit finite difference method 

The calculation of the implied difference method of the American option has no 

overflow similar to that of the European option. Also, the calculation accuracy also 

reached expectations. However the finite difference method and the binomial tree 

method have common disadvantages, that is, the calculation process is too complicated 

and inefficient. With the development of mathematics and financial science, scientists 

have also studied the use of least square Monte Carlo method to calculate American put 

option prices. Assume that the discrete time interval number is 10 which means that 

there are 10 time points during the rights period to exercise to simulate American 

options. Due to technical limitations and the too short expiration time, it is not possible 

to simulate too many times. 

American put option 

S X r sigma time LSM 

14.575 10 0.21 2.2815 0.02 0.2266601 

14.575 10.5 0.21 1.8378 0.02 0.1520834 

14.575 11 0.21 1.5005 0.02 0.1117332 

14.575 11.5 0.21 1.2454 0.02 0.09138384 

14.575 12 0.21 0.9886 0.02 0.0637418 

14.575 12.5 0.21 0.7804 0.02 0.04974608 

Table 4.3.6 American put option price in Least Square Monte Carlo 

    After using the same data for calculation, we can compare with the results obtained 



 

 64 

by other methods before. It can be found that the LSM model can obtain better 

calculation accuracy and the calculation speed is faster at smaller simulation times. 

4.4 Application of option pricing model in real market 

First we will apply the pricing of European options. We have downloaded relevant 

data on the stock options of China Construction Bank (HK.0939) from the derivatives 

database of the official website of the Hong Kong Stock Exchange. The stock price of 

HK.0939 in 1.04.2018 is 8.06HK$. We selected several stock options with different 

execution prices and active trading volume for empirical analysis. Through the query 

of relevant data we set the risk-free interest rate to 0.015 meanwhile the three different 

expiration dates are April 18 (0.0439 years till now), May 18 (0.1315 years till now) 

and June 18 (0.21643 years till now). Implied volatility of options is in Appendix. 

T Strike price Real price BS MC BT FDM 

t=0.0439 7.75 0.505 0.42910 0.42103 0.42036 0.42434 

 8 0.38 0.25207 0.24264 0.24229 0.19459 

 8.25 0.212 0.13500 0.12515 0.12543 0.10784 

 8.5 0.124 0.06351 0.05437 0.05480 0.06655 

t=0.1315 7.75 0.572 0.52946 0.53049 0.52983 0.53188 

 8 0.418 0.37795 0.37797 0.37837 0.34656 

 8.25 0.314 0.25715 0.25694 0.25753 0.24368 

t=0.2164 8 0.481 0.46959 0.47114 0.47007 0.44764 

 8.25 0.407 0.35958 0.35950 0.35979 0.35133 

 8.5 0.28 0.25412 0.25430 0.25400 0.25654 

Table 4.4.1 Call option price of CCB 
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Chart 4.4.1 Call option price of CCB 

 

T Strike price Real price BS MC BT FDM 

t=0.0439 7.75 0.151 0.09788 0.09764 0.09789 0.102205 

 8 0.244 0.18229 0.18265 0.18229 0.13506 

 8.25 0.352 0.30343 0.30385 0.30342 0.286317 

 8.5 0.59 0.49657 0.49646 0.49657 0.50744 

t=0.1315 7.75 0.24 0.21057 0.21014 0.21056 0.213006 
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 8.5 1.055 1.05590 1.05449 1.05590 1.04975 

Table 4.4.2 Put option price of CCB 
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Chart 4.4.2 Put option price of CCB 

Calculate the degree of deviation based on the theoretical price and the actual price. 

The definition of the degree of deviation is as follows: 𝐵𝐼 = 𝑄/𝑃 − 1 where 𝐵𝐼 is 

deviation degree, 𝑄 is the market price and 𝑃 is theoretical price. We will compare 

the maximum, minimum, and mean deviations between various methods in both the 

call and put options. 
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T Strike price BS MC BT FDM 

t=0.0439 7.75 -0.15030 -0.16628 -0.16761 -0.15972 

 8 -0.33666 -0.36148 -0.36241 -0.48791 

 8.25 -0.36321 -0.40968 -0.40837 -0.49133 

 8.5 -0.48779 -0.56156 -0.55803 -0.46331 

t=0.1315 7.75 -0.07437 -0.07257 -0.07372 -0.07014 

 8 -0.09582 -0.09576 -0.09481 -0.17091 

 8.25 -0.18106 -0.18172 -0.17985 -0.22396 

t=0.21643 8 -0.02373 -0.02050 -0.02273 -0.06936 

 8.25 -0.11650 -0.11670 -0.11600 -0.13679 

 8.5 -0.09241 -0.09178 -0.09284 -0.08380 

 Maximum -0.02373 -0.02050 -0.02273 -0.06936 

 Minimum -0.48779 -0.56156 -0.55803 -0.49133 

 Mean -0.19219 -0.20780 -0.20764 -0.23572 

Table 4.4.3 Call option degree of deviation of CCB 

T Strike price BS MC BT FDM 

t=0.0439 7.75 -0.35176 -0.35340 -0.35175 -0.32315 

 8 -0.25292 -0.25143 -0.25293 -0.44648 

 8.25 -0.13800 -0.13680 -0.13800 -0.18660 

 8.5 -0.15836 -0.15855 -0.15835 -0.13993 

t=0.1315 7.75 -0.12265 -0.12442 -0.12266 -0.11248 

 8 -0.03763 -0.03944 -0.03764 -0.13759 

 8.25 -0.14454 -0.14419 -0.14455 -0.17169 

t=0.21643 8 -0.10562 -0.10513 -0.10563 -0.15831 

 8.25 -0.05894 -0.05802 -0.05894 -0.07602 

 8.5 0.00085 -0.00048 0.00085 -0.00498 

 Maximum 0.00085 -0.00048 0.00085 -0.00498 

 Minimum -0.35176 -0.35340 -0.35175 -0.44648 

 Mean -0.13696 -0.13719 -0.13696 -0.17572 

Table 4.4.4 Put option degree of deviation of CCB 

From the analysis of the simulation results and deviation degree methods, our 
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theoretical prices tend to be the same as the market prices. On the premise of different 

maturity dates and different exercise prices, the degree of deviation between the 

analytical solution and the approximate solution of the B-S partial differential equation 

is mostly negative. This shows that the market price is higher than the theoretical price. 

The market price is overestimate to some extent. The deviation of the analytical solution 

of the B-S partial differential equation is the smallest, and it can be considered that 

using the analytical solution in the pricing of the European option can get the theoretical 

price closest to the market value. 

In the following, we will transfer the research object to the empirical analysis of 

American put option pricing. Here we choose HSBC Holdings (HK.0005) as our object. 

We will study the prices of eight HSBC stock American put options. The stock price of 

HK.0005 in 1.04.2018 is 74 HK$. Through the query of relevant data we set the risk-

free interest rate to 0.015 meanwhile the expiration dates is September18 (0.41918 

years till now), Implied volatility of options is in Appendix. 

T Strike price Real price LSM MC BT FDM 

t=0.41918 65 0.91 0.5037872 0.513894 0.51127 

 67.5 1.44 0.8369717 0.844566 0.847237 

 70 2.07 1.36331 1.36444 1.36591 

 72.5 3.11 2.231524 2.23591 2.22645 

 75 4.47 3.384697 3.40177 3.40199 

 77.5 6.11 4.897231 4.90927 4.90949 

 85 12.35 11.07543 11.1263 11.1254 

Table 4.4.5 American Put option of HSBC Holding 
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Chart 4.4.2 Put option price of CCB 

It can be seen from Tables 4.4.5 and 4.4.2 that the actual value of HSBC Options 

is higher than the theoretical value predicted by the algorithm, but the actual value is 

close to the theoretical value, which means that the algorithm is real and effective. 

However, there are some problems in the selection of calculation data. When the 

exercise date is too short, the price of the American put option cannot be calculated by 

the least squares Monte Carlo simulation. The reason for this problem caused by the 

debug analysis should be because in the program, the optimal stopping time (similar to 

Bermuda option) is determined by artificially setting the number of exercise. When the 

distance to maturity date is too short, the computer cannot calculate the too small value. 
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Strike price LSM MC BT FDM 

65 -0.44639 -0.43528 -0.43816 

67.5 -0.41877 -0.41350 -0.41164 

70 -0.34140 -0.34085 -0.34014 

72.5 -0.28247 -0.28106 -0.28410 

75 -0.24280 -0.23898 -0.23893 

77.5 -0.19849 -0.19652 -0.19648 

85 -0.10320 -0.09909 -0.09916 

Maximum -0.10320 -0.09909 -0.09916 

Minimum -0.44639 -0.43528 -0.43816 

Mean -0.29050 -0.28647 -0.28694 

Table 4.4.5American Put option degree of deviation of HSBC Holding 

Table 4.4.5 shows the degree of deviation between the real market value and the 

approximate solution of the least square Monte Carlo Simulation, binomial tree model 

and the finite difference method is mostly negative. This also shows that the market 

price is high than the theoretical price. The market price is overestimate to some extent. 

From the average deviation of degree, the simulate option price calculate by binomial 

method of large steps have the smallest deviation with the real market price. This means 

that the binomial method has a very high precision in the pricing of American options. 
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Chapter 5. Conclusion 

In order to study the method of option pricing and its calculation accuracy, this 

thesis introduces the stochastic process and the Black-Scholes partial differential 

equation that can be used for European option pricing, and uses C++ programming to 

calculate its analytic solution. The Monte Carlo method and the binomial tree method, 

as well as the finite difference method and their calculation methods are also introduced. 

Because Black-Scholes partial differential equations and general Monte Carlo 

simulation can not consider the advance exercise problems. It is not suitable to solve 

the American option price.  

The thesis also introduces the least squares Monte Carlo simulation together with 

the binomial tree method and the finite difference method calculate the American 

option price. In the empirical analysis, several stock options of Construction Bank 

(HK.0939) and HSBC Holdings (HK.0005) were selected for research. The article uses 

several models to simulate the European option path of China Construction Bank's 

stock and the American option path of HSBC Holdings to obtain the option price. 

The experimental results show that the direct solution to the analytical solution of 

partial differential equations in the pricing of European options yields the option price 

closest to the real value of the option. However, due to the inability to directly obtain 

analytical solutions in the face of more complex partial differential equations, a 

binomial method with large step numbers is required because the accuracy of the 

binomial method is very close to that of BS partial differential equations at larger steps. 

In addition, in the American option price simulation, it is also the binomial method with 
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the highest accuracy, and the closest to the market real value. 

However, in empirical analysis simulations, we find that the theoretical price of 

derivatives is always lower than the real market price, which means that the market is 

overestimated to some extent. We think the reasons may have the following:  

1. In recent years, the stock prices of China Construction Bank and HSBC Holdings 

have been at a high level and the return on net assets has risen (Construction Bank 

(HK.0939): 13.16% and HSBC Holdings (HK.0005): 5.68% in 2017). Investors are 

optimistic about the stock's outlook and the option price is overvalued. 

2. According to modern financial theory, when the price of financial assets seriously 

deviates from the theoretical price, the market will have opposite expectations. If 

the issuer or market makers are allowed to sell short, it may create a constraint on 

the price trend of the financial asset. The model of option pricing itself assumes that 

there is a short selling mechanism in the market. However, virtually no short-selling 

mechanism exists in the securities markets of the Chinese mainland or the Hong 

Kong Special Administrative Region. The unilateral nature of the market 

mechanism has made it difficult for the securities market to form an effective 

spontaneous restraint mechanism. As a result, effective suppression of market 

prices has not been applied. 

3. Even though the Hong Kong Special Administrative Region is an international 

financial center with an extremely sophisticated financial system, many individual 

investors still have a lot of blinding and following trends in investment behavior, 
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the ability to identify and judge risks is insufficient, so there is inevitable blindness 

in the investment process. 

Due to the limited ability of author, there are still many places that are worth 

discussing. It can be perfected through deeper research. First, the thesis considers only 

Black-Scholes partial differential equations. However, with the development of 

mathematical sciences, more and more studies tend to think that financial asset price 

distribution has fat tails and skewness, which are not suitable for normal distribution. 

Due to the programming technique reasons, the article did not include a variance 

gamma distribution model (VG) or a normal inverse Gaussian distribution model (NIG) 

for comparison studies. Finally, this thesis does not correct some of the limitations of 

the Monte Carlo simulation method. 
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Annexes 

1.Code of the pricing program 

Program 1. Normal distribution. 

#include <math.h> 

#include <iostream> 

double N(const double &x) 

{ 

    if (x>6.0) {return 1.0;};if (x<-6.0) {return 0.0;}; 

    double b1 = 0.31938153; double b2 = -0.356563782; 

    double b3 = 1.781477937;double b4 = -1.821255978; 

    double b5 = 1.330274492;double p = 0.2316419; 

    double c2 = 0.3989423;double a =fabs(x); 

    double t = 1.0/(1.0+a*p);double b = c2*exp((-x)*(x/2.0)); 

    double n =((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t; 

    n=1.0-b*n; 

    if(x<0.0)n=1.0-n; 

return n; 

} 

 

Program 2. European call option pricing 

#include <math.h> 

#include"normdist.h" 

#include <iostream> 

double option_price_call_black_scholes(const double &S,//underlying asset price 

                                           const double &X,//exercise price 

                                           const double &r,//risk free rate 

                                           const double &sigma,//volatility 

                                           const double &time)//period of exercise 

{ 

    double time_sqrt = sqrt(time); 

    double d1 = (log(S/X)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;//d1 

    double d2 =d1-(sigma*time_sqrt);//d2 



 

 

    double c = S*N(d1)-X*exp(-r*time)*N(d2);//call 

    return c; 

} 

 

Program 3. European put option pricing 

double option_price_put_black_scholes(const double &S,//underlying asset price 

                                          const double &X,//exercise price 

                                          const double &r,//risk free rate 

                                          const double &sigma,//volatility 

                                          const double &time)//period of exercise 

{ 

    double time_sqrt = sqrt(time); 

    double d1 = (log(S/X)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;//d1 

    double d2 =d1-(sigma*time_sqrt);//d2 

    double p = X*exp(-r*time)*N(-d2)-S*N(-d1);//put 

    return p; 

} 

 

Program 4. Function of random number 

#include <cstdlib> 

#include <cmath> 

using namespace std; 

double random_normal() 

{ 

double result;double x; 

double y;double xysquare; 

    do 

{ 

    x = 2.0*rand()/static_cast<double>(RAND_MAX)-1; 

        y = 2.0*rand()/static_cast<double>(RAND_MAX)-1; 

        xysquare = x*x + y*y; 

    } 



 

 

    while 

        (xysquare >= 1.0); 

    result = x*sqrt(-2*log(xysquare)/xysquare); 

    return result; 

} 

 

Program 5. Monte Carlo Method 

#include <iostream> 

#include <math.h> 

#include "normdist.h" 

#include "random.h" 

double max(double a,double b) 

{ 

    if(a>b) return a; 

       else return b; 

} 

void option_price_european_simulated(const double &S, 

                                     const double &X, 

                                     const double &r, 

                                     const double &sigma, 

                                     const double &time, 

                                     const double &no_sims, 

                                     double &call_option, 

                                     double &put_option) 

{ 

    double R  = (r-0.5*pow(sigma,2))*time; 

    double SD = sigma*sqrt(time); 

    double sum_payoffs1 = 0.0; 

    double sum_payoffs2 = 0.0; 

    for (int n = 1;n<=no_sims;n++) 

    { 

        double S_T = S*exp(R+SD* random_normal()); 

        sum_payoffs1 += max(0.0,S_T-X); 



 

 

        sum_payoffs2 += max(X-S_T,0.0); 

    } 

    call_option = exp(-r*time)*(sum_payoffs1/double(no_sims)); 

    put_option  = exp(-r*time)*(sum_payoffs2/double(no_sims)); 

} 

 

Program 6. Binomial Tree method for European option pricing 

#include <iostream> 

#include <math.h> 

#include <vector> 

#include "normdist.h" 

#include "random.h" 

double max (double x, 

            double y) 

{ 

    if (x>y) return x; 

        else return y; 

} 

double option_price_call_european_binomia(const double &S, 

                                          const double &X, 

                                          const double &r, 

                                          const double &sigma, 

                                          const double &time, 

                                          const int &steps) 

{ 

    double R      = exp(r*(time/steps)); 

    double Rinv   = 1.0/R; 

    double u      = exp(sigma*sqrt(time/steps)); 

    double uu     = u*u; 

    double d      = 1.0/u; 

    double p_up   = (R-d)/(u-d); 

    double p_down = 1.0-p_up; 

    vector<double> prices(steps+1); 



 

 

    prices[0] = S*pow(d,steps); 

    for (int i = 1;i<=steps; ++i) prices[i] = uu*prices[i-1]; 

    vector<double> call_values(steps+1); 

    for (int j = 0;j<=steps; ++j) call_values[j] = max(0.0,(prices[j]-X)); 

    for (int step = steps-1;step >=0; --step) 

    { 

        for (int i=0;i<= step; ++i) 

        { 

            call_values[i] = (p_up*call_values[i+1]+p_down*call_values[i])*Rinv; 

        } 

    } 

    return call_values[0]; 

} 

double option_price_put_european_binomia(const double &S, 

                                          const double &X, 

                                          const double &r, 

                                          const double &sigma, 

                                          const double &time, 

                                          const int &steps) 

{ 

    double R      = exp(r*(time/steps)); 

    double Rinv   = 1.0/R; 

    double u      = exp(sigma*sqrt(time/steps)); 

    double uu     = u*u; 

    double d      = 1.0/u; 

    double p_up   = (R-d)/(u-d); 

    double p_down = 1.0-p_up; 

    vector<double> prices(steps+1); 

    prices[0] = S*pow(d,steps); 

    for (int i = 1;i<=steps; ++i) prices[i] = uu*prices[i-1]; 

    vector<double> put_values(steps+1); 

    for (int j = 0;j<=steps; ++j) put_values[j] = max(0.0,(X-prices[j])); 

    for (int step = steps-1;step >=0; --step) 



 

 

    { 

        for (int i=0;i<= step; ++i) 

        { 

            put_values[i] = (p_up*put_values[i+1]+p_down*put_values[i])*Rinv; 

        } 

    } 

    return put_values[0]; 

} 

 

Program 7. Binomial Tree method for American option pricing 

#include <iostream> 

#include "normdist.h" 

#include <math.h> 

#include "random.h" 

#include <vector> 

 

using namespace std; 

double max(double x,double y) 

{ 

    if(x>y) return x; 

       else return y; 

} 

double option_price_call_american_binomial(const double &S, 

                                           const double &X, 

                                           const double &r, 

                                           const double &sigma, 

                                           const double &time, 

                                           const int &steps) 

{ 

    double R      = exp(r*(time/steps)); 

    double Rinv   = 1.0/R; 

    double u      = exp(sigma*sqrt(time/steps)); 

    double uu     = u*u; 



 

 

    double d      = 1.0/u; 

    double p_pu   = (R-d)/(u-d); 

    double p_down = 1.0-p_pu; 

    vector<double> prices(steps+1); 

    vector<double> call_values(steps+1); 

    prices[0]     = S*pow(d,steps); 

    for (int i = 1; i<=steps;i++) prices[i] = uu*prices[i-1]; 

    for (int i = 0; i<=steps;++i) call_values[i] = max(0.0,(prices[i]-X)); 

    for (int step = steps-1; step>=0;--step) 

    { 

        for  (int i = 0; i<=step; ++i) 

        { 

            call_values[i] = (p_pu*call_values[i+1]+p_down*call_values[i])*Rinv; 

            prices[i]      = d*prices[i+1]; 

            call_values[i] = max(call_values[i],prices[i]-X);//checking exercise  

        } 

    } 

    return call_values[0]; 

} 

double option_price_put_american_binomial(const double &S, 

                                          const double &X, 

                                          const double &r, 

                                          const double &sigma, 

                                          const double &time, 

                                          const int &steps) 

{ 

    double R      = exp(r*(time/steps)); 

    double Rinv   = 1.0/R; 

    double u      = exp(sigma*sqrt(time/steps)); 

    double uu     = u*u; 

    double d      = 1.0/u; 

    double p_pu   = (R-d)/(u-d); 

    double p_down = 1.0-p_pu; 



 

 

    vector<double> prices(steps+1); 

    prices[0]     = S*pow(d,steps); 

    for (int i = 1; i<=steps;i++) prices[i] = uu*prices[i-1]; 

    vector<double> put_values(steps+1); 

    for (int i = 0; i<=steps;++i) put_values[i] = max(0.0,(X-prices[i])); 

    for (int step = steps-1; step>=0;--step) 

    { 

        for  (int i = 0; i<=step; ++i) 

        { 

            put_values[i] = (p_pu*put_values[i+1]+p_down*put_values[i])*Rinv; 

            prices[i]      = d*prices[i+1]; 

            put_values[i] = max(put_values[i],X-prices[i]); //checking exercise 

        } 

    } 

    return put_values[0]; 

} 

 

Program 8. Explicit finite-difference method on European option pricing 

#include <iostream> 

#include <vector> 

#include <iostream> 

using namespace std; 

double max(double x,double y) 

{ 

    if(x>y) return x; 

       else return y; 

} 

double option_price_call_european_finite_different_explicit(const double &S, 

                                                            const double &X, 

                                                            const double &r, 

                                                            const double &sigma, 

                                                            const double &time, 

                                                            const int &no_S_steps, 



 

 

                                                            const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    unsigned int M; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1); 

    for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

     

    vector<double> a(M); 

    vector<double> b(M); 

    vector<double> c(M); 

     

    double r1 = 1.0/(1.0+r*delta_t); 

    double r2 = delta_t/(1.0+r*delta_t); 

    for (unsigned int j=1; j<M; j++) 

    { 

        a[j] = r2*0.5*j*(-r+sigma_sqr*j); 

        b[j] = r1*(1.0-sigma_sqr*j*j*delta_t); 

        c[j] = r2*0.5*j*(r+sigma_sqr*j); 

    } 

    vector<double> f_next(M+1); 

    for (unsigned int n = 0; n<=M; ++n){f_next[n] = max(0.0,S_values[n]-X);}; 

    vector<double> f(M+1); 

    for (int t=N-1; t>=0; --t) 

    { 

        f[0] = 0; 

        for (unsigned m = 1; m<M; ++m) 

        { 

            f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1]; 

        } 



 

 

        f[M] = 0; 

        for (unsigned n = 0; n<=M; ++n){f_next[n] = f[n];}; 

    } 

    double C = f[M/2]; 

    return C; 

    

} 

double option_price_put_european_finite_different_explicit(const double &S, 

                                                           const double &X, 

                                                           const double &r, 

                                                           const double &sigma, 

                                                           const double &time, 

                                                           const int &no_S_steps, 

                                                           const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    unsigned int M; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1); 

    for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

     

    vector<double> a(M); 

    vector<double> b(M); 

    vector<double> c(M); 

     

    double r1 = 1.0/(1.0+r*delta_t); 

    double r2 = delta_t/(1.0+r*delta_t); 

    for (unsigned int j=1; j<M; j++) 

    { 

        a[j] = r2*0.5*j*(-r+sigma_sqr*j); 



 

 

        b[j] = r1*(1.0-sigma_sqr*j*j*delta_t); 

        c[j] = r2*0.5*j*(r+sigma_sqr*j); 

    } 

    vector<double> f_next(M+1); 

    for (unsigned int n = 0; n<=M; ++n){f_next[n] = max(0.0,X-S_values[n]);}; 

    vector<double> f(M+1); 

    for (int t=N-1; t>=0; --t) 

    { 

        f[0] = 0; 

        for (unsigned m = 1; m<M; ++m) 

        { 

            f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1]; 

        } 

        f[M] = 0; 

        for (unsigned n = 0; n<=M; ++n){f_next[n] = f[n];}; 

    } 

    double P = f[M/2]; 

    return P; 

} 

 

Program 9. Explicit finite-difference method on American option pricing 

#include <iostream> 

#include <vector> 

#include <math.h> 

#include <fstream> 

using namespace std; 

double max(double x,double y) 

{ 

    if(x>y) return x; 

    else return y; 

} 

double option_price_call_american_finite_different_explicit(const double &S, 

                                                            const double &X, 



 

 

                                                            const double &r, 

                                                            const double &sigma, 

                                                            const double &time, 

                                                            const int &no_S_steps, 

                                                            const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    int M = no_S_steps; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1,0.0); 

    for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

     

    vector<double> a(M,0.0); 

    vector<double> b(M,0.0); 

    vector<double> c(M,0.0); 

     

    double r1 = 1.0/(1.0+r*delta_t); 

    double r2 = delta_t/(1.0+r*delta_t); 

    for ( int j=1; j<M; j++) 

    { 

        a[j] = r2*0.5*j*(-r+sigma_sqr*j); 

        b[j] = r1*(1.0-sigma_sqr*j*j*delta_t); 

        c[j] = r2*0.5*j*(r+sigma_sqr*j); 

    } 

    vector<double> f_next(M+1,0.0); 

    for (int n = 0; n<=M; ++n){f_next[n] = max(0.0,S_values[n]-X);}; 

    vector<double> f(M+1,0.0); 

    for (int t=N-1; t>=0; --t) 

    { 

        f[0] = 0; 



 

 

        for (int m = 1; m<M; ++m) 

        { 

            f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1]; 

            f[m] = max(f[m],S_values[m]-X); 

        } 

        f[M] = S_values[M]-X; 

        for (int n = 0; n<=M; ++n){f_next[n] = f[n];}; 

    } 

    double C = f[M/2]; 

    return C; 

} 

 

double option_price_put_american_finite_different_explicit(const double &S, 

                                                            const double &X, 

                                                            const double &r, 

                                                            const double &sigma, 

                                                            const double &time, 

                                                            const int &no_S_steps, 

                                                            const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    int M = no_S_steps; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1); 

    for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

     

    vector<double> a(M); 

    vector<double> b(M); 

    vector<double> c(M); 

     



 

 

    double r1 = 1.0/(1.0+r*delta_t); 

    double r2 = delta_t/(1.0+r*delta_t); 

    for ( int j=1; j<M; j++) 

    { 

        a[j] = r2*0.5*j*(-r+sigma_sqr*j); 

        b[j] = r1*(1.0-sigma_sqr*j*j*delta_t); 

        c[j] = r2*0.5*j*(r+sigma_sqr*j); 

    } 

    vector<double> f_next(M+1); 

    for (int n = 0; n<=M; ++n){f_next[n] = max(0.0,X-S_values[n]);}; 

    vector<double> f(M+1); 

    for (int t=N-1; t>=0; --t) 

    { 

        f[0] = 0; 

        for (int m = 1; m<M; ++m) 

        { 

            f[m] = a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1]; 

            f[m] = max(f[m],X-S_values[m]); 

        } 

        f[M] = 0; 

        for (int k = 0; k<=M; ++k){f_next[k] = f[k];}; 

    } 

    double P = f[M/2]; 

    return P; 

} 

 

Program 10. Implicit finite-difference method on European option pricing 

#include <math.h> 

#include "newmat.h" 

#include "normdist.h" 

#include <vector> 

#include <iostream> 

using namespace std; 



 

 

double max(double x,double y) 

{ 

    if(x>y) return x; 

    else return y; 

} 

double option_price_call_european_finite_different_implict(const double &S, 

                                                            const double &X, 

                                                            const double &r, 

                                                            const double &sigma, 

                                                            const double &time, 

                                                            const int &no_S_steps, 

                                                            const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    int M = no_S_steps; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1,0.0); 

    for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

    BandMatrix A (M+1,1,1);A = 0.0; 

    A.element(0,0) = 1.0; 

    for (int j = 1; j<M; ++j) 

    { 

        A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); 

        A.element(j,j)   = 1.0+delta_t*(r-sigma_sqr*j); 

        A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); 

    } 

    A.element(M,M) = 1.0; 

    ColumnVector B(M+1); 

    for (int m=0; m<=M; ++m){B.element(m) = max(0.0,S_values[m]-X);}; 

    ColumnVector F = A.i()*B; 



 

 

    for (int t = N-1; t>0;--t) 

    { 

        B = F; 

        F = A.i()*B; 

    } 

    return F.element(M/2); 

} 

double option_price_put_european_finite_different_implict(const double &S, 

                                                           const double &X, 

                                                           const double &r, 

                                                           const double &sigma, 

                                                           const double &time, 

                                                           const int &no_S_steps, 

                                                           const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    int M = no_S_steps; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1,0.0); 

    for (int m = 0; m<=M; m++) {S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

    BandMatrix A (M+1,1,1);A = 0.0; 

    A.element(0,0) = 1.0; 

    for (int j = 1; j<M; ++j) 

    { 

        A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); 

        A.element(j,j)   = 1.0+delta_t*(r-sigma_sqr*j); 

        A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); 

    } 

    A.element(M,M) = 1.0; 

    ColumnVector B(M+1); 



 

 

    for (int n=0; n<=M; ++n){B.element(n) = max(0.0,X-S_values[n]);}; 

    ColumnVector F = A.i()*B; 

    for (int t = N-1; t>0;--t) 

    { 

        B = F; 

        F = A.i()*B; 

    } 

    return F.element(M/2); 

} 

 

Program 11. Implicit finite-difference method on American option pricing 

#include <iostream> 

#include "newmat10/newmat.h" 

#include <math.h> 

#include "normdist.h" 

#include "vector" 

using namespace std; 

double max(double x,double y) 

{ 

    if(x>y) return x; 

    else return y; 

} 

double option_price_call_american_finite_different_implict(const double &S, 

                                                           const double &X, 

                                                           const double &r, 

                                                           const double &sigma, 

                                                           const double &time, 

                                                           const int &no_S_steps, 

                                                           const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    unsigned int M; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 



 

 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1); 

    for (unsigned m = 0;m<=M;m++){S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

    BandMatrix A (M+1,1,1);A = 0.0; 

    A.element(0,0) = 1.0; 

    for (int j = 1; j<M; ++j) 

    { 

        A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); 

        A.element(j,j)   = 1.0+delta_t*(r-sigma_sqr*j); 

        A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); 

    } 

    A.element(M,M) = 1.0; 

    ColumnVector B(M+1); 

    for (unsigned n = 0; n<=M; ++n){B.element(n) = max(0.0,S_values[n]-X);}; 

    ColumnVector F = A.i()*B; 

    for (int t = N-1; t>0; --t) 

    { 

        B = F; 

        F = A.i()*B; 

        for (unsigned m = 1; m<M; ++m) 

        { 

            F.element(m) = max(F.element(m),S_values[m]-X); 

        } 

    } 

    return F.element(M/2); 

} 

 

double option_price_put_american_finite_different_implict(const double &S, 

                                                           const double &X, 

                                                           const double &r, 

                                                           const double &sigma, 



 

 

                                                           const double &time, 

                                                           const int &no_S_steps, 

                                                           const int &no_t_steps) 

{ 

    double sigma_sqr = sigma*sigma; 

    unsigned int M; 

    if ((no_S_steps%2)==1){M=no_S_steps+1;}else{M=no_S_steps;}; 

    double delta_S = 2.0*S/M; 

    vector<double> S_values(M+1,0.0); 

    for (int m = 0;m<=M;m++){S_values[m] = m*delta_S;}; 

    int N = no_t_steps; 

    double delta_t = time/N; 

    BandMatrix A (M+1,1,1);A = 0.0; 

    A.element(0,0) = 1.0; 

    for (int j = 1; j<M; ++j) 

    { 

        A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); 

        A.element(j,j)   = 1.0+delta_t*(r-sigma_sqr*j); 

        A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); 

    } 

    A.element(M,M) = 1.0; 

    ColumnVector B(M+1); 

    for (int n = 0; n<=M; ++n){B.element(n) = max(0.0,X-S_values[n]);}; 

    ColumnVector F = A.i()*B; 

    for (int t = N-1; t>0; --t) 

    { 

        B = F; 

        F = A.i()*B; 

        for (unsigned m = 1; m<M; ++m) 

        { 

            F.element(m) = max(F.element(m),X-S_values[m]); 

        } 

    } 



 

 

    return F.element(M/2); 

} 

 

Program 12. Loop of calculation 

int main() 

{ 

    int j; 

    double  S[100],X[100],r[100],sigma[100],time[100]; 

    ifstream inf("/Users/ /data1.txt"); // Assume data is saved in c:\da.txt 

file 

    double data[100000];           // An array to hold the read out number 

    int i=0; 

    while (inf>>data[i])        // Read the number in the inf file into the data 

array 

        ++i; 

    inf.close();               // After reading, close the file 

                             /*for (int j=0; j<i; j++) 

      {   // The number stored in the output data array (ie c:\da.txt file). 

                  cout<<data[j]<<'\t'; 

                }*/ 

    int s=0,x=0,p=0,sig=0,ti=0; 

    for(j=0;j<i;j++) 

    { 

        if(j%5==0) 

        { 

            S[s]=data[j];//cout<<S[m]<<'\t'; 

            s++; 

        } 

        if(j%5==1) 

        { 

            X[x]=data[j];//cout<<X[m]<<'\t'; 

            x++; 

        } 



 

 

        if(j%5==2) 

        { 

            r[p]=data[j];//cout<<r[m]<<'\t'; 

            p++; 

        } 

        if(j%5==3) 

        { 

            sigma[sig]=data[j];//cout<<sigma[m]<<'\t'; 

            sig++; 

        } 

        if(j%5==4) 

        { 

            time[ti]=data[j];//cout<<time[m]<<'\t'; 

            ti++; 

        } 

    } 

    //for( int s = 0; s <5; s++) 

//cout<<S[s]<<'\t'; //return 0; 

Program 13. Least square Monte Carlo method 

LSM <- function(n, d, S0, K, sigma, r, T) { 

     s0 <- S0/K 

     dt <- T/d 

     z <- rnorm(n) 

     s.t <- s0 * exp((r - 1/2 * sigma^2) * T + sigma * z * (T^0.5)) 

     s.t[(n + 1):(2 * n)] <- s0 * exp((r - 1/2 * sigma^2) * T - 

                                          sigma * z * (T^0.5)) 

     CC <- pmax(1 - s.t, 0) 

     payoffeu <- exp(-r * T) * (CC[1:n] + CC[(n + 1):(2 * n)])/2 * K 

     euprice <- mean(payoffeu) 

     for (k in (d - 1):1) { 

         z <- rnorm(n) 

         mean <- (log(s0) + k * log(s.t[1:n]))/(k + 1) 

         vol <- (k * dt/(k + 1))^0.5 * z 



 

 

         s.t.1 <- exp(mean + sigma * vol) 

         mean <- (log(s0) + k * log(s.t[(n + 1):(2 * n)]))/(k +1) 

         s.t.1[(n + 1):(2 * n)] <- exp(mean - sigma * vol) 

         CE <- pmax(1 - s.t.1, 0) 

         idx <- (1:(2 * n))[CE > 0] 

         discountedCC <- CC[idx] * exp(-r * dt) 

         basis1 <- exp(-s.t.1[idx]/2) 

         basis2 <- basis1 * (1 - s.t.1[idx]) 

         basis3 <- basis1 * (1 - 2 * s.t.1[idx] + (s.t.1[idx]^2)/2) 

         p <- lm(discountedCC ~ basis1 + basis2 + basis3)$coefficients 

         estimatedCC <- p[1] + p[2] * basis1 + p[3] * basis2 + 

             p[4] * basis3 

         EF <- rep(0, 2 * n) 

         EF[idx] <- (CE[idx] > estimatedCC) 

         CC <- (EF == 0) * CC * exp(-r * dt) + (EF == 1) * CE 

         s.t <- s.t.1 

     } 

     payoff <- exp(-r * dt) * (CC[1:n] + CC[(n + 1):(2 * n)])/2 

     usprice <- mean(payoff * K) 

     error <- 1.96 * sd(payoff * K)/sqrt(n) 

     earlyex <- usprice - euprice 

     data.frame(usprice, error, euprice) 

 } 

S0 <- 36 

K <- 30 

T <- 1 

r <- 0.05 

sigma <- 0.4 

LSM(10000, 3, S0, K, sigma, r, T) 

 

Table of calculation results 

Table 1. Black-Scholes analytical solution 



 

 

Call option 

S X r sigma time Black-Scholes 

14.575 10 0.21 1.4094 0.02 4.64252 

14.575 10.5 0.21 1.2383 0.02 4.14305 

14.575 11 0.21 1.0838 0.02 3.64458 

14.575 11.5 0.21 0.9506 0.02 3.14833 

14.575 12 0.21 0.7994 0.02 2.649 

14.575 12.5 0.21 0.6621 0.02 2.15129 

14.575 13 0.21 0.613 0.02 1.67633 

14.575 13.5 0.21 0.6165 0.02 1.24814 

14.575 14 0.21 0.6601 0.02 0.906659 

14.575 14.5 0.21 0.7313 0.02 0.668617 

14.575 15 0.21 0.7526 0.02 0.461753 

14.575 16 0.21 0.9005 0.02 0.2772 

14.575 17 0.21 0.9621 0.02 0.146352 

14.575 18 0.21 1.1134 0.02 0.112278 

14.575 19 0.21 1.1457 0.02 0.0608679 

14.575 20 0.21 1.1811 0.02 0.0339717 

14.575 21 0.21 1.3255 0.02 0.0337002 

14.575 22 0.21 1.4599 0.02 0.0334443 

14.575 23 0.21 1.565 0.02 0.0304943 



 

 

14.575 24 0.21 1.6845 0.02 0.0305528 

14.575 25 0.21 1.797 0.02 0.030546 

14.575 26 0.21 1.9035 0.02 0.0305165 

14.575 27 0.21 2.006 0.02 0.0306195 

14.575 28 0.21 2.1025 0.02 0.0305827 

14.575 29 0.21 2.1961 0.02 0.0306898 

14.575 30 0.21 2.2849 0.02 0.030706 

14.575 32.5 0.21 2.4927 0.02 0.0308383 

14.575 35 0.21 2.6817 0.02 0.0309451 

14.575 37.5 0.21 2.8551 0.02 0.0310447 

14.575 40 0.21 3.0152 0.02 0.0311349 

Put option 

S X r sigma time Black-Scholes 

14.575 10 0.21 2.2815 0.02 0.311095 

14.575 10.5 0.21 1.8378 0.02 0.152188 

14.575 11 0.21 1.5005 0.02 0.11019 

14.575 11.5 0.21 1.2454 0.02 0.0890074 

14.575 12 0.21 0.9886 0.02 0.0645449 

14.575 12.5 0.21 0.7804 0.02 0.0509957 

14.575 13 0.21 0.6906 0.02 0.0730808 

14.575 13.5 0.21 0.6664 0.02 0.14302 



 

 

14.575 14 0.21 0.6889 0.02 0.293736 

14.575 14.5 0.21 0.7349 0.02 0.535775 

14.575 15 0.21 0.7314 0.02 0.806737 

14.575 16 0.21 0.8233 0.02 1.58444 

14.575 17 0.21 0.8318 0.02 2.44278 

14.575 18 0.21 0.9194 0.02 3.39937 

14.575 19 0.21 0.9022 0.02 4.36127 

14.575 20 0.21 0.8903 0.02 5.34574 

14.575 21 0.21 0.9623 0.02 6.33992 

14.575 22 0.21 1.024 0.02 7.33467 

14.575 23 0.21 1.0685 0.02 8.32969 

14.575 24 0.21 1.1158 0.02 9.3251 

14.575 25 0.21 1.1573 0.02 10.3207 

14.575 26 0.21 1.1947 0.02 11.3163 

14.575 27 0.21 1.2274 0.02 12.312 

14.575 28 0.21 1.2568 0.02 13.3078 

14.575 29 0.21 1.2833 0.02 14.3035 

14.575 30 0.21 1.3069 0.02 15.2993 

14.575 32.5 0.21 1.358 0.02 17.7888 

14.575 35 0.21 1.3977 0.02 20.2783 

14.575 37.5 0.21 1.4309 0.02 22.7678 

14.575 40 0.21 1.4583 0.02 25.2574 



 

 

14.575 42.5 0.21 1.4803 0.02 27.7469 

14.575 45 0.21 1.4984 0.02 30.2364 

 

Table 2. Black-Scholes numerical solution in Monte Carlo 

Call option 

MCarlo50 MCarlo1000 MCarlo10000 MCarlo50000 

4.65235 4.65235 4.65235 4.65235 

4.18337 4.05996 4.1538 4.15782 

3.56816 3.70136 3.6403 3.64479 

3.08868 3.1357 3.14918 3.15287 

2.72959 2.64618 2.64103 2.65809 

2.15344 2.17803 2.15466 2.15032 

1.7208 1.62676 1.68907 1.67487 

1.192 1.27307 1.2569 1.25015 

0.886319 0.895331 0.906307 0.90489 

0.653438 0.713174 0.682706 0.671256 

0.504526 0.406528 0.472554 0.462941 

0.302568 0.297165 0.283866 0.282341 

0.118608 0.134037 0.14344 0.149526 

0.0929043 0.127157 0.119404 0.11407 

0.0669014 0.0879925 0.061345 0.0617177 

0.037268 0.0412407 0.0308473 0.0310582 

0.0517506 0.0277222 0.0355566 0.0348945 

0.0254658 0.0243404 0.0348823 0.0323416 

0.0722633 0.0376004 0.0299929 0.0323629 

0.0182184 0.0454621 0.0344832 0.0314231 

0.0171045 0.00851379 0.0341984 0.0301797 

0.0461339 0.019146 0.0311904 0.0296153 

0.00158227 0.0450202 0.0335682 0.0320004 

0.0690685 0.0291123 0.0342634 0.0287716 

0.0238286 0.0449729 0.0306608 0.0307597 



 

 

0.0325739 0.0154194 0.0360878 0.030258 

0.0528498 0.0130879 0.0290923 0.0331503 

0.00370223 0.0202905 0.0288721 0.0267708 

0.0655619 0.0524024 0.0313402 0.0273229 

0.039017 0.0221714 0.039819 0.0316094 

 

put option 

MonteCarlo50 MonteCarlo1000 MCarlo10000 MCarlo50000 

0.2137 0.242663 0.219319 0.225429 

0.277804 0.145098 0.15777 0.152949 

0.134721 0.100421 0.112334 0.108977 

0.119097 0.0903439 0.0902059 0.088398 

0.0981901 0.0484329 0.0650068 0.0630125 

0.0821978 0.0490903 0.052366 0.050724 

0.0746992 0.0792378 0.0718467 0.072564 

0.214533 0.157358 0.142136 0.142863 

0.131578 0.281672 0.299963 0.292311 

0.5239 0.507535 0.532672 0.535283 

0.748091 0.820577 0.797485 0.813182 

1.86999 1.61453 1.56132 1.58375 

2.58932 2.47811 2.46404 2.44783 

3.65502 3.33164 3.41722 3.40263 

4.04825 4.39862 4.37456 4.35069 

4.99796 5.30014 5.33896 5.36887 

6.19633 6.24342 6.3221 6.34001 

7.76876 7.35538 7.34277 7.33526 

8.16181 8.35414 8.33572 8.31181 

9.55775 9.25111 9.30802 9.31483 

10.3593 10.4759 10.298 10.3065 

11.4879 11.3099 11.3094 11.2996 

12.2476 12.2967 12.2656 12.3154 

13.3147 13.3003 13.3224 13.3173 



 

 

14.818 14.2383 14.2931 14.3047 

14.902 15.2696 15.3347 15.3142 

17.7014 17.7177 17.7798 17.8032 

20.5232 20.4266 20.2997 20.2786 

22.7726 22.6855 22.7491 22.7745 

25.7226 25.3068 25.2304 25.2697 

 

Table 3. Black-Scholes numerical solution in binomial tree 

Call option 

BinTree50 BinTree1000 BinTree10000 BinTree50000 

4.64235 4.64255 4.6426 4.6426 

4.14293 4.14304 4.14305 4.14305 

3.64457 3.64452 3.64458 3.64458 

3.14831 3.1483 3.14833 3.14833 

2.64896 2.64897 2.64899 2.649 

2.15128 2.15125 2.15128 2.15129 

1.67633 1.67631 1.67632 1.67633 

1.24813 1.2481 1.24814 1.24814 

0.90669 0.906676 0.906669 0.906659 

0.668906 0.668667 0.668632 0.66862 

0.461485 0.461836 0.461769 0.461754 

0.277204 0.277314 0.27721 0.277198 

0.146444 0.146281 0.146359 0.146354 

0.111954 0.112236 0.112263 0.112277 

0.0608242 0.060793 0.0608618 0.0608649 

0.0338632 0.0338794 0.033968 0.0339701 

0.0336088 0.0336481 0.0336978 0.0336985 

0.0333677 0.033425 0.0334401 0.0334416 

0.0302823 0.0304692 0.030484 0.0304935 

0.030493 0.0304619 0.0305489 0.0305507 

0.0304482 0.0305168 0.0305383 0.0305453 

0.0302739 0.0303825 0.0305136 0.0305159 



 

 

0.0305143 0.0305776 0.0306154 0.0306171 

0.0305124 0.0305291 0.030576 0.0305824 

0.0305586 0.0305527 0.0306837 0.0306893 

0.0304247 0.0306519 0.030701 0.0307052 

0.0307452 0.0306941 0.0308322 0.0308382 

0.030755 0.0308982 0.0309416 0.0309449 

0.030828 0.0308754 0.0310302 0.031045 

0.0310227 0.031078 0.0311305 0.0311353 

0.0310688 0.031132 0.0312331 0.031238 

Put option 

BinTree50 BinTree1000 BinTree10000 BinTree50000 

0.222508 0.225031 0.224938 0.224932 

0.153442 0.152029 0.152176 0.152185 

0.110673 0.110048 0.110191 0.110189 

0.0889809 0.0890055 0.0890071 0.0890078 

0.063288 0.0644442 0.0645472 0.0645451 

0.0499729 0.0509105 0.0509972 0.0509958 

0.0723853 0.0731178 0.0730846 0.0730801 

0.142535 0.143003 0.143026 0.14302 

0.29607 0.293853 0.293745 0.293736 

0.536222 0.535828 0.53579 0.535778 

0.804097 0.806866 0.806734 0.806736 

1.58426 1.58451 1.58443 1.58444 

2.44332 2.4428 2.44279 2.44278 

3.39906 3.39937 3.39937 3.39937 

4.36085 4.36123 4.36127 4.36127 

5.34531 5.34573 5.34574 5.34574 

6.3397 6.33991 6.33991 6.33992 

7.33434 7.33465 7.33467 7.33467 

8.32955 8.32968 8.32969 8.32969 

9.32496 9.3251 9.3251 9.3251 

10.3206 10.3207 10.3207 10.3207 



 

 

11.3162 11.3163 11.3163 11.3163 

12.312 12.312 12.312 12.312 

13.3077 13.3078 13.3078 13.3078 

14.3035 14.3035 14.3035 14.3035 

15.2993 15.2993 15.2993 15.2993 

17.7888 17.7888 17.7888 17.7888 

20.2783 20.2783 20.2783 20.2783 

22.7678 22.7678 22.7678 22.7678 

25.2574 25.2574 25.2574 25.2574 

Table 4. Black-Scholes numerical solution in explicit finite difference method 

Call option 

explicit10 10 explicit20 20 explicit200 200 explicit2000 2000 

4.6676 4.64012 1.73E+164 nan 

4.16763 4.14979 1.06E+140 nan 

3.66051 3.65428 2.85E+114 nan 

3.15274 3.15095 2.61E+88 nan 

2.68306 2.66202 1.13E+52 nan 

2.20735 2.16505 2.20E+08 nan 

1.73409 1.67317 1.67635 nan 

1.27502 1.26589 1.24833 nan 

0.842215 0.911424 3.54E+07 nan 

0.44434 0.603048 1.09E+32 nan 

0.343242 0.447423 3.73E+38 nan 

0.302427 0.250262 1.62E+77 nan 

0.167061 0.153346 4.85E+90 nan 

0.111988 0.115123 2.98E+119 nan 

0.0809906 0.0578896 8.85E+124 nan 

0.0443477 0.0361063 5.38E+130 nan 

0.0365465 0.0336728 2.85E+152 nan 

0.0368831 0.028844 2.04E+170 nan 

0.0254017 0.0240648 9.86E+182 nan 

0.0203698 0.0195948 2.00E+196 nan 



 

 

0.0175297 0.0135372 7.70E+207 nan 

0.0101867 0.00897262 1.29E+218 nan 

0.00710948 0.00609445 3.82E+227 nan 

0.00480988 0.019408 -2.11E+236 inf 

0.000765764 0.0347681 6.68E+243 nan 

Put option 

explicit 10 10 explicit 20 20 explicit 200 200 explicit 2000 2000 

0.271463 0.224174 3.63E+188 nan 

0.190018 0.157399 -1.38E+151 nan 

0.125888 0.121602 -6.57E+115 nan 

0.0807608 0.08757 1.99E+81 nan 

0.0965918 0.0769244 3.18E+34 nan 

0.113626 0.0658148 5.10E-02 nan 

0.134609 0.0659368 7.31E-02 nan 

0.168802 0.158105 1.43E-01 nan 

0.227459 0.298464 2.93E-01 nan 

0.311574 0.470643 5.36E-01 nan 

0.689501 0.79181 8.07E-01 nan 

1.61596 1.55921 -3.57E+16 nan 

2.47429 2.45297 2.53E+24 nan 

3.40953 3.40487 -2.43E+52 nan 

4.38115 4.36247 2.15E+52 nan 

5.35567 5.34838 -1.51E+52 nan 

6.34492 6.34139 -1.70E+74 nan 

7.33967 7.33518 5.87E+90 nan 

8.33226 8.33016 -1.67E+102 nan 

9.32662 9.32538 1.52E+113 nan 

10.322 10.3208 -1.27E+122 nan 

11.317 11.3164 1.32E+127 nan 

12.3124 12.3121 2.00E+136 nan 

13.308 13.3078 -7.95E+141 nan 

14.3035 14.3035 4.64E+145 nan 



 

 

15.2991 15.2992 6.75E+148 nan 

17.7877 17.7883 3.85E+156 nan 

20.2758 20.277 1.51E+162 nan 

22.7634 22.7654 4.75E+166 nan 

25.2506 25.2533 1.95E+170 nan 

 

Table 5. Black-Scholes numerical solution in implicit finite difference method 

Call option 

implicit10 10 implicit20 20 implicit100 100 implicit200 200 

4.65235 4.64235 4.64212 4.64235 

4.13678 4.14098 4.14292 4.14291 

3.64055 3.642 3.64424 3.64425 

3.14701 3.14579 3.14809 3.14833 

2.64873 2.64786 2.649 2.64885 

2.15184 2.15139 2.15109 2.1513 

1.6713 1.67377 1.67653 1.67637 

1.25293 1.24446 1.24866 1.24817 

0.915577 0.902191 0.906632 0.906251 

0.662274 0.667004 0.669348 0.669229 

0.475801 0.468597 0.462941 0.461472 

0.273664 0.282572 0.278137 0.277166 

0.147067 0.149644 0.146813 0.145517 

0.101805 0.103628 0.112392 0.112473 

0.061652 0.0608706 0.0602689 0.0608875 

0.0229546 0.0314312 0.0338433 0.0338829 

0.0237426 0.0320292 0.0333568 0.0334855 

0.0246872 0.0322204 0.0323438 0.0330048 

0.023904 0.0293373 0.0300723 0.0303773 

0.0245548 0.0290223 0.0302828 0.0302574 

0.0250395 0.0284206 0.0302396 0.0299109 

0.0253966 0.0276008 0.0300025 0.030158 



 

 

0.0257514 0.0267864 0.029767 0.0304037 

0.0259181 0.0256459 0.0292433 0.0304087 

0.0261206 0.024579 0.029482 0.0304613 

0.0261832 0.0232717 0.0297621 0.030335 

0.0261616 0.0241651 0.0302785 0.0302054 

0.0258141 0.0250533 0.0304612 0.0306187 

0.0252126 0.0257729 0.0303821 0.0307834 

0.0243965 0.0263481 0.0300807 0.0307367 

Put option 

implicit 10，10 implicit 20，20 implicit 100 100 implicit 200 200 

0.31234 0.29999 0.22543 0.22494 

0.13253 0.13108 0.15237 0.15154 

0.07891 0.09889 0.11055 0.11034 

0.05985 0.08102 0.08907 0.08919 

0.04548 0.06061 0.06372 0.06439 

0.03596 0.04794 0.05032 0.05087 

0.07420 0.07158 0.07284 0.07313 

0.15547 0.14594 0.14235 0.14317 

0.27607 0.30403 0.29303 0.29345 

0.56559 0.52936 0.53650 0.53639 

0.81386 0.82057 0.80801 0.80618 

1.60101 1.58740 1.58287 1.58481 

2.42173 2.43265 2.44311 2.44273 

3.39272 3.40005 3.39869 3.39940 

4.35661 4.35799 4.36110 4.36118 

5.34118 5.34306 5.34563 5.34566 

6.33698 6.33821 6.33980 6.33980 

7.33279 7.33368 7.33454 7.33459 

8.32860 8.32902 8.32958 8.32965 

9.32441 9.32442 9.32504 9.32508 

10.32020 10.32020 10.32060 10.32060 

11.31600 11.31600 11.31630 11.31630 



 

 

12.31180 12.31180 12.31200 12.31200 

13.30760 13.30760 13.30770 13.30770 

14.30350 14.30350 14.30350 14.30350 

15.29930 15.29930 15.29930 15.29930 

17.78880 17.78880 17.78880 17.78880 

20.27830 20.27830 20.27830 20.27830 

22.76780 22.76780 22.76780 22.76780 

25.25740 25.25740 25.25740 25.25740 

 

Table 6. Numerical solution in binomial tree method of American option 

American call option 

S X r sigma time BinTree50000 

14.575 10 0.21 1.4094 0.02  4.6426 

14.575 10.5 0.21 1.2383 0.02  4.14305 

14.575 11 0.21 1.0838 0.02  3.64458 

14.575 11.5 0.21 0.9506 0.02  3.14833 

14.575 12 0.21 0.7994 0.02  2.649 

14.575 12.5 0.21 0.6621 0.02  2.15129 

14.575 13 0.21 0.613 0.02  1.67633 

14.575 13.5 0.21 0.6165 0.02  1.24814 

14.575 14 0.21 0.6601 0.02  0.906659 

14.575 14.5 0.21 0.7313 0.02  0.66862 

14.575 15 0.21 0.7526 0.02  0.461754 

14.575 16 0.21 0.9005 0.02  0.277198 

14.575 17 0.21 0.9621 0.02  0.146354 

14.575 18 0.21 1.1134 0.02  0.112277 

14.575 19 0.21 1.1457 0.02  0.0608649 

14.575 20 0.21 1.1811 0.02  0.0339701 

14.575 21 0.21 1.3255 0.02  0.0336985 

14.575 22 0.21 1.4599 0.02  0.0334416 

14.575 23 0.21 1.565 0.02  0.0304935 



 

 

14.575 24 0.21 1.6845 0.02  0.0305507 

14.575 25 0.21 1.797 0.02  0.0305453 

14.575 26 0.21 1.9035 0.02  0.0305159 

14.575 27 0.21 2.006 0.02  0.0306171 

14.575 28 0.21 2.1025 0.02  0.0305824 

14.575 29 0.21 2.1961 0.02  0.0306893 

14.575 30 0.21 2.2849 0.02  0.0307052 

14.575 32.5 0.21 2.4927 0.02  0.0308382 

14.575 35 0.21 2.6817 0.02  0.0309449 

14.575 37.5 0.21 2.8551 0.02  0.031045 

14.575 40 0.21 3.0152 0.02  0.0311353 

14.575 42.5 0.21 3.1641 0.02  0.031238 

14.575 45 0.21 3.3035 0.02  0.0313676 

14.575 47.5 0.21 3.4322 0.02  0.0313401 

American put option 

S X r sigma time BinTree50000 

14.575 10 0.21 2.2815 0.02  0.225212 

14.575 10.5 0.21 1.8378 0.02  0.152414 

14.575 11 0.21 1.5005 0.02  0.11039 

14.575 11.5 0.21 1.2454 0.02  0.0892056 

14.575 12 0.21 0.9886 0.02  0.0647286 

14.575 12.5 0.21 0.7804 0.02  0.0511868 

14.575 13 0.21 0.6906 0.02  0.0734243 

14.575 13.5 0.21 0.6664 0.02  0.14383 

14.575 14 0.21 0.6889 0.02  0.295625 

14.575 14.5 0.21 0.7349 0.02  0.539518 

14.575 15 0.21 0.7314 0.02  0.813307 

14.575 16 0.21 0.8233 0.02  1.59876 

14.575 17 0.21 0.8318 0.02  2.47049 

14.575 18 0.21 0.9194 0.02  3.43915 

14.575 19 0.21 0.9022 0.02  4.425 

14.575 20 0.21 0.8903 0.02  5.425 



 

 

14.575 21 0.21 0.9623 0.02  6.425 

14.575 22 0.21 1.024 0.02  7.425 

14.575 23 0.21 1.0685 0.02  8.425 

14.575 24 0.21 1.1158 0.02  9.425 

14.575 25 0.21 1.1573 0.02  10.425 

14.575 26 0.21 1.1947 0.02  11.425 

14.575 27 0.21 1.2274 0.02  12.425 

14.575 28 0.21 1.2568 0.02  13.425 

14.575 29 0.21 1.2833 0.02  14.425 

14.575 30 0.21 1.3069 0.02  15.425 

14.575 32.5 0.21 1.358 0.02  17.925 

14.575 35 0.21 1.3977 0.02  20.425 

14.575 37.5 0.21 1.4309 0.02  22.925 

14.575 40 0.21 1.4583 0.02  25.425 

14.575 42.5 0.21 1.4803 0.02  27.925 

14.575 45 0.21 1.4984 0.02  30.425 

14.575 47.5 0.21 1.5142 0.02  32.925 

Table 7. Numerical solution in explicit FDM method of American option 

American put option 

FDM EX 10 FDM EX 20 FDM EX 100 FDM EX200 

0.271636 0.224332 1.71E+44 3.83E+148 

0.190094 0.157585 -4.075 -4.075 

0.125917 0.121694 -3.575 -3.575 

0.0808651 0.0876486 0.272587 1.22E+55 

0.0967486 0.0770379 0.0647022 1.98E+20 

0.113696 0.0658942 0.0509992 0.0511809 

0.134653 0.066039 0.074007 0.073433 

0.168842 0.1586 0.144248 0.144016 

0.227729 0.299188 0.293807 0.295412 

0.313874 0.472194 0.539412 0.539894 

0.692306 0.795294 0.813709 0.813232 

1.61982 1.57009 1.59817 1.29E+07 



 

 

2.47883 2.4711 2.47037 6.39E+11 

3.4332 3.43597 3.43897 1.36E+30 

4.425 4.425 4.425 1.98E+30 

5.425 5.425 5.425 1.72E+30 

6.425 6.425 6.425 1.60E+45 

7.425 7.425 27.2226 4.17E+59 

8.425 8.425 210876 8.425 

9.425 9.425 1.03E+09 6.14E+78 

10.425 10.425 1.02E+13 10.425 

11.425 11.425 1.18E+16 5.14E+93 

12.425 12.425 9.26E+18 1.67E+99 

13.425 13.425 5.59E+20 13.425 

14.425 14.425 2.57E+22 2.54E+108 

15.425 15.425 15.425 15.425 

17.925 17.925 17.925 17.925 

20.425 20.425 20.425 20.425 

22.925 22.925 22.925 22.925 

25.425 25.425 25.425 25.425 

Table 8. Numerical solution in implicit FDM method of American option 

American put option 

FDM IN 10 FDM IN20 FDM IN 100 FDM IN 200 

0.0246463 0.0177993 0.0242112 0.0256316 

0.023181 0.0178893 0.022428 0.023972 

0.0226994 0.0195644 0.0213696 0.0235232 

0.0238995 0.0239306 0.0236072 0.0251829 

0.0221137 0.0235546 0.0232184 0.0237446 

0.0212015 0.0245754 0.0242078 0.0239952 

0.0351479 0.0419567 0.0470163 0.0470936 

0.129673 0.122095 0.119228 0.117277 

0.257366 0.284698 0.279508 0.274882 

0.567881 0.530434 0.542439 0.536901 

0.838148 0.845976 0.83224 0.830166 



 

 

1.66826 1.64916 1.65235 1.6481 

2.52667 2.52384 2.5244 2.52227 

3.47181 3.48634 3.48942 3.49026 

4.448 4.44916 4.44756 4.4468 

5.42521 5.425 5.42872 5.42906 

6.425 6.425 6.42854 6.42868 

7.425 7.425 7.42814 7.42829 

8.425 8.425 8.42632 8.42683 

9.425 9.425 9.42581 9.42666 

10.425 10.425 10.4252 10.4264 

11.425 11.425 11.425 11.4262 

12.425 12.425 12.425 12.4261 

13.425 13.425 13.425 13.4259 

14.425 14.425 14.425 14.4257 

15.425 15.425 15.425 15.4256 

17.925 17.925 17.925 17.9253 

20.425 20.425 20.425 20.4251 

22.925 22.925 22.925 22.925 

25.425 25.425 25.425 25.425 

 

 


