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1 Introduction 

“All of life is the management of risk, not its elimination.”  

– Walter Wriston, former chairman of Citicorp 

Financial markets are always changing, and the change can be positive or negative. The 

prospect of gain or loss is a consequence of change, which therefore leads to risk, and risk (or more 

precisely, downside risk) is something that is sometimes inevitable in financial markets. The 

acceptance of risk does not invariably imply the elimination of risk, which clearly is impossible. 

Nor does it imply that one should not mitigate risks and accept consequent losses fatalistically. It 

means that risk requires management. Decide on what risks to avoid and how to avoid them. What 

risks should be accepted, the terms of accepting them and what new risk to take on. (Dowd, 1999) 

Therefore, risk management should establish a risk quantification method firstly, and secondly, to 

develop and implement a validation by means of backtesting technique for the Value of Risk 

(henceforth VaR). 

In the thesis, the objective is to verify different VaR estimation approaches by means of 

backtesting on chosen time series. However, in order to provide an exhaustive description about 

the backtesting process in the empirical part, we first discuss VaR estimation approaches in general 

and the theory of backtesting method.  

The thesis consists of five chapters. The first one is the introduction, which states the objective 

of the thesis and the structure of the thesis.  

The second chapter describes the basic idea behind VaR and gives some background and 

history on the subject. Then, it mainly describes the methods of VaR estimation, which consists of 

description of their main principals, formulations, advantages and disadvantages.  

The third chapter concentrates on the description of backtesting procedure. Several statistical 

tests are presented in detail.  

The fourth chapter describes the empirical study of the thesis, which can be considered to be 

the core of this study. Some of the tests presented in the preceding chapter are applied to actual 

VaR calculations. In order to show the calculation steps of VaR estimation and backtesting 
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procedures clearly, we present simplified examples in the beginning of each empirical study. Then, 

the empirical results are discussed in detail.  

The fifth chapter concludes and reviews the most significant results of both theoretical and 

empirical parts.  
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2 Description of Risk Measures 

“The stock market will fluctuate” 

  J. P. Morgan, when asked what the market was going to do. 

Financial theory defines risk as the dispersion of unexpected outcomes owing to movements 

in financial variables. Therefore, both positive and negative deviations should be viewed as sources 

of risk. To measure risk, one has to define first the variables, which could be portfolio value, 

earnings, capital, or particular cash flows. Since risk needs to be quantified, this chapter lays the 

approaches of market risk measurement, see Jorion (2006). First, we introduce the background of 

value at risk, market risk and the principles of risk measures. Then, the value at risk and conditional 

value at risk are defined. Next, we introduce three methods of value at risk estimation, which is 

most important in this chapter. Finally, we compare these three methods, and state their advantages, 

disadvantages, and the situations when they are proper for application.     

2.1 History of VaR 

The problem of risk measurement is an old one in statistics, economics and finance. Financial 

risk management has been a concern of regulators and financial executives for a long time as well. 

Retrospective analysis has found some VaR-like concepts in this history. But VaR did not emerge 

as a distinct concept until the late 1980s. The triggering event was the stock market crash of 1987. 

This was the first major financial crisis in which a lot of academically-trained quants were in high 

enough positions to worry about firm-wide survival, see Jorion (2006).  

After the collapse of Herstatt Bank, the central bank governors of G10 countries established 

the Basel Committee. In order to strengthen the stability of the international banking system to 

withstand shocks, the Basel Committee announced the Basel I Accord in 1988, published a set of 

minimum capital requirements for banks. Duo to the introduction of Basel I Accord, banks became 

broad-based providers of financial services and the trading activities in bonds, equities, foreign 

exchange and commodities began playing a more significant role. However, the risk arising from 

these trading activities were not only credit risk, but market risk, which was a new risk category 

separated from credit risk. So, the Basel Committee in 1996 issued the Market Risk Amendment, 
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that focused on the effect of a bank’s positions in various market-traded financial assets—foreign 

exchange, debt securities, equities, commodities, and derivatives, see Apostolik (2009). In 

particular, the VaR methods invented by J.P. Morgan, that is quantitative analysis of market risk 

were allowed to apply. In 1997, the U.S. Securities and Exchange Commission ruled that public 

corporations must disclose quantitative information about their derivatives activity. Major banks 

and dealers chose to implement the rule by including VaR information in the notes to their financial 

statements. Worldwide adoption of the Basel II Accord, beginning in 1999 and nearing completion 

today, gave further impetus to the use of VaR. VaR is the preferred measure of market risk, and 

concepts similar to VaR are used in other parts of the accord, see Jorion (2006). 

2.2 Market Risk 

According to Apostolik (2009), market risk is exposure to the uncertain market value of an 

asset or a portfolio. Usually, market risk includes two components: the general market risk and 

specific risk. The former affects financial market and the latter only affects individual financial 

assets. According to the different objectives of the risk occurrence, the market risk is distinguished: 

foreign exchange risk, interest rate risk, equity risk and commodity risk. Foreign exchange risk is 

the potential loss due to an adverse change in foreign exchange rates and applies to all exchange 

rate-related products whose positions are valued in a currency that differs from the bank’s reporting 

currency. Interest rate risk is the potential loss due to adverse changes in interest rates. Equity risk 

is the potential loss due to an adverse change in the price of stocks and applies to all instruments 

that use equity prices as part of their valuation—for example, derivative products such as futures 

contracts. Commodity risk is the potential loss from an adverse change in commodity prices. This 

applies to all commodity positions and any derivative commodity positions such as futures 

contracts. 

2.3 Principles of Risk Measures 

Generally speaking, the development of risk measurement goes through three stages: firstly, 

the traditional risk measurement stage with variance and risk factors as the main indicators. In the 
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thesis, the risk factor is regarded as price of selected assets. Secondly, the modern risk measurement 

stage represented by the VaR; and finally risk measurement stage represented by Conditional VaR 

(henceforth CVaR). In the thesis, we focus on VaR and CVaR method. 

Artzner et al. (1997) explain the principle of risk measurement, they regarded the risk quantity 

as a measure of capital needs, that is, in a certain period of time, at least the amount of capital that 

an enterprise should reserve to meet the security requirements. In this thesis, the VaR of single 

financial asset is measured. So, for a single asset 𝑋, quantity of risk measure 𝜌(𝑋) should satisfy 

following principle: 

1. Subadditivity: 𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) + 𝜌(𝑌). This formula shows that the overall risk of the 

portfolio does not exceed the sum of all individual risks; 

2. Monotonicity: if 𝑋 ≤ 𝑌, 𝜌(𝑋) ≥ 𝜌(𝑌). If the value of asset 𝑋 is less or equal to the value 

of asste 𝑌, the risk of 𝑋 should be greater or equal to the risk of 𝑌. In other words, the 

risk of good assets should be less than the risk of inferior assets. 

3. Positive homogeneity: 𝜌(𝛼 ∙ 𝑋) = 𝛼 ∙ 𝜌(𝑋).  This formula shows that for financial risk 

measurement, it should not be affected by the unit of measurement. 

4. Translation invariance: 𝜌(𝑋 + 𝛼) = 𝜌(𝑋) − 𝛼. This equation implies that if the amount 

of cash 𝛼 is added into the asset 𝑋, it offset corresponding risk of 𝑋.  

2.4 Value at Risk 

VaR is defined as the predicted loss at a specific confidence level over a given period of time, 

see Glyn, A. (2009). That is to say, for a given period and probability, the VaR measure purports to 

indicate an amount of money such that there is that probability of the asset not losing more than 

that amount of money over that period. To make it clear, we need to determine the following three 

factors: the length of the holding period, the size of the confidence interval and the period of the 

observation.  

First, the holding period is to determine how long the maximum loss of assets need to be 

measured. That means whether the managers are concerned about the value at risk of the assets 

within one day or one week or one month. The investors choose the length of holding period by 
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means of the characteristics of the assets, such as liquidity. For example, for high liquid assets, risk, 

returns VaR are often calculated based on daily basis, such as OTC derivatives or stocks. While, 

for longer maturities assets, such as pension funds, the holding period can be month or year. 

Second, the confidence level is the frequency of possible confidence intervals that contain the 

true value of their corresponding parameter, see Cox D.R. (1974). For example, if the support rate 

for someone in a general election is 55%, and a 0.95 confidence interval is 50% to 60%. Then his 

true support rate falls on interval between 50% and 60% with a probability of 95%. So, his support 

rate is less than 50% with a probability of 2.5% (assuming the distribution is symmetrical). In this 

case, we call the 0.95 as “confidence level”, which reflects a significance level of 0.05. Usually, 

we defined the significance level as 𝛼, due to the frequent usage in calculation of VaR and its 

backtesting. Applied in single financial asset, if an asset has a one-day 5% VaR of $1 million, that 

means there is a 0.05 probability that the asset will fall in value by more than $1 million over a 

one-day period if there is no trading. Informally, a loss of $1 million or more on this asset is 

expected on 1 day out of 20 days (because of 5% probability). In this thesis, a loss which exceeds 

the VaR is called exception.  

The third is the observation period. The observation period is the overall length of time for 

the observations, sometimes referred as the historical window. For example, we can choose 

observation period over the previous 6 months, or 1 year to consider the weekly returns volatility 

of an asset. In order to avoid the influence of business cycle, the longer the historical data, the 

better. However, the longer the period, the greater the possibility of structural changes in the market. 

As the result, the historical data is harder to reflect future real performance.  

According to the definition of VaR, it can be expressed as follows, 

 𝑉𝑎𝑅𝛼(𝑋) = 𝑖𝑛𝑓{𝑥 ∈ 𝑅: 𝐹𝑋(𝑥) ≥ 𝛼}, (2.1) 

where 𝛼  is significance level, 𝑋  is the underlying (e.g. profit of asset), the 𝐹𝑋  is cumulative 

distribution function. Therefore, under the specified probability level 𝛼, if the profit we regard as 

a negative loss, the probability with which the observed loss exceed estimated loss can be expressed 

as follows, 
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 𝑃𝑟(𝑋 ≤ −𝑉𝑎𝑅𝛼(𝑋)) = 𝛼. (2.2) 

From the formula (2.1), we can see the advantages of VaR model. VaR model is simple and 

easy to comprehend for market risk measurement, because the risk can be quantified and expressed 

as a particular number. In addition, it can be calculated in advance to reduce market risk. That 

means the managers will know the market risk of assets before investment. However, VaR 

methodology still have several defects. 

First, VaR model have no subadditivity. Follow the principle that diversification of investment 

can reduce the risk, risk of portfolio should lower than the sum of risk of particular assets. But in 

the VaR methodology, the VaR of portfolio may excess the sum of VaR of its asset, which is 

contrary to the principle.  

Second, VaR methodology is hard to measure the tail risk, which means it cannot measure the 

loss under black swan event. There is an assumption of VaR model that the risk of assets obeys 

normal distribution. However, in reality, the loss of the assets does not obey normal distribution 

based on history data. The VaR model just measure the maximum loss under 99% or 95% 

probability, but cannot answer the maximum loss if the black swan event happens with 1% or 5% 

probability. So, the VaR model only focus conventional risk with close to center distribution, but 

ignore tail risk. For example, there is a bet about the coin tossing. The coin will be throwed seven 

times. If the coin faces up under 7 times, the player wins a bet. But if the coin faces up 7 times, the 

player losses 127 times bet. In terms of probability, the bet is safe, because there is only 0.78% 

probability that the coin faces up 7 times. That is to say, the player will win the bet with 99% 

probability. However, there still exist probability of loss with probability of 1%. Once the player 

loses, the loss is 127 times as much as the player earns.  

2.5 Conditional Value at Risk 

In order to overcome the VaR defects, Rockafeller and Uryasev (2000, 2002) proposed the 

Conditional Value at Risk (henceforth CVaR). It is also called expected shortfall. CVaR is an 

alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution. 

Therefore, the “CVaR at 𝛼% level” means the expected return on the assets in the worst 𝛼% of 
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cases. The α  represents significance level and 1 − α  represents confisdence level. For high 

values of 1 − α, it ignores the most profitable but unlikely possibilities, while for small values of 

α, it focuses on the worst losses. On the other hand, unlike the discounted maximum loss, even for 

lower values of α, the CVaR does not consider only the single most catastrophic outcome, see 

Rockafellar, Uryasev (2000). CVaR is measure of financial assets risk. It requires a quantile-level 

𝛼%, and is defined to be the expected loss of assets value given that a loss is occurring at or below 

the quantile. 

 According to the definition of CVaR, we can know properties of CVaR, and its difference 

between VaR. First, the 𝐶𝑉𝑎𝑅𝛼  increases as α  decreases. Second, the 100%-quantile CVaR 

equals the expected value of the assets. Third, for a given asset, the CVaR is greater than or equal 

to the VaR at the same α level.  

If the underlying distribution for 𝑋 is a continuous distribution, then the CVaR at probability 

of 𝛼 level is equivalent to the tail conditional expectation defined by: 

 𝐶𝑉𝑎𝑅𝛼(𝑋) = −𝐸[𝑋|𝑋 < −𝑉𝑎𝑅𝛼(𝑋)], (2.3) 

2.6 Method of Risk Estimation 

“One of the most difficult aspects of calculating VaR is selecting among the many types of VaR 

methodologies and their associated assumptions.” (Minnich, 1998) 

In this section, we introduce four methods for risk estimation. There are historical simulation, 

filtered historical simulation, analytical solution and Monte Carlo simulation. The historical 

simulation and filtered historical simulation are based on the history data without parameters. So, 

both are non-parametric approach. The analytical solution is a parameters method, and assumes 

that assets returns follow a chosen probability distribution, such as chi-squared distribution, 

Student's t distribution, normal distribution and so on. Monte Carlo simulation is a process that 

random numbers produced by computer to simulate the value of assets returns, which is more 

accurate but more complex. Then, we introduce the four methods in detail, respectively. 

2.6.1 Historical Simulation 

Historical simulation method is a simple, non-parametric approach. If there are numbers of 
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historical data of assets missing, we cannot get a complete data easily. We can collect the change 

of its risk factors over the past period based on historical data, and simulate the future return or loss 

distribution of assets. Then, we can calculate the VaR under a specified significance level. 

Obviously, historical simulation method does not need to assume that the risk factor must be in line 

with the specific distribution. The past change and distribution of risk factor directly represents the 

future distribution. So, historical simulation method does not need to estimate the parameter, which 

is non-parameters method.  

The procedure of historical simulation is as follows: First, we should find the risk factors 

which effects the return of asset. We utilize the following equation to express the relationship 

between value of asset and risk factors: 

 𝑉𝑡 = 𝑉(𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡), … , 𝑓𝑛(𝑡)), (2.4) 

where, 𝑉𝑡  represents the value of asset, 𝑓𝑖(𝑡)  means risk factors, 𝑖 = 1,2,3, … , 𝑛;  𝑡 =

±1,2,3, … , 𝑇 , 𝑡 < 0  means past, 𝑡 = 0  means present, 𝑡 > 0  means future. Usually, the risk 

factors can be returns of assets. We select past return of assets for 𝑇 + 1 trading days as historical 

window and calculate the change rate of return of adjacent two days.  

 ∆𝑓𝑖(−𝑡) = 𝑓𝑖(−𝑡 + 1) − 𝑓𝑖(−𝑡). (2.5) 

Second, assuming the future change of returns will be same as past changes, the future value of 

returns can be as follows: 

 𝑓𝑖(𝑡) =  𝑓𝑖(0) + ∆𝑓𝑖(−𝑡), (2.6) 

then, we can get the change of value of asset in the future, 

 ∆𝑉𝑡 = 𝑉𝑡 − 𝑉0. (2.7) 

Third, the future returns are ranked in increasing order, and calculate VaR corresponding to the 

quantile as specified significance level. The ∆𝑉𝑡  are ranked form smallest to biggest for 𝑡 =

1,2,3, … , 𝑇 and regard as 𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑇. The equation shows as follows: 

 ∆V(𝑘1) ≥ ∆V(𝑘2) ≥ ⋯ ≥ ∆V(𝑘𝑡−1) ≥ ∆V(𝑘𝑡) ≥ ⋯ ≥ ∆V(𝑘𝑇). (2.8) 

The significance level is 𝛼  and the [𝑇𝛼]  means integral part of quantile 𝑇𝛼 . Then, we can 

calculate the VaR as follows: 
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 𝑉𝑎𝑅𝑅,𝛼 =  ∆V(𝑘[𝑇𝛼]+1). (2.9) 

According the principal of historical simulation method, we describe advantages and 

disadvantages as follows. First, historical simulation method is simple and easy to calculate. So, it 

is acceptable for managers. Second, we do not need the assumption or simulation about parameters 

of returns. It can more accurately reflect the probability distribution of risk factors. For example, 

the thick tail and skewness of general asset returns may be expressed through historical simulation. 

Third, due to the non-parameters characteristic, the problem of estimation errors is avoided. 

Moreover, the historical data reflected the volatility and correlation of return on asset. Therefore, 

compared with other methods, historical simulation method is less affected by model risk.  

However, this method still exits disadvantages, which reflect as follows: First, the historical 

simulation method needs too much continuous historical data for getting the future probability 

distribution of returns. But, it is hard to collect the large and compete historical data of assets. Duo 

to lack of historical data, the loss of extreme events will be not easy to simulate. However, it is not 

that the more the history data, the better. The too old historical data cannot predict accurate present 

value. Both of two extreme situations can lead to a low degree of precision in the value of risk. 

Second, there is an assumption of historical simulation, that the future change of risk factors will 

be the same as past performance. This assumption is clearly contrary to realism. So that, we 

introduce the filtered historical simulation, which overcomes this disadvantage.  

2.6.2 Filtered Historical Simulation 

As we mentioned before, we need to know the probability distribution of each time series to 

estimate the VaR. But we know that the actual distribution of the returns cannot conform to any 

known distribution. The filtered historical simulation (henceforth FHS) methodology was proposed 

and developed by Giovanni Barone-Adesi and Kostas Giannopoulos (1998). They allowed for the 

volatility of asset return to differ from the volatility of options, which conforms to reality more. 

Therefore, we need to introduce the GARCH model at first. 

GARCH model (Generalized autoregressive conditional heteroskedasticity) is an extension of 

the ARCH model (Autoregressive conditional heteroskedasticity model) developed by Bollerslev 
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(1986). ARCH Model was proposed by Engle (1982), which solved the problem caused by 

traditional econometrics assumption of homoscedasticity of time series variables. This model is 

one of the econometric achievement and won the 2003 Nobel Economics Prize.  

The ARCH model is appropriate when the error variance in a time series follows an 

autoregressive (AR) model; if an autoregressive moving average model (ARMA) model is assumed 

for the error variance, the model is a GARCH model. For time series model, let 𝜀𝑡 represents the 

estimated residuals. So, the GARCH model are listed below: 

 𝜀𝑡 = 𝜎𝑡𝑞𝑡, (2.10) 

 𝑞𝑡~N(0,1) 𝑜𝑟 𝑞𝑡~𝑡𝑣(0,1), (2.11) 

where, 𝑞𝑡 is random number of normal distribution or t-Student distribution, which is a strong 

white noise process (independent and identically distributed, henceforth i.i.d.). and 𝜎𝑡 is standard 

deviation, which should satisfy following form: 

 
σ𝑡

2 = 𝑎0 + ∑ 𝑎𝑖

𝑝

𝑖=1

∙ 𝜎𝑡−𝑖
2 + ∑ 𝛽𝑖

𝑞

𝑖=1

∙ 𝜀𝑡−𝑖
2 , (2.12) 

where 𝑎0 , 𝑎𝑖  and 𝛽𝑖  are parameters needed to be estimated, 𝑎0  is a constant in variance 

equation, 𝑝 is the lag parameter of the observed variable, 𝑞 is the number of lags of the error 

term. The parameters of this model are limited for ensuring the non-negativity and stationarity of 

the variance process. The conditions are 𝑎𝑖 > 0, 𝛽𝑖 > 0,  and ∑ 𝑎𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1 < 1.  Within a 

class of autoregressive processes with white noises having conditional heteroscedastic variances, 

we try to find reasonable models of { 𝑦𝑡}. The { 𝑦𝑡} is called an autoregressive process of order 𝑘 

with an GARCH noise of order 𝑝, 𝑞, in short AR (k)-GARCH (p, q) process, which is expressed 

as follows: 

 
𝑦𝑡 = 𝜇0 + ∑ 𝜇𝑖 ∙ 𝑦𝑡−𝑖 +

𝑘

𝑖=1

𝜀𝑡, (2.13) 

where, 𝜇0 is the mean constant and 𝜇𝑖 is parameter, 𝜀𝑡 is the error term. Based on the GARCH 

model, the short AR (1)-GARCH (1, 1) model for one-period forecasting, is expressed as follows: 

 𝑦𝑡 = 𝜇0 + 𝜇1𝑦𝑡−1 + 𝜀𝑡, (2.14) 
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 σ𝑡
2 = 𝑎0 + 𝛼1𝜎𝑡−1

2 + 𝛽𝜀𝑡−1
2 . (2.15) 

The residuals should close to a stationary i.i.d. distribution, so that they are suitable for historical 

simulation. In the thesis, the daily returns 𝑅𝑡 of an asset are regarded as 𝜀𝑡. We divide the residual 

𝑅𝑡  by the corresponding daily standard deviation (volatility) estimate 𝜎𝑡 , so the standardized 

residual returns 𝑒𝑡 can be defined as, 

 𝑒𝑡 =
𝑅𝑡

𝜎𝑡
. (2.16) 

These random standardized residuals are scaled by the deterministic volatility forecast one day 

ahead. So, we can get the one day ahead random return �̃�𝑡+1 as follows: 

 �̃�𝑡+1 = 𝜇0 + 𝜇1𝑦𝑡 + 𝜀�̃�+1. (2.17) 

According to formula (2.15), the volatility depends on the return simulated on the first day. For 

obtaining random residuals 𝜀�̃�+1 , we utilize standardized residual 𝑒𝑡  to multiply estimation of 

volatility one day ahead 𝜎𝑡+1: 

 𝜎𝑡+1 = √𝑎0 + 𝑎1𝜎𝑡
2 + 𝛽𝜀𝑡

2. (2.18) 

Here, we suppose that the mean value of return is zero, and there is no autocorrelation of returns. 

Then, we can estimate VaR one day ahead with 𝛼 probability level as follows: 

 𝑉𝑎𝑅𝑡+1 = 𝜎𝑡+1 ∙ 𝑞𝛼 . (2.19) 

To summarize, the process of FHS method for one day ahead VaR estimation can be following 

steps: 

1. Selecting a GARCH model, such as AR (1)-GARCH (1,1), and using formula (2.10) and 

(2.12) to obtain parameters terms, estimates of the residuals and the variance. 

2. Using formula (2.16) to obtain 𝑒𝑡. 

3. Calculating estimation of volatility one day ahead 𝜎𝑡+1 based on formula (2.18). 

4. Determining quantile with probability level 𝛼 , and estimating one day ahead VaR, 

according formula (2.19). 

From the statistical perspective, the FHS is a semi-parametric model. The price series is not 

forced to conform to any kind of probability distribution. Thus, it allows for fat tails, volatility 

clusters and changing means. This provides a more accurate estimation in the tails of possible price 
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realizations. 

2.6.3 Analytical Solution 

As we mentioned before, historical simulation method and FHS methods are belong to non-

parametric or semi-parametric method. Another method for risk estimation, analytical solution is a 

parametric method. The analytical solution to calculate the Value at Risk calculates the mean, or 

expected value, and standard deviation of an asset.  

The analytical solution computes an asset’s maximum loss based on the price movements of 

asset over a past period within a probability level. It is based on assumption that the changes in 

market parameter and asset returns follow a probability distribution. 

For usage of analytical solution, we need to know the concept of variance. The variance is the 

square of the standard deviation, and the standard deviation measure that is utilized to quantify the 

amount of variation or dispersion of a set of data values. A low standard deviation indicates that 

the data points tend to be close to the expected value (also called the mean) of the asset, while a 

high standard deviation indicates that the data points are spread out over a wider range of values. 

We can say that standard deviation is a measure of the volatility of the investment as well. In this 

thesis, the return of assets 𝑅𝑖 can be defined by: 

 𝑅𝑖 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1, (2.20) 

where 𝑃𝑖,𝑡 is asset price at time 𝑡, 𝑃𝑖,𝑡−1 is asset price at 𝑡 − 1. 

The expected return E(𝑅𝑖) can be written as, 

 
E(𝑅𝑖) =

1

𝑁
∙ ∑ 𝑅𝑖,𝑡

𝑁

𝑡=1

, (2.21) 

where for single asset, 𝑁 is the observation period of the asset. The variance 𝜎𝑖
2 and standard 

deviation 𝜎𝑖 of returns can be expressed as, 

 
𝜎𝑖

2 =
1

𝑁
∙ ∑[𝑅𝑖,𝑡 − E(𝑅𝑖)]

2
𝑁

𝑡=1

, (2.22) 
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𝜎𝑖 = √
1

𝑁
∙ ∑[𝑅𝑖,𝑡 − E(𝑅𝑖)]

2
𝑁

𝑡=1

= √𝜎𝑖
2. (2.23) 

After the parameters introduced, the probability distribution of asset returns should be 

distinguished. In this thesis, the normal distribution and Student’s t-distribution are described as 

follows. 

In probability theory, the normal distribution, also called Gaussian distribution, is a very 

common continuous probability distribution. A random variable with a Gaussian distribution is said 

to be normally distributed and is called a normal deviate. The normal distribution is useful because 

of the central limit theorem. In its most general form, under some conditions (which include finite 

variance), it states that averages of samples of observations of random variables independently 

drawn from independent distributions converge in distribution to the normal, that is, become 

normally distributed when the number of observations is sufficiently large. Physical quantities that 

are expected to be the sum of many independent processes (such as measurement errors) often have 

distributions that are nearly normal, see Lyon, A. (2014). 

The probability density of the normal distribution is defined as follows, 

 
𝑓(𝑥|𝜇, 𝜎2) =

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2 , (2.24) 

where 𝜇 the mean or expectation of the distribution, σ is the standard deviation and 𝜎2 is the 

variance. The simplest case of a normal distribution is known as the standard normal distribution. 

This is a special case when 𝜇 = 0 , 𝜎 = 1, and it is described by this probability density function: 

 𝜑(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2

, (2.25) 

where the factor 
1

√2𝜋
 in this expression ensures that the total area under the curve 𝜑(𝑥) is equal 

to one.  

In figure 2.1 and 2.2, we can see the probability density function and cumulative distribution 

function of normal distribution. The blue curve represents the standard normal distribution, which 

the mean value is zero and standard deviation is one.  
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Figure 2.1 Probability density function of normal distribution with different means and 

standard deviations.  

 

Figure 2.2 Cumulative distribution function of normal distribution with different means and 

standard deviations.  

 

In probability and statistics, Student's t-distribution is any member of a family of continuous 

probability distributions that arises when estimating the mean of a normally distributed population 

in situations where the sample size is small and population standard deviation is unknown. It was 
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developed by William Sealy Gosset (1908). If we take a sample of n observations from a normal 

distribution, then the t-distribution with 𝜈 = 𝑛 − 1  degrees of freedom can be defined as the 

distribution of the location of the sample mean relative to the true mean, divided by the sample 

standard deviation, after multiplying by the standardizing term √𝑛. In this way, the t-distribution 

can be utilized to say how confident you are that any given range would contain the true mean. 

The t-distribution has heavier tails, meaning that it is more prone to producing values that fall 

far from its mean. This makes it useful for understanding the statistical behavior of certain types of 

ratios of random quantities, in which variation in the denominator is amplified and may produce 

outlying values when the denominator of the ratio falls close to zero, see Richardson (1994).  

The probability density function is symmetric, and its shape is similar to the bell shape of a 

standard normally distributed, except that it is a bit lower and wider. As the number of degrees of 

freedom grows, the t-distribution approaches the normal distribution with mean of 0 and variance 

of 1. The figure 2.3 and 2.4 shows the density of the t-distribution for increasing values of 𝜈. 

Therefore, when the degree of freedom is close to infinity, the Student t-distribution curve is close 

to the normal distribution. The blue curves show the situation in figure 2.3 and 2.4. 

Figure 2.3 Probability density function of Student’s t-distribution with different degrees of 

freedom. 
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Figure 2.4 Cumulative distribution function of Student’s t-distribution with different degrees 

of freedom. 

 

Now, we utilize analytical solution to calculate the VaR. Here we assume that the increment 

in value of an asset can be formulated by returns as  

 𝑋 = 𝑉𝑡 ∙ 𝑅𝑖 , (2.26) 

where 𝑅𝑖 is asset return, 𝑉𝑡 is the initial asset value. The returns of asset are normal distribution. 

According to the formula (2.2), we know that 

𝑃𝑟(𝑋 ≤ −𝑉𝑎𝑅𝛼(𝑋)) = 𝛼. 

Then, let 𝑔 = 𝑋 + 𝑉𝑎𝑅 and rearrange, we get, 

 𝑃𝑟(𝑔 ≤ 0) = 𝛼. (2.27) 

After normalization, we apply expected value 𝐸(𝑔) and standard deviation 𝜎𝑔: 

 
Pr (

𝑔 − 𝐸(𝑔)

𝜎𝑔
≤

0 − 𝐸(𝑔)

𝜎𝑔
) = 𝛼, (2.28) 

where, according to our assumption, the 
𝑔−𝐸(𝑔)

𝜎𝑔
 represents asset return, which is standard normal 

distribution. Thus, the cumulative density function Φ𝛼 can be defined as follows, 

 Φ𝛼(x) = Φ(x; 0,1) =
1

√2𝜋
∫ 𝑒−

𝑡2

2

𝑥

−∞

𝑑𝑡. (2.29) 
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By means of cumulative density function of standard normal distribution, we can write its inverse 

function Φ𝑠
−1,  

 
Φ𝛼 (

0 − 𝐸(𝑔)

𝜎𝑔
) = α, (2.30) 

 0 − 𝐸(𝑔)

𝜎𝑔
= Φ𝛼

−1(𝛼). (2.31) 

Then, putting g back and substitute for 𝑋 + 𝑉𝑎𝑅, we obtain, 

 0 − 𝐸(X + VaR)

𝜎𝑋+𝑉𝑎𝑅
= Φ𝛼

−1(𝛼), (2.32) 

 𝑉𝑎𝑅 = −𝛷𝛼
−1(𝛼) ∙ 𝜎(𝑥) − 𝐸(𝑥). (2.33) 

Usually, we suppose that expected return is zero, especially for short-term returns. The −Φ𝑠
−1(𝛼) 

can be written as Φ𝑠
−1(1 − 𝛼).  The standard deviation can be calculated by formula (2.23). So, 

we can simply as follows: 

 𝑉𝑎𝑅 = 𝛷𝛼
−1(1 − 𝛼) ∙ 𝜎(𝑥). (2.34) 

2.6.4 Monte Carlo Simulation 

Monte Carlo simulation is another method of risk measures. The basis of the Monte Carlo 

simulation method of calculating VaR that generates random movements in the risk factors by using 

past events to model future return distribution of an asset. 

Financial assets are typical by their random evolution in time. The random evolution of 

variable in time is referred to as the stochastic process. In this respect, crucial terms are the 

Geometric Brownian motion (also known as Wiener process). In particular, Geometric Brownian 

motion is utilized in mathematical finance to model stock prices in the Black–Scholes model. The 

Wiener process or Brownian motion is regarded as It�̂� process, which can be defined as follows: 

 dS = α(S, t) ∙ dt + b(S, t) ∙ dω, (2.35) 

where 𝑆𝑡 means a variable for t ≥ 0, α(∙) is drift of random variable and b(∙) is its standard 

deviation. In addition, dω = ε ∙ dt , ε  is normal random variable with a mean of 0 as well as 

variance of 1. Particularly, when α(S, t) = 𝜇𝑆, b(S, t) = 𝜎𝑆, the geometric Brownian motion can 

be defined by: 
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 dS = μ ∙ S ∙ dt + σ ∙ S ∙ dω. (2.36) 

Then, it can be reformulated to interpret clearly: 

 dS

𝑆
= μ ∙ dt + σ ∙ dω. (2.37) 

The Brownian motion is applied on simulation of future change of stock price. First, the continuous 

Brownian motion should be discretized. Let t and T represent the initial date and due date, and 

the interval [t, T] is divided into n equal small intervals. So, the length of each small interval 

should be as follows: 

 ∆t =
𝑇 − 𝑡

𝑛
. (2.38) 

For any initial value 𝑆0, the price return with formula (dS) can expressed as follows: 

 
𝑆𝑡 = 𝑆0 ∙ exp ((μ −

𝜎2

2
) ∙ 𝑡 + 𝜎 ∙ 𝑑𝜔). (2.39) 

According to above formula, we can obtain the general stock price evolution and defined the mean 

value and variance of stock price for which the parameters are constant and independent on other 

variables: 

 
𝑆𝑡 = S ∙ exp ((μ −

𝜎2

2
) ∙ ∆𝑡 + 𝜀 ∙ √∆𝑡), (2.40) 

 E(𝑆𝑇) = 𝑆0 ∙ exp(𝜇 ∙ ∆𝑡 ∙ 𝑛), (2.41) 

 
Var(𝑆𝑇) = 𝑆2 ∙ exp (2 (μ −

𝜎2

2
) ∙ ∆𝑡 ∙ 𝑛) [exp(𝜎2 ∙ ∆𝑡 ∙ 𝑛) − 1]. (2.42) 

By means of the comparison with other methods of VaR estimation, the Monte Carlo 

simulation has number of advantages. First, by means of Monte Carlo, it produces large number of 

possible scenarios about risk factors. So, it does not require significant numbers of historical 

observations. Compared with historical simulation, the calculated results based on this method is 

more accurate. Second, the non-linearity or non-normality problem can be considered. Because it 

utilizes possible market scenarios to generate the VaR estimation, instruments, such as options, 

(whose value varies in a non-linear way) can be included in the final calculation. Third, it can 

consider a wider range of possible outcomes. Because it is not dependent on historical observations 
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to determine the VaR estimation, it can consider possible events that could have occurred in the 

past but didn’t happen. However, based on historical simulation, it would not consider the 

likelihood of an event which had not taken place during the period of observation. Forth, a high 

number of outcomes can be generated. By using computer technology, the Monte Carlo simulation 

considers a large number of possible scenarios. So that, the numbers of observed exceptions are 

large. The distribution of the results is likely to be smoother, giving a more accurate of the VaR 

estimation. 

Meanwhile, the Monte Carlo simulation has number of defects. First, the calculated results by 

Monte Carlo rely heavily on selected stochastic model and historical observation of parameters 

estimation. So, it exits the model risk and parameter estimation error. Second, in the model 

simulations, we often utilize the pseudo random number. The circulation and clustering might 

happen, which might lead to error or failure simulation. Third, due to the large numbers of risk 

factors and complicated calculation, it takes a long time to obtain a large number of times for 

simulation. But if it has not enough times of simulation, the accuracy of result will decline. 

2.7 Comparing the Four Methods 

The previous four methods have their own characteristics and no one method is universally 

applicable. Each of them has advantages and disadvantages. Linsmeier and Pearson (1996) argue 

that the methods differ roughly in four dimensions: 

1. The ability of the model to capture risk of options and other non-linear instruments; 

2. The relative ease of implementation and that of interpretation by users; 

3. Flexibility of the model to incorporate alternative assumptions; 

4. Reliability of the results. 

The last aspect is a key point of this work as it recognizes the importance of backtesting of 

VaR. Then, the advantages and disadvantages of them will be list as follows: 

If the observation period is long, the analytic solution will not reflect accurate estimated VaR 

well, because it utilizes the linear expansion to approximately reflect the mapping risk. However, 

for the option with nonlinear change, if the observation period is longer, the gap between the linear 
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approximation and the actual change will be bigger and bigger. This is the main reason why the 

parametric method is utilized to calculate VaR of option-based financial instruments failure. 

The historical simulation method is simple, and easy to understand and apply. It does not need 

assumption of return distribution, also it does not need parameters, such as expected value and 

variance, which will lead to avoid error of parameter estimation and risk of model selection. 

However, the Monte Carlo simulation needs knowledge of probability statistics, also the process 

of calculation is complex and its calculated amount is huge.  

The VaR estimates market risk assuming a normal market condition. If the big changes occur 

in the future, it will need a flexible method, which will enable to correct the parameter estimates 

according to the risk factor. Because historical simulation method directly relies on historical data, 

there is no space to add more risk factors in this respect. The analytical solution and Monte Carlo 

simulation have greater flexibility. The user can ignore the estimation of parameters and choose 

what they think reasonable parameter values to measure market risk. 

The historical simulation method directly depends on the historical data. Therefore, when the 

selected history data is not representative, the VaR estimated by the historical simulation method 

cannot reflect the market risk well. The "thick-tailed problem" often occurs when the parametric 

method is applied. At this point, if the estimation of correlation coefficient and standard deviation 

are properly corrected, the failure of the VaR estimation can be avoided. Compared with the 

parametric method, the extremum method gives up the assumption of normal distribution and 

considers the distribution of the tail. In addition, the parametric methods tend to focus on data 

features of concentrated distribution, while ignoring the tail of sparse distribution, which is the 

most important part of VaR estimation. Therefore, the parametric method has some limitations. In 

addition, historical simulation method cannot estimate the risk of loss or return that exceeds the 

existence of historical value. Compared with non-parametric methods, historical simulation assume 

that the volatility of returns is constant. However, we know that is unreality. The filtered historical 

simulation solved this defect, because it does not impose any assumption about the parametric 

distribution of returns.  
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3 Backtesting Procedure 

“VaR is only as good as its backtest. When someone shows me a VaR number, I don’t ask how 

it is computed, I ask to see the backtest.” (Brown, 2008). 

In the last chapter, we introduced the different VaR estimation approaches. However, not all 

of methods are able to accurately predict future risk in the specific cases. Therefore, we need to 

assess whether a model is adequate. One of the tools of assessing accuracy is by backtesting. Other 

forms include stress testing and scenario analysis, marketing risk reporting, hedging, and so on, see 

Apostolik (2009). Furthermore, backtesting is a key approach to market risk management as laid 

out by the Basel Committee on Banking Supervision (1996).  

The backtesting is a test of how well the current procedure for estimating VaR would have 

performed if it had been utilized in the past. For example, we assume the confidence level is 99%. 

It involves looking at how often the loss in a day would have exceeded the one-day 99% VaR when 

the latter is calculated using the current procedure. Days when the actual loss exceeds VaR are 

referred to as exceptions. If exceptions happen on about 1% of the days, we can feel reasonably 

comfortable with the current methodology for calculating VaR. If they happen on, say, 7% of days, 

the methodology is suspect and it is likely that VaR is underestimated. From a regulatory 

perspective, the capital calculated using the current VaR estimation procedure is then too low. On 

the other hand, if exceptions happen on, say, 0.3% of days it is likely that the current procedure is 

overestimating VaR and the capital calculated is too high. 

 In order to express clearly whether the calculating VaR is reasonably comfortable or suspect, 

we obtain the sequence of logical values corresponding to the fact. If the loss exceeds VaR, it will 

be recorded as 1. On the other hand, if the loss is lower than VaR, it will be recorded as 0. Denoting 

the backtested VaR over a fixed time interval as [t; t + ∆t], then define sequence 𝐼𝑡 is defined as 

follows, 

 Christoffersen (1998) points out that the problem of determining the accuracy of a VaR 

 𝐼𝑡 = {
1, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) > 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)

0, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) ≤ 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)
. (3.1) 
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model can be reduced to the problem of determining whether the sequence satisfies two properties: 

the unconditional coverage property and independence property. 

The first is unconditional coverage property. The probability of realizing a loss in excess of 

the reported 𝑉𝑎𝑅𝑅,𝛼 , must be precisely 𝛼 ×  100%  or in terms of the previous 

notation, 𝑃𝑟 (𝐼𝑡+1(α) = 1) = α. If it is the case that losses in excess of the reported VaR occur 

more frequently than  𝛼 ×  100%  of the time, then this would suggest that the reported VaR 

measure systematically understates the asset’s actual level of risk. The opposite finding of too few 

VaR violations would alternatively signal an overly conservative VaR measure, which means VaR 

is overestimated. 

The second is independence property. The unconditional coverage property places a restriction 

on how often VaR violations may occur. The independence property places a strong restriction on 

the ways in which these violations may occur. Specifically, any two elements of the sequence must 

be independent from each other. Intuitively, this condition requires that the previous history of VaR 

violations must not convey any information about whether or not an additional VaR violation, will 

occur. If previous VaR violations presage a future VaR violation then this points to a general 

inadequacy in the reported VaR measure. In general, a clustering of VaR violations represents a 

violation of the independence property that signals a lack of responsiveness in the reported VaR 

measure as changing market risks fail to be fully incorporated into the reported VaR measure 

thereby making successive runs of VaR violations more likely, see Campbell (2005). 

Suppose that the significance level for a one-day VaR is α . If the VaR model utilized is 

accurate, the probability of the VaR being exceeded on any given day is 𝜋𝑒𝑥 = 𝛼. The observed 

probability of exceptions’ occurring is recorded to as 𝜋𝑜𝑏𝑠. Based on sequence 𝐼𝑡, the formula 

(3.1), the observed number of exceptions will be counted, which we refer to as 𝑛1 . The 𝑛  is 

referred to as length of the time series backtested. For VaR estimation, we need historical data of 

𝑚 days, which is referred to as historical window. Note that the length of time series backtested 

𝑛 should not include the historical window 𝑚. That means for obtaining the observed number of 

exceptions 𝑛1, the backtesting procedure should start form days 𝑚 + 1. We hope that the observed 
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probability of exceptions’ occurring 𝜋𝑜𝑏𝑠  is equal to the expected probability of exceptions’ 

occurring 𝜋𝑒𝑥 . Therefore, we can consider the null hypothesis and alternative hypothesis as 

follows, 

 𝐻0: 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥 (3.2) 

 𝐻1: 𝜋𝑜𝑏𝑠 ≠ 𝜋𝑒𝑥 (3.3) 

We want to know, at a given confidence level, whether 𝑛1 is too small or too large under the 

null hypothesis 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥 in a sample of size 𝑛. Note that this test makes no assumption about 

the return distribution. The distribution could be normal, or skewed, or with heavy tails, or time 

varying. The setup for this test is the classic testing framework for a sequence of success and 

failures, also called Bernoulli trials. Under the null hypothesis that the model is correctly calibrated, 

the number of exceptions 𝑛1 follows a binomial probability distribution:  

 
Pr(𝑛1|𝜋𝑒𝑥, 𝑛) = ∑

𝑛!

𝑛1! (𝑛 − 𝑛1)!
𝜋𝑒𝑥

𝑛1(1 − 𝜋𝑒𝑥)𝑛−𝑛1

𝑛

𝑛1=𝑚+1

 (3.4) 

By utilizing this binomial distribution, we can examine the accuracy of the VaR model. 

However, when conducting a statistical backtesting that either accepts or rejects a null hypothesis 

(of the model being ‘good’), there is a tradeoff between two types of errors. Type 1 error refers to 

the possibility of rejecting a correct model and type 2 error to the possibility of not rejecting an 

incorrect model. A statistically powerful test would efficiently minimize both of these probabilities. 

(Jorion, 2001) 

In order to clearly state the relationship between these two types of error, we make the table 

3.1. Table 3.1 summarizes these situations and decision. For backtesting purpose, we need to 

balance type I errors and type II errors. Ideally, one would want to set a low type I error rate and 

then have a test that creates a very low type II error rate, in which case the test is said to be powerful. 

It should be noted that the choice of the confidence level for decision rule is not related to the 

quantitative level 𝜋𝑒𝑥 selected for VaR. The confidence level refers to the decision rule to reject 

the model, see (Jorion, 2006) 

So, for example, we describe the probabilities of observing exactly 𝑛1 exceptions (second 
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column), 𝑛1 or less exceptions (third column) and more than 𝑛1 exceptions (forth column) out 

of 250 backtesting days and assuming 𝜋𝑒𝑥 = 0.01 and 0.03, which are shown as the table A-1 and 

A-2 in Annex A.  

Table 3.1 Decision errors 

Figure 3.1 describes the distribution when the model is calibrated correctly, that is, when 

𝜋𝑒𝑥 = 0.01 and with one year of data, 𝑛 = 250. Assuming that the model is correct (that is, the 

actual coverage of the model is 99%), the expected number of days when losses exceed VaR 

estimates is 250 × 0.01 = 2.5. One may set the cut-off level for rejecting a model, for instance, 

to 5 exceptions. In this case, the probability of committing a type I error is 10.8%. On the other 

hand, if the model has an incorrect coverage of 97%, the expected number of exceptions is 

250 × 0.03 = 7.5. There is now a 12.8% probability of committing a type 2 error, that is, accepting 

an inaccurate model. The horizontal axis represents number of exceptions, and the vertical axis 

represents frequency.  

Figure 3.1 Distribution of exceptions when model is correct. 
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Figure 3.3 Distribution of exceptions when model is incorrect.  

 

3.1 Kupiec’s Unconditional Coverage Test 

Some of the earliest proposed VaR backtests, e.g. Kupiec (1995), focused exclusively on the 

property of unconditional coverage. In short, these tests are concerned with whether the reported 

VaR is violated more or less than significance level or not. Kupiec (1995), for example, proposed 

a proportion of failures (POF) test that examines how many times a financial institution’s VaR is 

violated over a given span of time. If we denote the number of exceptions by 𝑛1 and the total 

number of observations by 𝑛, we then define the rate of failure as 𝑛1/𝑛. Suppose a VaR number is 

reported at the confidence interval 1 − α, then an exception occurs if realized loss exceeds the 

VaR number. Therefore, the expected number of exceptions 𝑛1 in a total of 𝑛 observations is 𝛼 ∙

𝑛. Certainly, the number of exceptions will not be exactly 𝛼 ∙ 𝑛. Instead, it could swing within an 

acceptable range. In the backtesting method, the range for 𝑥 will be calculated and thus the VaR 

model can be accepted or rejected, see Campbell (2005).  

The null hypothesis for the POF-test is 

 𝐻0: 𝜋𝑒𝑥 = 𝜋𝑜𝑏𝑠 =
𝑛1

𝑛
 (3.5) 

We need to find out whether the observed failure rate 𝜋𝑜𝑏𝑠 is significantly different from 

𝜋𝑒𝑥, the failure rate suggested by the confidence level. According to Kupiec (1995), the POF-test 
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is best conducted as a likelihood-ratio (LR) test. The test statistic takes the form as follows, 

 
𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = −2 ln [

𝜋𝑒𝑥
𝑛1(1 − 𝜋𝑒𝑥)𝑛0

𝜋𝑜𝑏𝑠
𝑛1(1 − 𝜋𝑜𝑏𝑠)𝑛0

], (3.6) 

where 𝜋𝑒𝑥 and 𝜋𝑜𝑏𝑠 are expected probability of exception occurring and observed probability of 

exception occurring, respectively, 𝑛 is the length of the time series backtested, 𝑛0 is the number 

of zero and 𝑛1 is the number of ones, which are counted by formula (3.1) when the loss exceeds 

VaR. We know 𝜋𝑒𝑥 equals significant level α, 𝜋𝑜𝑏𝑠 =
𝑛1

𝑛0+𝑛1
 and 𝑛 =  𝑛0 + 𝑛1. Therefore, the 

likelihood ratio can be expressed as follows: 

 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = 2𝑛0 ∙ ln (
𝑛0

𝑛
) + 2𝑛1 ∙ ln (

𝑛1

𝑛
) − 2𝑛0 ∙ ln(1 − α) − 2𝑛1 ∙ ln(α). (3.7) 

Under the null hypothesis that the model is correct, 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐  is asymptotically chi-squared 

distributed with one degree of freedom. In probability theory and statistics, the chi-squared 

distribution with 𝑘  degrees of freedom are the distribution of a sum of the squares of 𝑘 

independent standard normal random variables. The chi-squared distribution with 𝑘 degrees of 

freedom is usually denoted as, 

 𝑄 ~ 𝑋2(𝑘). (3.8) 

The chi-square distribution is a special case of the gamma distribution and is one of the most 

widely used probability distributions in inferential statistics, e.g. in hypothesis testing or in 

construction of confidence intervals. The chi-squared distribution is used in the common chi-

squared tests for goodness of fit of an observed distribution to a theoretical one, the independence 

of two criteria of classification of qualitative data, and in confidence interval estimation for a 

population standard deviation of a normal distribution from a sample standard deviation, see 

Jonhson et al. (1994).  

We know that there are two methods for a test of hypothesis whether the model accept or not, 

critical region and p-value. Critical values for a test of hypothesis depend upon a test statistic, 

which is specific to the type of test, and the significance level 𝛼. Critical values are essentially cut-

off values that define regions where the test statistic is unlikely to lie. For example, a region where 

the critical value is exceeded with probability 𝛼 if the null hypothesis is true. The null hypothesis 
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is rejected if the test statistic lies within this region which is often referred to as the rejection regions. 

Another quantitative measure for reporting the result of a test of hypothesis is the p-value. The p-

value is the probability of the test statistic being at least as extreme as the one observed given that 

the null hypothesis is true. A small p-value is an indication that the null hypothesis is false.  

In our cases, the null hypothesis is that the probability of exception occurring is equal to the 

expected value, that is what we want to prove. Therefore, we want to accept null hypothesis, which 

is contrary to the general statistical test that reject null hypothesis. Furthermore, considering critical 

values and p-value, we choose the p-value for testing hypothesis, because the higher p-value the 

more accurate the model.  

Table 3.2 is a summary table of non-rejection regions for the Kupiec test for various 

observation period and confidence levels. The table shows that the interval, expressed as a 

proportion 𝑛1/𝑛, increases as the sample size increases. 

Table 3.2 Non-rejection test confidence regions  

Confidence level 

(1-α) 

Significance level 

(α) 

Non-rejection region for number of failures 𝑛1 

𝑛 = 251 days 𝑛 = 510 days 𝑛 = 1000 days 

99.0% 0.01 𝑛1 < 7  1 < 𝑛1 < 11 1 < 𝑛1 < 17 

97.5% 0.025 2 < 𝑛1 < 12 6 < 𝑛1 < 21 15 < 𝑛1 < 36 

95.0% 0.05 6 < 𝑛1 < 20 16 < 𝑛1 < 36 37 < 𝑛1 < 65 

92.5% 0.075 11 < 𝑛1 < 28 27 < 𝑛1 < 51 59 < 𝑛1 < 92 

90.5% 0.1 16 < 𝑛1 < 36 38 < 𝑛1 < 65 81 < 𝑛1 < 120 

Source: adapted from Kupiec (1995) 

For example, at 95% confidence level, the interval 𝑛1/𝑛 for accepting the model with 251 

observations are in the range  

 [
6

251
= 0.0239; 

20

251
= 0.0797], (3.9) 

and compared to 1000 observations, the interval is 

 [
37

1000
= 0.037; 

65

1000
= 0.065], (3.10) 

which is much tighter. With more data, we should be able to reject the model more easily if it is 
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false. 

The Kupiec test has two main drawbacks. Firstly, the test is statistically weak with small 

sample sizes, for instance the Basel Committee’s regulatory framework sample (250 trading days), 

see Jorion (2006). Secondly, the Kupiec test examines only the failure rate (frequency of exceptions) 

and not the succession of occurrence. Therefore, it may fail to reject a model that produces serially 

dependent exceptions, a common weakness of unconditional coverage tests, see Campbell (2005). 

3.2 Christoffersen’s Conditional Coverage Test 

A separate issue from the number of exceptions is bunching. If daily assets change is 

independent, exceptions should be spread evenly throughout the period used for backtesting. In 

practice, they are often bunched together suggesting that losses on successive days are not 

independent. An early and influential test in this vein is Christoffersen’s (1998) Markov test. The 

Markov test examines whether or not the likelihood of a VaR violation depends on whether or not 

a VaR violation occurred on the previous day. If the VaR measure accurately reflects the underlying 

asset risk then the chance of violating today’s VaR should be independent of whether or not 

yesterday’s VaR was violated, see Campbell (2005). The testing procedure described below is 

explained, for example, in Jorion (2006), and in greater detail in Christoffersen (1998). 

The test is then set out as follows. Suppose we have data of portfolio returns for 𝑇 days. Each 

day we set a deviation indicator, and set the indicator value as follows: 

 𝐼𝑡 = {
1, 𝑖𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠
0, 𝑖𝑓 𝑛𝑜 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑠

 (3.11) 

Table 3.3 Contingency table for Markov independence test (Christoffersen, 1998) 

 𝐼𝑡−1 = 0 𝐼𝑡−1 = 1  

𝐼𝑡 = 0 𝑛00 𝑛10 𝑛00 + 𝑛10 

𝐼𝑡 = 1 𝑛01 𝑛11 𝑛01 + 𝑛11 

 𝑛00 + 𝑛01 𝑛10 + 𝑛11 

 

The test is carried out by creating a 2×2 contingency table that records violations of the 

institution’s VaR on adjacent days as in Table 3.3. If the VaR measure accurately reflects the asset’s 
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risk then the proportion of violations that occur after a previous violation, 𝐼𝑡−1 = 1, it should be 

the same as the proportion of violations that occur after a day in which no violation occurred, 

𝐼𝑡−1 = 0. 

In addition, let 𝜋𝑖 represent the probability of observing an exception conditional on state 𝑖 

on the previous day. It follows that, 

 𝜋0 =
𝑛01

𝑛00 + 𝑛01
, 𝜋1 =

𝑛11

𝑛10 + 𝑛11
, 𝑎𝑛𝑑 𝜋 =

𝑛01 + 𝑛11

𝑛00 + 𝑛01 + 𝑛10 + 𝑛11
. (3.12) 

Under the null hypothesis that exceptions are independent across days, then the probabilities 

should be equal, 𝜋 = 𝜋0 = 𝜋1. That is, the chance of an exception occurring after a day of no 

exception is the same as occurring after a day of an exception (Campbell, 2005). If these 

proportions differ greatly from each other, then this calls the validity of the VaR measure into 

question. 

If the model is accurate, then a VaR violation today should not depend on whether or not a 

violation occurred on the previous day (Jorion, 2006). The relevant test statistic for independence 

of exceptions is a Likelihood-Ratio (LR) given by: 

 
𝐿𝑅𝑖𝑛𝑑 = −2 ln [

𝜋𝑛01+𝑛11 ∙ (1 − 𝜋)𝑛00+𝑛10

𝜋0
𝑛01(1 − 𝜋0)𝑛00 ∙ 𝜋1

𝑛11(1 − 𝜋1)𝑛10
]. (3.13) 

In order to simplify the calculation, the formula (3.13) is written as follows: 

 𝐿𝑅𝑖𝑛𝑑 = −2 ∙ {[(𝑛01 + 𝑛11) ∙ ln(𝜋) + (𝑛00 + 𝑛10) ∙ ln(1 − 𝜋)] − [𝑛01 ∙ ln(𝜋0) +

𝑛00 ∙ ln(1 − 𝜋0) + 𝑛11 ∙ ln(𝜋1) + 𝑛10 ∙ ln(1 − 𝜋1)]}.  
(3.14) 

Same as with the Kupiec test, the independence test follows the Chi-squared distribution with 1-

degree of freedom. Similarly to previous chapter, if the value of the 𝐿𝑅𝑖𝑛𝑑 falls below the critical 

value of Chi-squared distribution with 1-degree of freedom, the model passes the backtesting, 

otherwise the model is rejected.  

The main defect of the Markov test is that its limited power against clustering. It mainly tests 

for independence of exceptions on two consecutive days. For instance, it might be the case that the 

likelihood of a VaR exception depends not on whether there was an exception the previous day, but 

whether there was an exception one week or two weeks ago. Clearly, if this is the way in which the 
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lack of the independence property manifests itself, then the Markov test won’t have power to detect 

such violations of the independence property. 

3.3 The Joint Test of Coverage and Independence 

Given the shortcomings of the two tests presented above, it is clear that an accurate VaR 

measure should take into account both the unconditional coverage and independence properties. 

As such, tests that jointly examine the unconditional coverage and independence properties provide 

an opportunity to detect VaR measures which are deficient in one way or another (Campbell, 2005). 

One such test of conditional coverage which tests for both proportion of exceptions (unconditional 

coverage) and the clustering of exceptions (independence property) is the Christoffersens Interval 

Forecast test, again proposed by Christoffersen (1998). 

The method again applies the same Likelihood statistic testing framework as Kupiec, but 

extends the Kupiec test to jointly test for both unconditional coverage and independence. By 

combining the Kupiec test with the independence test, a joint test that examines both properties of 

an accurate VaR model is produced. The combined test statistic for conditional coverage is then 

given by as follows, 

 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 + 𝐿𝑅𝑖𝑛𝑑, (3.15) 

and the expansion formula can be written as follows, 

  
𝐿𝑅𝑐𝑐 = −2 log [

𝜋𝑒𝑥
𝑛1(1 − 𝜋𝑒𝑥)𝑛0

𝜋0
𝑛01(1 − 𝜋0)𝑛00 ∙ 𝜋1

𝑛11(1 − 𝜋1)𝑛10
], (3.16) 

which is a Chi-squared distribution with two degrees of freedom. Similarly to previous chapter, 

if the value of the 𝐿𝑅𝑐𝑐 falls below the critical value, the model passes the backtesting, otherwise 

the model is rejected.  
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4 Empirical Results of Statistical Testing 

In this chapter, we present the procedure of application of the selected VaR estimation 

approaches and the empirical result of them.  

In the thesis, we utilize the single stocks for our calculation. We download the time series data 

from the finance.yahoo.com web site. We choose stocks of Apple Inc (AAPL) from American 

financial market, which is one of Dow Jones Industrial Average component. The prices are quoted 

in USD. The period we choose from December 31, 2007 to December 29, 2017. There are 2519 

data in total. The frequency is daily. In the downloaded file, the first to fifth column are “Date”, 

“Open”, “High”, “Low”, “Close”, “Adj Close” and “Volume”, respectively. We just keep the first 

and fifth columns. The “Adj Close” means the prices are adjusted for splits and dividends paid, 

which is the better choice for historical prices. By means of checking, there is no missing data, so 

we can insert them into Excel directly, see the figure B in Annex B.  

Because of the different historical windows, the length of the time series backtested is different. 

In order to unify the length of time series backtested (𝑛), we start VaR estimation for backtesting 

from the 501st day. Therefore, the backtesting is performed in period December 24, 2009 to 

December 29, 2017. The overall length of the time series backtested 𝑛 = 2518 − 500 = 2018. 

The length of historical window (𝑚) is based on the period of trading days. For example, the m = 

21 is approximately one month, m = 63 represents approximately three months, m = 250 means 

approximately one year. For each VaR estimation method, we select significance level of 15%, 

10%, 5%, 2.5%, 1% and 0.5%. 

In order to represent the procedure of application, there are simplified examples in the 

beginning of each empirical study by means of different VaR estimation measures. For the 

simplified example, we select 31 days only, starting from December 31, 2007 to February 13, 2008. 

So, there are 31 historical prices. In terms of significance level, if we give 5% or 1% which are 

commonly utilized, the number of observed losses which exceeds VaR is too small to be accurately 

deducted, because of the small number of observations. So, we suppose the confidence level is 

70%, and significance level α is 30%. The historical window of 10 is given.  
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4.1 Historical Simulation 

The VaR estimation measure of historical simulation is introduced in the chapter 2.6.1. Now, 

we introduce its application by means of Excel. This subchapter is divided into two parts. In the 

first part, the mathematical formulation and procedure applied on simplified example will be 

described. In the second part, the empirical results are interpreted.  

Table 4.1 Mathematical formulations by means of historical simulation 

Daily return 

 𝑅𝑖 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1. (E1) 

VaR estimation 

 𝑉𝑎𝑅𝑅,𝛼 =  ∆𝑉(𝑘[𝑇𝛼]+1). (E2) 

Logical values that the observed loss exceed estimated loss 

 𝐼𝑡 = {
1, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) > 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)

0, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) ≤ 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)
. (E3) 

Likelihood ratio of Kupiec test 

 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = 2𝑛0 ∙ 𝑙𝑜𝑔 (
𝑛0

𝑛
) + 2𝑛1 ∙ 𝑙𝑜𝑔 (

𝑛1

𝑛
) − 2𝑛0 ∙ 𝑙𝑜𝑔(1 − 𝛼) − 2𝑛1 ∙ 𝑙𝑜𝑔(𝛼), (E4) 

where 

 𝑛 =  𝑛0 + 𝑛1. (E5) 

Likelihood ratio of Christoffersen test 

 𝐿𝑅𝑖𝑛𝑑 = −2 ∙ {[(𝑛01 + 𝑛11) ∙ ln(𝜋) + (𝑛00 + 𝑛10) ∙ ln(1 − 𝜋)] − [𝑛01 ∙ ln(𝜋0) +

𝑛00 ∙ ln(1 − 𝜋0) + 𝑛11 ∙ ln(𝜋1) + 𝑛10 ∙ ln(1 − 𝜋1)]}.  
(E6) 

where  

 𝜋0 =
𝑛01

𝑛00 + 𝑛01
, 𝜋1 =

𝑛11

𝑛10 + 𝑛11
, 𝜋 =

𝑛01 + 𝑛11

𝑛00 + 𝑛01 + 𝑛10 + 𝑛11
, (E7) 

Chi-squared distribution 

 𝐿𝑅 ~ 𝑋2(𝑘). (E8) 

4.1.1 Simplified Example 

We represent the simplified example by following three steps, mathematical formulations, 
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procedure by means of Excel, and solution and interpretation. In the simplified example, we mainly 

state the formulations we utilize, how to estimate VaR and its backtesting, and explain briefly the 

result. 

A Mathematical formulation 

According to formulas (2.9), (2.20), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the 

mathematical formulations in the table 4.1. 

In the table 4.1, ∆𝑉 means the return of asset which is ranked from smallest to biggest, [𝑇𝛼] 

means integral part of quantile 𝑇𝛼 on a given significance level α. The formula (E8) is a notation, 

which means the chi-squared distribution with 𝑘  degrees of freedom. In Kupiec test and 

Christoffersen test, we utilize one degree of freedom for calculating p-value. 

B Procedure 

1. Calculating the daily return according to formula (E1).  

2. Calculating the forecasts of VaR by means of PERCENTILE.EXC, input arguments of the 

historical window array and significance level.  

3. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We 

can utilize the Excel function IF. 

4. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (E4) and (E6).  

5. Calculating the p-values of Kupiec test and Christoffersen test. They can be calculated using 

the CHISQ.DIST function in Excel. Input arguments are likelihood ratio and degree of freedom 

of 1. Cumulative distribution function is selected. 

C Solution and interpretation  

Table 4.2 represents the procedure and result of VaR estimation and its backtesting by means 

of historical simulation. From this table, we can see there are five days that the observed loss 

exceeds VaR estimation and our expected value is 6. The exceptions occurred on January 16, 22, 

23, February 6 and 12 in 2008, when the logical values 𝐼𝑡 are equal to one. Based on the numbers 

of observed exceptions, we can calculate the p-values of Kupiec test and Christofffersen test, which 

are 62% and 94.6%, showing the accuracy of this model.  
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Table 4.2 VaR estimation and its backtesting using historical simulation  
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4.1.2 Empirical Study 

In the former subchapter, we describe the procedure of application on VaR estimation and its 

backtesting using historical simulation. In the empirical study, we mainly verify the accuracy of 

VaR estimation by means of historical simulation based on different length of historical windows 

with different significance levels. By means of calculation, the empirical result of VaR estimation 

and its backesting for AAPL stock form December 3, 2007 to December 29, 2017 is shown in tables 

4.3, 4.4 and 4.5. We show the VaR estimation in figure 4.1. 

The table 4.3 shows the numbers of excepted exceptions on different significance levels and 

the numbers of observed exceptions based on the different historical windows (m). The first row 

shows the significance levels. The second row represents the numbers of expected exceptions. The 

rest rows show the number of observed exceptions based on different length of historical window 

with different significance levels.  

Table 4.3 The numbers of exceptions by means of historical simulation. 

P-values of Kupiec test are higher than: 5%*, 10%**, 15%*** 

From table 4.3, we prefer to see that the number of observed exceptions as close to expected 

value. For all significance levels, the longer the historical window, the less the observed exceptions. 

If the number of observed exceptions is lower than excepted value, that means the current model 

is overestimating VaR. If the number of observed exceptions is higher than excepted value, that 

means the current model is underestimating VaR. In table 4.3, the results of p-value are divided 

Exceptions 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

Expected 302.7 201.8 100.9 50.45 20.18 10.09 

O
b
se

rv
ed

 

m = 21 301*** 189*** 96*** 121 103 96 

m = 42 306*** 208*** 98*** 55*** 66 58 

m = 63 310*** 199*** 98*** 50*** 50 41 

m = 125 300*** 204*** 104*** 45*** 21*** 24 

m = 250 291*** 210*** 101*** 51*** 19*** 13*** 

m = 500 261 189*** 83* 40** 15*** 10*** 
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into three different accuracy intervals based on Kupiec test. The p-value higher than 5% is recorded 

as *, higher than 10% recorded **, higher than 15% recorded as ***.  

Table 4.4 P-values of Kupiec test 

P-value (K-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 91.6% 33.8% 61.4% 0.0% 0.0% 0.0% 

m = 42 83.7% 64.7% 76.6% 52.2% 0.0% 0.0% 

m = 63 65.0% 83.5% 76.6% 94.9% 0.0% 0.0% 

m = 125 86.6% 87.1% 75.3% 42.9% 85.5% 0.0% 

m = 250 46.3% 54.5% 99.2% 93.8% 79.0% 37.9% 

m = 500 0.8% 33.8% 6.0% 12.2% 22.5% 97.7% 

Table 4.5 P-values of Christoffersen test 

P-value (C-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 15.6% 6.8% 12.4% 16.6% 5.0% 12.4% 

m = 42 0.8% 0.5% 6.6% 68.9% 57.5% 79.7% 

m = 63 0.1% 0.4% 2.6% 16.7% 16.7% 26.6% 

m = 125 0.0% 0.0% 5.6% 9.7% 50.6% 44.7% 

m = 250 0.0% 0.0% 3.9% 78.6% 54.8% 68.1% 

m = 500 0.1% 0.0% 7.3% 20.3% 63.5% 75.2% 

In the table 4.4, the accuracy of this model is represented. The higher the p-value, the more 

accurate the model. Note that there are several p-values of Kupiec test equal to zero. Because as 

the VaR estimated, the function PERCENTILE.EXC only works if α is between 1/𝑚 and 1 −

1/𝑚. For the smaller significance levels, we apply the function PERCENTILE.INC for smaller 𝑚, 

which is less accurate, but it works for any value of α between 0 and 1. Therefore, the p-values 

by means of PERCENTILE.INC is zero. Because of the unprecise function, we cannot distinguish 

if the model is accurate or not with p-value of zero in this case. According to the table 4.4, we can 

draw a conclusion that the most results of the numbers of observed exceptions can be statistically 

accepted, except only overestimating VaR with significance level of 15% for historical window of 
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500. The numbers of observed exceptions are rejected of which the VaR estimated by 

PERCENTILE.INC. 

The table 4.5 shows the p-value of Christoffersen test. As we can see with significance level 

of 15% and 10%, only the empirical result can be accepted from 21 days. For significance level of 

5%, the acceptable empirical results are historical windows of 21, 42, 125 and 500. The p-value of 

them shows poor accuracy of the model. However, for the significance levels of 2.5%, 1% and 

0.5%, all the empirical results are accepted, although some of them the VaR is underestimated. 

Overall, the acceptable empirical results of Kupiec test are more than Christoffersen test, and more 

resealable.  

Figure 4.1 VaR estimation using historical simulation 

 

In order to represent more visually, we make figure 4.1. The exceptions shown in the figure is 

the part of observed loss above the VaR at a given significance level. According to our statistical 

result, the historical window of 250 is more accuracy for all selected significance levels than others. 

So, we choose the historical window of 250 days, VaR estimation with significance levels of 10%, 

5%, and 1%.  
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According to the shape of VaR curves, we can see they maintain a fixed level over a period of 

time. That is the unique characteristic of historical simulation to the other VaR estimation methods. 

Because when we calculated the VaR by means of historical simulation, we utilize the given 

quantile of historical returns as a negative VaR estimation. The given quantile is determined by 

significance level. So, the VaR might be unchanged for a while. From the figure we can observe 

that the huge volatility happened at August and October in 2012, January in 2014, August in 2015 

and January in 2016. Especially in January 24, 2013, the stock price from $53.14 decreased to 

$46.57, which fall more than 12%.  

4.2 Filtered Historical Simulation 

The VaR estimation measure of filtered historical simulation is introduced in the chapter 2.6.2. 

In this chapter, we explain the application procedure by means of Excel. Similarly to previous 

chapter, we represent the simplified example first and then empirical study. For filtered historical 

simulation, the AR (1)-GARCH (1,1) is applied. 

4.2.1 Simplified Example 

Compared with procedure of historical simulation, the FHS method is more complex. The 

selected history prices, the significance level of 30% and historical window of 10 are the same as 

historical simulation. The difference of procedure is that we need to find out several parameters for 

calculating one day ahead VaR estimation. In our case, we suppose that the expected mean value 

of return over the whole period is zero, and there is no autocorrelation of returns. That means all 

random variables follow normal distribution. In the simplified example, we mainly state the 

formulations that we need to utilize, what the procedure is, and explain the result briefly. 

A Mathematical formulation 

According to formulas (2.16), (2.19), (2.20), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the 

mathematical formulation in the table 4.6. First, we need to set up solver and calculate the 

parameters of GARCH (1,1) model over one period. Then, we calculate the VaR estimation and its 

backtesting. 
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Table 4.6 Mathematical formulation by means of filtered historical simulation 

Daily return 

 𝑅𝑖 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1. (E1) 

Objective function 

 
𝐿(𝜔, 𝛼, 𝛽) = ∑ 𝑧𝑡

𝑡

→ 𝑚𝑎𝑥.  

Constraints 

 α + β < 1, (C1) 

 ω, α, β ≥ 0, (C2) 

where  

 
𝑧𝑡 = −𝑙𝑛𝜎𝑡,𝑡−1

2 −
𝑅𝑡

2

𝜎𝑡,𝑡−1
2 , (R1) 

 𝜎𝑡+1,𝑡
2 = 𝜔 + 𝛼 ∙ 𝑅𝑡

2 + 𝛽 ∙ 𝜎𝑡,𝑡−1
2  (R2) 

Standardized residual returns 

 𝑒𝑡 =
𝑅𝑡

𝜎𝑡
. (E2) 

VaR estimation 

 𝑉𝑎𝑅𝑡+1 = 𝜎𝑡+1𝑞𝛼, (E3) 

Logical values that the observed loss exceed estimated loss 

 𝐼𝑡 = {
1, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) > 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)

0, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) ≤ 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)
. (E4) 

Likelihood ratio of Kupiec test 

 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = 2𝑛0 ∙ 𝑙𝑜𝑔 (
𝑛0

𝑛
) + 2𝑛1 ∙ 𝑙𝑜𝑔 (

𝑛1

𝑛
) − 2𝑛0 ∙ 𝑙𝑜𝑔(1 − 𝛼) − 2𝑛1 ∙ 𝑙𝑜𝑔(𝛼), (E5) 

where 

 𝑛 =  𝑛0 + 𝑛1. (E6) 

Likelihood ratio of Christoffersen test 

 𝐿𝑅𝑖𝑛𝑑 = −2 ∙ {[(𝑛01 + 𝑛11) ∙ ln(𝜋) + (𝑛00 + 𝑛10) ∙ ln(1 − 𝜋)] − [𝑛01 ∙ ln(𝜋0) +

𝑛00 ∙ ln(1 − 𝜋0) + 𝑛11 ∙ ln(𝜋1) + 𝑛10 ∙ ln(1 − 𝜋1)]}.  
(E7) 
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where  

 𝜋0 =
𝑛01

𝑛00 + 𝑛01
, 𝜋1 =

𝑛11

𝑛10 + 𝑛11
, 𝜋 =

𝑛01 + 𝑛11

𝑛00 + 𝑛01 + 𝑛10 + 𝑛11
, (E8) 

Chi-squared distribution 

 𝐿𝑅 ~ 𝑋2(𝑘). (E9) 

In the table 4.6, the 𝜔, 𝛼, 𝛽 are parameters, 𝑒𝑡 is standardized residual returns, 𝑅𝑡 is daily 

return, 𝜎𝑡 is daily volatility, 𝜎𝑡+1 is volatility forecast.  

B procedure 

1. Calculating the daily return according to formula (E1).  

2. Calculating the forecasted conditional variance 𝜎𝑡+1,𝑡
2   according to (R2). For the 

unconditional variance, we utilize Excel function AVERAGE. 

3. Setting up the Solver and calculating the parameters of GARCH (1,1) model over one period, 

see figure 4.2. 

4. Calculating the forecast VaR according to (E3). We utilize Excel function PERCENTILE.EXC 

to determine the quantile of standardized residual returns 𝑒𝑡 . The standard deviation 𝜎𝑡+1 

which is square root of variance 𝜎𝑡+1,𝑡
2  is calculated by Excel function SQRT. 

5. Calculating whether the true loss is higher than VaR estimation or not according to (E4). We 

can utilize the Excel function IF. 

6. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (E5), and (E7).  

7. Calculating the p-value of Kupiec test and Christoffersen test using the CHISQ.DIST function. 

C Solution and interpretation 

Table 4.7 shows the procedure and result of VaR estimation and its backtesting by means of 

filtered historical simulation. Figure 4.2 shows the setting procedure of GARCH model by means 

of Solver. From table 4.7, we find out the parameters of ω = 0.0000, α = 0.0000, β = 0.99423. 

As we can see there are 5 days that the observed loss exceeds VaR estimation. For backtesting, the 

number of observed exceptions are 5, and our expected value is 6. The p-value of Kupiec test and 

Christoffersen test are 62% and 94.62%. 
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Table 4.7 VaR estimation and its backtesting using filtered historical simulation 
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Figure 4.2 Solver – the GARCH model 

 

4.2.2 Empirical Study 

Following the procedure of simplified example, we can do the statistical testing by means of 

filtered historical simulation for AAPL from December 3, 2007 to December 29, 2017. In the 

empirical study, we mainly state the value of parameters by means of Solver, and verify the 

accuracy of VaR estimation utilizing filtered historical simulation based on different length of 

historical windows at different significance levels. Then, we show VaR estimation in figure 4.3. 

Focusing on estimated parameters, we calculate them by means of Solver. The results are shown 

as table 4.8. The numbers of obtained exception are shown in table 4.9 and p-values of Kupiec test 

and Christoffersen test are shown in table 4.10 and table 4.11 respectively. 
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Table 4.8 Parameters estimation 

Parameters Value 

ω 0.000012 

α 0.090008 

β 0.896438 

Table 4.9 The numbers of exceptions for filtered historical simulation 

P-values of Kupiec test are higher than: 5%*, 10%**, 15%*** 

Table 4.10 P-values of Kupiec test. 

P-value (K-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 96.5% 72.1% 92.7% 0.0% 0.0% 0.0% 

m = 42 91.6% 70.1% 47.6% 23.5% 0.0% 0.0% 

m = 63 96.5% 59.5% 99.2% 61.9% 0.0% 0.0% 

m = 125 60.6% 66.6% 99.2% 94.9% 96.8% 0.0% 

m = 250 72.2% 66.6% 83.1% 83.5% 85.5% 72.6% 

m = 500 15.3% 23.5% 99.2% 94.9% 79.0% 97.7% 

As can be seen form the table 4.9, most of the numbers of exceptions can be statistically 

accepted based on Kupiec test. Note that the rejected numbers of exceptions are calculated by 

function PERCENTILE.INC, which is not working as we needs. This point we already discussed 

in chapter 4.1.2. If we ignore the results which are calculated by PERCENTILE.INC, all the 

Exceptions 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

Expected 302.7 201.8 100.9 50.45 20.18 10.09 

O
b
se

rv
ed

 

m = 21 302*** 197*** 100*** 125 107 100 

m = 42 301*** 207*** 94*** 59*** 63 61 

m = 63 302*** 209*** 101*** 47*** 49 39 

m = 125 311*** 196*** 101*** 50*** 20*** 25 

m = 250 297*** 196*** 103*** 49*** 21*** 9*** 

m = 500 280*** 186*** 101*** 50*** 19*** 10*** 
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numbers of exceptions can be statistically accepted. Moreover, the number of exceptions do not 

rely on the chosen length of historical window. 

Table 4.11 P-values of Christoffersen test. 

P-value (C-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 1.1% 3.6% 18.3% 23.7% 17.1% 18.3% 

m = 42 0.4% 0.7% 1.4% 12.4% 5.9% 15.3% 

m = 63 0.4% 0.5% 20.0% 12.1% 15.0% 22.2% 

m = 125 0.0% 0.1% 20.0% 4.1% 52.7% 42.8% 

m = 250 0.0% 0.0% 11.5% 85.4% 50.6% 77.6% 

m = 500 0.1% 0.0% 9.3% 82.0% 54.8% 75.2% 

Figure 4.3 VaR estimation using filtered historical simulation 

 

Compared with the results of historical simulation, the results of filtered historical simulation 

indicate the greater accuracy, because the numbers of observed exceptions are closer to the 

expected values and the most of p-values are higher in general. The Kupiec test is more reflected 

point than Christoffersen test. For visual representation, we choose the historical window of 250 
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days to make a figure. The figure 4.2 shows the visual representation of the VaR estimated for 

AR(1)-GARCH(1,1) historical simulation with 250 days of historical window at significance level 

of 10%, 5% and 1%. 

According to figure 4.3, the trend of VaR curves are almost the same as trend of observed loss. 

The degree of fitting is high. That means the model reacts to the volatility quickly. So, in our case, 

the AR(1)-GARCH(1,1) historical simulation is a great accurate model for VaR estimation.  

4.3 Normal Distribution 

The theoretical part of analytical solution for normal distribution was described in chapter 

2.6.3. In this chapter, we introduce the application of normal distribution on VaR estimation and its 

backtesting result. Similarly to previous chapter, we utilize the same period historical data of AAPL 

to represent procedure on simplified example and empirical study. 

4.3.1 Simplified Example 

Similarly to previous chapter, the historical data of simplified example is AAPL form 

December 31, 2007 to February 13, 2008. The historical window is 10 days, and significance level 

we choose 30%. In the simplified example, we mainly state the formulations that we need to utilize, 

the procedure and Excel functions, and explain briefly the result. 

A Mathematical formulation 

According to formulas (2.20), (2.34), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the 

mathematical formulations in the table 4.12. 

In the table 4.12, the 𝐸(𝑅) is expected returns, 𝜎(𝑅) is standard deviation of asset return, 

𝛷𝛼
−1 is an inverse function of normal cumulative distribution function on a given significance level 

𝛼. 

C Procedure 

1. Calculating the daily returns according to formula (E1).  

2. Calculating the forecast VaR according to formula (E2). The inverse function of standard 

normal distribution on given significance level 𝛼 , 𝛷𝛼
−1 , by means of the Excel function 

NORMI.S.INV. The mean value 𝐸(𝑅)  is calculated by Excel function AVERAGE. The 
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standard deviation  𝜎(𝑅) is calculated by Excel function STDEV.S. 

3. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We 

can utilize the Excel function IF. 

4. Calculating likelihood ratio of Kupiec test and Christoffersen test, according to (E4) and (E6).  

5. Calculating the p-values of Kupiec test and Christoffersen test, respectively. They can be 

calculated using the CHISQ.DIST function in Excel. Input arguments are likelihood ratio and 

degree freedom of 1. The cumulative distribution function is selected. 

Table 4.12 Mathematical formulation by means of normal distribution 

Daily return 

 𝑅𝑖 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1. (E1) 

VaR estimation 

 𝑉𝑎𝑅𝑅,𝛼 = −𝐸(𝑅) − 𝛷𝛼
−1 ∙ 𝜎(𝑅) (E2) 

Logical values that the observed loss exceed estimated loss 

 𝐼𝑡 = {
1, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) > 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)

0, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) ≤ 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)
. (E3) 

Likelihood ratio of Kupiec test 

 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = 2𝑛0 ∙ 𝑙𝑜𝑔 (
𝑛0

𝑛
) + 2𝑛1 ∙ 𝑙𝑜𝑔 (

𝑛1

𝑛
) − 2𝑛0 ∙ 𝑙𝑜𝑔(1 − 𝛼) − 2𝑛1 ∙ 𝑙𝑜𝑔(𝛼), (E4) 

where 

 𝑛 =  𝑛0 + 𝑛1. (E5) 

Likelihood ratio of Christoffersen test 

 𝐿𝑅𝑖𝑛𝑑 = −2 ∙ {[(𝑛01 + 𝑛11) ∙ ln(𝜋) + (𝑛00 + 𝑛10) ∙ ln(1 − 𝜋)] − [𝑛01 ∙ ln(𝜋0) +

𝑛00 ∙ ln(1 − 𝜋0) + 𝑛11 ∙ ln(𝜋1) + 𝑛10 ∙ ln(1 − 𝜋1)]}.  
(E6) 

where  

 𝜋0 =
𝑛01

𝑛00 + 𝑛01
, 𝜋1 =

𝑛11

𝑛10 + 𝑛11
, 𝜋 =

𝑛01 + 𝑛11

𝑛00 + 𝑛01 + 𝑛10 + 𝑛11
, (E7) 

Chi-squared distribution 

 𝐿𝑅 ~ 𝑋2(𝑘). (E8) 
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Table 4.13 VaR estimation and its backtesting using normal distribution  
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C Solution and interpretation 

Table 4.13 shows the procedure and result of VaR estimation and its backtesting by means of 

normal distribution. From this table, we can see there are 5 days that the observed loss exceeds 

VaR estimation. For backtesting, the number of observed exceptions are 5, and our expected value 

is 6. The p-value of Kupiec test and Christoffersen test are 62% and 94.62%. Although the number 

of observed exceptions is the same as in previous two simplified examples, the values of VaR 

estimation are different. 

4.3.2  Empirical Study  

Following the procedure of simplified example, we can do the statistical testing by means of 

normal distribution for AAPL from December 3, 2007 to December 29, 2017. The obtained 

numbers of exceptions are shown in table 4.14 and p-values calculated by Kupiec test and 

Christoffersen test are shown in table 4.15 and 4.16, respectively. In the empirical study, we mainly 

verify the accuracy of VaR estimation by means of normal distribution based on different length of 

historical windows at different significance levels. Then, we show the different VaR estimation in 

figure 4.4 and 4.5, according to the different length of historical windows. 

Table 4.14 The numbers of exceptions for normal distribution 

P-values of Kupiec test are higher than: 5%*, 10%**, 15%*** 

From table 4.14 and 4.15, we find that the normal distribution is a poor accuracy model for 

VaR estimation in our case. For all length of historical windows, all the VaR estimation are 

Exceptions 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

Expected 302.7 201.8 100.9 50.45 20.18 10.09 

O
b
se

rv
ed

 

m = 21 264 196*** 120* 78 54 41 

m = 42 254 180** 107*** 71 40 31 

m = 63 232 170 100*** 71 35 25 

m = 125 238 153 92*** 57*** 34 26 

m = 250 238 159 91*** 56*** 33 25 

m = 500 212 153 75 43*** 22*** 18 
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overestimating with 15% and underestimating with 0.5%. Only the following VaR estimation can 

be statistically accepted: 

 VaR estimation from 21 and 42 days with significance level of 10%. 

 VaR estimation from 21 days or longer historical windows, except 500 days with 

significance level of 5%. 

 VaR estimation from 125 days or longer historical windows with significance level of 

2.5%. 

 VaR estimation from 500 days with significance level of 1%. 

Therefore, we can draw a conclusion that the VaR estimation by means of normal distribution 

is only statistically accepted with some specific conditions and the results indicate a poor accuracy 

of the model. 

Table 4.15 P-values of Kupiec test 

P-value (K-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 1.4% 66.6% 5.8% 0.0% 0.0% 0.0% 

m = 42 0.2% 10.0% 53.7% 0.6% 0.0% 0.0% 

m = 63 0.0% 1.6% 92.7% 0.6% 0.3% 0.0% 

m = 125 0.0% 0.0% 35.6% 36.0% 0.5% 0.0% 

m = 250 0.0% 0.1% 30.4% 43.7% 0.9% 0.0% 

m = 500 0.0% 0.0% 0.6% 27.6% 68.8% 2.5% 

Table 4.16 P-values of Christofferson test 

P-value (C-test) 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.025 𝛼 = 0.01 𝛼 = 0.005 

O
b
se

rv
ed

 

m = 21 0.4% 0.5% 7.5% 57.3% 68.7% 85.7% 

m = 42 0.0% 0.0% 0.2% 1.4% 24.3% 50.0% 

m = 63 0.0% 0.1% 0.1% 1.4% 14.8% 31.7% 

m = 125 0.1% 0.1% 0.3% 2.6% 13.2% 34.5% 

m = 250 0.0% 1.6% 0.9% 8.9% 56.8% 42.8% 

m = 500 0.0% 0.0% 8.0% 93.0% 48.6% 56.9% 



 

55 

 

Similarly to previous chapter, table 4.16 shows the p-value of Christofferson test. For all 

length of historical windows, the empirical results are rejected with significance level of 15% and 

10%. Only the following VaR estimation can be statistically accepted: 

 VaR estimation from 21 and 500 days with significance level of 5%, but the accuracy of 

them are poor. 

 VaR estimation form 21 days, 250 and 500 days with significance level of 2.5%. 

 For significance level of 1% and 0.5%, the VaR estimation from all length of historical 

windows. 

Figure 4.4 VaR estimation using normal distribution with historical window of 21 days 

 

Moreover, the degree of accuracy of this model depends on the length of historical window 

by means of normal distribution. So, we make the figure 4.4 and 4.5 to comparing the VaR 

estimation at given significance level with different length of historical window.  

Compared figure 4.4 and 4.5, we can see that the VaR estimation is more volatile with 

historical window of 21 days. The curve of VaR estimation with historical window of 500 days is 

more stable than 21 days. Therefore, we can draw a conclusion that in general, the longer the 
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historical windows, the more stable VaR estimation by means of normal distribution. 

Figure 4.5 VaR estimation using normal distribution with historical window of 500 days 

 

4.4 Student's t-distribution 

The theoretical part of analytical solution for Student distribution is described in chapter 2.6.3. 

For the small significance level, we need Student’s t-distribution, which can reflect the situation of 

heavier tail. According to the empirical results of normal distribution, we can find the most VaR 

estimation are rejected at the smaller significance level (i.e. 1% and 0.5%). Therefore, for empirical 

study, Student’s t-distribution is applied with 0.5% significance level. 

4.4.1 Simplified Example 

Similarly to previous chapter, the historical data of simplified example is AAPL form 

December 31, 2007 to February 13, 2008. The historical window is 10 days, and significance level 

we choose 30%, and we suppose that the degree of freedom is one in our simplified example. 

A Mathematical formulation 

According to formulas (2.20), (2.34), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the 
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mathematical formulation in the table 4.17. 

Table 4.17 Mathematical formulation by means of Student t-distribution 

Daily return 

 𝑅𝑖 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1. (E1) 

VaR estimation 

 𝑉𝑎𝑅𝑅,𝛼 = −𝐸(𝑅) − F𝛼
−1(𝑣) ∙ 𝜎(𝑅) (E2) 

Logical values that the observed loss exceed estimated loss 

 𝐼𝑡 = {
1, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) > 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)

0, if 𝐿𝑅(𝑡; 𝑡 + ∆𝑡) ≤ 𝑉𝑎𝑅𝑅,𝛼(𝑡; 𝑡 + ∆𝑡)
. (E3) 

Likelihood ratio of Kupiec test 

 𝐿𝑅𝐾𝑢𝑝𝑖𝑒𝑐 = 2𝑛0 ∙ 𝑙𝑜𝑔 (
𝑛0

𝑛
) + 2𝑛1 ∙ 𝑙𝑜𝑔 (

𝑛1

𝑛
) − 2𝑛0 ∙ 𝑙𝑜𝑔(1 − 𝛼) − 2𝑛1 ∙ 𝑙𝑜𝑔(𝛼), (E4) 

where 

 𝑛 =  𝑛0 + 𝑛1. (E5) 

Likelihood ratio of Christoffersen test 

 𝐿𝑅𝑖𝑛𝑑 = −2 ∙ {[(𝑛01 + 𝑛11) ∙ ln(𝜋) + (𝑛00 + 𝑛10) ∙ ln(1 − 𝜋)] − [𝑛01 ∙ ln(𝜋0) +

𝑛00 ∙ ln(1 − 𝜋0) + 𝑛11 ∙ ln(𝜋1) + 𝑛10 ∙ ln(1 − 𝜋1)]}.  
(E6) 

where  

 𝜋0 =
𝑛01

𝑛00 + 𝑛01
, 𝜋1 =

𝑛11

𝑛10 + 𝑛11
, 𝜋 =

𝑛01 + 𝑛11

𝑛00 + 𝑛01 + 𝑛10 + 𝑛11
, (E7) 

Chi-squared distribution 

 𝐿𝑅 ~ 𝑋2(𝑘). (E8) 

In the table 4.17, 𝐸(𝑅)  is expected returns, 𝜎(𝑅)  is standard deviations of asset return, 

𝐹𝛼
−1(𝑣) is an inverse function of cumulative Student t-distribution function on a given significance 

level 𝛼 with freedom degree of 𝑣.  

C Procedure 

1. Calculating the daily return according to formula (E1).  

2. Calculating the forecast VaR according to formula (E2). 𝐹𝛼
−1(𝑣)  is an inverse function of 

cumulative Student t-distribution on given significance level 𝛼, by means of the Excel function 
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Table 4.17 VaR estimation and its backtesting using Student t-distribution  
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3. T.INV with degree of freedom of one. The mean value 𝐸(𝑅) is calculated by Excel function 

AVERAGE. The standard deviation  𝜎(𝑅) is calculated by Excel function STDEV.S. 

4. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We 

can utilize the function IF. 

5. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (E4) and (E6).  

6. Calculating the p-value of Kupiec test and Christoffersen test. It can be calculated using the 

CHISQ.DIST function in Excel. Input arguments are likelihood ratio and degree freedom of 1, 

and cumulative distribution function is selected. 

C Solution and interpretation 

Table 4.17 shows the procedure and result of VaR estimation and its backtesting by means of 

Student t-distribution. From this table, we can see there are four days that the observed loss exceeds 

VaR estimation. They occurred on January 16, 23, and February 6 and 12, 2008. For backtesting, 

the numbers of observed exception are 4, and our expected value is 6. The p-values of Kupiec test 

and Christoffersen test are 31% and 21.14%. 

4.4.2 Empirical Study 

Following the procedure of simplified example, we can do the statistically testing by means 

of Student t-distribution for AAPL from December 3, 2007 to December 29, 2017. The obtained 

numbers of exception are shown in table 4.18. The p-values of Kupiec test and Christoffersen test 

are shown in table 4.19 and table 4.20. From the empirical result of normal distribution, the 

numbers of observed exceptions are totally rejected with significance level of 0.5%. So, we choose 

the significance level of 0.5% for empirical study utilizing Student t-distribution. In this way, we 

can observe the small numbers of exceptions. As we mentioned in chapter 2.6.3, as the degree of 

freedom 𝜈  increase, the Student t-distribution becomes closer to normal distribution. In this 

empirical study, we mainly verify which value of degree of freedom is best suited for our case by 

means of Student t-distribution. 

According to the table 4.18, we can see that for the same significance level, there are the 

different number of observed exceptions based on different degrees of freedom. Due to the same 



 

60 

 

significance level of 0.5%, the number of expected exceptions are the same, approximately 10 days. 

As we can see, when degree of freedom is 3, the VaR is overestimated. For degree of freedom of 5 

and 9, the most numbers of observed exceptions are accepted. The most accurate model is with 

degree of freedom of 7. We can see the table 4.19 that all p-values are higher than 15% with degree 

of freedom of 7 at 0.5% significance level. 

Table 4.18 The numbers of exception for Student t-distribution 

Exceptions 𝜈 = 3 𝜈 = 5 𝜈 = 7 𝜈 = 9 

Expected 10.09 10.09 10.09 10.09 

O
b
se

rv
ed

 

m = 21 2 7*** 13*** 16* 

m = 42 1 6*** 10*** 16* 

m = 63 1 5* 12*** 15** 

m = 125 1 5* 11*** 15** 

m = 250 1 4 10*** 10*** 

m = 500 1 5* 8*** 9*** 

P-values of Kupiec test are higher than: 5%*, 10%**, 15%*** 

Table 4.19 P-values of Kupiec test. 

P-value (K-test) 𝜈 = 3 𝜈 = 5 𝜈 = 7 𝜈 = 9 

O
b
se

rv
ed

 

m = 21 0.2% 30.2% 37.9% 8.6% 

m = 42 0.0% 16.2% 97.7% 8.6% 

m = 63 0.0% 7.5% 55.8% 14.9% 

m = 125 0.0% 7.5% 77.7% 14.9% 

m = 250 0.0% 2.9% 97.7% 97.7% 

m = 500 0.0% 7.5% 49.4% 72.6% 

From the table 4.20, we can see that all the numbers of observed exceptions are statistically 

accepted by means of Christoffersen test, and all the p-values are higher than 15%, which shows a 

great accuracy. Moreover, the number of exceptions do not rely on the chosen length of historical 

window. 
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Table 4.20 P-values of Christoffersen test. 

P-value (C-test) 𝜈 = 3 𝜈 = 5 𝜈 = 7 𝜈 = 9 

O
b
se

rv
ed

 
m = 21 95.0% 82.5% 68.1% 61.3% 

m = 42 97.5% 85.0% 75.2% 61.3% 

m = 63 97.5% 87.5% 70.5% 63.5% 

m = 125 97.5% 87.5% 72.8% 63.5% 

m = 250 97.5% 90.0% 75.2% 75.2% 

m = 500 97.5% 87.5% 80.1% 77.6% 

Figure 4.6 VaR estimation using Student t-distribution (𝛼 = 0.5%, 𝑛 = 21) 

 

The figure 4.6 shows the VaR estimation with different degrees of freedom from historical 

window if 21 days. The figure 4.7 shows the VaR estimation with different degrees of freedom 

from historical window of 500 days. As we can see that for empirical study based on Kupiec test, 

with significance level of 0.5% the most accurate degree of freedom for VaR estimation by means 

of Student’s t-distribution is 7. In the figure 4.6 and 4.7, the red curve shows the degree of freedom 

of 7, which is most accurate one. Based on Christoffersen test, the VaR estimation at all the four 
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degrees of freedom is accepted and they have great accuracy. Comparing figure 4.6 and 4.7, we 

can see that the VaR estimation is more fluctuate from historical window of 21 than historical of 

500. Therefore, we can draw a conclusion that similarly to normal distribution, the longer the 

historical window the more stable VaR estimation. 

Figure 4.7 VaR estimation using Student t-distribution (𝛼 = 0.5%, 𝑛 = 500) 
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5 Conclusion 

The objective of the thesis is to verify different VaR estimation approaches by means of 

backtesting on chosen time series.  

In the second chapter, we mainly discuss the historical simulation, filtered historical 

simulation, analytical solutions with normal distribution and Student t-distribution and Mont Carlo 

simulation. The historical simulation is a non-parametrical method for VaR estimation based on 

historical observed returns, which the procedure is repeated many times using all past returns. The 

filtered historical simulation overcome the defect of historical simulation that the volatility 

clustering does not considered. Therefore, the filtered historical simulation method is to utilize 

these standardized residuals rescaled by the actual volatility. The analytical solution computes an 

asset’s maximum loss based on the price movements of asset over a past period within a probability 

level. It is based on assumption that the asset returns follow a given probability distribution. In the 

thesis, we introduced two types probability distributions, normal distribution and Student t-

distribution. Monte Carlo simulation is another method of VaR estimation method. The basis of the 

Monte Carlo simulation method of calculating VaR that generates random movements in the risk 

factors by using past events to model future return distribution of an asset. But we do not utilize 

this method for VaR estimation in empirical study, because of its complexity. 

VaR has become one of the most popular methods for measuring market risk. But the worrying 

issue is the accuracy of VaR estimations. In the third chapter, we described the fundamental 

properties of an accurate VaR model, unconditional coverage, the independence property and joint 

properties. The Kupiec’s unconditional coverage test and Christoffersen’s conditional coverage test 

are applied in empirical studies. 

From the presented backtesting results of particular VaR estimation methods, we can 

summarize following findings. The most accurate method of VaR estimation is filtered historical 

simulation. The filtered historical simulation is a semi-parametrical method which is a combination 

of volatility model and non-parametrical model. The second-best model is historical simulation, 

which is non-parametrical method. The analytical solution is only suitable for several specific 
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situations in terms of normal distribution method. The most appropriate situations we already 

mentioned before. Considering the Student t-distribution, the most accurate degree of freedom is 

founded by means of backtesting procedure. The longer the historical window, the more stable VaR 

estimation. 
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Annex A 

Table A-1 Distribution of numbers of exceptions by binomial distribution (𝜋𝑒𝑥 = 0.01, 𝑛 =

250) 

𝑛1 Pr(𝑛1|𝜋𝑒𝑥, 𝑛) F(𝑛1|𝜋𝑒𝑥, 𝑛) 1 − F(𝑛1|𝜋𝑒𝑥, 𝑛) 

0 8.1% 8.1% 91.9% 

1 20.5% 28.6% 71.4% 

2 25.7% 54.3% 45.7% 

3 21.5% 75.8% 24.2% 

4 13.4% 89.2% 10.8% 

5 6.7% 95.9% 4.1% 

6 2.7% 98.6% 1.4% 

7 1.0% 99.6% 0.4% 

8 0.3% 99.9% 0.1% 

9 0.1% 100.0% 0.0% 

10 0.0% 100.0% 0.0% 

11 0.0% 100.0% 0.0% 

12 0.0% 100.0% 0.0% 

13 0.0% 100.0% 0.0% 

14 0.0% 100.0% 0.0% 

15 0.0% 100.0% 0.0% 
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Table A-2 Distribution of numbers of exceptions by binomial distribution (𝜋𝑒𝑥 = 0.03, 𝑛 =

250) 

𝑛1 Pr(𝑛1|𝜋𝑒𝑥, 𝑛) F(𝑛1|𝜋𝑒𝑥, 𝑛) 1 − F(𝑛1|𝜋𝑒𝑥, 𝑛) 

0 0.0% 0.0% 100.0% 

1 0.4% 0.4% 99.6% 

2 1.5% 1.9% 98.1% 

3 3.8% 5.7% 94.3% 

4 7.2% 12.8% 87.2% 

5 10.9% 23.7% 76.3% 

6 13.8% 37.5% 62.5% 

7 14.9% 52.4% 47.6% 

8 14.0% 66.3% 33.7% 

9 11.6% 77.9% 22.1% 

10 8.6% 86.6% 13.4% 

11 5.8% 92.4% 7.6% 

12 3.6% 96.0% 4.0% 

13 2.0% 98.0% 2.0% 

14 1.1% 99.1% 0.9% 

15 0.5% 99.6% 0.4% 
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Annex B 

Figure B. Stock price of AAPL from December 31, 2007 to December 29, 2017 

 

Source: https://finance.yahoo.com. 
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