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1 Introduction

“All of life is the management of risk, not its elimination.”

— Walter Wriston, former chairman of Citicorp

Financial markets are always changing, and the change can be positive or negative. The
prospect of gain or loss is a consequence of change, which therefore leads to risk, and risk (or more
precisely, downside risk) is something that is sometimes inevitable in financial markets. The
acceptance of risk does not invariably imply the elimination of risk, which clearly is impossible.
Nor does it imply that one should not mitigate risks and accept consequent losses fatalistically. It
means that risk requires management. Decide on what risks to avoid and how to avoid them. What
risks should be accepted, the terms of accepting them and what new risk to take on. (Dowd, 1999)
Therefore, risk management should establish a risk quantification method firstly, and secondly, to
develop and implement a validation by means of backtesting technique for the Value of Risk
(henceforth VaR).

In the thesis, the objective is to verify different VaR estimation approaches by means of
backtesting on chosen time series. However, in order to provide an exhaustive description about
the backtesting process in the empirical part, we first discuss VaR estimation approaches in general
and the theory of backtesting method.

The thesis consists of five chapters. The first one is the introduction, which states the objective
of the thesis and the structure of the thesis.

The second chapter describes the basic idea behind VaR and gives some background and
history on the subject. Then, it mainly describes the methods of VaR estimation, which consists of
description of their main principals, formulations, advantages and disadvantages.

The third chapter concentrates on the description of backtesting procedure. Several statistical
tests are presented in detail.

The fourth chapter describes the empirical study of the thesis, which can be considered to be
the core of this study. Some of the tests presented in the preceding chapter are applied to actual

VaR calculations. In order to show the calculation steps of VaR estimation and backtesting



procedures clearly, we present simplified examples in the beginning of each empirical study. Then,
the empirical results are discussed in detail.
The fifth chapter concludes and reviews the most significant results of both theoretical and

empirical parts.



2 Description of Risk Measures

“The stock market will fluctuate”
J. P. Morgan, when asked what the market was going to do.
Financial theory defines risk as the dispersion of unexpected outcomes owing to movements
in financial variables. Therefore, both positive and negative deviations should be viewed as sources
of risk. To measure risk, one has to define first the variables, which could be portfolio value,
earnings, capital, or particular cash flows. Since risk needs to be quantified, this chapter lays the
approaches of market risk measurement, see Jorion (2006). First, we introduce the background of
value at risk, market risk and the principles of risk measures. Then, the value at risk and conditional
value at risk are defined. Next, we introduce three methods of value at risk estimation, which is
most important in this chapter. Finally, we compare these three methods, and state their advantages,

disadvantages, and the situations when they are proper for application.

2.1 History of VaR

The problem of risk measurement is an old one in statistics, economics and finance. Financial
risk management has been a concern of regulators and financial executives for a long time as well.
Retrospective analysis has found some VaR-like concepts in this history. But VaR did not emerge
as a distinct concept until the late 1980s. The triggering event was the stock market crash of 1987.
This was the first major financial crisis in which a lot of academically-trained quants were in high
enough positions to worry about firm-wide survival, see Jorion (2006).

After the collapse of Herstatt Bank, the central bank governors of G10 countries established
the Basel Committee. In order to strengthen the stability of the international banking system to
withstand shocks, the Basel Committee announced the Basel I Accord in 1988, published a set of
minimum capital requirements for banks. Duo to the introduction of Basel I Accord, banks became
broad-based providers of financial services and the trading activities in bonds, equities, foreign
exchange and commodities began playing a more significant role. However, the risk arising from
these trading activities were not only credit risk, but market risk, which was a new risk category

separated from credit risk. So, the Basel Committee in 1996 issued the Market Risk Amendment,



that focused on the effect of a bank’s positions in various market-traded financial assets—foreign
exchange, debt securities, equities, commodities, and derivatives, see Apostolik (2009). In
particular, the VaR methods invented by J.P. Morgan, that is quantitative analysis of market risk
were allowed to apply. In 1997, the U.S. Securities and Exchange Commission ruled that public
corporations must disclose quantitative information about their derivatives activity. Major banks
and dealers chose to implement the rule by including VaR information in the notes to their financial
statements. Worldwide adoption of the Basel Il Accord, beginning in 1999 and nearing completion
today, gave further impetus to the use of VaR. VaR is the preferred measure of market risk, and

concepts similar to VaR are used in other parts of the accord, see Jorion (2006).

2.2 Market Risk

According to Apostolik (2009), market risk is exposure to the uncertain market value of an
asset or a portfolio. Usually, market risk includes two components: the general market risk and
specific risk. The former affects financial market and the latter only affects individual financial
assets. According to the different objectives of the risk occurrence, the market risk is distinguished:
foreign exchange risk, interest rate risk, equity risk and commodity risk. Foreign exchange risk is
the potential loss due to an adverse change in foreign exchange rates and applies to all exchange
rate-related products whose positions are valued in a currency that differs from the bank’s reporting
currency. Interest rate risk is the potential loss due to adverse changes in interest rates. Equity risk
is the potential loss due to an adverse change in the price of stocks and applies to all instruments
that use equity prices as part of their valuation—for example, derivative products such as futures
contracts. Commodity risk is the potential loss from an adverse change in commodity prices. This
applies to all commodity positions and any derivative commodity positions such as futures

contracts.

2.3 Principles of Risk Measures

Generally speaking, the development of risk measurement goes through three stages: firstly,

the traditional risk measurement stage with variance and risk factors as the main indicators. In the



thesis, the risk factor is regarded as price of selected assets. Secondly, the modern risk measurement
stage represented by the VaR; and finally risk measurement stage represented by Conditional VaR
(henceforth CVaR). In the thesis, we focus on VaR and CVaR method.

Artzner et al. (1997) explain the principle of risk measurement, they regarded the risk quantity
as a measure of capital needs, that is, in a certain period of time, at least the amount of capital that
an enterprise should reserve to meet the security requirements. In this thesis, the VaR of single
financial asset is measured. So, for a single asset X, quantity of risk measure p(X) should satisfy
following principle:

1. Subadditivity: p(X +7Y) < p(X) + p(Y). This formula shows that the overall risk of the

portfolio does not exceed the sum of all individual risks;

2. Monotonicity: if X <Y, p(X) = p(Y). Ifthe value of asset X is less or equal to the value
of asste Y, the risk of X should be greater or equal to the risk of Y. In other words, the
risk of good assets should be less than the risk of inferior assets.

3. Positive homogeneity: p(a-X) = a - p(X). This formula shows that for financial risk
measurement, it should not be affected by the unit of measurement.

4. Translation invariance: p(X + @) = p(X) — a. This equation implies that if the amount

of cash «a is added into the asset X, it offset corresponding risk of X.

2.4 Value at Risk

VaR is defined as the predicted loss at a specific confidence level over a given period of time,
see Glyn, A. (2009). That is to say, for a given period and probability, the VaR measure purports to
indicate an amount of money such that there is that probability of the asset not losing more than
that amount of money over that period. To make it clear, we need to determine the following three
factors: the length of the holding period, the size of the confidence interval and the period of the
observation.

First, the holding period is to determine how long the maximum loss of assets need to be
measured. That means whether the managers are concerned about the value at risk of the assets

within one day or one week or one month. The investors choose the length of holding period by



means of the characteristics of the assets, such as liquidity. For example, for high liquid assets, risk,
returns VaR are often calculated based on daily basis, such as OTC derivatives or stocks. While,
for longer maturities assets, such as pension funds, the holding period can be month or year.

Second, the confidence level is the frequency of possible confidence intervals that contain the
true value of their corresponding parameter, see Cox D.R. (1974). For example, if the support rate
for someone in a general election is 55%, and a 0.95 confidence interval is 50% to 60%. Then his
true support rate falls on interval between 50% and 60% with a probability of 95%. So, his support
rate is less than 50% with a probability of 2.5% (assuming the distribution is symmetrical). In this
case, we call the 0.95 as “confidence level”, which reflects a significance level of 0.05. Usually,
we defined the significance level as «, due to the frequent usage in calculation of VaR and its
backtesting. Applied in single financial asset, if an asset has a one-day 5% VaR of $1 million, that
means there is a 0.05 probability that the asset will fall in value by more than $1 million over a
one-day period if there is no trading. Informally, a loss of $1 million or more on this asset is
expected on 1 day out of 20 days (because of 5% probability). In this thesis, a loss which exceeds
the VaR is called exception.

The third is the observation period. The observation period is the overall length of time for
the observations, sometimes referred as the historical window. For example, we can choose
observation period over the previous 6 months, or 1 year to consider the weekly returns volatility
of an asset. In order to avoid the influence of business cycle, the longer the historical data, the
better. However, the longer the period, the greater the possibility of structural changes in the market.
As the result, the historical data is harder to reflect future real performance.

According to the definition of VaR, it can be expressed as follows,

VaR,(X) = inf{x € R: Fx(x) = a}, (2.1)
where a is significance level, X is the underlying (e.g. profit of asset), the Fy is cumulative
distribution function. Therefore, under the specified probability level a, if the profit we regard as
anegative loss, the probability with which the observed loss exceed estimated loss can be expressed

as follows,



Pr(X < -VaR,(X)) = a. (2.2)

From the formula (2.1), we can see the advantages of VaR model. VaR model is simple and
easy to comprehend for market risk measurement, because the risk can be quantified and expressed
as a particular number. In addition, it can be calculated in advance to reduce market risk. That
means the managers will know the market risk of assets before investment. However, VaR
methodology still have several defects.

First, VaR model have no subadditivity. Follow the principle that diversification of investment
can reduce the risk, risk of portfolio should lower than the sum of risk of particular assets. But in
the VaR methodology, the VaR of portfolio may excess the sum of VaR of its asset, which is
contrary to the principle.

Second, VaR methodology is hard to measure the tail risk, which means it cannot measure the
loss under black swan event. There is an assumption of VaR model that the risk of assets obeys
normal distribution. However, in reality, the loss of the assets does not obey normal distribution
based on history data. The VaR model just measure the maximum loss under 99% or 95%
probability, but cannot answer the maximum loss if the black swan event happens with 1% or 5%
probability. So, the VaR model only focus conventional risk with close to center distribution, but
ignore tail risk. For example, there is a bet about the coin tossing. The coin will be throwed seven
times. If the coin faces up under 7 times, the player wins a bet. But if the coin faces up 7 times, the
player losses 127 times bet. In terms of probability, the bet is safe, because there is only 0.78%
probability that the coin faces up 7 times. That is to say, the player will win the bet with 99%
probability. However, there still exist probability of loss with probability of 1%. Once the player

loses, the loss is 127 times as much as the player earns.

2.5 Conditional Value at Risk

In order to overcome the VaR defects, Rockafeller and Uryasev (2000, 2002) proposed the
Conditional Value at Risk (henceforth CVaR). It is also called expected shortfall. CVaR is an
alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

Therefore, the “CVaR at a% level” means the expected return on the assets in the worst a% of

11



cases. The a represents significance level and 1 — a represents confisdence level. For high
values of 1 — a, it ignores the most profitable but unlikely possibilities, while for small values of
o, it focuses on the worst losses. On the other hand, unlike the discounted maximum loss, even for
lower values of a, the CVaR does not consider only the single most catastrophic outcome, see
Rockafellar, Uryasev (2000). CVaR is measure of financial assets risk. It requires a quantile-level
a%, and is defined to be the expected loss of assets value given that a loss is occurring at or below
the quantile.

According to the definition of CVaR, we can know properties of CVaR, and its difference
between VaR. First, the CVaR, increases as a decreases. Second, the 100%-quantile CVaR
equals the expected value of the assets. Third, for a given asset, the CVaR is greater than or equal
to the VaR at the same a level.

If the underlying distribution for X is a continuous distribution, then the CVaR at probability
of a level is equivalent to the tail conditional expectation defined by:

CVaR,(X) = —E[X|X < =VaR, (X)), (2.3)

2.6 Method of Risk Estimation

“One of the most difficult aspects of calculating VaR is selecting among the many types of VaR
methodologies and their associated assumptions.”” (Minnich, 1998)

In this section, we introduce four methods for risk estimation. There are historical simulation,
filtered historical simulation, analytical solution and Monte Carlo simulation. The historical
simulation and filtered historical simulation are based on the history data without parameters. So,
both are non-parametric approach. The analytical solution is a parameters method, and assumes
that assets returns follow a chosen probability distribution, such as chi-squared distribution,
Student's t distribution, normal distribution and so on. Monte Carlo simulation is a process that
random numbers produced by computer to simulate the value of assets returns, which is more

accurate but more complex. Then, we introduce the four methods in detail, respectively.

2.6.1 Historical Simulation

Historical simulation method is a simple, non-parametric approach. If there are numbers of

12



historical data of assets missing, we cannot get a complete data easily. We can collect the change
of its risk factors over the past period based on historical data, and simulate the future return or loss
distribution of assets. Then, we can calculate the VaR under a specified significance level.
Obviously, historical simulation method does not need to assume that the risk factor must be in line
with the specific distribution. The past change and distribution of risk factor directly represents the
future distribution. So, historical simulation method does not need to estimate the parameter, which
is non-parameters method.

The procedure of historical simulation is as follows: First, we should find the risk factors
which effects the return of asset. We utilize the following equation to express the relationship

between value of asset and risk factors:

Vi = V(A (), 3, o, fu (D), (2.4)

where, V, represents the value of asset, f;(t) means risk factors, i =123, ..,n;t=
+1,2,3,...,T, t <0 means past, t =0 means present, ¢ > 0 means future. Usually, the risk
factors can be returns of assets. We select past return of assets for T + 1 trading days as historical
window and calculate the change rate of return of adjacent two days.
Afi(=t) = fi(=t + 1) = fi(=0). (2.5)
Second, assuming the future change of returns will be same as past changes, the future value of
returns can be as follows:
fi®) = fi(0) +Afi(=0), (2.6)
then, we can get the change of value of asset in the future,
AV, =V, =V, (2.7)
Third, the future returns are ranked in increasing order, and calculate VaR corresponding to the
quantile as specified significance level. The AV, are ranked form smallest to biggest for t =
1,2,3,...,T andregard as ky, ky, ks, ..., kr. The equation shows as follows:
AV(k,) = AV(ky) = -+ = AV(ki_1) = AV(ky) = -+ = AV(k7). (2.8)
The significance level is a and the [T,] means integral part of quantile T,. Then, we can

calculate the VaR as follows:



VaRg o = AV(kprj41)- (2.9)

According the principal of historical simulation method, we describe advantages and
disadvantages as follows. First, historical simulation method is simple and easy to calculate. So, it
is acceptable for managers. Second, we do not need the assumption or simulation about parameters
of returns. It can more accurately reflect the probability distribution of risk factors. For example,
the thick tail and skewness of general asset returns may be expressed through historical simulation.
Third, due to the non-parameters characteristic, the problem of estimation errors is avoided.
Moreover, the historical data reflected the volatility and correlation of return on asset. Therefore,
compared with other methods, historical simulation method is less affected by model risk.

However, this method still exits disadvantages, which reflect as follows: First, the historical
simulation method needs too much continuous historical data for getting the future probability
distribution of returns. But, it is hard to collect the large and compete historical data of assets. Duo
to lack of historical data, the loss of extreme events will be not easy to simulate. However, it is not
that the more the history data, the better. The too old historical data cannot predict accurate present
value. Both of two extreme situations can lead to a low degree of precision in the value of risk.
Second, there is an assumption of historical simulation, that the future change of risk factors will
be the same as past performance. This assumption is clearly contrary to realism. So that, we

introduce the filtered historical simulation, which overcomes this disadvantage.

2.6.2 Filtered Historical Simulation

As we mentioned before, we need to know the probability distribution of each time series to
estimate the VaR. But we know that the actual distribution of the returns cannot conform to any
known distribution. The filtered historical simulation (henceforth FHS) methodology was proposed
and developed by Giovanni Barone-Adesi and Kostas Giannopoulos (1998). They allowed for the
volatility of asset return to differ from the volatility of options, which conforms to reality more.
Therefore, we need to introduce the GARCH model at first.

GARCH model (Generalized autoregressive conditional heteroskedasticity) is an extension of

the ARCH model (Autoregressive conditional heteroskedasticity model) developed by Bollerslev



(1986). ARCH Model was proposed by Engle (1982), which solved the problem caused by
traditional econometrics assumption of homoscedasticity of time series variables. This model is
one of the econometric achievement and won the 2003 Nobel Economics Prize.

The ARCH model is appropriate when the error variance in a time series follows an
autoregressive (AR) model; if an autoregressive moving average model (ARMA) model is assumed
for the error variance, the model is a GARCH model. For time series model, let &, represents the
estimated residuals. So, the GARCH model are listed below:

€ = 0¢qy, (2.10)

q:~N(0,1) or q,~t,(0,1), (2.11)

where, q; is random number of normal distribution or t-Student distribution, which is a strong
white noise process (independent and identically distributed, henceforth i.i.d.). and o, is standard

deviation, which should satisfy following form:

p q
@=%+Z@ﬁ;+szg (2.12)
i=1 i=1

where ay, a; and f; are parameters needed to be estimated, a, is a constant in variance
equation, p is the lag parameter of the observed variable, q is the number of lags of the error

term. The parameters of this model are limited for ensuring the non-negativity and stationarity of
the variance process. The conditions are a; >0, f; > 0,and Y!_ a; + X1, B < 1. Within a

class of autoregressive processes with white noises having conditional heteroscedastic variances,
we try to find reasonable models of { y;}. The { y,} is called an autoregressive process of order k
with an GARCH noise of order p, g, in short AR (k)-GARCH (p, q) process, which is expressed

as follows:

k
Ve =t + ) Hi-Yeiten 2.13)

=1

where, ug is the mean constant and y; is parameter, & 1is the error term. Based on the GARCH

model, the short AR (1)-GARCH (1, 1) model for one-period forecasting, is expressed as follows:

Ve = Ho + 1YVi-1 t+ & (2.14)



02 = ag+ a;0%, + Beiq. (2.15)
The residuals should close to a stationary i.i.d. distribution, so that they are suitable for historical
simulation. In the thesis, the daily returns R; of an asset are regarded as &;. We divide the residual
R; by the corresponding daily standard deviation (volatility) estimate o;, so the standardized
residual returns e; can be defined as,

e = (2.16)

O¢

These random standardized residuals are scaled by the deterministic volatility forecast one day
ahead. So, we can get the one day ahead random return y,,,; as follows:

Ver1 = fo + 1Ye + Epyqe (2.17)
According to formula (2.15), the volatility depends on the return simulated on the first day. For
obtaining random residuals &:,,, we utilize standardized residual e; to multiply estimation of

volatility one day ahead o;,1:

Oty1 = \/ao + a,0f + Pet. (2.18)
Here, we suppose that the mean value of return is zero, and there is no autocorrelation of returns.
Then, we can estimate VaR one day ahead with a probability level as follows:
VaReyq = 011" qq- (2.19)
To summarize, the process of FHS method for one day ahead VaR estimation can be following
steps:
1. Selecting a GARCH model, such as AR (1)-GARCH (1,1), and using formula (2.10) and
(2.12) to obtain parameters terms, estimates of the residuals and the variance.
2. Using formula (2.16) to obtain e,.
3. Calculating estimation of volatility one day ahead o;,4 based on formula (2.18).
4. Determining quantile with probability level a, and estimating one day ahead VaR,
according formula (2.19).
From the statistical perspective, the FHS is a semi-parametric model. The price series is not
forced to conform to any kind of probability distribution. Thus, it allows for fat tails, volatility

clusters and changing means. This provides a more accurate estimation in the tails of possible price

16



realizations.

2.6.3 Analytical Solution

As we mentioned before, historical simulation method and FHS methods are belong to non-
parametric or semi-parametric method. Another method for risk estimation, analytical solution is a
parametric method. The analytical solution to calculate the Value at Risk calculates the mean, or
expected value, and standard deviation of an asset.

The analytical solution computes an asset’s maximum loss based on the price movements of
asset over a past period within a probability level. It is based on assumption that the changes in
market parameter and asset returns follow a probability distribution.

For usage of analytical solution, we need to know the concept of variance. The variance is the
square of the standard deviation, and the standard deviation measure that is utilized to quantify the
amount of variation or dispersion of a set of data values. A low standard deviation indicates that
the data points tend to be close to the expected value (also called the mean) of the asset, while a
high standard deviation indicates that the data points are spread out over a wider range of values.
We can say that standard deviation is a measure of the volatility of the investment as well. In this

thesis, the return of assets R; can be defined by:
Py
Pty

R, = ~1, (2.20)

where P;, is asset price at time ¢, P;,_, is asset price at t — 1.

The expected return E(R;) can be written as,

1
E(R) = N

=1

N
R;¢, (2.21)
t

where for single asset, N is the observation period of the asset. The variance 67 and standard

deviation o; of returns can be expressed as,

N
of = %-Z[Ri,t ~ER)]" (2.22)
t=1



N
o= | 2[R —B@L = Jo. (223)
t=1

After the parameters introduced, the probability distribution of asset returns should be
distinguished. In this thesis, the normal distribution and Student’s ¢-distribution are described as
follows.

In probability theory, the normal distribution, also called Gaussian distribution, is a very
common continuous probability distribution. A random variable with a Gaussian distribution is said
to be normally distributed and is called a normal deviate. The normal distribution is useful because
of the central limit theorem. In its most general form, under some conditions (which include finite
variance), it states that averages of samples of observations of random variables independently
drawn from independent distributions converge in distribution to the normal, that is, become
normally distributed when the number of observations is sufficiently large. Physical quantities that
are expected to be the sum of many independent processes (such as measurement errors) often have
distributions that are nearly normal, see Lyon, A. (2014).

The probability density of the normal distribution is defined as follows,

) 1 _(x=p)?
f(xll’tl o ) = '\/ﬁ e 20—2 ) (2'24)
To

where u the mean or expectation of the distribution, o is the standard deviation and o2 is the
variance. The simplest case of a normal distribution is known as the standard normal distribution.

This is a special case when u = 0,0 = 1, and it is described by this probability density function:

() = e 225)
X) =—e , .

4 V2m

where the factor — in this expression ensures that the total area under the curve ¢(x) is equal

Vam

to one.
In figure 2.1 and 2.2, we can see the probability density function and cumulative distribution
function of normal distribution. The blue curve represents the standard normal distribution, which

the mean value is zero and standard deviation is one.



Figure 2.1 Probability density function of normal distribution with different means and

standard deviations.
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Figure 2.2 Cumulative distribution function of normal distribution with different means and

standard deviations.
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In probability and statistics, Student's #-distribution is any member of a family of continuous
probability distributions that arises when estimating the mean of a normally distributed population

in situations where the sample size is small and population standard deviation is unknown. It was
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developed by William Sealy Gosset (1908). If we take a sample of n observations from a normal
distribution, then the #-distribution with v =n — 1 degrees of freedom can be defined as the
distribution of the location of the sample mean relative to the true mean, divided by the sample
standard deviation, after multiplying by the standardizing term +/n. In this way, the #-distribution
can be utilized to say how confident you are that any given range would contain the true mean.

The ¢-distribution has heavier tails, meaning that it is more prone to producing values that fall
far from its mean. This makes it useful for understanding the statistical behavior of certain types of
ratios of random quantities, in which variation in the denominator is amplified and may produce
outlying values when the denominator of the ratio falls close to zero, see Richardson (1994).

The probability density function is symmetric, and its shape is similar to the bell shape of a
standard normally distributed, except that it is a bit lower and wider. As the number of degrees of
freedom grows, the ¢-distribution approaches the normal distribution with mean of 0 and variance
of 1. The figure 2.3 and 2.4 shows the density of the #-distribution for increasing values of v.
Therefore, when the degree of freedom is close to infinity, the Student #-distribution curve is close
to the normal distribution. The blue curves show the situation in figure 2.3 and 2.4.

Figure 2.3 Probability density function of Student’s #-distribution with different degrees of

freedom.

Probability density function
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Figure 2.4 Cumulative distribution function of Student’s #-distribution with different degrees

of freedom.
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Now, we utilize analytical solution to calculate the VaR. Here we assume that the increment

in value of an asset can be formulated by returns as
X=V,"R;, (2.26)
where R; is asset return, V; is the initial asset value. The returns of asset are normal distribution.

According to the formula (2.2), we know that
Pr(X < —-VaR,(X)) = a.
Then, let g = X + VaR and rearrange, we get,
Pr(g <0) =a. (2.27)

After normalization, we apply expected value E(g) and standard deviation ay:

Pr(Q—E(Q) SO—E(g)> e

Og Og

(2.28)

. . —-E
where, according to our assumption, the ga_(w

g9

represents asset return, which is standard normal

distribution. Thus, the cumulative density function ®, can be defined as follows,

tZ
®,(x) = (x;0,1) = e 7 dt. (2.29)

).
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By means of cumulative density function of standard normal distribution, we can write its inverse

function ®;1,

D, <0_—E(9)> = q, (2.30)
9y
0-EW) _ 4100 (2.31)
Oy

Then, putting g back and substitute for X + VaR, we obtain,

0— E(X+VaR) _ o21(a), 03
Ox+VaR
VaR = —®;(a) - o(x) — E(x). (2.33)

Usually, we suppose that expected return is zero, especially for short-term returns. The —®;1(a)
can be written as ®;1(1 — a). The standard deviation can be calculated by formula (2.23). So,
we can simply as follows:

VaR = &;1(1 — a) - o(x). (2.34)

2.6.4 Monte Carlo Simulation

Monte Carlo simulation is another method of risk measures. The basis of the Monte Carlo
simulation method of calculating VaR that generates random movements in the risk factors by using
past events to model future return distribution of an asset.

Financial assets are typical by their random evolution in time. The random evolution of
variable in time is referred to as the stochastic process. In this respect, crucial terms are the
Geometric Brownian motion (also known as Wiener process). In particular, Geometric Brownian
motion is utilized in mathematical finance to model stock prices in the Black—Scholes model. The
Wiener process or Brownian motion is regarded as [td process, which can be defined as follows:

dS = a(S,t) -dt + b(S,t) - dw, (2.35)
where S; means a variable for t > 0, «(:) is drift of random variable and b(:) is its standard
deviation. In addition, dw = €-dt, & is normal random variable with a mean of 0 as well as
variance of 1. Particularly, when a(S,t) = uS,b(S,t) = 05, the geometric Brownian motion can

be defined by:
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dS=p-S-dt+o-S-do. (2.36)

Then, it can be reformulated to interpret clearly:

ds
?zu-dt+0-dw. (2.37)

The Brownian motion is applied on simulation of future change of stock price. First, the continuous
Brownian motion should be discretized. Let t and T represent the initial date and due date, and
the interval [t, T] is divided into n equal small intervals. So, the length of each small interval

should be as follows:

T —t
At = . (2.38)
n

For any initial value S, the price return with formula (dS) can expressed as follows:

0.2
St = Sp - exp <<u — 7) ‘t+o- da)). (2.39)

According to above formula, we can obtain the general stock price evolution and defined the mean

value and variance of stock price for which the parameters are constant and independent on other

variables:
o2
S, =S-exp <u—7>-At+e-\/A_t, (2.40)
E(S7) = Sy - exp(u - At - n), (2.41)
o2
Var(Sy) = S2 - exp <2 <u — 7) - At - n) [exp(a? - At n) —1]. (2.42)

By means of the comparison with other methods of VaR estimation, the Monte Carlo
simulation has number of advantages. First, by means of Monte Carlo, it produces large number of
possible scenarios about risk factors. So, it does not require significant numbers of historical
observations. Compared with historical simulation, the calculated results based on this method is
more accurate. Second, the non-linearity or non-normality problem can be considered. Because it
utilizes possible market scenarios to generate the VaR estimation, instruments, such as options,
(whose value varies in a non-linear way) can be included in the final calculation. Third, it can

consider a wider range of possible outcomes. Because it is not dependent on historical observations
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to determine the VaR estimation, it can consider possible events that could have occurred in the
past but didn’t happen. However, based on historical simulation, it would not consider the
likelihood of an event which had not taken place during the period of observation. Forth, a high
number of outcomes can be generated. By using computer technology, the Monte Carlo simulation
considers a large number of possible scenarios. So that, the numbers of observed exceptions are
large. The distribution of the results is likely to be smoother, giving a more accurate of the VaR
estimation.

Meanwhile, the Monte Carlo simulation has number of defects. First, the calculated results by
Monte Carlo rely heavily on selected stochastic model and historical observation of parameters
estimation. So, it exits the model risk and parameter estimation error. Second, in the model
simulations, we often utilize the pseudo random number. The circulation and clustering might
happen, which might lead to error or failure simulation. Third, due to the large numbers of risk
factors and complicated calculation, it takes a long time to obtain a large number of times for

simulation. But if it has not enough times of simulation, the accuracy of result will decline.

2.7 Comparing the Four Methods

The previous four methods have their own characteristics and no one method is universally
applicable. Each of them has advantages and disadvantages. Linsmeier and Pearson (1996) argue
that the methods differ roughly in four dimensions:

1. The ability of the model to capture risk of options and other non-linear instruments;

2. The relative ease of implementation and that of interpretation by users;

3. Flexibility of the model to incorporate alternative assumptions;

4. Reliability of the results.

The last aspect is a key point of this work as it recognizes the importance of backtesting of
VaR. Then, the advantages and disadvantages of them will be list as follows:

If the observation period is long, the analytic solution will not reflect accurate estimated VaR
well, because it utilizes the linear expansion to approximately reflect the mapping risk. However,

for the option with nonlinear change, if the observation period is longer, the gap between the linear
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approximation and the actual change will be bigger and bigger. This is the main reason why the
parametric method is utilized to calculate VaR of option-based financial instruments failure.

The historical simulation method is simple, and easy to understand and apply. It does not need
assumption of return distribution, also it does not need parameters, such as expected value and
variance, which will lead to avoid error of parameter estimation and risk of model selection.
However, the Monte Carlo simulation needs knowledge of probability statistics, also the process
of calculation is complex and its calculated amount is huge.

The VaR estimates market risk assuming a normal market condition. If the big changes occur
in the future, it will need a flexible method, which will enable to correct the parameter estimates
according to the risk factor. Because historical simulation method directly relies on historical data,
there is no space to add more risk factors in this respect. The analytical solution and Monte Carlo
simulation have greater flexibility. The user can ignore the estimation of parameters and choose
what they think reasonable parameter values to measure market risk.

The historical simulation method directly depends on the historical data. Therefore, when the
selected history data is not representative, the VaR estimated by the historical simulation method
cannot reflect the market risk well. The "thick-tailed problem" often occurs when the parametric
method is applied. At this point, if the estimation of correlation coefficient and standard deviation
are properly corrected, the failure of the VaR estimation can be avoided. Compared with the
parametric method, the extremum method gives up the assumption of normal distribution and
considers the distribution of the tail. In addition, the parametric methods tend to focus on data
features of concentrated distribution, while ignoring the tail of sparse distribution, which is the
most important part of VaR estimation. Therefore, the parametric method has some limitations. In
addition, historical simulation method cannot estimate the risk of loss or return that exceeds the
existence of historical value. Compared with non-parametric methods, historical simulation assume
that the volatility of returns is constant. However, we know that is unreality. The filtered historical
simulation solved this defect, because it does not impose any assumption about the parametric

distribution of returns.
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3 Backtesting Procedure

“VaR is only as good as its backtest. When someone shows me a VaR number, I don’t ask how
it is computed, I ask to see the backtest.” (Brown, 2008).

In the last chapter, we introduced the different VaR estimation approaches. However, not all
of methods are able to accurately predict future risk in the specific cases. Therefore, we need to
assess whether a model is adequate. One of the tools of assessing accuracy is by backtesting. Other
forms include stress testing and scenario analysis, marketing risk reporting, hedging, and so on, see
Apostolik (2009). Furthermore, backtesting is a key approach to market risk management as laid
out by the Basel Committee on Banking Supervision (1996).

The backtesting is a test of how well the current procedure for estimating VaR would have
performed if it had been utilized in the past. For example, we assume the confidence level is 99%.
It involves looking at how often the loss in a day would have exceeded the one-day 99% VaR when
the latter is calculated using the current procedure. Days when the actual loss exceeds VaR are
referred to as exceptions. If exceptions happen on about 1% of the days, we can feel reasonably
comfortable with the current methodology for calculating VaR. If they happen on, say, 7% of days,
the methodology is suspect and it is likely that VaR is underestimated. From a regulatory
perspective, the capital calculated using the current VaR estimation procedure is then too low. On
the other hand, if exceptions happen on, say, 0.3% of days it is likely that the current procedure is
overestimating VaR and the capital calculated is too high.

In order to express clearly whether the calculating VaR is reasonably comfortable or suspect,
we obtain the sequence of logical values corresponding to the fact. If the loss exceeds VaR, it will
be recorded as 1. On the other hand, if the loss is lower than VaR, it will be recorded as 0. Denoting
the backtested VaR over a fixed time interval as [t; t + At], then define sequence I, is defined as

follows,

. 1,  ifLg(tt+ At) > VaRgo(t;t + At) -
= {0, if Lp(t;t + At) < VaRg o(t;t + At) (-1

Christoffersen (1998) points out that the problem of determining the accuracy of a VaR
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model can be reduced to the problem of determining whether the sequence satisfies two properties:
the unconditional coverage property and independence property.

The first is unconditional coverage property. The probability of realizing a loss in excess of
the reported VaRgp, , must be precisely a X 100% or in terms of the previous
notation, Pr (I;,,(a) = 1) = a. If it is the case that losses in excess of the reported VaR occur
more frequently than @ X 100% of the time, then this would suggest that the reported VaR
measure systematically understates the asset’s actual level of risk. The opposite finding of too few
VaR violations would alternatively signal an overly conservative VaR measure, which means VaR
is overestimated.

The second is independence property. The unconditional coverage property places a restriction
on how often VaR violations may occur. The independence property places a strong restriction on
the ways in which these violations may occur. Specifically, any two elements of the sequence must
be independent from each other. Intuitively, this condition requires that the previous history of VaR
violations must not convey any information about whether or not an additional VaR violation, will
occur. If previous VaR violations presage a future VaR violation then this points to a general
inadequacy in the reported VaR measure. In general, a clustering of VaR violations represents a
violation of the independence property that signals a lack of responsiveness in the reported VaR
measure as changing market risks fail to be fully incorporated into the reported VaR measure
thereby making successive runs of VaR violations more likely, see Campbell (2005).

Suppose that the significance level for a one-day VaR is a. If the VaR model utilized is
accurate, the probability of the VaR being exceeded on any given day is m,, = a. The observed
probability of exceptions’ occurring is recorded to as m,ps. Based on sequence I;, the formula
(3.1), the observed number of exceptions will be counted, which we refer to as n;. The n is
referred to as length of the time series backtested. For VaR estimation, we need historical data of
m days, which is referred to as historical window. Note that the length of time series backtested
n should not include the historical window m. That means for obtaining the observed number of

exceptions nq, the backtesting procedure should start form days m + 1. We hope that the observed
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probability of exceptions’ occurring m,p,s is equal to the expected probability of exceptions’

occurring 1., . Therefore, we can consider the null hypothesis and alternative hypothesis as
follows,

Ho: TTops = Moy (3.2)

Hy:mops # Tex (3.3)

We want to know, at a given confidence level, whether n; is too small or too large under the

null hypothesis m,,s = ., in a sample of size n. Note that this test makes no assumption about

the return distribution. The distribution could be normal, or skewed, or with heavy tails, or time

varying. The setup for this test is the classic testing framework for a sequence of success and

failures, also called Bernoulli trials. Under the null hypothesis that the model is correctly calibrated,

the number of exceptions n,; follows a binomial probability distribution:

n
n!
P ,n) = z _— 1, M (1 — n-ny .
r(ny ey, n) n (n—ny)! Tex™ (1 = Tey) (3.4)
ny=m+1

By utilizing this binomial distribution, we can examine the accuracy of the VaR model.
However, when conducting a statistical backtesting that either accepts or rejects a null hypothesis
(of the model being ‘good’), there is a tradeoff between two types of errors. Type 1 error refers to
the possibility of rejecting a correct model and type 2 error to the possibility of not rejecting an
incorrect model. A statistically powerful test would efficiently minimize both of these probabilities.
(Jorion, 2001)

In order to clearly state the relationship between these two types of error, we make the table
3.1. Table 3.1 summarizes these situations and decision. For backtesting purpose, we need to
balance type I errors and type II errors. Ideally, one would want to set a low type I error rate and
then have a test that creates a very low type II error rate, in which case the test is said to be powerful.
It should be noted that the choice of the confidence level for decision rule is not related to the
quantitative level m,, selected for VaR. The confidence level refers to the decision rule to reject
the model, see (Jorion, 2006)

So, for example, we describe the probabilities of observing exactly n; exceptions (second
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column), n; or less exceptions (third column) and more than n; exceptions (forth column) out
of 250 backtesting days and assuming m,, = 0.01 and 0.03, which are shown as the table A-1 and
A-2 in Annex A.

Table 3.1 Decision errors

Decision making Null hypothesis is true Null hypothesis is false
Reject null hypothesis Type I error Correct
Accept null hypothesis Correct Type II error

Figure 3.1 describes the distribution when the model is calibrated correctly, that is, when
e, = 0.01 and with one year of data, n = 250. Assuming that the model is correct (that is, the
actual coverage of the model is 99%), the expected number of days when losses exceed VaR
estimates is 250 X 0.01 = 2.5. One may set the cut-off level for rejecting a model, for instance,
to 5 exceptions. In this case, the probability of committing a type I error is 10.8%. On the other
hand, if the model has an incorrect coverage of 97%, the expected number of exceptions is
250 x 0.03 = 7.5. There is now a 12.8% probability of committing a type 2 error, that is, accepting
an inaccurate model. The horizontal axis represents number of exceptions, and the vertical axis
represents frequency.

Figure 3.1 Distribution of exceptions when model is correct.
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Figure 3.3 Distribution of exceptions when model is incorrect.
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3.1 Kupiec’s Unconditional Coverage Test

Some of the earliest proposed VaR backtests, e.g. Kupiec (1995), focused exclusively on the
property of unconditional coverage. In short, these tests are concerned with whether the reported
VaR is violated more or less than significance level or not. Kupiec (1995), for example, proposed
a proportion of failures (POF) test that examines how many times a financial institution’s VaR is
violated over a given span of time. If we denote the number of exceptions by n; and the total
number of observations by n, we then define the rate of failure as n, /n. Suppose a VaR number is
reported at the confidence interval 1 — a, then an exception occurs if realized loss exceeds the
VaR number. Therefore, the expected number of exceptions n; in atotal of n observationsis « -
n. Certainly, the number of exceptions will not be exactly « - n. Instead, it could swing within an
acceptable range. In the backtesting method, the range for x will be calculated and thus the VaR
model can be accepted or rejected, see Campbell (2005).

The null hypothesis for the POF-test is

ny
Hy: Moy = Mops = 7 (3.5)

We need to find out whether the observed failure rate m,,s 1s significantly different from

Ty, the failure rate suggested by the confidence level. According to Kupiec (1995), the POF-test
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is best conducted as a likelihood-ratio (LR) test. The test statistic takes the form as follows,

7-’-'exn1 (1 - T[ex)no

77:obsn1 (1 - nobs)no '

LRgupicc = —21n (3.6)

where m,, and m,,s are expected probability of exception occurring and observed probability of
exception occurring, respectively, n is the length of the time series backtested, n, is the number

of zero and n; is the number of ones, which are counted by formula (3.1) when the loss exceeds

VaR. We know m,, equals significant level a, m,,s = and n = ngy + ny. Therefore, the

Nno+nq

likelihood ratio can be expressed as follows:

n n
LRgypiec = 21p * In (70) +2n, - In (;1) —2ny - In(1 — o) — 214 - In(). (3.7)

Under the null hypothesis that the model is correct, LRgypiec is asymptotically chi-squared
distributed with one degree of freedom. In probability theory and statistics, the chi-squared
distribution with k degrees of freedom are the distribution of a sum of the squares of k
independent standard normal random variables. The chi-squared distribution with k degrees of
freedom is usually denoted as,

Q ~ X2 (k). (3.8)

The chi-square distribution is a special case of the gamma distribution and is one of the most
widely used probability distributions in inferential statistics, e.g. in hypothesis testing or in
construction of confidence intervals. The chi-squared distribution is used in the common chi-
squared tests for goodness of fit of an observed distribution to a theoretical one, the independence
of two criteria of classification of qualitative data, and in confidence interval estimation for a
population standard deviation of a normal distribution from a sample standard deviation, see
Jonhson et al. (1994).

We know that there are two methods for a test of hypothesis whether the model accept or not,
critical region and p-value. Critical values for a test of hypothesis depend upon a test statistic,
which is specific to the type of test, and the significance level a. Critical values are essentially cut-
off values that define regions where the test statistic is unlikely to lie. For example, a region where

the critical value is exceeded with probability « if the null hypothesis is true. The null hypothesis
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is rejected if the test statistic lies within this region which is often referred to as the rejection regions.
Another quantitative measure for reporting the result of a test of hypothesis is the p-value. The p-
value is the probability of the test statistic being at least as extreme as the one observed given that
the null hypothesis is true. A small p-value is an indication that the null hypothesis is false.

In our cases, the null hypothesis is that the probability of exception occurring is equal to the
expected value, that is what we want to prove. Therefore, we want to accept null hypothesis, which
is contrary to the general statistical test that reject null hypothesis. Furthermore, considering critical
values and p-value, we choose the p-value for testing hypothesis, because the higher p-value the
more accurate the model.

Table 3.2 is a summary table of non-rejection regions for the Kupiec test for various
observation period and confidence levels. The table shows that the interval, expressed as a
proportion n,/n, increases as the sample size increases.

Table 3.2 Non-rejection test confidence regions

Confidence level | Significance level Non-rejection region for number of failures n,
(1-0) (o) n =251 days n =510days | n =1000 days
99.0% 0.01 n <7 1<n; <11 1<n; <17
97.5% 0.025 2<n <12 6<n <21 15<n; <36
95.0% 0.05 6<n <20 16 <n; <36 | 37<n; <65
92.5% 0.075 11<n; <28 | 27<n; <51 | 59<n; <92
90.5% 0.1 16 <n; <36 | 38<n; <65 |81 <n; <120

Source: adapted from Kupiec (1995)
For example, at 95% confidence level, the interval n,/n for accepting the model with 251

observations are in the range

6 20
- 0. . =0. 3.9
[251 0.0239; Tl 0 0797], (3.9)
and compared to 1000 observations, the interval is
37 65
——=0.037;, —— = 0. , 3.10
[1000 0.037 1000 0 065] (3-10)

which is much tighter. With more data, we should be able to reject the model more easily if it is

32



false.

The Kupiec test has two main drawbacks. Firstly, the test is statistically weak with small
sample sizes, for instance the Basel Committee’s regulatory framework sample (250 trading days),
see Jorion (2006). Secondly, the Kupiec test examines only the failure rate (frequency of exceptions)
and not the succession of occurrence. Therefore, it may fail to reject a model that produces serially

dependent exceptions, a common weakness of unconditional coverage tests, see Campbell (2005).

3.2 Christoffersen’s Conditional Coverage Test

A separate issue from the number of exceptions is bunching. If daily assets change is
independent, exceptions should be spread evenly throughout the period used for backtesting. In
practice, they are often bunched together suggesting that losses on successive days are not
independent. An early and influential test in this vein is Christoffersen’s (1998) Markov test. The
Markov test examines whether or not the likelihood of a VaR violation depends on whether or not
a VaR violation occurred on the previous day. If the VaR measure accurately reflects the underlying
asset risk then the chance of violating today’s VaR should be independent of whether or not
yesterday’s VaR was violated, see Campbell (2005). The testing procedure described below is
explained, for example, in Jorion (2006), and in greater detail in Christoffersen (1998).

The test is then set out as follows. Suppose we have data of portfolio returns for T days. Each

day we set a deviation indicator, and set the indicator value as follows:

1,
It = {0

Table 3.3 Contingency table for Markov independence test (Christoffersen, 1998)

if violation occurs

if no violation occurs (3.11)

Iy 1=0 Iy 1 =1
I, = Moo L) Ngo + N1g
Iy = No1 ni1 No1 + Nyq
Ngo + Moy | NMyo +N11

The test is carried out by creating a 2x2 contingency table that records violations of the

institution’s VaR on adjacent days as in Table 3.3. If the VaR measure accurately reflects the asset’s
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risk then the proportion of violations that occur after a previous violation, I,_; = 1, it should be
the same as the proportion of violations that occur after a day in which no violation occurred,
I =0.

In addition, let m; represent the probability of observing an exception conditional on state i

on the previous day. It follows that,
No1 N Nop +Nqq
——,and T = .
Noo + Ng1 + Nyp + Nq1

o= M'nl B Ny + Ny (3-12)

Under the null hypothesis that exceptions are independent across days, then the probabilities
should be equal, m = my = m;. That is, the chance of an exception occurring after a day of no
exception is the same as occurring after a day of an exception (Campbell, 2005). If these
proportions differ greatly from each other, then this calls the validity of the VaR measure into
question.

If the model is accurate, then a VaR violation today should not depend on whether or not a
violation occurred on the previous day (Jorion, 2006). The relevant test statistic for independence

of exceptions is a Likelihood-Ratio (LR) given by:

qo1tnas . (1 —_ n)”oo"‘nlo

LR = —21In ng‘”(l gy (1 — )| (3.13)
In order to simplify the calculation, the formula (3.13) is written as follows:
LRing = =2 {[(no1 + n11) - In(m) + (ngg + ny0) - In(1 — m)] — [no1 * In(mo) + (3.14)

ngo * In(1 — 7o) + nyq * In(mwy) + 1y - In(1 — 141}

Same as with the Kupiec test, the independence test follows the Chi-squared distribution with 1-
degree of freedom. Similarly to previous chapter, if the value of the LR;,,; falls below the critical
value of Chi-squared distribution with 1-degree of freedom, the model passes the backtesting,
otherwise the model is rejected.

The main defect of the Markov test is that its limited power against clustering. It mainly tests
for independence of exceptions on two consecutive days. For instance, it might be the case that the
likelihood of a VaR exception depends not on whether there was an exception the previous day, but

whether there was an exception one week or two weeks ago. Clearly, if this is the way in which the
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lack of the independence property manifests itself, then the Markov test won’t have power to detect

such violations of the independence property.

3.3 The Joint Test of Coverage and Independence

Given the shortcomings of the two tests presented above, it is clear that an accurate VaR
measure should take into account both the unconditional coverage and independence properties.
As such, tests that jointly examine the unconditional coverage and independence properties provide
an opportunity to detect VaR measures which are deficient in one way or another (Campbell, 2005).
One such test of conditional coverage which tests for both proportion of exceptions (unconditional
coverage) and the clustering of exceptions (independence property) is the Christoffersens Interval
Forecast test, again proposed by Christoffersen (1998).

The method again applies the same Likelihood statistic testing framework as Kupiec, but
extends the Kupiec test to jointly test for both unconditional coverage and independence. By
combining the Kupiec test with the independence test, a joint test that examines both properties of
an accurate VaR model is produced. The combined test statistic for conditional coverage is then
given by as follows,

LRee = LRyupice + LRina. (3.15)
and the expansion formula can be written as follows,

7-’-'exnl (1 - T[ex)n0

Hee = 2108 [ T rgymon - (1 = o |

(3.16)

which is a Chi-squared distribution with two degrees of freedom. Similarly to previous chapter,
if the value of the LR, falls below the critical value, the model passes the backtesting, otherwise

the model is rejected.
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4 Empirical Results of Statistical Testing

In this chapter, we present the procedure of application of the selected VaR estimation
approaches and the empirical result of them.

In the thesis, we utilize the single stocks for our calculation. We download the time series data
from the finance.yahoo.com web site. We choose stocks of Apple Inc (AAPL) from American
financial market, which is one of Dow Jones Industrial Average component. The prices are quoted
in USD. The period we choose from December 31, 2007 to December 29, 2017. There are 2519
data in total. The frequency is daily. In the downloaded file, the first to fifth column are “Date”,
“Open”, “High”, “Low”, “Close”, “Adj Close” and “Volume”, respectively. We just keep the first
and fifth columns. The “Adj Close” means the prices are adjusted for splits and dividends paid,
which is the better choice for historical prices. By means of checking, there is no missing data, so
we can insert them into Excel directly, see the figure B in Annex B.

Because of the different historical windows, the length of the time series backtested is different.
In order to unify the length of time series backtested (n), we start VaR estimation for backtesting
from the 501% day. Therefore, the backtesting is performed in period December 24, 2009 to
December 29, 2017. The overall length of the time series backtested n = 2518 — 500 = 2018.
The length of historical window (m) is based on the period of trading days. For example, the m =
21 is approximately one month, m = 63 represents approximately three months, m = 250 means
approximately one year. For each VaR estimation method, we select significance level of 15%,
10%, 5%, 2.5%, 1% and 0.5%.

In order to represent the procedure of application, there are simplified examples in the
beginning of each empirical study by means of different VaR estimation measures. For the
simplified example, we select 31 days only, starting from December 31, 2007 to February 13, 2008.
So, there are 31 historical prices. In terms of significance level, if we give 5% or 1% which are
commonly utilized, the number of observed losses which exceeds VaR is too small to be accurately
deducted, because of the small number of observations. So, we suppose the confidence level is

70%, and significance level o is 30%. The historical window of 10 is given.
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4.1 Historical Simulation

The VaR estimation measure of historical simulation is introduced in the chapter 2.6.1. Now,
we introduce its application by means of Excel. This subchapter is divided into two parts. In the
first part, the mathematical formulation and procedure applied on simplified example will be
described. In the second part, the empirical results are interpreted.

Table 4.1 Mathematical formulations by means of historical simulation

Daily return
Ry ==t 1 (E1)
Y P
VaR estimation
VaRgq = AV(kir)41)- (E2)

Logical values that the observed loss exceed estimated loss

L {1, if Lp(t;t + At) > VaRg o (t; t + At)
t

— 1o, if Lp(t; t + At) < VaRg o(t;t + At) (E3)

Likelihood ratio of Kupiec test

n n
LRyypiec = 219 - log (70) + 2n, - log (71) —2ny*log(1 — a) — 2n, - log(@), (E4)

where
n = ngy+ny. (ES)
Likelihood ratio of Christoffersen test

LRing = =2+ {[(ng1 + nq1) - In(m) + (ngo + ny0) - In(1 — )] — [ngy - In(my) +

(E6)
1’L00 . ln(l —_ 71'0) + n11 " ln(T[l) + n10 " ln(l —_ 7-[1)]}
where
n n Ng; +1n
T = $’ﬂ1 _ 11 = 01 11 ' (E7)
Ngyo + No1 Ny + N1y Ngo + Ng1 + Nyp + Nq1
Chi-squared distribution
LR ~ X?(k). (E8)

4.1.1 Simplified Example

We represent the simplified example by following three steps, mathematical formulations,
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procedure by means of Excel, and solution and interpretation. In the simplified example, we mainly
state the formulations we utilize, how to estimate VaR and its backtesting, and explain briefly the
result.

A Mathematical formulation

According to formulas (2.9), (2.20), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the
mathematical formulations in the table 4.1.

In the table 4.1, AV means the return of asset which is ranked from smallest to biggest, [T, ]
means integral part of quantile T, on a given significance level «. The formula (E8) is a notation,
which means the chi-squared distribution with k degrees of freedom. In Kupiec test and
Christoffersen test, we utilize one degree of freedom for calculating p-value.

B Procedure
1. Calculating the daily return according to formula (E1).

2. Calculating the forecasts of VaR by means of PERCENTILE.EXC, input arguments of the
historical window array and significance level.

3. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We
can utilize the Excel function IF.

4. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (E4) and (E6).

5. Calculating the p-values of Kupiec test and Christoffersen test. They can be calculated using
the CHISQ.DIST function in Excel. Input arguments are likelihood ratio and degree of freedom
of 1. Cumulative distribution function is selected.

C Solution and interpretation

Table 4.2 represents the procedure and result of VaR estimation and its backtesting by means
of historical simulation. From this table, we can see there are five days that the observed loss
exceeds VaR estimation and our expected value is 6. The exceptions occurred on January 16, 22,
23, February 6 and 12 in 2008, when the logical values I, are equal to one. Based on the numbers
of observed exceptions, we can calculate the p-values of Kupiec test and Christofffersen test, which

are 62% and 94.6%, showing the accuracy of this model.
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Table 4.2 VaR estimation and its backtesting using historical simulation

A
Date

B
Adj Close

31/12/07
02/01/08
03/01/08
04/01/08
07/01/08
08/01/08
09/01/08
10/01/08
11/01/08
14/01/08
15/01/08
16/01/08
17/01/08
18/01/08
22/01/08
23/01/08
24/01/08
25/01/08
28/01/08
29/01/08
30/01/08
31/01/08
01/02/08
04/02/08
05/02/08
06/02/08
07/02/08
08/02/08
11/02/08
12/02/08
13/02/08

19.23404
18.91942
18.92817
17.48328
17.24926
16.62878
17.42016
17.28617
16.76861
17.35996
16.41419
15.50142
1562280
15.66844
1511301
13.50403
1316708
1262428
1262428
1277285
12.83499
1314378
1298744
1278353
1256116
11.84649
1177269
12.18440
12.56990
1212420
12.56505

c

D
Return

-0.01636
0.00048
-0.07634
-0.01339
-0.03597
0.04759
-0.00769
-0.02994
0.03527
-0.05448
-0.05561
0.00783
0.00292
-0.03545
-0.10646
-0.02495
-0.04122
0.00000
0.01177
0.00487
0.02408
-0.01189
-0.01570
-0.01739
-0.05690
-0.00623
0.03497
0.03164
-0.03546
0.03636

E F G H | ]
VaR  Exceptions nQO nol nlo nil
=(B3-B2)/B2

=-PERCENTILE.EXC(D3:D12,5M52)

003416
0.04893
0.04893
0.03416
0.03581
0.04877
0.04877
0.05050
0.05050
0.05050
0.03949
0.03230
0.03230
0.03230
0.02268
0.02268
0.01689
0.01456
0.01456
0.0168%

=-PERCENTILE.EXC(D4:D13,5M$2)
=IF(-D13>E13,1,0)
=IF{SUMF13:F14)=0,1,0}
=IF(F14-F13=1,1,0)

=IF(F14-F13=-1,1,0)

DR, OO0k 000000000 OO
OO R OORRRRRER R ROOO R Q
OFRr OO0 O0ORrO000000000R OO
=== =N = = A =R =Rl = = A =R A = A =W
[l R Rl Rl e e B R e B e R e R e B e B e R e O S e B e M
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K L M
Alpha 0.3
Mumber of returns 30
History window 10
n 20
Excepted 6
nl 5
no 15
Kupiec test 0.25
p-value 62%

=IF(SUM(F13:F14)=2,1,0)

=M3-M4
=M5*M2
=SUM(F13:F32)
=M5-M8

=2*M9*LN[M3/M5}+2=MB*LN(M3/
M5)-2*M3*LN(1-M2)-2*ME=LN[M2)

=1-CHISQ.DIST(M10,1,1)

noo0
nol
nl0
nll
0
ml

Christoffersen test
p-value

11
3
4
1
0.2143
02
0.2105
0.0046
94.62%

=1-CHISQ.DIST({MZ3,1,1)

=SUM(G14:5632)
=SUM(H14:H32)
=5UM(114:132)
=SUM(J14:132)
=M17/(M16+M17)

=M19/(M18+M19)

=(M17+M19)/(M16+M17+M18+M19)

=-2*([(M17+M19)*LN[M22)+{M16+M18)*LN(1-
M22)-(M17*LN[M20)+M16*LN(1-
M20}+M19*LN{M21)+M18*LN(1-M21}))

=-PERCENTILE.EXC[D22:D31,5M52)



4.1.2 Empirical Study

In the former subchapter, we describe the procedure of application on VaR estimation and its
backtesting using historical simulation. In the empirical study, we mainly verify the accuracy of
VaR estimation by means of historical simulation based on different length of historical windows
with different significance levels. By means of calculation, the empirical result of VaR estimation
and its backesting for AAPL stock form December 3, 2007 to December 29, 2017 is shown in tables
4.3,4.4 and 4.5. We show the VaR estimation in figure 4.1.

The table 4.3 shows the numbers of excepted exceptions on different significance levels and
the numbers of observed exceptions based on the different historical windows (m). The first row
shows the significance levels. The second row represents the numbers of expected exceptions. The
rest rows show the number of observed exceptions based on different length of historical window
with different significance levels.

Table 4.3 The numbers of exceptions by means of historical simulation.

Exceptions a=015|a=01|a=0.05|a=0.025|a=0.01|a=0.005

Expected 302.7 201.8 100.9 50.45 20.18 10.09
m=21 | 301%*** | 189*** | Qp*** 121 103 96
m=42 | 306%*** | 208*** | QyiHk S5k 66 58

F“;: m=063 | 310%#* | 199*** | QgHk 50%#* 50 41

FC% m =125 | 300%** | 204%#* | 104%** 45HH* 2] HE 24
m =250 | 291*** | 210%** | 10]*** Sk [9*** ] 3k
m =500 261 1 89#:* 83* 40%** [ 5% 10***

P-values of Kupiec test are higher than: 5%%*, 10%**, 15%***

From table 4.3, we prefer to see that the number of observed exceptions as close to expected
value. For all significance levels, the longer the historical window, the less the observed exceptions.
If the number of observed exceptions is lower than excepted value, that means the current model
is overestimating VaR. If the number of observed exceptions is higher than excepted value, that

means the current model is underestimating VaR. In table 4.3, the results of p-value are divided
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into three different accuracy intervals based on Kupiec test. The p-value higher than 5% is recorded

as *, higher than 10% recorded **, higher than 15% recorded as ***.

Table 4.4 P-values of Kupiec test

P-value (K-test) | a = 0.15|a=0.1| a=0.05| a =0.025 | a = 0.01 | « = 0.005

m =21 91.6% 33.8% 61.4% 0.0% 0.0% 0.0%
m =42 83.7% 64.7% 76.6% 52.2% 0.0% 0.0%
m=63 65.0% 83.5% 76.6% 94.9% 0.0% 0.0%

m=125 | 86.6% 87.1% 75.3% 42.9% 85.5% 0.0%

Observed

m=250 | 46.3% 54.5% 99.2% 93.8% 79.0% 37.9%

m =500 0.8% 33.8% 6.0% 12.2% 22.5% 97.7%

Table 4.5 P-values of Christoffersen test

P-value (C-test) | a = 0.15 |a=0.1 | a =0.05 | a =0.025 | « = 0.01 | « = 0.005

m=21 15.6% 6.8% 12.4% 16.6% 5.0% 12.4%

m=42 0.8% 0.5% 6.6% 68.9% 57.5% 79.7%

m =63 0.1% 0.4% 2.6% 16.7% 16.7% 26.6%

Observed

m =125 0.0% 0.0% 5.6% 9.7% 50.6% 44.7%

m =250 0.0% 0.0% 3.9% 78.6% 54.8% 68.1%

m =500 0.1% 0.0% 7.3% 20.3% 63.5% 75.2%

In the table 4.4, the accuracy of this model is represented. The higher the p-value, the more
accurate the model. Note that there are several p-values of Kupiec test equal to zero. Because as
the VaR estimated, the function PERCENTILE.EXC only works if a is between 1/m and 1 —
1/m. For the smaller significance levels, we apply the function PERCENTILE.INC for smaller m,
which is less accurate, but it works for any value of o between 0 and 1. Therefore, the p-values
by means of PERCENTILE.INC is zero. Because of the unprecise function, we cannot distinguish
if the model is accurate or not with p-value of zero in this case. According to the table 4.4, we can
draw a conclusion that the most results of the numbers of observed exceptions can be statistically

accepted, except only overestimating VaR with significance level of 15% for historical window of
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500. The numbers of observed exceptions are rejected of which the VaR estimated by
PERCENTILE.INC.

The table 4.5 shows the p-value of Christoffersen test. As we can see with significance level
of 15% and 10%, only the empirical result can be accepted from 21 days. For significance level of
5%, the acceptable empirical results are historical windows of 21, 42, 125 and 500. The p-value of
them shows poor accuracy of the model. However, for the significance levels of 2.5%, 1% and
0.5%, all the empirical results are accepted, although some of them the VaR is underestimated.
Overall, the acceptable empirical results of Kupiec test are more than Christoffersen test, and more
resealable.

Figure 4.1 VaR estimation using historical simulation

VaR estimation using historical simulation
0.1 Observed loss
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In order to represent more visually, we make figure 4.1. The exceptions shown in the figure is
the part of observed loss above the VaR at a given significance level. According to our statistical
result, the historical window of 250 is more accuracy for all selected significance levels than others.

So, we choose the historical window of 250 days, VaR estimation with significance levels of 10%,

5%, and 1%.
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According to the shape of VaR curves, we can see they maintain a fixed level over a period of
time. That is the unique characteristic of historical simulation to the other VaR estimation methods.
Because when we calculated the VaR by means of historical simulation, we utilize the given
quantile of historical returns as a negative VaR estimation. The given quantile is determined by
significance level. So, the VaR might be unchanged for a while. From the figure we can observe
that the huge volatility happened at August and October in 2012, January in 2014, August in 2015
and January in 2016. Especially in January 24, 2013, the stock price from $53.14 decreased to
$46.57, which fall more than 12%.

4.2 Filtered Historical Simulation

The VaR estimation measure of filtered historical simulation is introduced in the chapter 2.6.2.
In this chapter, we explain the application procedure by means of Excel. Similarly to previous
chapter, we represent the simplified example first and then empirical study. For filtered historical

simulation, the AR (1)-GARCH (1,1) is applied.

4.2.1 Simplified Example

Compared with procedure of historical simulation, the FHS method is more complex. The
selected history prices, the significance level of 30% and historical window of 10 are the same as
historical simulation. The difference of procedure is that we need to find out several parameters for
calculating one day ahead VaR estimation. In our case, we suppose that the expected mean value
of return over the whole period is zero, and there is no autocorrelation of returns. That means all
random variables follow normal distribution. In the simplified example, we mainly state the
formulations that we need to utilize, what the procedure is, and explain the result briefly.

A Mathematical formulation

According to formulas (2.16), (2.19), (2.20), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the
mathematical formulation in the table 4.6. First, we need to set up solver and calculate the
parameters of GARCH (1,1) model over one period. Then, we calculate the VaR estimation and its

backtesting.
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Table 4.6 Mathematical formulation by means of filtered historical simulation

Daily return

-1 (E1)

Objective function

Llw,ap) = Z Z; = max.

t

Constraints
a+p <1, (C1)
w, al B 2 O' (C2)
where
2 R{
2 = —=lnogyy ——— (R1)
Ott-1
0b1r=w+a RE+B-0f4 (R2)
Standardized residual returns
R;
=— E2
€ o (E2)
VaR estimation
VaRi 1 = 0¢419a, (E3)

Logical values that the observed loss exceed estimated loss
L {1, if Lp(t; t + At) > VaRg o (t; t + At)
t

0,  ifLgp(t;t+ At) S VaRg.(t;t + At) (E4)

Likelihood ratio of Kupiec test
Ny nq
LRyypiec = 219 * log (7) + 2n, - log (7) —2ny+log(1 — a) — 2n, - log(@), (ES)
where
n = ngy+n. (E6)
Likelihood ratio of Christoffersen test
LRing = —2 - {[(ng1 + nq1) - In(m) + (o + nyp) - In(1 — )] — [n9 - In(my) +

(E7)
Ngo - In(1 — my) + nyq - In(my) + nyo - In(1 — )1}
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where
Mo1 LT _ Moy + Ny
T[l - T = ’
Nyg +Nqq Noo + Ng1 + Ny + Nq1

T[O_

= —, ES
Ny + No1 E8)

Chi-squared distribution
LR ~ X?(k). (E9)

In the table 4.6, the w,a, are parameters, e, is standardized residual returns, R; is daily
return, o; is daily volatility, o,,4 is volatility forecast.
B procedure

1. Calculating the daily return according to formula (E1).

2. Calculating the forecasted conditional variance o#;, according to (R2). For the
unconditional variance, we utilize Excel function AVERAGE.

3. Setting up the Solver and calculating the parameters of GARCH (1,1) model over one period,
see figure 4.2.

4. Calculating the forecast VaR according to (E3). We utilize Excel function PERCENTILE.EXC
to determine the quantile of standardized residual returns e;. The standard deviation &;,4
which is square root of variance o, is calculated by Excel function SQRT.

5. Calculating whether the true loss is higher than VaR estimation or not according to (E4). We
can utilize the Excel function IF.

6. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (ES), and (E7).

7. Calculating the p-value of Kupiec test and Christoffersen test using the CHISQ.DIST function.

C Solution and interpretation
Table 4.7 shows the procedure and result of VaR estimation and its backtesting by means of
filtered historical simulation. Figure 4.2 shows the setting procedure of GARCH model by means

of Solver. From table 4.7, we find out the parameters of w = 0.0000, a = 0.0000, § = 0.99423.

As we can see there are 5 days that the observed loss exceeds VaR estimation. For backtesting, the

number of observed exceptions are 5, and our expected value is 6. The p-value of Kupiec test and

Christoffersen test are 62% and 94.62%.
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Table 4.7 VaR estimation and its backtesting using filtered historical simulation

A B c D E F G H I ] K L M N o P o} R 5 T
Dats Adj Closs Raturn RAZ Volatility zt 2t VaR Excaptions noo nol nlo nll
31/12/07 | 18.2340 | =(B3-B2)/B2 | =D3°2 || =AVERAGE(E2:£32] =-LM(F3}-E3/F3 S — Faramaters
02/01/08 | 18.9104 7 5.26804 @
0/01/08 | 180282 =5053+30547E3+50557F2 o
04/01/08 | 174832 =-PERCENTILE EXC{H3:H12,50514)*SORT|F13) B
07/01/08 | 17.2403
=IF[-I | -
pB/ol/08 | 166288 IF(-D13>113,1,0} SomiasaspiEan | |Constriants
09/01/08 | 17.4202 4.94397 = IF(SUM{113:114)=0,1,0) 0.994227 1
10/0L/08 | 17.2862 £.54801 LFuLe111.0) o, o B 0
11/01/08 | 167686 5.94035
14/01/08 | 17.3600 0.00 5.68612 =IF(114313=-1,10) Objsctive function  166.85034
15/01/08 | 16.4142 0.00207 4.4D878 =IF(SUM{J13:114)=2,1,0) A
16/01/08 | 155014 7 1
17/01/08 | 156228 0 0 0 1 0 Alpha 0.3
18/01/08 15.6684 35 o 1 0 0 1] Mumber of returns 30
22/01/08 | 151130 3% 1 [ 1 0 [ Histary window 10
23/01/08 | 13.5040 _704758  0.03523 1 [ 0 0 1 n 20 ke
24/01/08 | 131671 _0.60164 | 0.04805 0 0 0 1 0 Expactad B -q17*014
25/01/08 | 12.6243 -1.14503 | 0.04781 [ 1 [} 0 [
28/01/08 | 126243 0.04050 0 1 0 0 [ nl 5 SUM13132)
20/01/08 | 127728 5 0 1 0 0 0 no 15
30/01/08 | 12.8350 1 0 1 0 0 [ Kupisc tast 0.25 SO
3V/0L/08 | 131438 5 0 1 0 0 [ P-valug 520 -3*021°LN(Q21/Q17}+2°Q20° LN
ov/02/08 | 120874 0 1 0 0 o (020/017)-2*Q21*LN(1-014)-
04/02/08 | 127835 0 1 0 0 0 =1-CHISQ.DIST(Q22,1,1) 2*020"LN{T14)
05/02/08 | 12.5612 0 1 0 0 0
DB/02/08 | 118455 1 o 1 0 o =SUM{K14:K32)
07/02/08 | 117727 0 [ 0 1 [ noo 11 —sum(L14.132)
08/02/08 | 12.1844 0 1 0 0 0 noL 3
11/02/08 | 12.5600 0 1 0 0 [ nio a —SUM(M14:M32)
12/02/08 | 12.1242 1 0 1 0 0 n11 1 R Po—
13/02/08 | 12.5650 0 0 0 1 0 =0
il -028/(Q28+023)
— PERCENTILE.EXC(HZ2:H31,50514) *SORT[F32) L3
Christoffarsan tast =031/(Q30+031)
p-valus
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Figure 4.2 Solver — the GARCH model

Set Objective: | s0s11|

To: (@) Max ) Min ) Value Of:

By Changing Variable Cells:
5053:5085

Subject to the Constraints:

5P58 <=1
50535055 =0 Add

Change

Delete

Reset All

Load/Save

Make Unconstrained Variables Non-Megative

Select a Solving GRG Nanlinear b | Options
Method: £

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth.

4.2.2 Empirical Study

Following the procedure of simplified example, we can do the statistical testing by means of
filtered historical simulation for AAPL from December 3, 2007 to December 29, 2017. In the
empirical study, we mainly state the value of parameters by means of Solver, and verify the
accuracy of VaR estimation utilizing filtered historical simulation based on different length of
historical windows at different significance levels. Then, we show VaR estimation in figure 4.3.
Focusing on estimated parameters, we calculate them by means of Solver. The results are shown
as table 4.8. The numbers of obtained exception are shown in table 4.9 and p-values of Kupiec test

and Christoffersen test are shown in table 4.10 and table 4.11 respectively.
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Table 4.8 Parameters estimation

Parameters Value
oo 0.000012
a 0.090008
B 0.896438
Table 4.9 The numbers of exceptions for filtered historical simulation
Exceptions a=015|a=01|a=0.05|a=0.025|a=0.01|a=0.005
Expected 302.7 201.8 100.9 50.45 20.18 10.09
m=21 | 302%** | 197%** | 100%** 125 107 100
m=42 | 301%*%* | 207*%* | Qfkx* S5Q#A* 63 61
§ m=63 | 302%¥* | 209%** | 10]*** 4TH*H 49 39
% m=125| 311%¥*%* | 196*** | 10]*** 50%** 20%** 25
m=250| 297%xx | Jggrrx | (3 49k %% L Qe
m=>500 | 280*** | 186*** | 10]1*** S0%H* 19*** 10***

P-values of Kupiec test are higher than: 5%%*, 10%**, 15%***
Table 4.10 P-values of Kupiec test.

P-value (K-test) | a =0.15 | a=0.1 | a =0.05 | «a =0.025 | « = 0.01 | @« = 0.005

m=21 96.5% 72.1% 92.7% 0.0% 0.0% 0.0%
m =42 91.6% 70.1% 47.6% 23.5% 0.0% 0.0%
m =63 96.5% 59.5% 99.2% 61.9% 0.0% 0.0%

m=125| 60.6% 66.6% 99.2% 94.9% 96.8% 0.0%

Observed

m=250 | 72.2% 66.6% 83.1% 83.5% 85.5% 72.6%

m=500 | 153% 23.5% 99.2% 94.9% 79.0% 97.7%

As can be seen form the table 4.9, most of the numbers of exceptions can be statistically
accepted based on Kupiec test. Note that the rejected numbers of exceptions are calculated by
function PERCENTILE.INC, which is not working as we needs. This point we already discussed
in chapter 4.1.2. If we ignore the results which are calculated by PERCENTILE.INC, all the
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numbers of exceptions can be statistically accepted. Moreover, the number of exceptions do not
rely on the chosen length of historical window.

Table 4.11 P-values of Christoffersen test.

P-value (C-test) | a = 0.15 | a =0.1 | a =0.05 | a = 0.025 | « = 0.01 | @« = 0.005

m=21 1.1% 3.6% 18.3% 23.7% 17.1% 18.3%

m=42 0.4% 0.7% 1.4% 12.4% 5.9% 15.3%

m =063 0.4% 0.5% 20.0% 12.1% 15.0% 22.2%

m =125 0.0% 0.1% 20.0% 4.1% 52.7% 42.8%

Observed

m =250 0.0% 0.0% 11.5% 85.4% 50.6% 77.6%

m =500 0.1% 0.0% 9.3% 82.0% 54.8% 75.2%

Figure 4.3 VaR estimation using filtered historical simulation
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Compared with the results of historical simulation, the results of filtered historical simulation
indicate the greater accuracy, because the numbers of observed exceptions are closer to the
expected values and the most of p-values are higher in general. The Kupiec test is more reflected

point than Christoffersen test. For visual representation, we choose the historical window of 250
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days to make a figure. The figure 4.2 shows the visual representation of the VaR estimated for
AR(1)-GARCH(1,1) historical simulation with 250 days of historical window at significance level
of 10%, 5% and 1%.

According to figure 4.3, the trend of VaR curves are almost the same as trend of observed loss.
The degree of fitting is high. That means the model reacts to the volatility quickly. So, in our case,

the AR(1)-GARCH(1,1) historical simulation is a great accurate model for VaR estimation.

4.3 Normal Distribution

The theoretical part of analytical solution for normal distribution was described in chapter
2.6.3. In this chapter, we introduce the application of normal distribution on VaR estimation and its
backtesting result. Similarly to previous chapter, we utilize the same period historical data of AAPL

to represent procedure on simplified example and empirical study.

4.3.1 Simplified Example

Similarly to previous chapter, the historical data of simplified example is AAPL form
December 31, 2007 to February 13, 2008. The historical window is 10 days, and significance level
we choose 30%. In the simplified example, we mainly state the formulations that we need to utilize,
the procedure and Excel functions, and explain briefly the result.

A Mathematical formulation

According to formulas (2.20), (2.34), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the
mathematical formulations in the table 4.12.

In the table 4.12, the E(R) is expected returns, o(R) is standard deviation of asset return,
@z ! is aninverse function of normal cumulative distribution function on a given significance level
a.

C Procedure
1. Calculating the daily returns according to formula (E1).
2. Calculating the forecast VaR according to formula (E2). The inverse function of standard

normal distribution on given significance level a, ®;', by means of the Excel function

NORMILS.INV. The mean value E(R) is calculated by Excel function AVERAGE. The
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standard deviation o (R) is calculated by Excel function STDEV.S.

3. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We
can utilize the Excel function IF.

4. Calculating likelihood ratio of Kupiec test and Christoffersen test, according to (E4) and (E6).

5. Calculating the p-values of Kupiec test and Christoffersen test, respectively. They can be
calculated using the CHISQ.DIST function in Excel. Input arguments are likelihood ratio and
degree freedom of 1. The cumulative distribution function is selected.

Table 4.12 Mathematical formulation by means of normal distribution

Daily return
R; = Pe 4 (E1)
Py
VaR estimation
VaRgr, = —E(R) — &3 - a(R) (E2)

Logical values that the observed loss exceed estimated loss

L {1, if Lp(t;t + At) > VaRg o (t; t + At)
t

— 1o, if Lp(t; t + At) < VaRg o(t;t + At) (E3)

Likelihood ratio of Kupiec test

n n
LRyypiec = 219 * log (f) + 2n, - log (ﬁ) —2ny*log(1 — a) — 2n, - log(@), (E4)

where
n = ny+ny. (ES)
Likelihood ratio of Christoffersen test

LRing = =2+ {[(ng1 + nq1) - In(m) + (g + n10) - In(1 — )] — [ngy - In(my) +

(E6)
7’100 . ln(l —_ 71'0) + n11 " ln(T[l) + n10 " ln(l —_ 7-[1)]}
where
n n Ngq +1n
T, = $;7T1 _ 11 = 01 11 ' (E7)
Ngo + No1 Ny + N1y Ngo + Ng1 + Nyp + Nq1

Chi-squared distribution
LR ~ X?(k). (E8)
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Table 4.13 VaR estimation and its backtesting using normal distribution

A
Date

B
Adj Close

31/12/07
02/01/08
03/01/08
04/01/08
07/01/08
08/01/08
09/01/08
10/01/08
11/01/08
14/01/08
15/01/08
16/01/08
17/01/08
18/01/08
22/01/08
23/01/08
24/01/08
25/01/08
28/01/08
29/01/08
30/01/08
31/01/08
01/02/08
04/02/08
05/02/08
06/02/08
07/02/08
08/02/08
11/02/08
12/02/08
13/02/08

19.23404
1891942
1892817
17.48328
17.24926
16.62878
17.42016
17.28617
16.76861
17.35996
16.41419
1550142
156228
15 66844
1511301
13.50403
13.16708
1262428
1262428
12.77285
12 83499
13.14378
12 98744
12 78353
1256116
11 84649
1177269
121844
12 5699
121242
12 56505

C D
Return

-0.01636
0.000462
-0.07634
-0.01339
-0.03597
0.047591
-0.00769
-0.02994
0.035265
-0.05448
-0.05561
0.00783
0.002921
-0.03545
-0.10646
-0.02495
-0.04122
0
0.011768
0.004865
0.024058
-0.01189
-0.0157
-0.01739
-0.0569
-0.00623
0.034972
0.031639
-0.03546
0.036361

E E G H | J
YaR  Exceptions  n00 ndl ni0 nll
=(B3-B2)/B2

=-AVERAGE(D3:D12)-
NORM.S.INV[SMS2)*STDEV.5(D3:D12)

=IF(-D13>E12,1,0)

=IF(SUM(F13:F14)=0,1,0)

0.034803
0.039848
0.039356
0.028673
0.031355
0.043913
0.047782
0.050935
0.048539
0.049062
0.045294
0.035801
0.037331
0.038833
0.036808
0.025544
0.0253502
0.016586
0.014634
0.020261

O, OO0 R, 00000000 0R Rk OO
[ B = NSRS R e e == =

=IF[F14-F13=1,1,0)

=IF(F14-F13=-1,1,0)

K L M
Alpha 0.3
MNumber of returns 30
History window 10
n 20
Expected 3]
nl 5
n0 15
Kuplec test 025
p-value 62%

=IF(SUM(F13:F14)=2,1,0)

(=)

QP O 0o 0000000000 o0
= O O Ok OO O OO0 0000k O OO
oo oo o o oo o o000 00Ok oo
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=1-CHISQ.DIST(M10,1,1)

noo
nol
nl0
nil
w0
ml

Christoffersen test
p-value

11
3
4
1
0.2143
0.2
0.2105
0.0046
94.62%

=1-CHISQ.DIST(M23,1,1)

=-AVERAGE(D22:D31)-

=M3-M4
=M5*M2
=SUM(F13:F32)
=M5-M8
=2*M9*LN(MS/M5)+2*ME=LN(MS/

M5)-2*M3*LN(1-M2}-2*ME*LN(M2)

=SUM(G14:G32)
=SUM(H14:H32)
=SUM(114:122)
=SUM(J14:132)
=M17/{M16+M17)
=M19/(M18+M13)

=(M17+M18)/(M16+M17+M18+M13)

=2*([(M17+M19)*LN{M22)+(M16+M18)*LN(1-
M22)}-(M17=LN(M20)+M16FLN(1-
M20)+M1F*LN{M21}+MISFLN({1-M21}))

NORM.S.INV($152)*STDEV.5(D22:D31)



C Solution and interpretation
Table 4.13 shows the procedure and result of VaR estimation and its backtesting by means of
normal distribution. From this table, we can see there are 5 days that the observed loss exceeds
VaR estimation. For backtesting, the number of observed exceptions are 5, and our expected value
is 6. The p-value of Kupiec test and Christoffersen test are 62% and 94.62%. Although the number
of observed exceptions is the same as in previous two simplified examples, the values of VaR

estimation are different.

4.3.2 Empirical Study

Following the procedure of simplified example, we can do the statistical testing by means of
normal distribution for AAPL from December 3, 2007 to December 29, 2017. The obtained
numbers of exceptions are shown in table 4.14 and p-values calculated by Kupiec test and
Christoffersen test are shown in table 4.15 and 4.16, respectively. In the empirical study, we mainly
verify the accuracy of VaR estimation by means of normal distribution based on different length of
historical windows at different significance levels. Then, we show the different VaR estimation in
figure 4.4 and 4.5, according to the different length of historical windows.

Table 4.14 The numbers of exceptions for normal distribution

Exceptions |a=0.15|{a=0.1|a=0.05|a=0.025|a=0.01|a=0.005
Expected 302.7 201.8 100.9 50.45 20.18 10.09
m=21 264 196%** 120* 78 54 41
m =42 254 180** | 107*** 71 40 31
?E) m =63 232 170 100*** 71 35 25
% m =125 238 153 Q2% S57x** 34 26
m =250 238 159 Q1*** 56%** 33 25
m =500 212 153 75 43x*% 22k ¥* 18

P-values of Kupiec test are higher than: 5%*, 10%**, 15%***

From table 4.14 and 4.15, we find that the normal distribution is a poor accuracy model for

VaR estimation in our case. For all length of historical windows, all the VaR estimation are
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overestimating with 15% and underestimating with 0.5%. Only the following VaR estimation can
be statistically accepted:
*  VaR estimation from 21 and 42 days with significance level of 10%.
e VaR estimation from 21 days or longer historical windows, except 500 days with
significance level of 5%.
* VaR estimation from 125 days or longer historical windows with significance level of
2.5%.
*  VaR estimation from 500 days with significance level of 1%.
Therefore, we can draw a conclusion that the VaR estimation by means of normal distribution
is only statistically accepted with some specific conditions and the results indicate a poor accuracy
of the model.

Table 4.15 P-values of Kupiec test

P-value (K-test) | «a = 0.15 | a =0.1 | a =0.05 | «a = 0.025 | « = 0.01 | @ = 0.005

m=21 1.4% 66.6% 5.8% 0.0% 0.0% 0.0%
m =42 0.2% 10.0% 53.7% 0.6% 0.0% 0.0%
? m =63 0.0% 1.6% 92.7% 0.6% 0.3% 0.0%
% m=125 0.0% 0.0% 35.6% 36.0% 0.5% 0.0%
m =250 0.0% 0.1% 30.4% 43.7% 0.9% 0.0%
m =500 0.0% 0.0% 0.6% 27.6% 68.8% 2.5%

Table 4.16 P-values of Christofferson test

P-value (C-test) |« = 0.15 | a =0.1 | a =0.05 | «a =0.025 | « = 0.01 | « = 0.005

m=21 0.4% 0.5% 7.5% 57.3% 68.7% 85.7%

m=42 0.0% 0.0% 0.2% 1.4% 24.3% 50.0%
?é m =063 0.0% 0.1% 0.1% 1.4% 14.8% 31.7%
% m =125 0.1% 0.1% 0.3% 2.6% 13.2% 34.5%
m =250 0.0% 1.6% 0.9% 8.9% 56.8% 42.8%

m =500 0.0% 0.0% 8.0% 93.0% 48.6% 56.9%
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Similarly to previous chapter, table 4.16 shows the p-value of Christofferson test. For all
length of historical windows, the empirical results are rejected with significance level of 15% and
10%. Only the following VaR estimation can be statistically accepted:

*  VaR estimation from 21 and 500 days with significance level of 5%, but the accuracy of

them are poor.

*  VaR estimation form 21 days, 250 and 500 days with significance level of 2.5%.

* For significance level of 1% and 0.5%, the VaR estimation from all length of historical

windows.

Figure 4.4 VaR estimation using normal distribution with historical window of 21 days
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Moreover, the degree of accuracy of this model depends on the length of historical window
by means of normal distribution. So, we make the figure 4.4 and 4.5 to comparing the VaR
estimation at given significance level with different length of historical window.

Compared figure 4.4 and 4.5, we can see that the VaR estimation is more volatile with
historical window of 21 days. The curve of VaR estimation with historical window of 500 days is

more stable than 21 days. Therefore, we can draw a conclusion that in general, the longer the
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historical windows, the more stable VaR estimation by means of normal distribution.

Figure 4.5 VaR estimation using normal distribution with historical window of 500 days
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4.4 Student's 7-distribution

The theoretical part of analytical solution for Student distribution is described in chapter 2.6.3.
For the small significance level, we need Student’s ¢-distribution, which can reflect the situation of
heavier tail. According to the empirical results of normal distribution, we can find the most VaR
estimation are rejected at the smaller significance level (i.e. 1% and 0.5%). Therefore, for empirical

study, Student’s #-distribution is applied with 0.5% significance level.

4.4.1 Simplified Example
Similarly to previous chapter, the historical data of simplified example is AAPL form
December 31, 2007 to February 13, 2008. The historical window is 10 days, and significance level
we choose 30%, and we suppose that the degree of freedom is one in our simplified example.

A Mathematical formulation

According to formulas (2.20), (2.34), (3.1), (3.7), (3.8), (3.12), (3.14) we can list the
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mathematical formulation in the table 4.17.

Table 4.17 Mathematical formulation by means of Student z-distribution

Daily return
R, = it _q (E1)
Yo P
VaR estimation
VaRg o = —E(R) — F,1(v) - o(R) (E2)

Logical values that the observed loss exceed estimated loss
L {1, if Lp(t;t + At) > VaRg o (t; t + At)
t

— 1o, if Lp(t;t + At) < VaRg o(t; t + At) (E3)

Likelihood ratio of Kupiec test

n n
LRyypiec = 219 - log (70) + 2n, - log (71) —2ny*log(1 — a) — 2n, - log(@), (E4)

where
n = ngy+n. (ES)
Likelihood ratio of Christoffersen test

LRing = =2+ {[(no1 + nq1) - In(m) + (ngo + ny0) - In(1 — )] — [ng; - In(my) +

(E6)
7’100 . ln(l —_ 71'0) + n11 " ln(T[l) + n10 " ln(l —_ 7-[1)]}
where
n n Ngy + 1
Ty = 01 = 11 = 01 11 ' (E7)
Ngo + No1 Ny + N1y Nog + N1 + Ny + Nq1
Chi-squared distribution
LR ~ X?(k). (E8)

In the table 4.17, E(R) is expected returns, o(R) is standard deviations of asset return,
F;(v) isaninverse function of cumulative Student ¢-distribution function on a given significance
level a with freedom degree of v.

C Procedure
1. Calculating the daily return according to formula (E1).

2. Calculating the forecast VaR according to formula (E2). F;(v) is an inverse function of

cumulative Student z-distribution on given significance level @, by means of the Excel function
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Table 4.17 VaR estimation and its backtesting using Student z-distribution

A
Date

B
Adj Cloze

31/12/07
02/01/08
03/01/08
04/01/08
07/01/08
08/01/08
09/01/08
10/01/08
11/01/08
14/01/08
15/01/08
16/01/08
17/01/08
18/01/08
22/01/08
23/01/08
24/01/08
25/01/08
28/01/08
29/01/08
30/01/08
31/01/08
01/02/08
04/02/08
05/02/08
06/02/08
07/02/08
08/02/08
11/02/08
12/02/08
13/02/08

19.23404
18.91942
18.92817
17.48328
17.24926
16.62878
17.42016
17.28617
16.76861
17.35996
16.41418
1550142
156228
15.66844
1511301
1350403
1316708
1262428
1262428
1277285
12.83498
1314378
1298744
1278353
1256116
11.84649
1177269
121844
125699
121242
1256505

G D
Return

-0.01636
0.000462
-0.07634
-0.01339
-0.03597
0.047591
-0.00769
-0.02994
0.035265
-0.05448
-0.05561
000783
0.002921
-0.03545
-0.10646
-0.02495
-0.04122
0
0.011768
0.004865
0.024058
-0.01189
-0.0157
-0.01739
-0.0569
-0.00623
0.034972
0.031639
-0.03546
0.036361

E E
VaR Exceptions
=(B3-B2)/B2

=-AVERAGE|D3:D12)-

G
n0o0

TINV($MS$3,5M52)*STDEV.5(D3:D12)

=IF{-D13>E13,1,0)

0.042403
0.04788
0.047482
0.035744
0.038602
0.053285
0.055848
0.058923
0.056758
0.056578
0.050873
0.043563
0.044822
0.046293
0.044176
0.030481
0.028373
0.021729
0.020244
0.026218

[== o == e Y e Y an I o R e [ R - R s [ s R o DY o T il a I I s B

H | J
nol nl0 nll

=IF(SUM(F13:F14)=0,1,0)

o il e R ST o R o S R R R R = N = R S

=IF(F14-F13=1,1,0)

=IF{F14-F13=-1,1,0)

=IF(SUM(F13:F14)

=2,1,0)

DO, OO0 0, OO0 0000 0ok OO0
O OOk OO0 000000 OoFE OO0
Do O OO o o oo o o oo oo o oo
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K L M N 0 P Q
v 1
Alpha 03
MNumier of returns 30
History window 10 =M4-35
4 20 =ME*M3
Excepted 5 -
) 1 =5UM(F13:F32)
o 16 =M6-M3
Kupiec test 103
p-value 31% =2*M10*LN{M10/ME}+2*M3*LN(MS/
ME)-2*M10*LN(1-M3)-2*MI*LN(M3)
=1-CHISQ.DIST(M11,1,1)
=SUM(G14:G32)
noo 12 =SUM(H14:H32
nol 3 (H14:H32)
n10 4 =SUM(114:132)
nll 0 ~ )
-0 0.2000 =SUM()14:132)
w1 0.0000 =M18/(M17+M18)
T 0.1579
Christoffersen test 15621 =M20/(M19+M20)
p-value 21.14%

=1-CHISQ.DIST(M24,1,1)

=-AVERAGE([D22:D31)-

=(M18+M20)/[M17+M18+M19+M20)

= 2*(({MIS+M20)*LN(M23)+(M17+MI1S)*LN(1-M23))-
(MI1Z*LN(M21)+M17=LN{1-M21)+M20=LN(MAX(M22,1E-
50))+M19*LN([1-M22)))

T.INV($MS3,5MS2)*STDEV.S(D22:D31)



3. T.INV with degree of freedom of one. The mean value E(R) is calculated by Excel function
AVERAGE. The standard deviation o(R) is calculated by Excel function STDEV.S.
4. Calculating whether the true loss is higher than VaR estimation or not according to (E3). We
can utilize the function IF.
5. Calculating likelihood ratio of Kupiec test and Christoffersen test according to (E4) and (E6).
6. Calculating the p-value of Kupiec test and Christoffersen test. It can be calculated using the
CHISQ.DIST function in Excel. Input arguments are likelihood ratio and degree freedom of 1,
and cumulative distribution function is selected.
C Solution and interpretation
Table 4.17 shows the procedure and result of VaR estimation and its backtesting by means of
Student 7-distribution. From this table, we can see there are four days that the observed loss exceeds
VaR estimation. They occurred on January 16, 23, and February 6 and 12, 2008. For backtesting,
the numbers of observed exception are 4, and our expected value is 6. The p-values of Kupiec test

and Christoffersen test are 31% and 21.14%.

4.4.2 Empirical Study

Following the procedure of simplified example, we can do the statistically testing by means
of Student ¢-distribution for AAPL from December 3, 2007 to December 29, 2017. The obtained
numbers of exception are shown in table 4.18. The p-values of Kupiec test and Christoffersen test
are shown in table 4.19 and table 4.20. From the empirical result of normal distribution, the
numbers of observed exceptions are totally rejected with significance level of 0.5%. So, we choose
the significance level of 0.5% for empirical study utilizing Student #-distribution. In this way, we
can observe the small numbers of exceptions. As we mentioned in chapter 2.6.3, as the degree of
freedom v increase, the Student #-distribution becomes closer to normal distribution. In this
empirical study, we mainly verify which value of degree of freedom is best suited for our case by
means of Student #-distribution.

According to the table 4.18, we can see that for the same significance level, there are the

different number of observed exceptions based on different degrees of freedom. Due to the same
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significance level of 0.5%, the number of expected exceptions are the same, approximately 10 days.
As we can see, when degree of freedom is 3, the VaR is overestimated. For degree of freedom of 5
and 9, the most numbers of observed exceptions are accepted. The most accurate model is with
degree of freedom of 7. We can see the table 4.19 that all p-values are higher than 15% with degree
of freedom of 7 at 0.5% significance level.

Table 4.18 The numbers of exception for Student ¢-distribution

Exceptions v=3 v=>5 v=7 v=9
Expected 10.09 10.09 10.09 10.09
m=21 2 THRHFE 3% 16*
m=42 1 O*** 10%** 16*
F";j m =63 1 5% 12%** 15%*
% m =125 1 5% L1%** 15%*
m =250 1 4 10%** 10%**
m =500 1 5% GHH* g kk

P-values of Kupiec test are higher than: 5%*, 10%**, 15%***
Table 4.19 P-values of Kupiec test.

P-value (K-test) v=3 v=5 v=7 v=9
m=21 0.2% 30.2% 37.9% 8.6%
m =42 0.0% 16.2% 97.7% 8.6%
? m =63 0.0% 7.5% 55.8% 14.9%
% m=125 0.0% 7.5% 77.7% 14.9%
m =250 0.0% 2.9% 97.7% 97.7%
m =500 0.0% 7.5% 49.4% 72.6%

From the table 4.20, we can see that all the numbers of observed exceptions are statistically
accepted by means of Christoffersen test, and all the p-values are higher than 15%, which shows a
great accuracy. Moreover, the number of exceptions do not rely on the chosen length of historical

window.
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Table 4.20 P-values of Christoffersen test.

P-value (C-test) v=3 v=>5 v=7 v=9
m=21 95.0% 82.5% 68.1% 61.3%
m=42 97.5% 85.0% 75.2% 61.3%
? m=63 97.5% 87.5% 70.5% 63.5%
% m =125 97.5% 87.5% 72.8% 63.5%
m =250 97.5% 90.0% 75.2% 75.2%
m =500 97.5% 87.5% 80.1% 77.6%

Figure 4.6 VaR estimation using Student ¢-distribution (@ = 0.5%,n = 21)
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The figure 4.6 shows the VaR estimation with different degrees of freedom from historical

window if 21 days. The figure 4.7 shows the VaR estimation with different degrees of freedom

from historical window of 500 days. As we can see that for empirical study based on Kupiec test,

with significance level of 0.5% the most accurate degree of freedom for VaR estimation by means

of Student’s ¢-distribution is 7. In the figure 4.6 and 4.7, the red curve shows the degree of freedom

of 7, which is most accurate one. Based on Christoffersen test, the VaR estimation at all the four
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degrees of freedom is accepted and they have great accuracy. Comparing figure 4.6 and 4.7, we
can see that the VaR estimation is more fluctuate from historical window of 21 than historical of
500. Therefore, we can draw a conclusion that similarly to normal distribution, the longer the
historical window the more stable VaR estimation.

Figure 4.7 VaR estimation using Student #-distribution (@ = 0.5%, n = 500)
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5 Conclusion

The objective of the thesis is to verify different VaR estimation approaches by means of
backtesting on chosen time series.

In the second chapter, we mainly discuss the historical simulation, filtered historical
simulation, analytical solutions with normal distribution and Student 7-distribution and Mont Carlo
simulation. The historical simulation is a non-parametrical method for VaR estimation based on
historical observed returns, which the procedure is repeated many times using all past returns. The
filtered historical simulation overcome the defect of historical simulation that the volatility
clustering does not considered. Therefore, the filtered historical simulation method is to utilize
these standardized residuals rescaled by the actual volatility. The analytical solution computes an
asset’s maximum loss based on the price movements of asset over a past period within a probability
level. It is based on assumption that the asset returns follow a given probability distribution. In the
thesis, we introduced two types probability distributions, normal distribution and Student #-
distribution. Monte Carlo simulation is another method of VaR estimation method. The basis of the
Monte Carlo simulation method of calculating VaR that generates random movements in the risk
factors by using past events to model future return distribution of an asset. But we do not utilize
this method for VaR estimation in empirical study, because of its complexity.

VaR has become one of the most popular methods for measuring market risk. But the worrying
issue is the accuracy of VaR estimations. In the third chapter, we described the fundamental
properties of an accurate VaR model, unconditional coverage, the independence property and joint
properties. The Kupiec’s unconditional coverage test and Christoffersen’s conditional coverage test
are applied in empirical studies.

From the presented backtesting results of particular VaR estimation methods, we can
summarize following findings. The most accurate method of VaR estimation is filtered historical
simulation. The filtered historical simulation is a semi-parametrical method which is a combination
of volatility model and non-parametrical model. The second-best model is historical simulation,

which is non-parametrical method. The analytical solution is only suitable for several specific
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situations in terms of normal distribution method. The most appropriate situations we already
mentioned before. Considering the Student #-distribution, the most accurate degree of freedom is
founded by means of backtesting procedure. The longer the historical window, the more stable VaR

estimation.
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Annex A

Table A-1 Distribution of numbers of exceptions by binomial distribution (7., = 0.01,n =

250)
ny Pr(ny |mey, n) F(ny|mey, 1) 1—=F(nylmex, n)
0 8.1% 8.1% 91.9%
1 20.5% 28.6% 71.4%
2 25.7% 54.3% 45.7%
3 21.5% 75.8% 24.2%
4 13.4% 89.2% 10.8%
5 6.7% 95.9% 4.1%
6 2.7% 98.6% 1.4%
7 1.0% 99.6% 0.4%
8 0.3% 99.9% 0.1%
9 0.1% 100.0% 0.0%
10 0.0% 100.0% 0.0%
11 0.0% 100.0% 0.0%
12 0.0% 100.0% 0.0%
13 0.0% 100.0% 0.0%
14 0.0% 100.0% 0.0%
15 0.0% 100.0% 0.0%




Table A-2 Distribution of numbers of exceptions by binomial distribution (7., = 0.03,n =

250)

n, Pr(ny|me,, n) F(ny|mex, ) 1 =F(ny|mex, )
0 0.0% 0.0% 100.0%
1 0.4% 0.4% 99.6%
2 1.5% 1.9% 98.1%
3 3.8% 5.7% 94.3%
4 7.2% 12.8% 87.2%
5 10.9% 23.7% 76.3%
6 13.8% 37.5% 62.5%
7 14.9% 52.4% 47.6%
8 14.0% 66.3% 33.7%
9 11.6% 77.9% 22.1%
10 8.6% 86.6% 13.4%
11 5.8% 92.4% 7.6%
12 3.6% 96.0% 4.0%
13 2.0% 98.0% 2.0%
14 1.1% 99.1% 0.9%
15 0.5% 99.6% 0.4%




Annex B

Figure B. Stock price of AAPL from December 31, 2007 to December 29, 2017
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