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Abstract. The paper presents a vector control with
two cascaded loops to improve the properties of Dy-
namic Voltage Restorer (DVR) to minimize Voltage
Sags on the grid. Thereby, a vector controlled struc-
ture was built on the rotating dq-coordinate system
with the combination of voltage control and the current
control. The proposed DVR control method is mod-
elled using MATLAB-Simulink. It is tested using bal-
anced/unbalanced voltage sags as well as fluctuant and
distorted voltages. As a result, by using this controlling
method, the dynamic characteristics of the system have
been improved significantly. The system performed with
higher accuracy, faster response and lower distortion in
the voltage sags compensation. The paper presents real
time experimental results to verify the performance of
the proposed method in real environments.
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1. Introduction

Voltage sags are one of the most common events that
affect power quality in the distribution system. The

major causes of voltage sags are faults of a grid, such
as a single line to the ground, phase to phase, two-
phase to the ground, three-phase faults due to ac-
cidents, lightning, wind, animals, and other causes.
Other causes include transformer energizing, switching
capacitor banks, and the starting of large induction
motors [6] and [12]. Voltage sags can be symmetric or
asymmetric depending on the causes of sags.

Although voltage sags occur in a short time (from
0.5 cycle to 1 minute) [11], it may affect the operation
of equipment (stalling of motors, tripping of sensitive
loads, and inaccuracy of control devices). These effects
can give a rise in serious production problems, causing
huge economical losses for consumers. According to
an investigation of Schneider Electric in [13], voltage
sags were the largest power quality problems in US
distribution system, as shown in Fig. 1. It is also a
serious problem in Vietnam electric power system.

There are many methods for mitigating voltage
sags, such as UPS (Uninterruptible Power Sup-
ply), SVC (Static VAR Compensator), DSTATCOM
(Distribution-Static Compensator), DVR (Dynamic
Voltage Restorer). The structure of SVC is simpler
than DVR but it has the incapability to control active
power flow. The energy capacity of the DVR is higher
than that of the UPS which has the same power rat-
ing. Additionally, the size of a DVR is smaller than
that of the DSTATCOM. Furthermore, it is the cheap-
est in comparison with the UPS and the DSTATCOM
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Fig. 1: Most common power quality issues (U.S.).

[1], [7]. Therefore, DVR is widely considered as an
effective device in mitigating voltage sags.

This paper is arranged as follows. The proposed vec-
tor control with two cascaded loops method is discussed
in details in Sec. 2. In Sec. 3. the simulation model
using MATLAB-Simulink is illustrated for this control
strategy. One part of the real time experimental result
is represented in Sec. 4. Finally, conclusions are
given in Sec. 5.

2. Proposed Control Method

2.1. Configuration of DVR

The general structure of a DVR consists of a booster
transformer, a harmonic filter, a Voltage Source Con-

verter (VSC), an energy storage and a control system.
The control system is responsible for creating the in-
jected voltage uinj(t) that can be restored the voltage
at the Point of Common Coupling (PCC) with a pre-
set value during the voltage sags. Detailed discussion
of principles and operations of the DVR can be found,
e.g., in [2] and [3].

The three-phase diagram of a grid with DVR is
shown in Fig. 2. Where:

• usa(t), usb(t), usc(t) are the three-phase voltages of
the source.

• uga(t), ugb(t), ugc(t) and iga(t), igb(t), igc(t) are the
grid voltages and the grid currents at PCC, respec-
tively.

• uinv,a(t), uinv,b(t), uinv,c(t) and ifa(t), ifb(t),
ifc(t) are the three-phase voltages and currents
of the VSC, respectively.

• uCa(t), uCb(t), uCc(t) and iCa(t), iCb(t), iCc(t) are
the filter capacitor voltages and currents, respec-
tively.

• uinj,a(t), uinj,b(t), uinj,c(t) and iinj,a(t), iinj,b(t),
iinj,c(t) are the voltages and currents injected by
the DVR, respectively.

• udc(t) is the DC-link voltage.

• uLa(t), uLb(t), uLc(t) are the load voltages.
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Fig. 2: Three-phase diagram of a grid with the dynamic voltage restorer.
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The DVR functions by transferring the voltage sags
compensation value from energy source through the
booster transformer after the filter to restore the nom-
inal voltage. This means that the differential volt-
age between PCC and reference voltage is appeared
when the voltage disturbance occurs in the grid caused
by any events, an equivalent voltage generated by the
VSC should be compensated and injected through the
booster transformer. The possibility of compensating
voltage sags of a particular DVR depends on many fac-
tors including different types of voltage sags, different
load conditions and the power rating that is supplied
to the DVR.

2.2. Mathematical Modelling of
DVR

From structural diagram of DVR, to reduce the compli-
cation of modeling, assuming the injection transformer
is considered ideal with a 1:1 turn ratio. The one phase
diagram of the grid connected VSC is shown in Fig. 3,
where uinvx and ifx are voltage and current of VSC,
uCx and iCx are voltage and current of the filter, uinjx
and iinjx are injected voltage and injected current. Ap-
plying Kirchhoff’s law:

ifx(t) = iCfx(t)+ iinjx(t) = Cf
d
dt
uinjx(t)+ iinjx(t), (1)

uinvx(t)− uinjx(t)−Rf ifx(t)− Lf
d
dt
ifx(t) = 0. (2)

By applying Clarke’s transformation, Eq. (1) and
Eq. (2) can be written in the α, β - coordinate system
as:
d
dt
i
(αβ)
f (t) =

1

Lf
u
(αβ)
inv (t)− 1

Lf
u
(αβ)
inj (t)− 1

Lf
Rf i

(αβ)
f (t),

(3)

d
dt
u
(αβ)
inj (t) =

1

Cf
i
(αβ)
f (t)− 1

Cf
i
(αβ)
inj (t). (4)

Rf Lf

Cf
uinv, x uinj, x

if, x iinj, x

ic, x

Fig. 3: One phase diagram of the grid connected VSC.

After manipulation of these equations, the following
state-space model is obtained:

d
dt
x(t) = Ax(t) +Bu(t) + Ed(t), (5)

y(t) = Cx(t), (6)

where

x(t) = [iαf , i
β
f , u

α
inj , u

β
inj ]

T , u(t) = [uαinv, u
β
inv]

T ,

d(t) = [iαinj , i
β
inj ]

T , y(t) = [uαinj , u
β
inj ]

T ,

A =

−
Rf
Lf

− 1

Lf
1

Cf
0

, B =

 1

Lf

0

, E =

 0

− 1

Cf

,
C =

[
0 1

]
.

The block diagrams for Eq. (5) and Eq. (6) are shown
in Fig. 4.
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Fig. 4: Block diagrams of controller in the αβ - coordinate sys-
tem.

Re-writing the Eq. (5) and Eq. (6):

d
dt

 i(αβ)f

u
(αβ)
inj

 =

−
Rf
Lf

− 1

Lf
1

Cf
0


 i(αβ)f

u
(αβ)
inj


+

 1

Lf

0

 [u
(αβ)
inv ] +

 0

− 1

Cf

 [i
(αβ)
inv ],

(7)

u
(αβ)
inj =

[
0 1

]  i(αβ)f

u
(αβ)
inj

 . (8)

By transforming coordinate system from αβ - to dq -
with a PLL (Phase-Locked Loop) synchronized with
the grid voltage vector, Eq. (3) and Eq. (4) becomes:

d
dt
u
(dq)
inj (t) =

1

Cf
i
(dq)
f (t)− 1

Cf
i
(dq)
inj (t)±jω ·u

(dq)
inj (t), (9)

d
dt
i
(dq)
f (t) =

1

Lf
u
(dq)
inv (t)−

1

Lf
u
(dq)
inj (t)

− 1

Lf
Rf i

(dq)
f (t)∓jω.Lf i(dq)f (t),

(10)

where:
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Fig. 5: Block diagrams of controller in the dq - coordinate system.

• i
(d)
f , i

(q)
f are d and q components of current of the

VSC;

• u
(d)
inj , u

(q)
inj are d and q components of injected volt-

ages;

• u
(d)
inv, u

(q)
inv are d and q components of voltages of

VSC in dq-coordinate system;

• i
(d)
inj , i

(q)
inj are d and q components of injected cur-

rent in dq-coordinate system.

Equation (9) and Eq. (10) can be rewritten as follows:

d
dt



i
(d)
f

i
(q)
f

u
(d)
inj

u
(q)
inj


=



−Rf
Lf

ω − 1

Lf
0

−ω −Rf
Lf

0 − 1

Lf
1

Cf
0 0 ω

0
1

Cf
−ω 0





i
(d)
f

i
(q)
f

u
(d)
inj

u
(q)
inj



+


1

Lf
0

0
1

Lf
0 0
0 0


u(d)inv
u
(q)
inv

+


0 0
0 0

− 1

Cf
0

0 − 1

Cf


i(d)inj
i
(q)
inj

 .
(11)

The block diagrams for Eq. (11) are shown in Fig. 5.

To derive the voltage controller to be implemented in
a digital controller, it is necessary to discretize Eq. (9)

and Eq. (10). This is done by integrating the equation
over one sample period Ts and then dividing by Ts,
thus obtaining:

1

Ts
(u

(dq)
inj (k + 1)− u

(dq)
inj (k)) =

1

Cf
i
(dq)
f (k)− 1

Cf
i
(dq)
inj (k)±jωu

(dq)
inj (k),

(12)

1

Ts
(i

(dq)
f (k + 1)− i

(dq)
f (k)) =

1

Lf
u
(dq)
inv (k)

− 1

Lf
u
(dq)
inj (k)−

1

Lf
Rf i

(dq)
f (k)∓jωu(dq)inj (k).

(13)

Vector controller analysis and designs, its problems and
possible solutions can be found, e.g., in [4], [8], [9], [10]
and [14].

3. Control Strategy of the
DVR

Figure 6 shows the proposed control strategy is devel-
oped based on vector controller method performed on
dq- and αβ - coordinates system with double loops,
the outer loop is voltage controller and the inner loop
is current controller. Both voltages and currents are
analyzed by their sequence components and two sep-
arated controllers are used, the voltage controller can
restore the load voltage both under balanced and un-
balanced conditions of the grid voltage, the current
controller can regulate the injected currents and im-
prove response and operate properly of DVR.
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Fig. 6: Control scheme of DVR applications for mitigating voltage.

3.1. Voltage Controller - Outer Loop

Using PI controller, Eq. (12) can be written as follows:

• with positive components:

i
(dq+)
f (k + 1) = i

(dq+)
inj (k) +GPPI

Cf
Ts

(u
(dq∗+)
inj (k)

− u
(dq+)
inj (k)) + j±ωCfudq−inj (k), (14)

• with negative components:

i
(dq−)
f (k + 1) = i

(dq−)
inj (k) +GNPI

Cf
Ts

(u
(dq∗−)
inj (k)

− u
(dq−)
inj (k)) + j∓ωCfudq+inj (k), (15)

where GPPI and GNPI are integral gain of the voltage
controller for positive and negative components, re-
spectively. The output of the voltage controller is the

reference current idq∗. Figure 8 shows the schematic
structure of voltage controller.
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3.2. Current Controller - Inner Loop

Using PI controller, Eq. (13) can be written as follows:

• with positive components:

u
(dq+)
inv (k) = u

(dq+)
inj (k) +Rf i

(dq+)
f (k)∓jωLf if (dq−)(k)

+GPPI
Lf
Ts

(i
(dq∗+)
f (k + 1)− i

(dq+)
inj (k)), (16)

• with negative components:

u
(dq−)
inv (k) = u

(dq−)
inj (k) +Rf i

(dq−)
f (k)±jωLf if (dq+)(k)

+GNPI
Lf
Ts

(i
(dq∗−)
f (k + 1)− i

(dq−)
inj (k)). (17)

The output of the current controller is the reference
voltage udq. The schematic structure of the current
controller is shown in Fig. 9.
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Finally, cascaded double loop vector controller based
on combining two separated controllers implemented
in the positive and negative sequence, respectively, as
shown in Fig. 7. This means that voltage and cur-
rent on dq- and αβ - coordinates system are separated
into positive and negative sequences, the voltage con-
troller and current controller are used independently,
after that by transforming them into the fixed αβ –
coordinate system.

4. Simulation and Discussion

Three cases of distribution system based on real data
are simulated using MATLAB-Simulink. The numeri-
cal data are taken from case study of co-author in an
existing publication [5]. The cases of study can be rep-
resented as follows:

• Case I: Balanced voltage sags.

• Case II: Unbalanced voltage sags.

• Case III: Fluctuations and distortion voltages
caused by Switching capacitor ON or OFF.

4.1. Case I: Balanced Voltage Sags

The balanced voltage sag occurs while three phases
fault in the grid, during the period from 2 to 2.1 sec-
ond. The voltage of the sensitive load is reduced by
50 % with respect to the reference voltage. Figure 10,
shows grid voltage, injected voltage and load voltage
respectively in three phase and d, q components in ro-
tating dq - coordinate system. The error between d
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and q components of designed injected voltage and real
time experimental injected voltage is shown in Fig. 11.
The information of voltage at PCC and load voltage
in this case is presented in Tab. 1. It can be clearly
seen that the DVR is doing nothing during normal op-
eration but it quickly injects voltage components to
restore the load voltage during voltage sag.
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Fig. 10: Case I-The voltage in three phases and in the dq-
coordinate system: from top to bottom traces are grid
voltages, injected voltages, and load voltages.
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signed injected voltage and real time experimental in-
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Tab. 1: RMS voltage of case I.

Voltage at PCC Balanced Voltage Load voltage
before sag (V) sag at PCC (V) during sag (V)

6320 3180 6220

4.2. Case II: Unbalanced Voltage
Sags

The unbalanced voltage sags are simulated and the re-
sults are shown in Fig. 12 and Fig. 13. The voltage
sags due to unsymmetrical fault in transmission line
started at 2 second and kept until 2.1 second, the pe-
riod of voltage sags is 0.1 seconds. The voltage at the
sensitive load is reduced 28 % in phase A, 35 % in
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Fig. 12: Case II-The difference of d, q components between de-
signed injected voltage and real time experimental in-
jected voltage.

1.95 2 2.05 2.1 2.15
−1

0

1
x 10

4 u
g,abc

1.95 2 2.05 2.1 2.15
−1

0

1
x 10

4 u
inj,abc

1.95 2 2.05 2.1 2.15
−1

0

1
x 10

4 u
L,abc

1.95 2 2.05 2.1 2.15
−10000

−5000

0

5000 u
g,d

u
g,q

1.95 2 2.05 2.1 2.15
−1

0

1
x 10

4

u
inj,d

u
inj,q

1.95 2 2.05 2.1 2.15
−10000

−5000

0

5000 u
L,d

u
L,q
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phase C and little increased 10 % in phase B with re-
spect to the reference voltage (see Tab. 2). Observing
that, the injected voltage was produced by DVR can
restore balanced voltage at the PCC despite of unbal-
anced voltage sags occurring in the grid.

Tab. 2: RMS voltage of case II.

Voltage
Unbalanced voltage Load Voltage

sag in phase in phase
at PCC A B C A B C

(V) (V) (V) (V) (V) (V) (V)
6320 4600 6750 4200 5900 5850 5940

4.3. Case III: Fluctuations and
Distortion Voltages

Fluctuations and distortions voltages can occurred by
switching the capacitor ON and OFF at the station.
In this simulation, the capacitor was switched ON at
2 second and switched OFF at 3 second, the period
of fluctuations and distortions is 1 second. The result
of simulation is shown in Fig. 14 and Fig. 15 where
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Fig. 14: Case III-The voltage in three phases: from top to bot-
tom traces are grid voltages, injected voltages, and
load voltages.

1.98 2 2.02 2.04 2.06 2.08
−1

−0.5

0

0.5

1
x 10

4 d components

q components

1.98 2 2.02 2.04 2.06 2.08
−1

−0.5

0

0.5

1
x 10

4

Designed injected voltage (green line)
real− time experimental inject voltage (blue line)

2.96 2.98 3 3.02 3.04 3.06
−1

−0.5

0

0.5

1
x 10

4

2.96 2.98 3 3.02 3.04 3.06
−1

−0.5

0

0.5

1
x 10

4

Fig. 15: Case III-The difference of d, q components between de-
signed injected voltage and real time experimental in-
jected voltage.

Fig. 14 shows source voltage, injected voltage and load
voltage respectively in three phase and d, q components
in rotating dq - coordinate system, Fig. 15 shows the
difference between d and q component of designed in-
jected voltage and real time experimental injected volt-
age. It can be seen that the DVR is capable to nearly
maintain normal operation of load voltage after about
0.04 second (see Tab. 3).

Tab. 3: RMS voltage of case III.

Voltage at PCC Fluctuations Load voltage
before sag and Distortions during sag

(V) voltage (V) (V)
6320 6950 6450

5. Experimental Results

The experiment of proposed methods for mitigating
balanced voltage sags was performed at the laboratory.
Fig. 16 and Fig. 17 show the experimental setup and its
elements. In this experiment, voltage at the sensitive
load reduced by 50 % due to three-phase fault, during
the period from 1.68 to 3.21 seconds. The result of
experimental is shown in Fig. 18 and Fig. 19 where
Fig. 18 shows source voltage, injected voltage and load
voltage respectively in three phases, Fig. 19 shows d, q
components in rotating dq - coordinate system.

Fig. 16: The picture of experiment setup.

6. Conclusion

In this paper, the summary of the mathematical rep-
resentation and configuration of DVR for mitigating
balanced voltage, unbalanced voltage sags, fluctuant
voltage and distorted voltages was presented. The pa-
per discussed the vector control with two cascaded
loops technique to improve the properties of DVR.
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Fig. 17: The VSC converter using Baumuller Servo-Power-Unit
BUS 621, 622, 623, 624; nominal voltage 600V, nomi-
nal current 20 A.

 

 

 

 

          

          

          

 

Fig. 18: Experimental results for balanced voltage sags: from
top to bottom traces are source voltages, injected volt-
ages, and load voltages.

 

 

 

 

          

          

          

 

Fig. 19: Experimental results for balanced case: from top to
bottom traces are voltage components on the dq - co-
ordinate system of source, injected and load.

The proposed DVR control method was modeled us-
ing MATLAB-Simulink and tested in balanced, unbal-
anced voltage sags and fluctuant voltage and distorted
of voltages. As a result, the system performed with
higher accuracy, faster activated ability and lower dis-
tortion in the sags voltage compensator.

Experimental results from laboratory proved the cor-
rectness and effectiveness of proposed solutions.
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