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Abstract 

Within the research project "FR-TI4/329 Research and development - creating an application 

system for the design and analysis of soil and rock anchors including the development of monitoring 

elements", an extensive stage of field load tests of rock bolts was carried out. The tests were conducted at 

14 locations with varied rock composition. Before the initial tests, a loading stand was designed and 

constructed. A total of 201 pieces of tensile tests of bolts having lengths from 0.5 up to 2.5 m, a diameter 

of 22-32 mm, were performed. These were fully threaded rods, self-drilling rods, and fiberglass rods. The 

bolts were clamped into the cement and resin. The loading tests were always performed until material 

failure of bolts or shear stress failure at the interface cement-rock. At each location, basic geotechnical 

survey was carried out in the form of core drilling in a length of 3.0 metres with the assessment of the 

rock mass in situ, and laboratory testing of rock mechanics. Upon the completion of testing protocols, 

rock mass properties analysis was performed focusing on the evaluation of shear friction at the grouting-

rock interface. 
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1 INTRODUCTION 

As part of the research project – rock anchors, bolts specifically, the application focuses on one of the 

design parameters for the assessment of the elements – friction between the rock bolt and rock mass. The 

function of the steel elements (bolts) is clear – the stabilization of the geological environment in terms of 

preventing movements and the imbalance of forces. The essence of such stabilization consists in both reinforcing 

steel elements that take the tension and part of shear stress, partly constricting (squeezing) the rock pretension 

bolts anchored to mobilize much needed friction on the surfaces of existing discontinuities. Changes to the 

stability of the rock mass are caused either by stress changes due to construction activities (underground 

structures, cut, lop off a load structures) or geological factors. The driving force is primarily gravity loads, 

mainly the self-weight of the rock. 

1.1 Monitored parameters 

The design and evaluation of rock bolts require the determination of several parameters. The main one is 

the resistance against pulling the root portion of the elements. If the root portion is along the entire length of the 

bolt, it is mainly the shear strength in the plane intersected the discontinuity, and after a certain deformation, we 

can speak of a tensile effect of the bolt [4, 5, 6]. 

Own resistance against the loading test, or if you want, the ability to take over the rock anchoring force is 

given by the rock strength in shear or tension, as well as the length and diameter of the root anchorage. The 

tensile strength is particularly used for healthy little disturbed rocks, while the shear strength for rocks with a 

greater frequency of discontinuities [1]. This is related to the evaluation of quality of rock – RQD index. This 

was used as the direction-dependent parameter for the evaluation of the total of 10 locations of 12. Its 

determination is amply described in widely available literature [11]. Its primary advantage consists in the 

independence of rock type, which was used within the research project. 

The size of skin friction at the interface 1 steel-root and 2 root-rock is another parameter important for the 

design and assessment. It is clear that not every violation occurs in contact with the rock. It is therefore important 

to assess both states and based on them adapt the dimensions of anchoring. Within the research, the whole 

interpretation of tensile tests focused on the area 2 root-rock namely because 100% of failures were observed just 

here and also because skin friction values, proven for decades, can be considered for the area 1 [12]. 

1.2 Loading stand  

For tensile tests the ENERPAC 600 hydraulic system was used (Fig.1), which had been calibrated by the 

Czech Metrological Institute. The hydraulic system consists of a hollow cylinder RCH 603, hydraulic pump, 
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pressure gauge indicating the load, thermoplastic hydraulic hose, precision calliper, and a magnetic stand. The 

device is capable of exerting maximum tensile force of 600 kN. 

Prior to the tensile test, a bolt preloaded on the strength of 0.5 kN was tested. The zero reading 

(displacement) was then deducted. Further, loading was carried out according to loading levels (total 5-7 

degrees) to achieve maximum strength or failure of steel – activation of skin friction between grout and rock, in 

parallel with using the monitoring gauge to find out whether there is a pressure drop – tensile strength or the 

development of deformation of the bolt. The time delay between each load stage was twenty minutes or until the 

stabilization of shifts. The shift values in individual load levels were subtracted from the digital slide gauge 

reading. The results were recorded in the test protocols for further processing. 

The custom loading stand (Fig.1) was constructed in the shape of tripod. The arms are made of rolled 

profiles of type HEA. These are connected to the upper and lower gusset plates and each of them is an element 

used for increasing the stiffness associated with high-strength and welded to the central tube. At the ends, the 

arms are fitted with the threaded rods as a locking device relative to the axis of the bolt. The weight of the device 

is put over the temporary upper anchorage decoupling. The reason why this device was designed consists in the 

transfer of compressive forces into solid rock away from the borehole and to a minimum distance of 15 times of 

the diameter of the bolt. In this way, the core to clamp around the bolt is not affected. 

 

 
Fig. 1 Loading stand with hydraulic system 

1.3 Laboratory of rock mechanics  

After determining the index RQD, from the sample boxes appropriate fragments of the drill core were 

excluded, from which regular rock bodies – rollers were cut with a diamond saw. With regard to the necessary 

amount of samples – 5 pcs in the set, the height of the rollers 75 mm was required for the diameter of 45 mm – 

i.e. a slenderness ratio of about 1.67. Other samples – irregular fragments of the drill core are selected directly 

from the sample, according to the needs of the appropriate fragments.  

Determining the index RQD by Hendron in [11] was performed in a conventional manner – by measuring 

the length of the core fragments stored in containers and by the calculation according to the standard equation: 

 𝑅𝑄𝐷 =
𝐿10

0,01𝐿
[%] (1) 

where L10 is the length of all drill core fragments ≥ 10 cm in a given section of the borehole, L is the 

length of the relevant part of the borehole; in this case always the length of 1 meter is considered. 

The determination of bulk density of rock material was carried out by exact measurements of prepared 

rock samples – cut rolls along with the calculation of volume and weighing. The determination of scleroscope 

hardness of rock material was carried out using the apparatus Shore - D type (The Shore Instrument & Mfg. Co. 

NY) adapted methodology and correlation to the tensile uniaxial pressure σc,ss  according to [9] - see (Fig. 2). 
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Fig. 2 The test rocks using Shore scleroscope - type D 

The determination of scleroscope hardness of rock material was performed using the Schmidt hammer, 

type L (Proceq) using the standard methodology for regular rock glands (rollers) and irregular samples 

(fragments of drill core). The regular rock bodies were applied in those cases of an excess of such samples (> 5), 

irregular in other cases. The routine rock bodies (rollers) were tested in the axial direction of the drill core and 

perpendicularly thereto, irregular ones only transversely to the axis of the drill core. The correlation to the 

uniaxial compression strength σc was performed by means of the graphic transfer using the Bieniawsky diagram 

(Fig.3) [2, 3 et all.]. 

The uniaxial compression strength σc was carried out using a standard procedure when the test bodies 

(rollers) of known parameters were clamped to the clamping jaws of the test press (Controls) and loaded at a rate 

of about 0.3 MPa/sec until failure. The custom uniaxial compressive strength was then calculated by using the 

maximum achieved by the loading force and the initial cross-sectional area of the sample.  

All tests were carried out in the rock’s “instantaneous” state – i.e. in the moisture corresponding to the 

laboratory environment [7, 8]. 

 
Fig. 3 The test rocks using Schmidt scleroscope - type L 

The determination of uniaxial tensile strength σt was carried by correlation from the strength in uniaxial 

compression σc, (Fig.4) according to Kim and Lade, or according to Horák [10]. 
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Fig. 4 Diagrams of correlation dependencies between uniaxial tensile strength σt and strength in uniaxial 

compression σc of Kim Lade and by Horák (from left: igneous – metamorphic–sedimentary rocks) 

 

2 RESULTS OF LABORATORY TESTS  

Laboratory tests were arranged in tables (Tab.1 etc.). For further orientation, the locations are identified 

only by number (Tab.2 etc.).  

Tab. 1 Results of the determination of RQD index per common meter drill core 
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Tab. 2 Summary of results 

 

As standard 5 series (resp. 4) of regular rock bodies were tested. The samples No. 4 and No. 10 failed to 

comply with the frequency – the results should therefore be viewed as tentative. The correlated uniaxial tensile 

strength in metamorphic rocks (sample numbers 4, 7-10), in some cases, compared with the uniaxial 

compressive strength, appears to be disproportionately high. 

 

3 EVALUATION OF LOADING TEST RESULTS 

The research project was carried out using extensive testing – loading tests of different types of rock 

bolts, having various lengths and diameters, with different grouting (cement, resin) and various types of rocks. A 

comprehensive overview of the tests are tabulated and expressed in the appendix to the methodology – working 

diagrams (Fig.5). The diagrams also contain test reports with waveform loading tests, including their evaluation 

according to relevant sites. Due large amounts of data, it is possible to request the author to provide the data in a 

separate appendix. 

Only 68 of 201 pieces subjected to loading tests were used for further evaluation, i.e. about 34%. The 

interpretation of the results was not focused on deformation parameters, but tracked the development of 

progressive loading vs. displacement. From the tests, the limit of occurrence of fully mobilized skin friction was 

then evaluated, in particular before reaching the yield strength of steel (in the case of fully threaded rods “C” and 

injectable rods “I”) and the breaking of the thread (in the case of composite rods “R” and injectable composite 

rods “RI”). 

 
Fig. 5 Example of one of many working diagrams of loading vs. displacement for different rock bolts 

(type/length) 
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Based on the interpretation, the data set (Fig.6) was obtained, representing all the variables (type of rock, 

cement, length and type of bolt) as a relationship of skin friction Rτb [MPa] and the average value of index 

RQDprum [-] (weighted average along the embedment length). 

For further processing, the data was divided by two variables – the type of cement and the technology of 

cement, i.e. 4 combinations – each with a different frequency of use = number of locations = number of rocks. 

The variants “C – s” (cement - sealing), “C – g” (cement - low pressure grouting), “R - g” (resin - low pressure 

grouting) and “R – s” (resin - sealing) were recognized.   

 
Fig. 6 Data set of competent skin friction and rock quality index without any dependence 

 

 
Fig. 7 Data for variants: C-s (left up), C-g (right up), R-g (left down), R-s (right down) 

Based on the numerical solution, the final equation was determined, describing the behaviour of skin 

friction Rτb [MPa] in relation to the average rock quality index: 

 
2 1

1

k

b cal prumRτ τ k RQD   
 (2) 

where the coefficients k1 [-] and k2 [-] (Tab.3) reflect the impact of the type of cement and the technology 

of its implementation; RQDprum [-] describes the quality of the rock along the expected anchor length, and τcal 

[MPa], the calibration (the default value) of skin friction, is determined numerically according to the median of 

data set of the obtained skin friction and index RQDprum.  
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Tab. 3 Parameters 

 

Whereas it is the cross-section of varied rock spectrum, it is possible to calibrate the function of the data 

itself even for a single rock type. The correlation can be saved, because the index RQD is an petrographic 

independent parameter. 

 

4 CONCLUSION 

The application methodology, as a result of the research project, is an outcome of the efforts to automate 

entering and obtaining results, in particular in the form of software applications. This is, in conjunction with 

graphical and tabular data intended for free download on the project website. The application system itself is not 

running in the regime proposal/report, but needs further implementation into already established design methods, 

or geotechnical software. A major goal of this research project consists in its meaningful use in building practice. 

The application is designed in 5 easy steps – entering values, possible calibration (iterative process), and the 

receipt of income – the appropriate skin friction. Point 5 is optional. The user manual has been replaced by a 

direct form of hidden comments to individual items; the numeric input is checked by defined limits. The value of 

obtained skin friction is thus available for the next design and assessment processes of the fastener, which finds 

its application in design practice (integration into existing procedures) and serves as a stimulus for further 

research activities as regard to e.g. the relationship between shear or tensile strength of rock and the optimal 

setting anchoring length. 
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Variant τcal [MPa] k1 [-] k2 [-]

C-s 0.98 0.35 1.32

C-g 1.01 1.18 0.91

R-g 2.66 0.23 1.28

R-s 1.01 0.01 2.26
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