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ABSTRACT

The recent spectacular progress in the experimental and theoretical understanding
of graphene, the basic constituent of graphite, is applied here to compute, from first
principles, the UV extinction of nano-particles made of stacks of graphene layers. The
theory also covers cases where graphene is affected by structural, chemical or orienta-
tion disorder, each disorder type being quantitatively defined by a single parameter.
The extinction bumps carried by such model materials are found to have positions
and widths falling in the same range as the known astronomical 2175 Å features: as
the disorder parameter increases, the bump width increases from 0.85 to 2.5 µm−1,
while its peak position shifts from 4.65 to 4.75 µm−1. Moderate degrees of disorder
are enough to cover the range of widths of the vast majority of observed bumps (0.75
to 1.3 µm−1). Higher degrees account for outliers, also observed in the sky.

The introduction of structural or chemical disorder amounts to changing the initial
sp

2 bondings into sp
3 or sp1, so the optical properties of the model material become

similar to those of the more or less amorphous carbon-rich materials studied in the
laboratory: a-C, a-C:H, HAC, ACH, coals etc. The present treatment thus bridges
gaps between physically different model materials.

Key words: astrochemistry—ISM:lines and bands—dust

1 INTRODUCTION

The ISEC (InterStellar Extinction Curve) is dominated, in
the vis/UV, by a strong and ubiquitous feature, peaking at
5.7 eV (or 4.6 µm−1). The discoverers of this feature sug-
gested that it might be carried by small crystalline graphite
particles (Stecher and Donn 1965). Pure bulk crystalline
graphite in the laboratory displays an extinction feature
near 4.25 eV, but, in fine powder form, its extinction peaks
at 5.7 eV and was assigned to a “surface plasmon mode”,
or Fröhlich resonance, due to the π electron of graphite
(Bohren and Huffman, 1983); it is also called “bump” in
astronomer parlance. Since then, however, together with de-
velopments in this direction, several other candidate carriers
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have been predicated, ranging from molecular to solid, more
or less hydrogenated and more or less graphitic. A necessar-
ily very short and partly subjective sample of the latest of
these models includes mixtures of PAHs (Cecchi-Pestellini et
al. 2008); Bucky Onions (fullerenes); fullerenes/buckyonions
models (e.g. De Heer and Ugarte 1993, Wada and Toku-
naga 2006, Chhowalla et al. 2003, Ruiz et al. 2005, Li et al.
2008); mixtures of stacks of PAH molecules and HAC/a-C:H
(hydrogenated amorphous carbon (Duley and Seahra 1999);
mixtures of ellipsoidal amorphous carbon grains (Mennella
et al. 1998); agglomerated HAC grains (Schnaiter et al.
1998 ), and PCG (polycrystalline graphite, Papoular and
Papoular 2009). The common purpose is to satisfy both
tight constraints imposed by astronomical observations: rel-
atively large variations of width (roughly 0.7 to 1.3 µm−1)
while the peak position remains fixed at 4.6 µm−1 to ∼2
% (see Fitzpatrick and Massa 1986, 2007). Figure 16 of
Fitzpatrick and Massa (2007) plots all observed features in
a graph of the peak wavenumber, ν0, against the FWHM
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(Full Width Half-Maximum) width, γ. It shows that the
vast majority of representative points lie within a clus-
ter centered at (∼ 0.9µm−1, 4.59 µm−1), with dimensions
(∼ 0.3µm−1, 0.1 µm−1). However, many outliers are also
observed, which seem to extend this cloud towards larger
widths, with rapidly decreasing density, as confirmed by the
histograms of fig. 17 of the same reference (see also, for in-
stance, Cardelli and Savage 1988).

A large number of carbonaceous materials are found to
exhibit the π and σ UV resonances of graphite with various
relative intensities, even if highly loaded with hydrogen. In
general, the former decrease considerably as structural dis-
order and chemical impurities increase. This is illustrated
by artificially produced a-C:H (see for instance Fink et al.
1984) as well as natural coals extracted from mines of de-
creasing depth, i.e. of decreasing degree of graphitization.
Papoular et al.(1993) and Papoular et al. (1995) showed
that the π feature is exhibited not only by graphite, but also
by coals with decreasing degree of graphitization, until it is
completely damped by excessive H content and sp3 bond-
ings. The inverse evolution can be induced, starting from
the less graphitized coal or kerogen, by thermal annealing
and/or high energy irradiation. Mennella et al. (1995) and
Mennella et al. (1998), studying artificially produced car-
bonaceous materials, also observed and used this general
property of carbon based materials.

For all types of materials, it was found that the σ fea-
ture can still be observed when the π feature has long been
drowned. This is to be expected since the former is associ-
ated with ppσ types of bonding (in which principal axes of
coupled p orbitals lie along the same line; see Castro Neto et.
al. (2009)), which survive the transition to sp3 hybridization
that dominates structurally disordered materials. Robertson
(1986), in his study of HAC, compared extensively the op-
tical and other properties of graphite with those of disor-
dered carbons (HAC, glassy carbon, a-C, a-C:H, etc.). It is
striking to see the kind of continuity linking these various
carbon-rich materials and their transformation from one into
another through irradiation and/or thermal annealing. Sev-
eral attempts at modelling these disordered materials were
made, with a view to understanding the physics underlying
their spectral properties. For instance, Stenhouse and Grout
(1978) proposed the “domain model”, which pictures a-C as
microcrystallites of graphite inter-linked by an sp3-bonded
random network. In the random network model of Beeman
et. al. (1984), the structure consists of sp2 and sp3 sites in
different proportions (see, also Robertson 1991). Mennella
et al. (1998) used continuous distributions of ellipsoids.

Still another kind of disorder is obtained with pure
PCG: this is orientation disorder. Papoular and Papoular
(2009) showed that industry-made pellets of compressed
powder of pure graphite (which can be considered as ar-
tificially made disordered graphite) exhibit a feature at
2200 Å(4.52 µm−1), 1.3 µm−1 in width. This is one of
the few largest widths observed in the sky by Fitzpatrick
and Massa (1986).

It appears, therefore, that a vast gamut of carbonaceous
materials display the UV bump, and that the latter’s pro-
file depends very much on the amount of structural and
chemical disorder in the carrier. The problem, then, is to
model this disorder as generally as possible, based on the
best available solid state theory and in such a way as to al-

low a straightforward derivation of the optical properties as
a function of type and degree of disorder, at least over the
whole range of the π resonance, with the minimum possible
adhoc assumptions and adjustable parameters. This should
also help understanding why most of the UV bump widths
flock within a small interval and why they are limited from
below.

For this purpose, we start, here, with the carrier model
consisting of stacks of graphitic layers in the form of ran-
domly oriented small spherical grains, as studied by Draine
and Lee (1984). These authors invoke dielectric functions
derived from measurements on bulk graphite. In this paper,
we derive these functions from an accurate tight-binding de-
scription, based on the dramatic progress made in recent
years in the theoretical and experimental study of graphene
in single and multiple layers (SLG, MLG), the constitutive
elements of graphite. Three of us (S.Y., R.R. and M.K.)
have been engaged in this research for some time and have
recently completed a theoretical model of the electronic and
optical properties of SLG and MLG from the infrared to the
UV, encompassing the π resonance of sp2 bondings (Yuan et
al. 2011a, 2011b). This model has been successfully applied
to account for different experimental measurements, as the
π-plasmon resonance observed by electron energy loss spec-
troscopy (EELS) (Eberlein et al. 2008 and Gass et al. 2008),
the effect of disorder on the optical conductivity spectrum
of doped graphane (Li et al. 2008), or the screening prop-
erties and the polarization function obtained from inelastic
X-ray scattering (Reed et al. 2010). The method allows for
the consideration of different types of non-correlated and
correlated disorder, such as random or Gaussian potentials,
random or Gaussian nearest-neighbor hopping parameters,
randomly distributed vacancies or their clusters, and ran-
domly adsorbed hydrogen atoms or their clusters. We notice
that, for the same amount of disorder, the electronic proper-
ties of SLG and MLG are less affected by the Gaussian cor-
related disorder, as the symmetry of the clean sample is less
broken as compared to the non-correlated disorder (Yuan et
al. 2011b). In fact, completely randomly distributed (non-
correlated) impurities lead to the largest effect on the optical
spectrum. Therefore, we consider here four different sources
of non-correlated disorder, each of them controlled by a sin-
gle parameter: 1) random on-site potential, corresponding
to a local shift of chemical potential (inhomogeneous dis-
tribution of electron and hole puddles), 2) random hopping
parameter between two nearest neighbors, corresponding to
random variations of inter-atomic distances and directions,
3) randomly distributed vacancies, corresponding to atomic
defects with missing carbon atoms (presence of sp1 bonds in
the sp2 networks), and 4) randomly distributed hydrogen-
like resonant impurities (including organic molecules such as
CH3, C2H5, CH2OH, as well as H and OH groups).

We consider mostly sp2-conjugated carbon in stacks
of finite graphene sheets, arranged in the graphitic stack-
ing schemes ABA (Bernal type), or ABC (rhombohedral),
which are sketched in Fig. 1, and perturbed by the differ-
ent kinds of disorder introduced above. While our results
clarify a number of issues concerning graphene and graphite
properly, here we are mainly interested in the impact of im-
purities and disorder on the position and width of the π
surface plasmon (UV bump). As is well known (Katsnelson
2012), the band structure of graphene presents saddle points
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Figure 1. Atomic structure of the two different stacking sequences of the graphene layers considered in this work: ABA- (left) and
ABC-stacked (right) MLG. The nearest neighbor intra-layer t and the inter-layer γ1 and γ3 hopping amplitudes are schematically shown
in the figure.

(Van Hove singularities), with the corresponding logarith-
mic divergencies in the density of states (DOS), at energies
E = ±t (in the nearest neighbor approximation), where t
is the nearest neighbor hopping parameter. The π-plasmon
mode is associated to electron-hole transitions between the
Van Hove singularities of the valence (π) and the conduction
(π∗) bands. As the disorder parameter increases, it is found
that the slope of the blue wing of the π resonance decreases
in such a way as to increase the width of the plasmon fea-
ture, leaving its peak position nearly unchanged, as required
by astronomical observations. This trend is common to all
types of disorder considered, but is more or less pronounced.
Our results show that random on-site potential disorder is
the most effective, but, for all types, at sufficiently high de-
grees of disorder, the π resonance is completely damped,
indicating that the range of our computations covers the
most extreme situations, from perfect order to very high
disorder observed on laboratory materials. The UV bump
survives considerable disorder, at the price of broadening
and frequency shift.

This paper is organized as follows. Section 2 lays down
the basic principles, assumptions and approximations under-
lying our calculations, and discusses various types of disor-
der (imperfections) considered here. Section 3 displays some
of our results in the form of the electrical conductance of
graphene as a function of normalized wave number, for dif-
ferent types and degrees of disorder. Section 4 describes the
procedure which delivers the corresponding dielectric func-
tion and, hence, the extinction cross-section. Section 5 dis-
plays a number of computed UV bump profiles and high-
lights their changes as a function of disorder. In Sec. 6, our
computed results are used to derive the extinction bumps
of free-flying graphitic bricks, and these are compared with
those of a few disordered laboratory model carrier candi-
dates. Finally, in Sec. 7, all these cases are confronted with
available astronomical observations. A discussion of these re-
sults and their possible improvements and applications con-
cludes this work .

2 THEORETICAL PROCEDURE

We consider the effect of different sources of disorder on SLG
and MLG by direct numerical simulations of electrons on a
honeycomb lattice in the framework of the tight-binding ap-
proximation. This allows us, by means of the time-evolution
method, to obtain the DOS of large samples containing mil-
lions of atoms. The time-evolution method is based on the
numerical solution of the time-dependent Schrödinger equa-
tion (TDSE) with additional averaging over random super-
position of basis states (Hams et al. 2000, Yuan et al. 2010).
The electronic single particle dispersion in SLG is properly
described by the hopping of electrons between nearest neigh-
bor carbon sites arranged in a honeycomb lattice with two
atoms per unit cell. For MLG, additional inter-layer hop-
ping processes must be included in the kinetic Hamiltonian.
A sketch of a MLG with the different hopping parameters
used in the calculation is shown in Fig. 1.

The tight-binding Hamiltonian of a MLG is given by

H =

Nlayer
∑

l=1

Hl +

Nlayer−1
∑

l=1

H ′
l +Himp, (1)

where Hl is the Hamiltonian of the l’th layer of graphene,

Hl = −
∑

〈i,j〉

(tl,ija
†
l,ibl,j + h.c) +

∑

i

vl,ic
†
l,icl,i, (2)

where a†
l,i (bl,i) creates (annihilates) an electron on sublat-

tice A (B) of the l’th layer, and tl,ij is the nearest neighbor
hopping parameter if i, j are nearest neighbors and zero oth-
erwise. It is known that the nearest-neighbor approximation
is quite accurate to describe electronic structure of singla-
layer graphene (Castro-Neto et al. 2009, Katsnelson 2012).
The second term of Hl accounts for the effect of an on-site
potential vl,i, where nl,i = c†l,icl,i is the occupation number
operator and c = a, b. In the second term of the Hamilto-
nian Eq. (1), H ′

l describes the hopping of electrons between
layers l and l+1. We consider the two more stable forms of
stacking sequence in bulk graphite, namely ABA (Bernal)
and ABC (rhombohedral) stacking, as shown in Fig. 1. For
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a MLG with an ABA stacking, H ′
l is given by

H ′
l = −γ1

∑

j

[

a†
l,jbl+1,j + h.c.

]

− γ3
∑

j,j′

[

b†l,jal+1,j′ + h.c.
]

,

(3)
where the inter-layer hopping terms γ1 and γ3 are shown
in Fig. 1. Thus, all the even layers (l + 1) are rotated with
respect to the odd layers (l) by +60◦. The difference between
ABA and ABC stacking is that, the third layer(s) is rotated
with respect to the second layer by −60◦ (then it will be
exactly under the first layer) in ABA stacking, but by +60◦

in ABC stacking (Yuan et al. 2011a). The spin degree of
freedom contributes only through a degeneracy factor and
is omitted for simplicity in Eq. (1).

The termHimp describes the hydrogen-like resonant im-
purities:

Himp = εd
∑

i

d†idi + V
∑

i

(

d†i ci + h.c
)

, (4)

where εd is the on-site potential on the impurity and V
is the hopping between carbon and absorbed atom. The
band parameters V ≈ 2t and ǫd ≈ −t/16 are obtained
from the ab initio density functional theory (DFT) calcu-
lations (Wehling et al. 2010). Following Refs. (Wehling et
al. 2010, Yuan et al. 2010, 2011b), we call these impurities
as adsorbate hydrogen atoms but actually, the parameters
for organic groups are almost the same (Wehling et al. 2010).
The band parameters for OH-group and fluorine are similar
to those for hydrogen except that the on-site potential on
impurities is ǫd ≈ −t (Yuan et al. 2012). A vacancy is an
atomic defect with one carbon atom missing, and can also
be regarded as an atom (lattice point) with on-site energy
vi → ∞ or with its hopping parameters to other sites being
zero.

The numerical calculations of the optical conductivity
and DOS are performed based on the numerical solution of
the TDSE for the non-interacting electrons. The frequency-
dependent optical conductivity follows (Ishihara 1971, Yuan
et al. 2010)

σαβ (ω) = lim
ε→0+

e−βω − 1

ωΩ

∫ ∞

0

e−εt sinωt

×2 Im 〈ϕ|f (H)Jα (t) [1− f (H)] Jβ|ϕ〉 dt,

(5)

(we take ~ = 1) where β = 1/kBT is the inverse tempera-

ture, Ω is the sample area, f (H) = 1/
[

eβ(H−µ) + 1
]

is the

Fermi-Dirac distribution operator, Jα (t) = eiHtJαe
−iHt is

the time-dependent current operator in the α (= x or y)
direction, and |ϕ〉 is a random superposition of all the ba-
sis states in the real space, i.e., (Hams and De Raedt 2000,
Yuan et al. 2010)

|ϕ〉 =
∑

i

aic
†
i |0〉 , (6)

where ai are random complex numbers normalized as
∑

i
|ai|

2 = 1, and |0〉 is the vacuum state. The time evolution
operator e−iHt and the Fermi-Dirac distribution operator
f (H) are obtained by the standard Chebyshev polynomial
representation (Yuan et al. 2010).

The density of states is calculated by the Fourier trans-
form of the time-dependent correlation functions (Hams and

De Raedt 2000, Yuan et al. 2010)

ρ (ε) =
1

2π

∫ ∞

−∞

eiεt 〈ϕ| e−iHt |ϕ〉 dt, (7)

with the same initial state |ϕ〉 defined in Eq. (6). For a more
detailed description and discussion of our numerical method
we refer to Ref. (Yuan et al. 2010). In this paper, we fix the
temperature to T = 300K. In our numerical calculations,
we use periodic boundary conditions in the plane (XY ) of
graphene layers, and open boundary conditions in the stack-
ing direction (Z). The size of SLG in our calculations is
8192 × 8192 or 4096 × 4096. For MLG, we keep the total
number of atoms in the same order as for SLG.

Each kind of disorder considered here is controlled by a
single parameter: 1) random on-site potential is controlled
by vr: the potential vi on each site can randomly change
within the range [−vr, vr]; 2) random hopping tr: the hop-
ping between two nearest neighbors can randomly vary
within the range [t− tr, t+ tr]; 3) concentration of random
distributed vacancies nx = Nx/N , which is the probability
for an atom to be replaced by a vacancy in the lattice, where
Nx is the total number of vacancies and N is the total num-
ber of sites in the lattice; 4) similarly, the concentration of
random distributed hydrogen adatoms, is controlled by the
parameter ni = Ni/N , which is the probability for an atom
to absorb a hydrogen atom.

It should be stressed that our calculations automati-
cally account for the variation of the matrix element of the
dipole moment, which is often disregarded for simplicity (see
Bassani F. and Pastori-Parravicini G. 1967; Mennella et al.
1998), but is essential for our present purposes.

3 COMPUTATIONAL RESULTS:

CONDUCTANCE

The most direct test of the theory is the measurement of the
absorbance of light perpendicularly through the graphene
layer, which is proportional to the conductance of the latter.
For this aim, in this section we present numerical results for
the optical conductivity, obtained from Eq. (5), for SLG and
MLG with different kinds of disorder. Our results are shown
in Fig. 2.

We first consider the effect of random local change of
on-site potentials and random renormalization of the hop-
ping, which correspond to the diagonal and off-diagonal dis-
orders in the single-layer Hamiltonian Eq. 2, respectively.
The former acts as a local shift of the chemical potential of
the Dirac fermions, and the latter is associated to changes
of distance or angles between the pz orbitals. As we have ex-
plained above, we introduce non-correlated disorders in the
on-site potentials by considering that the on-site potential
vi is random and uniformly distributed (independently of
each site i) between the values −vr and +vr. Similarly, non-
correlated disorder in the nearest-neighbor hopping is intro-
duced by letting tij be random and uniformly distributed
(independently of the pair of neighboring sites 〈i, j〉) be-
tween t− tr and t+ tr. Both kinds of disorder have a rather
similar effect on the optical conductivity, as it can be seen
from Figs. 2(a) and (b). The spectrum is smeared at the
resonance energy ω = 2t, and the smeared region expands
around the singularities neighboring areas as the strength
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Figure 2. Optical conductivity σ(ω) of SLG with different kinds of disorder, in units of σ0 = πe2/2h. (a) Effects of random on-site
potentials on σ(ω). The on-site potential is let to randomly vary in the range [−vr, vr ], for vr = 0, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2.5 (in units of
t). (b) Effects of random hopping constants on σ(ω). The hopping integral is let to vary randomly between [t− tr , t+ tr ], for tr = 0, 0.3,
0.35, 0.4, 0.45, 0.5 (in units of t). (c) Effect of random vacancies (missing atoms) in the lattice, with the concentration per carbon atom
nx taking the values 0, 0.01, 0.05, 0.1. (d) Effects of random hydrogen-like impurities (adatoms or admolecules) with the concentration
per carbon atom ni being 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0. For all the plots, the value of the corresponding disorder parameter vr , tr , nx

and ni increases in order of decreasing sharpness of the peak at ω = 2t.

of the disorder increases. We remind here that the origin of
this resonance is associated to particle-hole excitations be-
tween states of the valence band with energy E ≈ −t and
states of the conduction band with energy E ≈ t, which
contribute to σ(ω) with a strong spectral weight due to the
enhanced density of states at the Van Hove singularities of
the π bands, in agreement with recent experimental results
(Mak et al. 2008).

We next consider the influence of vacancies and hydro-
gen impurities on the spectrum. Apart from the creation
of mid-gap states in the DOS, which is not relevant for the
present discussion, the presence of vacancies and/or adatoms
leads also to a smearing of the Van Hove singularities in the
DOS. This is in fact the behavior found in Fig. 2(c) and (d),
where we show the optical conductivity of SLG with differ-
ent concentrations of impurities. In particular, the presence
of low or moderate concentrations of hydrogen impurities,

which are introduced by the formation of a chemical bond
between a carbon atom from the graphene sheet and a car-
bon, oxygen, or hydrogen atom from an adsorbed organic
molecule (CH3, C2H5, CH2OH, as well as H and OH groups),
have a quite similar effect on the electronic structure and
transport properties of graphene as compared to the effect
of vacancies. In our work, the adsorbates are described by
the Hamiltonian Himp, Eq. (4), where the band parameters
V ≈ 2t and εd ≈ −t/16 are obtained from ab-initio density
functional theory (DFT) calculations (Wehling et al. 2010).
On the other hand, large concentrations of hydrogen impu-
rities change dramatically the optical properties of the sys-
tem. In fact, for the maximum concentration ni = 1, which
correspond to an H atom bonded to each C atom of the lat-
tice, we have no longer graphene but a completely different
material, called graphane which contrary to graphene, has
a band gap of ∆ ≈ 2t. Therefore, the optical conductivity
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Figure 3. Effect on σ(ω) of the number of layers and stacking order of clean multi-layer graphene. Plots (a) and (b) are for the ABA
stacking, whereas plots (c) and (d) are for ABC. Plot (b) and (d) are zooms of the spectra (a) and (c), respectively, around the resonance
peak at ω ≈ 2t. The main effect, for present purposes, is a local deformation of the peaks [zooms (b) and (d)]. The blue wing, on which
the Fröhlich resonance stands, is hardly affected. The maximum separation between sub-peaks of the resonance top is determined by the
coupling energy between adjacent layers, γ1 = 2t/15.

at low frequencies is zero from ω = 0 to ω = 2t, and from
this energy it grows smoothly, presenting a series of peaks
associated to newly created Van Hove singularities in the
spectrum, as it can be seen by looking at the purple line of
Fig. 2(d). However, the more realistic case of low or moder-
ate concentrations of hydrogen, leads to a smearing of the
Van Hove singularity with a transfer of spectral weight to
new peaks in the spectrum, particularly to a new peak at
ω ≈ t which is associated to transitions between the im-
purity zero energy band and the Van Hove singularities at
E = t.

As an infinite sheet of graphene proper cannot survive
in vacuum (it folds over itself), we have explored the elec-
trical effects of stacking an increasing number of sheets. In
equilibrium, two stacking schemes must be considered, ac-
cording to the arrangement of the benzenic rings facing each
other: ABA and ABC (see Fig. 1). The inter-layer distance,
experimentally measured, has a value of d ≈ 3.36 Å. The
inter-layer hoppings considered here are γ1 = 2t/15 and

γ3 = t/10, the same values as in graphite, and are also
sketched in Fig. 1. The stacking order, which leads to differ-
ent low energy properties of ABA and ABC MLGs, has very
limited effect on the high energy spectrum and, in particu-
lar, on the blue wing of the π resonance, where the Fröhlich
bump stands. This can be seen in Fig. 3(a) and (c), which
show the full σ(ω) spectrum of MLG with an increasing
number of layers, up to 100 layers, with ABA- and ABC-
stacking order, respectively. The UV bump, therefore, will
not be affected. By contrast, the effect on the peak is re-
markable, and is a classical outcome of coupling identical
oscillators: creating an increasing number of subpeaks on
both sides of the single-oscillator peak. Note, however, that
their excursion from the latter does not exceed an amount
determined by the coupling energy assumed between lay-
ers (see Grüneis et al. 2008), ∼ 3% in the present case. As
a consequence, the peak becomes less sharp. This must be
a major reason why the π and σ resonances of graphite are
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much less peaked than those of graphene (see also Kobayashi
and Uemura 1968; Johnson and Dresselhaus 1972).

Summarizing, clean graphene has the steepest slope of
the π-feature. This slope is shown below to govern the width
of the Fröhlich resonance; so, we will concentrate on those
types of disorder which have the strongest effect on the slope
of the blue wing. The most striking aspect of these curves,
for our present purposes, is the continuous variation of the
slope of the high energy wing of the π resonance, as the dis-
order parameter increases. All types of disorder exhibit this
behavior, albeit to different extents. Other, so-called corre-
lated disorders were also studied, but they do not affect the
blue wing notably. The reason is that for correlated disorder,
for which the distribution of the disorder follows particular
topological structures, such as Gaussian potentials or Gaus-
sian hopping parameters, or resonant clusters with groups of
vacancies or hydrogen adatoms, the electronic DOS of clean
graphene is highly preserved. Therefore, a SLG or a MLG
sample with a given amount of impurities, will present an
optical spectrum closer to that of clean graphene (in partic-
ular presenting a prominent peak at the π-resonance) if the
impurities are correlated, rather than if they are spread in
a non-correlated manner in the sample. Another remarkable
effect of disorder is the progressive damping of the π reso-
nance itself, which is a very well experimentally documented
phenomenon exhibited by families of a-C:H materials. We
emphasize that no ad hoc broadening mechanism, such as
an arbitrary life time, is invoked in the present treatment.
Each single parameter controlling any given type of disor-
der can be estimated from the structural and environmental
characteristics of the corresponding sample.

4 THE DIELECTRIC FUNCTION

The study of the Fröhlich resonance requires the knowledge
of the dielectric function. The imaginary part of the relative
dielectric function, ǫ = ǫ1+iǫ2 is related to the conductance
computed above by

ǫ2 =
σ

ω
, (8)

where σ and ω are in units of s−1 in the SI system. While
the conductance σ is completely defined in terms of σ0 =
πe2/2h, which depends only on fundamental constants, the
corresponding energy variable is given only to a factor t,
which represents the coupling energy between neighboring
atoms in perfect, clean graphene. The latter is not known
with great accuracy, and the value adopted for it differs ac-
cording to authors (see, for instance, Grüneis et al. 2008,
Kobayashi J. and Uemura Y. 1968). Here, we take 2t = 4.21
eV, so that the π peak of the dielectric function falls near
the measured position for graphite (Taft and Philipp 1965;
Greenaway et al. 1969; Tosatti and Bassani 1970).

The higher energy σ resonance of graphite peaks near
14 eV but its red wing slightly overlaps the blue wing of
the π resonance, in between them, and this bears upon the
position of the Fröhlich resonance. However, the theoreti-
cal procedure outlined in Sec. 2 has not yet been extended
to the σ resonance (see Sec. 7.7). We were therefore led to
use, instead, the values of ǫ2 deduced by Taft and Philipp
(1965) from reflectance measurements between 9 and 32 eV,

Figure 4. Effects of random on-site potentials on the dielectric
function. The disorder parameter, vr (in units of t), is 0, 0.2, 0.3,
0.4, 0.5, 0.7, 1, 1.5 2.5, in order of decreasing sharpness of the
resonance peak.

and joined them continuously to each of the π curves we
computed as explained above. By extending the overall fre-
quency range, this also helps improving the accuracy of the
Kramers-Kronig transformation which was applied to ǫ2 in
order to deduce ǫ1.

This anzatz is justified by the fact that the intensity of
the σ resonance of carbonaceous materials is largely decou-
pled from that of the π resonance, as the two singularities
are separated by more than 6 eV; a fact which is likely to
be related with the lack of correlation, in the interstellar
extinction curves, between the UV bump and the far UV
curvature. Moreover, disorder is not likely to perturb exces-
sively the σ resonance since, as recalled in the Introduction,
the latter is associated with the ppσ type of bonding which
survives the transition to sp3 hybridization that dominates
structurally disordered materials. This statement is borne
out by the comparison of the VUV spectra of graphite with
several species of coals of different evolutionary states, which
correspond to different degrees of disorder Papoular et al.
1995).

Figures 4 to 6 exhibit some of the results for 3 types of
disorder, excluding the vacancy disorder, which was shown
above not to affect significantly the slope of the blue wing of
the conductance resonance. They mirror the curves of Fig.
2 (a), (b) and (d). The general trends of interest to us in the
three graphs are the same, even though their magnitudes
may differ: the peak for pure and perfect graphene is a loga-
rithmic singularity; as disorder increases, it is progressively
damped, and ultimately drowns into a continuum; concur-
rently, the blue slope becomes less and less steep. The former
behavior may be ascribed to the progressive suppression of
sp2 bonds, and accounts for the observed difference between
graphite and various species of a-C:H (see, Robertson 1986,
Mennella et al. 1998) or coals (see Papoular et al. 1995). The
change in slope is shown below to account for the width vari-
ations of the Fröhlich resonance feature. Note that this effect
is all but absent in the case of vacancy disorder.
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Figure 5. Effects of random hopping constants on the dielec-
tric function. The disorder parameter, tr (in units of t), is 0.2,
0.3, 0.35, 0.4, 0.45, 0.5, in order of decreasing sharpness of the
resonance peak.

Figure 6. Effects of random atomic impurities on the dielectric
function. The disorder parameter, ni, is 0.01, 0.05, 0.1, 0.2, in
order of decreasing sharpness of the resonance peak.

5 APPLICATION TO THE 2175-Å FEATURE

The weak scattering apparently included in the astronom-
ical UV bump extinction, elicits the assumption of small
particles for the band carrier, and, hence, the application of
the Rayleigh approximation. Consequently, surface effects
cannot be neglected, which entails the use of the Fröhlich
expression for the extinction efficiency of a small sphere of
radius a:

Q/a =
24π

λ

ǫ2
(ǫ1 + L−1 − 1)2 + (ǫ2)2

(9)

where λ is the wavelength of the radiation, ǫ1,2 are, respec-
tively, the real and imaginary parts of the dielectric function
of the assumed homogeneous material; L is the shape param-
eter of the supposedly ellipsoidal grain, 1/3 in the case of
a sphere (see Bohren and Huffman 1983); a is the radius
of the sphere. In this approximation, there is no need to
distinguish between absorption and extinction efficiencies,
both being designated by Q. The real part, ǫ1, of the dielec-

Figure 7. Effects of random on-site potentials on the Fröhlich
resonance of the π resonance. The disorder parameter, vr (in units
of t), is 0, 0.4, 0.7, 1, 1.5, 2.5, in order of decreasing sharpness of
the resonance peak.

tric function is obtained by applying the Kramers-Kronig
transformation to ǫ2 from 0 to 32 eV. For this operation,
Papoular (2009) built a transform algorithm based on the
Maximum Entropy method. Figures 7 to 9 show the results
of computations for a few representative cases. The “clean”
case (all disorder parameters null) is represented in Fig. 7
only (black line); its peak is slightly higher than that for
ni = 0.01 in Fig. 9.

As expected, as disorder increases, the width of
the feature increases and the height decreases, both
monotonously; but the peak position hardly changes from
∼ 4.6µm−1(because of the Kramers-Kronig relation be-
tween ǫ1 and ǫ2). The minimum width and maximum height
are carried by the clean case. For this case, the peak value of
Q/a is ∼ 0.02 Å−1 (upper limit of Q/a in our study) and the
width, ∼ 0.85 µm−1 (lower limit in the present work). These
limits are set by the logarithmic slope of the resonance (see
van Hove 1953) .

Strictly speaking, these results apply to a single
graphene layer. However, they derive solely from the behav-
ior of the blue wing of the conductance resonance, and this
was shown to be insensitive to the number of stacked layers
[Fig. 3 (a) and (c)], whatever the stacking scheme. Figure
10 illustrates this point. We therefore assume, below, that
they apply equally to MLG (multi-layer graphene).

6 APPLICATION TO ASTRONOMY

Consider first the free-flying brick model (Fig. 6), where each
dust particle is a spheroidal assembly of nano-sized portions
of graphene, stacked according to the ABA or ABC scheme.
Their orientation being random, the apparent extinction
along a given line of sight will be the average of extinc-
tion for ~E ⊥ ~c (electric field parallel to the layer planes) and
for ~E‖~c (electric field perpendicular to these planes), with
relative weights 2/3 and 1/3, respectively. We have, there-
fore, applied the same theoretical procedure to compute the
dielectric function in the parallel case. As an example, Fig.
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Figure 8. Effects of random hopping constants on the Fröhlich
resonance of the π resonance. The disorder parameter, tr (in units
of t), is 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, in order of decreasing sharp-
ness of the resonance peak.

Figure 9. Effects of random atomic impurities on the Fröhlich
resonance of the π resonance. The disorder parameter, ni, is 0.01,
0.05, 0.1, 0.2, in order of decreasing sharpness of the resonance
peak.

12 plots the real and imaginary parts of this function for the
clean case.

Correspondingly, Fig. 13 plots the parallel and perpen-
dicular extinction efficiencies for the clean case, together
with their weighted average. Obviously the position and rel-
ative weakness of the “parallel bump” are such that the
average curve differs from the “perpendicular bump” only
in that its height is reduced by a factor 2/3. For purposes of
quantitative comparison, the average Q/a was fitted with a
“Drude” curve, as initiated by Fitzpatrick and Massa (1986),
also shown in the figure. It peaks at 4.65 µm−1 and its width
is γ ∼ 0.85µm−1. Only for highly disordered structures,
when the “perpendicular” bump is weakened beyond the
range considered in Fig. 7-9, does the effect of the “parallel”
bump on the average become notable.

In another dust model (Fig. 11B), the bricks are ag-
glomerated into a single particle: industrial polycrystalline
graphite (PCG) is a case in point (Papoular and Papoular

Figure 10. The Fröhlich resonance of the π resonance in the
clean case for a single layer (red), a bi-layer (green) and an ABA
stack of 100 layers (blue).

Figure 11. Models of dust particles. A: free-flying bricks ; each
dust particle is made of one ordered stack of graphene layers.
B: agglomerated bricks; each dust particle includes several such
“bricks”.

2009). It is made of powder of nano-sized highly graphitized
and pure carbon grains, compressed under high pressure.
The measured reflectance of PCG was modeled by 2 pairs of
Lorentzian oscillators, for the parallel and perpendicular π
and σ dielectric functions. The isotropic dielectric function
is a mix of the parallel and perpendicular dielectric func-
tions, and was computed using the Bruggeman mixing for-
mula. The extinction feature was then found to peak at 4.52
µm−1, with FWHM 1.3 µm−1 (“PCG agglom” in Tab. 1).

Figure 12. Dielectric function for the clean case, and for ~E‖~c.
Red line: imaginary part ǫ2; green line: real part ǫ1. Color on line.



10 R.J. Papoular, S. Yuan, R. Roldan et al.

Figure 13. Blue line: average extinction bump for randomly ori-
ented spheroidal stacks of clean graphene layers. Black points:
Drude fit. Red upper line: extinction bump for ~E in plane. Green
lower line: extinction bump for ~E normal to the plane. Color on
line.

Table 1. Experimental model results.

Name ν0 γ

ARa 4.46 1.48

BCC V b 4.7 1.6

Free bricksc 4.56 1.15

PCG agglomd 4.52 1.3

The units of ν0 and γ above are µm−1.

a Schnaiter et al. (1998)

b Mennella et al. (1998)

c,d Papoular and Papoular (2009)

Table 1 collects examples of relevant experimental results,
also symbolized in Fig. 14.

It is instructive to envision the behavior of this material
if each of its constitutive graphitic bricks were set free in the
atmosphere, as in model 10 A. The parallel and perpendic-
ular extinctions in that case were calculated using the same
dielectric functions as deduced above from the reflectance
of PCG. Their weighted average (1/3, 2/3) was found to
exhibit a bump at 4.56 µm−1, with FWHM 1.15 µm−1. Ob-
viously, agglomeration of the bricks entails some broadening
as do the various types of disorder considered above. There
is also some redshift. Unlike with the free-flying bricks, the
effective dielectric function, here, is very sensitive to the par-
allel dielectric functions.

A similar behavior is displayed by nano-sized HAC par-
ticles agglomerated in pure argon atmosphere (Schnaiter et
al. 1998): the feature width increases with the degree of
clustering (their Fig. 3; the narrowest of these features is
included as“AR” in Tab. 1 and symbolized in Fig. 14). Ag-
glomerates obtained with hydrogen included in the atmo-
sphere show less clear trends.

7 DISCUSSION

7.1 Comparison with observations

All cases computed above are represented in Fig. 14 as points
with coordinates (γ, ν0). For comparison, the points plotted
by Fitzpatrick and Massa (2007) in their Fig. 16 are also
represented (schematically). While there is a rough agree-
ment in the width distribution (abscissae), the ordinates,
ν0, of the computed points are systematically shifted up-
wards by ∼ 0.05 Å, or about 1 %. ν0 depends slightly on
the fundamental hopping parameter t (Sec. 2), and mostly
on the electron plasma frequency of the system, which, in
turn, depends on the shape of the computed electronic bands
through the effective number of electrons, neff (see Taft and
Philipp 1965). In the tight binding scheme adopted here, this
is found to be 0.56 electron/atom, a value which is compa-
rable to that determined experimentally for graphite, by ap-
plying the ǫ2-Sum Rule (see Altarelli et al. 1972). According
to the latter, neff is linearly related to ǫ2.

Calculation shows that ν0 can be brought down to the
right value by taking neff = 0.53, which amounts to re-
ducing ǫ2 uniformly by 6 %. Although this is well within
experimental errors of measurement of ǫ2, we chose to keep
neff = 0.56, so as to let one assess the validity of the tight
binding assumption. As for the minimum width determined
here, 0.85 µm−1, we note that it is slightly higher than the
value ∼ 0.8µm−1 suggested by astronomical measurements.
This is perhaps one weakness of our model, or of the tight-
binding approximation used in the derivation.

On the other hand, it should be stressed that, apart
from the selected disorder type and parameter, which define
the bump carrier structure, the only adjustable parameter
in the algorithm is the nearest-neighbor hopping parameter,
t (half the transition energy at resonance). Even this is re-
stricted by experiment within tight limits. This ensures that
the relation between disorder and bump properties remains
clear: disorder damps the resonance, which flattens its high-
energy wing; hence, the UV bump is weakened and broad-
ened. The reason why the peak position does not change
much lies in the Kramers-Kronig relation between ǫ1 and
ǫ2.

Figure 14 shows that, for moderate degrees of disorder,
the representative points flock near the clean case (minimum
bump width), in about the same width range as the observed
widths. This sets upper limits to the extent of disorder sug-
gested by the present model for bump carriers. Estimates of
these limits for the parameters of the three types of disorder
considered here are, respectively: vr ∼ 0.7t, tr ∼ 0.3t and
ni ∼ 7%.

For higher values of vr (not shown in Fig. 14) it is
found that the peak height and wavenumber decrease, and
the width increases, with disorder. This is in line with the
measurements on coals in order of decreasing graphitization
(see Papoular et al. 1993). Figures 4 to 6 for ǫ2 also suggest
that highly disordered grains provide a UV continuum, as
expected for strong resonance damping, also in accordance
with the measurements on coals. Such grains may contribute
to the ISEC continuum.

Mennella et al. (1998) obtained HAC samples from elec-
trical discharges and measured their extinction efficiency,
from which they deduced the dielectric function and the
Fröhlich resonance. Even the π resonance hardly emerges
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Figure 14. Peak position vs FWHM of the UV bump. Observa-

tions (adapted from Fig. 16 of Fitzpatrick and Massa 2007): the
red ellipse encloses the vast majority of observed representative
points; red crosses: a few outliers. Our computations: Open cir-
cle: randomly oriented clean and ordered graphene bricks. Filled
squares and solid line: random on-site potentials (vr = 0, 0.2,
0.4, 0.5, 0.7, 1, 1.5, 2.5, 5); filled circles and dotted line: random
hopping parameters (tr = 0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5); filled
triangles and dashed line: random foreign atoms (e.g. hydrogen;
ni=1, 5, 10, 20 %). Laboratory models: open triangles (see Table
1). Color on line.

in nascent samples. After thermal annealing, it is distinctly
visible, and the UV bump shows up. Under further treat-
ment by UV irradiation, the latter becomes narrower and
stronger; this is included in Tab. 1 as BCC V and symbol-
ized in Fig. 14. In order to obtain still narrower features
the authors extrapolated the dielectric function as a func-
tion of radiation dose, and the correspondingly computed
widths were then compatible with observed bump widths,
with only a slight decrease in peak wavenumber. This trend
is analogous to our findings. It is attributed to an increase in
aromatic cluster number and average size, and a reduction
of size dispersion, which we interpret as reduced disorder.

Several other causes of bump broadening have been con-
sidered in the past. Sorrell (1990), for instance, argued that
electron-phonon scattering (“viscous flow”) and collision of
electrons with adsorbed H atoms limited the bump width
from below. The latter phenomenon is a close kin to our im-
purity disorder, while the former is not considered here for
we are only interested in hopping electrons, not free (con-
duction) ones. Another cause may be the smallness of the
grain size.

The argument developed above hinges upon the
graphene properties. For present purposes, this was also
shown above to apply to stacks of single-layered graphene
(MLG). However, graphene theory assumes an infinite plane,
while, for our extinction calculations to apply, the bump car-
rier size is limited to ∼ 100 Å by the Rayleigh condition
for 2175 Å . In fact, it can be shown that the minimum size
of a graphene layer for the properties of an ideal layer to be
recovered is ∼ 15 Å, the size of a big PAH (see Sec. 7.3).

While other causes may coexist in most astronomical
instances, our model excludes their contribution in cases
corresponding to the minimum observed bump widths, as
the clean case already has this minimum width.

7.2 Carbon budget

We seek now to estimate the fraction of the available carbon
that must be locked in this model bump carrier for it to ac-
count for astronomical observations. Fitzpatrick and Massa
(2007) have cast their interstellar extinction measurements
in the form of a normalized color excess (in units of magni-
tude)

k(λ− V ) = E(λ−V )
E(B−V )

= c1 + c2x+ c3D(x; γ, x0) + c4F (x),

D(x; γ, x0) =
x2

(x2−x2
0
)2+x2γ2 ,

where x = λ−1, λ0 is the bump peak wavelength, the c’s are
constant factors for each line of sight and F (x) represents the
far UV curvature of the extinction curve. Admittedly, this
mathematical representation implies no particular physical
model of the “bump”; however it is of great help in com-
paring quantitatively our model results with astronomical
observations. Since our model carries a negligible amount
of underlying continuum (see Fig. 7 to 9), it can only con-
tribute to the term c3D. The peak value of this term, at λ0,
is
∆k(λ0 − V ) = c3/γ

2

and corresponds to the peak value of Q/a. Now, the Lilley
empirical relation gives
E(B − V ) = NH

5 1021

on average through the ISM, with N the line density of H
atoms in cm−2. Hence,

∆E(λ0 − V ) = ∆k(λ0 − V )E(B − V ) =
c3
γ2

NH

5 1021
. (10)

Also note that, by definition,
E(λ− V ) = 1.09 (τ (λ)− τ (V )),
where τ is the optical depth. So, ∆E(λ − V ) = 1.09∆τ ,
where ∆τ is the bump in the optical depth.

On the other hand, if Ngr is the line density of bump
carriers along the line of sight, and if Rayleigh’s approxima-
tion applies, then the bump in the optical depth is
∆τ = π a2 Ngr Q,
assuming the grains are spherical with radius a, and there
is no line saturation. Also, if ρ is the density of the grains,
the line density of carbon atoms locked in the grains is

NC = Ngr
4πa3ρ

3× 12× 1.7 10−24
(11)

Combining eq. 10 and 11, one finally obtains

NC

NH

= 20
c3ρ

γ2(Q/a)0
. (12)

One can see, from the compilation by Fitzpatrick and
Massa (2007), that the average values of c3 and γ are, re-
spectively, about 3 and 1 µm−1 (the corresponding bump
area is 5µm−1). Take 2 gm/cm3 for the density of graphite
and, accounting for some disorder in our model grains, as-
sume the average peak value of Q/a is 1.5 106 cm−1. Then,
on average, the fraction of cosmic carbon required to be in
the model grains turns out to be ∼ 80 ppm, or about 1/4
of the available carbon (for comparison, see Snow and Witt
1995). Of course the largest fraction must be reserved for
molecules and for the less ordered and pure carbon grains.
As stated earlier, the latter retain their σ resonance well be-
yond the complete damping of their π resonance. They may,
therefore, well account for the observed rise of interstellar
extinction towards shorter wavelengths.
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Figure 15. Binding energy per atom (Kcal/mol) as a function of
the number of benzenic carbon rings in planar, compact clusters;
1 Kcal/mol = 0.0434 eV.

7.3 Minimum graphene layer size

The present model invokes stacks of small graphene sheets.
We must, therefore, inquire whether the properties of
graphene still apply to sizes smaller than the Rayleigh limit.
These properties are determined by the interactions between
an atom and its neighbours. Obviously, these interactions
fade away as the distance to the central atom increases. In
order to find the “cut-off” distance, we consider compact
clusters of benzene rings of increasing size. With the help of
a commercial Molecular Modeling package [Hypercube, Hy-
perchem 7 (1996)], their structure was optimized by seeking
the minimum total binding energy, using the Quantum Me-
chanical semi-empirical AM1/UHFmethod. Figure 14 shows
the variation of the binding energy per atom, eb, as a func-
tion of the number of rings, Nr.

Beyond about 40 rings, or 84 atoms, the binding en-
ergy reaches, for all practical purposes, an asymptotic value
of -182 Kcal/mol or 8 eV per atom, which is indeed about
the graphite sublimation energy. The corresponding diame-
ter of the structure is about 15 Å, the size of a large PAH
or Platt particle (see Donn 1968). A similar conclusion was
reached by Robertson (1986) on the basis of a simpler Hückel
calculation (see his figures 22 and 28) . Thus the minimum
extension required for a graphene sheet is small enough that
many such sheets can be accommodated in a Rayleigh-sized
grain.

7.4 Effects of grain shape

The Fröhlich formula for Q/a includes the ellipsoidal charac-
teristic parameter, L, which was set above at 1/3, assuming
a spherical shape for both the grain and its subgrain com-
ponents. As noted by Bohren and Huffman (1983), shape
effects are no weaker in the Rayleigh approximation than
for large particles, and the band shape of discs or needles
are very different from the “Drude” profile. Fortunately, the
physics of carbon grain formation and evolution apparently
does not allow the evolution towards such extreme shapes.
Besides, the grain surface is certainly very irregular and may
not be subjected to the same theoretical treatment as per-

Figure 16. Effect on the UV bump of hydrogenation (H/C) of the
faces of graphene stacks. red: clean faces; green, blue and black:
H/C(per face)=50, 75 and 100%, respectively. The corresponding
widths are 1, 1 and 0.65 µm−1; and the peak wavenumbers: 4.63,
4.61 and 4.84 µm−1.

fectly smooth ellipsoids. Finally, even though the term “sur-
face mode” is usually applied to the Fröhlich resonance, it is
clear that the whole grain volume is involved, so the surface
shape may not be so important, after all. In order to sub-
stantiate these conjectures, we also computed Q/a for values
of L symmetrically bracketing 1/3, from 0.25 to 0.4, corre-
sponding to ratios of principal axes ranging between 1 and
about 2. It was found that, although the peak wavenumber
of the feature increases from 4.4 to 4.82 µm−1, the average
feature is still narrow (1 µm−1) and does not shift much
away from 4.68 µm−1. This is due to the symmetry of the
variations, a consequence of the implicit assumption that
the fluctuations of L around 1/3 are limited and symmetric.

7.5 Turbostratic disorder

Inter-atomic forces naturally tend to maintain adjacent
graphene layers in the preferred stacking schemes, ABA
or ABC. Recently, however, slightly disoriented graphene
multi-layers have attracted attention in the laboratory (see
Kim et al. 2012; Trambly de Laissardière et al. 2010). We
also considered the impacts of this type of disorder upon
the dielectric function. For this purpose, we performed pre-
liminary calculations, using a simplified tight-binding the-
ory (assuming constant electric dipole moment). The high
energy wing of the π resonance was found to be quite in-
sensitive to disorientation, and so is the UV bump. But,
interestingly, the resonance peak is split into 2 peaks, whose
separation increases with the angular deviation (∼ 1 eV for
10 deg between adjacent layers). This effect could contribute
to the flattening of the resonance peak of terrestrial and lab-
oratory graphite (see Taft and Philipp 1965).

7.6 Hydrogenation

Duley and Seahra (1998) considered in detail the effects of
edge hydrogenation on various regular aromatic structures.
They noted some positive correlations between γ and hydro-
genation (their Fig. 11). For partial hydrogenation, there are
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also some weak positive correlations between ν0 and hydro-
genation.

In our treatment, we use rectangular graphene sheet
with armchair and zigzag edges. The size of a sample with
4096×4096 carbon atoms is about 8700×5000 ≈ 0.44µm2.
This is large enough that its electronic properties are largely
insensitive to the (open or periodic) boundary conditions
(see Yuan et al. 2010). We assume, here, that this is also
true for the flakes we consider in the dust model of Fig. 11
(∼ 100× 100 Å2 in size). It must be kept in mind, of course,
that edge hydrogenation of large PAHs was shown to affect
notably π− π* transitions (Duley and Seahra 1998; Malloci
et al. 2008). However, the maximum size of PAHs considered
in these studies was smaller than 7 × 7 rings, which is way
smaller than our assumed model dust.

Internal random hydrogenation considered in the
present work is totally different from edge hydrogenation in
that it introduces sp3 hybridization, but it was also found
to increase both ν (slightly) and γ (see Fig. 14).

Another possible “defect” is the hydrogenation of the
outer faces of the edge layers of stacks of graphenes. The ef-
fect on the bump is illustrated in Fig. 16 for 3 degrees of hy-
drogenation: H/C=50, 75 and 100 %. It appears that partial
hydrogenation only broadens slightly the bump. Complete
hydrogenation, however, seems incompatible with observa-
tions. This may mean that hydrogenation in space is only
partial. But this may also be due to the fact that our tight-
binding model for hydrogenated graphene only includes the
π band, and is therefore not accurate for large concentration
of hydrogenation, in which there is a strong overlap between
the σ and π bands. A tight-binding model including both σ
and π bands for hydrogenated graphene is currently under
development.

By contrast, the absence of the σ bands in our present
treatment is not expected to affect the behavior of graphene
upon the introduction of the other two types of disorder
considered in this work (random on-site potential, random
hopping constant); for the latter do not add any extra terms
to the Hamiltonian.

7.7 Ionization

Ionization of the grains is likely to occur in the ISM and
should therefore be considered here. We found that an elec-
tronic charge in the order of 0.1 electron per C atom will
only shift the Fermi level by 0.2 eV, leaving the spectrum
at higher energies unchanged. In fact, taking into account
that the π resonance is associated to inter-band transitions
from the Van Hove singularity of the valence band to the
Van Hove singularity of the conduction band, both of them
being separated by an energy window larger than 4eV, weak
amounts of doping will not modify the optical spectrum
enough to affect the main features of the resonant peak of
the π mode.(see Yuan et al. 2011a).

On the other hand, Cecchi-Pestellini et al. (2008)
showed that, for several PAH’s, the spectra of neutrals, an-
ions, cations and dications were different between 6 and 10
eV. This effect may be due to interaction between the π
and σ resonances. Addressing this issue will become possi-
ble when both resonances are included in the tight-binding
model.

7.8 Work in progress

Clearly, a valuable addition to this work would be the in-
clusion of the σ resonance in the calculation of the DOS
and the optical conductivity. Work is in progress to fill this
gap. To include both σ and π bands one needs to consider
four orbitals (s, px, py and pz) on each carbon atom and
one orbital (s) on each hydrogen atom. The dimension of
the hopping matrix between two nearest carbon atoms be-
comes 8× 8 , which makes the computation more expensive
as compared to the single π band model which only includes
a 2× 2 hopping matrix. Each 8× 8 hopping matrix between
two neighbours has to be recalculated according to the co-
ordinates of each carbon atom. To the authors’ knowledge
the full tight-binding model including both σ and π bands
for graphene is not available in the literature yet.

At the same time, we are investigating whether the ac-
curacy of the present tight-binding calculation can be im-
proved, for instance, by using larger samples to have more
random complex coefficients in the initial wave function, or
using more time-steps to increase the energy resolution in
the spectrum. The fundamental operation in our numerical
methods is the time-evolution of the wave function by using
the Chebyshev polynomial method, which has already the
same accuracy as the precision of the simulation machine.

8 CONCLUSION

The present model carrier consists of nano-sized “bricks”,
i.e. stacks of a few finite sheets of graphene. The physics
of carbon is now known in such detail that it has become
possible to compute the dielectric functions of such particles
from first principles, with no ad hoc assumptions, nor tailor-
ing of any sort. In its clean and ordered form, this structure
carries a UV bump at 4.65 µm−1, with FWHM 0.85 µm−1,
very near the lower limit set by observations. This width
is essentially determined by the high-energy slope of ǫ2 as
a function of frequency, which, in turn, depends heavily on
the variation of the electric dipole moment with frequency.
Unlike theories which assume for simplicity that the dipole
moment is constant, the present treatment explicitely in-
cludes its variations. Because the dipole moment decreases
notably as frequency increases, the slope of ǫ2 becomes no-
tably steeper, and the bump width distinctly narrower.

Most natural or artificial carbonaceous materials are
neither pure nor perfectly regular in structure. Impure or
disordered structures can also be simulated theoretically by
allowing the natural energetic parameters of pure graphene
to vary according to a statistical distribution, thus simu-
lating different types of structural, chemical and orienta-
tion disorder. We have found that three types of struc-
tural/chemical disorder affect notably the high-energy slope
and, hence, broaden the UV bump. Moderate degrees of dis-
order are enough to cover the observed range of widths while
the peak position remains constant to ∼ 1%.

The peak position is more sensitive to the type of dis-
order than to its degree. For any of these types of disorder,
the general trend is for the width to increase with the degree
of disorder. Orientation disorder of bricks randomly glued
together in one dust particle, brings about more broaden-
ing and peak shift. This dust model, too, is sensitive to the
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structural and chemical disorders considered in this paper,
with similar consequences on position and breadth of the
peak. When all cases are lumped together in the same dia-
gram, no obvious correlation emerges between bump width
and position.

In essence, our theoretical procedure boils down to re-
placing sp2 by sp3 or sp1 bonds. No wonder, then, that this
leads, in particular, to a depression of the π resonance, which
is observed in various amorphous carbons and hydrocarbons
or coals of various ages. Together with the general trend of
increasing width and decreasing strength of the resonance,
the results that we present here can help to draw parallels,
and identify common features, between the different pro-
posed bump-carrier models.
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