
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111357

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16195805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111357

FESCA 2012

Incorporating Formal Techniques into

Industrial Practice: an Experience Report

Ammar Osaiwerana, Mathijs Schutsb, Jozef Hoomanc,1 and
Jacco Wesseliusb

a Eindhoven University of Technology, Eindhoven, the Netherlands
b Philips Healthcare, Best, the Netherlands

c Embedded Systems Institute Eindhoven & Radboud University Nijmegen, the Netherlands

Abstract

We report about experiences at Philips Healthcare with component-based development supported
by formal techniques. The formal Analytical Software Design (ASD) approach of the company
Verum has been incorporated into the industrial workflow. The commercial tool ASD:Suite sup-
ports both compositional verification and code generation for control components. For other com-
ponents test-driven development has been used. We discuss the results of these combined techniques
in a project which developed the power control service of an interventional X-ray system.

Keywords: component-based development, formal methods, analytical software design,
test-driven development, software quality

1 Introduction

We describe our experiences with the use of a formal method during an indus-
trial component-based development project. Our focus is the embedding of
the method in the industrial workflow. As observed in [4,28], there are quite
a number of reports about industrial case studies with formal methods, but
very few publications describe second or subsequent use. Similarly, the liter-
ature about the incorporation of formal methods in the standard industrial
development process is very limited.

We present a workflow which combines test-driven development of com-
ponents with a commercial formal approach and describe experiences with it

1 Supported by ITEA project Care4Me and COMMIT project Allegio.

To appear in:
Electronic Notes in Theoretical Computer Science

Osaiweran, Schuts, Hooman and Wesselius

at Philips Healthcare. In this introduction, we describe the motivation be-
hind these approaches, the main characteristics of the formal techniques used,
related work, and the main research questions.

This work has been carried out at the business unit interventional X-Ray
(iXR) of Philips Healthcare, for developing components of a power control
service (PCS) of an X-ray machine. The developed components are part of
innovative X-ray systems that are used for minimally-invasive surgery where
catheters are used to improve, for instance, a patient’s blood vessels. This
requires only a very small incision and physicians are guided by X-ray images.
In this way, often open heart surgery can be avoided.

To support a fast realization of the quickly increasing amount of medical
procedures that use this type of image guided surgery, a component-based
development approach is introduced. New components are developed accord-
ing to this paradigm and existing parts are gradually replaced by components
with well-defined formal interfaces. The definition of formal interfaces sup-
ports parallel, multi-site development and improves the integration with the
increasing amount of 3rd party components.

At Philips Healthcare, the component-based development approach is
based on a formal approach called Analytical Software Design (ASD). This
approach is supported by the commercial tool ASD:Suite of the company
Verum [27]. ASD [6,17] enables the application of formal methods into indus-
trial practice by a combination of the Box Structure Development Method [21]
and CSP [14]. The ASD approach contains two types of models which are both
based on state machines and described by a similar tabular notation: interface
models and design models. At Philips, these models are exploited as follows:

• The interface models are used to define the interaction protocol between
important system components in a formal way. ASD uses a Sequence-Based
Specification Method [23] to obtain complete and consistent specifications.
This means that the response to all possible sequences of input stimuli
has to be defined. Sequences that cannot happen must be declared illegal
explicitly. The tool ASD:Suite translates the sequence-based specifications
into CSP. The FDR2 model checker [11] is used to verify a predefined set
of properties such as absence of deadlock and livelock.

• Given an interface model of a control component, its internal behaviour can
be described by means of a design model which typically uses the interface
models of other components. By means of ASD:Suite it can be verified
formally whether the design model refines the interface model. Very im-
portant in our industrial context is that ASD:Suite supports complete code
generation from design models to a number of programming languages (C,
C++, C#, Java). Hence, design models provide a platform-independent
description of internal component behaviour.

2

Osaiweran, Schuts, Hooman and Wesselius

ASD:Suite hides the CSP and FDR2 details, which is important to en-
able industrial usage. The tool applies a fixed set of correctness checks and
error traces are visualized by means of sequence diagrams. To enable auto-
mated refinement checks, the use of design models is restricted to components
with data-independent control decisions. Components that involve data ma-
nipulations or algorithms are implemented by other techniques. Hence, it is
important that the ASD approach is compositional [16]; the formal verifica-
tion uses only the interfaces of the used components, without knowing their
implementation. A small example illustrating ASD can be found in [15].

The ASD approach has been inspired by the formal Cleanroom software
engineering method [19,22] which is based on systematic stepwise refinement
from formal specification to implementation. As observed in [5], the method
lacks tool support to perform the required verification of refinement steps. The
tool ASD:Suite can be seen as a remedy to this shortcoming. The additional
code generation features of the tool make the approach attractive for industry.
Related to this combination of formal verification and code generation are,
for instance, the formal language VDM++ [10] and the code generator of
the industrial tool VDMTools [8]. Similarly, the B-method [2], which has
been used to develop a number of safety-critical systems, is supported by
the commercial Atelier B tool [7]. The SCADE Suite [9] provides a formal
industry-proven method for critical applications with both code generation
and verification. Compared to ASD, these methods are less restricted and,
consequently, correctness usually requires interactive theorem proving. ASD
is based on a careful restriction to data-independent control components to
enable fully automated verification.

An analysis of the first usage of the ASD approach at Philips Healthcare
shows that it leads to the development of components with fewer reported
defects compared to components developed with more traditional development
approaches [12,13]. Therefore, formal methods are gradually becoming more
and more credible in developing software within Philips Healthcare. However,
in the healthcare domain this requires validated tools and the incorporation of
these new techniques into well-defined development and quality management
processes. This requires an answer to a number of questions such as:

• How formal techniques can be tightly integrated with standard development
processes in industry? To which extent does the formal verification affect
the test and integration phase? Are certain tests no longer needed? Which
tests are still essential to guarantee the quality of components? Can formal
interface models be used to generate test cases?

• What is the impact of the modeling and formal verification on the project
planning? Is more time needed during the design phase? Can the test and
integration phase be shortened?

3

Osaiweran, Schuts, Hooman and Wesselius

• Which artifacts have to be included in the version management system; do
we need the models, the generated code, or also the version of the tool?

• How to deal with changes; how flexible is the approach?

• How does the approach fit into the existing quality management system,
e.g., concerning the required review procedures.

We report about the experiences with these issues during the development
of components of the PCS for the interventional X-ray system. Note that this
is not a case study, but a real development project for a service that is used
by different parts of the system which are developed at different sites.

This paper is structured as follows. Section 2 presents the workflow that
has been used to combine formal and traditional approaches for developing
software components. Section 3 introduces the PCS and its role in the inter-
ventional X-ray system. Section 4 describes the application of the presented
workflow to the PCS. In Section 5 we discuss the results achieved in this
project. Section 6 contains our main observations and current answers to the
questions raised above.

2 Integrating formal techniques in industrial workflow

The development process of software, used in projects within the context of
iXR, is an evolutionary iterative process. That is, the entire software product
is developed through accumulative increments, each of which requires regular
review and acceptance meetings by several stakeholders. Figure 1 outlines the
flow of activities in a development increment, highlighting the steps to incor-
porate both the ASD and the test-driven development (TDD) [3] approaches.

Incremental

planning

ASD

specification

Behavioral

verification
Specification

review

Code

generation

Module

testing

End of

increment
Test

cases

Code

integration
Software

design
Requirements

Test

execution
Manual

coding

Test + code

review

ASD

TDD

Fig. 1. Steps performed in a development increment

Each increment starts with identifying a list of requirements to be im-
plemented by team members. As soon as requirements are approved, the
development team is required to provide work breakdown estimations that
include, for instance, required functionalities to be implemented, necessary
time, potential risks, and efforts.

For planning and tracking a Work Breakdown Structure (WBS) is created.
A WBS consists of tasks that need to be completed in a certain order to obtain
a finished product. At the beginning of each increment a new WBS for that

4

Osaiweran, Schuts, Hooman and Wesselius

increment is created. For each task, the time needed to complete the task is
estimated with the Wideband Delphi estimation method [25]; this means that
the effort needed for every task is estimated by two or more experienced soft-
ware designers in the first phase. In the second phase, the software designers
need to get consensus on the estimate. The outcome of the estimate is used in
the planning. Not all tasks of the WBS are estimated; some are derived from
historical data. Examples are overhead and average time needed to solve a
Problem Report (PR).

Team and project leaders take these work breakdown estimations as an
input for preparing an incremental plan, which includes the list of functions
to be implemented in a chronological order, tightly scheduled with strict dead-
lines to realize each of them. The plan is used as a reference during a weekly
progress meeting for monitoring the development progress.

The construction of software components starts with an accepted design,
i.e., a decomposition into components with clear interfaces and well-defined
responsibilities. Usually such a design is the result of iterative design sessions
and approved by all team members. When the aim is to use ASD, a common
design practice is to organize components in a hierarchical control structure.
Typically, there is a main component on the top which is responsible for high-
level, abstract behaviour, e.g., dealing with the main modes and the transitions
between these modes. More detailed behaviour is delegated to lower-level
components which deal with a particular mode or part of the functionality.

The control components are developed using ASD, whereas TDD is used for
the other components. These two approaches are explained below, describing
the well-known TDD approach only briefly.

2.1 The Test-Driven Development approach

The TDD approach starts each increment with the definition of a set of test
cases. To validate the test set, it is checked whether all tests fail on an empty
implementation. Next the components are developed iteratively, gradually
increasing the set of passed test cases. When all tests succeed, the code of
the components is reviewed by the team before it is integrated with the code
generated by the ASD approach.

2.2 The Analytical Software Design approach

An overview of the activities in the ASD approach is depicted in Figure 2.
Starting point is a structure of the components as described above.

Given a structure of control components, each control component is devel-
oped using ASD according to the steps 1 through 6 of Figure 2:

1. Specification of externally visible behaviour. An ASD interface model of
the component being developed is created. Such a model specifies not only the

5

Osaiweran, Schuts, Hooman and Wesselius

Review + code
generation

Behavioral verificationASD specification Design

Specify
interface

model of a
new

component

Start with a
given

structure of
components

Specify
interface

models of used
components

on the
boundary

Describe
component

behavior in a
design model

Verify design
plus used

interface models
is deadlock,
livelock, and
illegal free

Check whether
models of step
2,3 refine the

interface model
constructed in

step 1

Generate and
integrate code.

Start
developing a

new
component

1. 2. 3. 4. 5. 6.

Fig. 2. The ASD approach to develop components

set of functions that can be called by its clients, but also the allowed order of
these calls and the allowed responses. It can be seen as a formal specification of
the interaction protocol between the component and its clients. Note that this
interface model might already exist if the component is used by a component
that has been developed already, as explained in the next step.

2. Specification of external behaviour of used components. Similarly, ASD
interface models are constructed to formalize the external behaviour of com-
ponents that are used by the component under development.

3. Model component design. An ASD design model of the component is
created; it describes the complete behaviour of the component, including calls
to used interface models (as created in step 2) to realize proper responses to
client calls.

4. Formal verification of the design model. The ASD:Suite tool systemati-
cally translates all ASD models to corresponding CSP processes for verification
using the FDR2 model checker. Verification of the design model includes an
exhaustive check on the absence of deadlocks, livelocks, and illegal interac-
tions with the used interface models. When an error is detected by FDR2,
ASD:Suite presents a nice sequence diagram and allows users to trace the
source of the error in the models.

5. Formal refinement check. ASD:Suite is used to check whether the design
model created in step 4 is a correct refinement of the interface model of step 1.
As in the previous steps, errors are visualized and related to the models to
allow easy debugging.

6. Code generation and integration. After all formal verification checks
are successfully accomplished, source code can be generated from the model.

3 Context of the Power Control Service

The embedded software of an interventional X-ray system is deployed on a
cluster of PCs and devices that cooperate with one another to achieve var-
ious clinical procedures. The control of power to these components is the
responsibility of a central power distribution unit (PDU). Clinical users of an
individual PC cannot control the power of the PC without using the PDU, as

6

Osaiweran, Schuts, Hooman and Wesselius

depicted in Figure 3. The PDU also controls communication signals related
to the startup and shutdown of the PCs.

PDU

UIM

PC PCPCPC PC

MAINS

Power

Ethernet

Power

Taps
PCS PCS PCS

Controller

PCS PCS

Fig. 3. The PCS in the context of power distribution

As can be seen in Figure 3, each PC includes a PCS which is used for
exchanging power-related communication commands between running appli-
cations within a PC and the PDU through an Ethernet network. As a typical
example of powering off the system, the PDU sends a message instructing
all PCSs to gradually shutdown first the running applications and next the
operating systems (OS), in an orderly fashion. The PDU is connected to a
User Interface Module (UIM).

Figure 4 sketches the PCS in a PC as a black-box, surrounded by a number
of internal and external concurrent components, located inside and outside the
PC. For instance, the PDU interacts with the PCS to reboot or shutdown the
PC. Moreover, the PCS can also send events to the PDU to enable or disable
a number of buttons on the UIM.

Fig. 4. The PCS as a black-box surrounded by concurrent components

Another example of a concurrent component is the InstallApplication
which is an external component used to install and upgrade software on the

7

Osaiweran, Schuts, Hooman and Wesselius

PC. During the installation of software on a PC, the PCS instructs the running
applications to stop, start or restart.

The main function of the PCS is to coordinate all requests to and from
these parallel components. Due to the concurrent execution, controlling the
flow of events among the components is rather complex, and the architecture
sketched in Figure 4 is prone to deadlocks, livelocks, race conditions and illegal
interactions. Since the PCS is deployed on every PC, any error is replicated
on every PC and potentially leads to serious problems of the entire system.

Moreover, the PCS may lose connection with other components at any
time due to a failure of other components (e.g., applications) or with the
PDU (e.g., due to a network outage). The PCS has to be robust against such
failures, especially when the PCS is in the middle of executing a particular
scenario. When the PCS detects that the system is in a faulty state, it should
take appropriate actions and log the events for further diagnostics by the field
service engineer. As soon as the cause of malfunctions has disappeared, the
PCS ensures that all its internal components are synchronized back with other
external components to a predefined state.

Due to the high complex behaviour of the PCS and the many possible reg-
ular and exceptional execution scenarios that need to be considered carefully,
the ASD technology has been used to develop the control part of the service,
and to specify the external behaviour of the components on the boundary of
the PCS. The TDD approach has been applied to develop the non-control part
of the service and the components on the boundary of the PCS.

4 Steps of developing components of PCS

In this section we report about the component-based development of the PCS
from October 2010 till October 2011. The development process contained five
increments, each implementing part of the PCS functionality. The ASD-based
development of control components and the development of other components
using TDD has been carried out in parallel, as depicted in Figure 1. Below we
describe the development process in more detail, concentrating on the ASD
part, since the TDD approach is more conventional.

Requirements and incremental planning. The development process
was started by identifying the scope and the requirements of the PCS. At early
stages of development it was difficult to reach agreement with all stakeholders,
since they had different wishes concerning the required functionality. The
process of getting consensus took up to two-thirds of the total time. During
this negotiation phase, requirements and design documents were iteratively
written and reviewed by team members to reflect the current view of the
solution and as input for further discussions.

Hence, the development process initially took place in a context where

8

Osaiweran, Schuts, Hooman and Wesselius

scope and requirements were very uncertain and changed frequently - even
within a single increment. Additionally, the features required to be imple-
mented in every increment were only known at a very abstract level, such
as: “In increment 2 automatic logon of the default user of a PC has to be
implemented”. The requirements of each increment were only acquired just
at the beginning of the increment, which put more pressure on meeting the
strict deadlines.

Software design. The design of the PCS consists of a hierarchy of com-
ponents, as depicted in Figure 5. In this decomposition, ASD components are
depicted in a gray color, whereas light colored components have been devel-
oped using TDD. Not shown in the picture are commonly used components
such as tracing (to facilitate in-house diagnostics by developers) and logging
(to facilitate diagnostic by field service engineers in the field).

Fig. 5. Components of the PCS

The ASD components of the PCS have been realized in a top-down order.
Each ASD component is designed as a state machine that captures the global
states of lower level components. Starting point is the PduEventController
component which is modeled as a top-level state machine that captures overall
global states (or modes) of a PC: normal mode, installing, starting/stopping
applications, etc. Later, lower-level components are realized. For instance, the
component InstallTransitioning implements detailed behaviour of the instal-

9

Osaiweran, Schuts, Hooman and Wesselius

lation mode of the top-level state machine and is responsible of safeguarding
detailed transitions from normal mode to installation mode, and vice versa.

Experience shows that most novice ASD users tend to design rather large
components leading to large ASD models [24,13]. Although this might be
acceptable in traditional development methods, it leads to serious problems
when using formal techniques such as ASD:Suite. The key issues encountered
with large models were as follows.

• Verifiability: while verifying large models one quickly runs into the main
limitation of model checking, namely the state-space explosion problem.
Verification may take a large number of hours or might even be impossible
for large models.

• Maintainability: design models which contain a substantial number of input
stimuli and states are difficult to adapt or to extend. This leads to problems
when requirements change or functionality has to be added.

• Readability: large design models are hard to read and to understand. Design
reviews will consume a large amount of time.

During the development of the PCS, the first point was the main concern.
Earlier experience showed that as soon the state space explosion problem is
faced, the development process is blocked and components have to be refined
and redesigned from scratch. Since code generation is only allowed when the
formal verification checks succeed, this causes an unacceptable delay to the
tight schedules of the project and its deliverables.

Therefore, the design of the PCS has been decomposed into rather small
components, described using small models following the ASD recipe. Although
the ASD approach shown in Figure 2 does not prescribe an order in which
the components are realized, we used a top-down, step-wise refinement ap-
proach. This effectively helped us distributing responsibilities and maintain-
ing a proper degree of abstraction among all components. In this way we
obtained a set of formally verifiable components.

ASD specification and formal verification. The ASD models were
specified using the ASD:Suite version 6.2.0. An example of a very small ASD
interface model is shown in Figure 6, using a screenshot of ASD:Suite. The
model represents the interface of the Starting component and consists of two
sub-tables, representing states Idle and Initialized, each having three rule cases
(rows in the table). In order to force developers to be complete, all rule cases
must be filled in. That is, in all states the response to all stimuli must be
specified. Events that are forbidden in a certain state are declared Illegal in
the response field.

The corresponding design model of the Starting component is depicted in
Figure 7. It extends the interface model with calls to its used components
LogOn, Filter v1.0, and Filter v1.1.

10

Osaiweran, Schuts, Hooman and Wesselius

Model

check
Edit and apply filters

State diagram

generation

code

generation

state

Reference to tagged

requirements

Transition

state

Fig. 6. Interface model of the Starting component in ASD:Suite

gggggggg
 llgggll gggttltt ltlgg eglegeggl elteegtl ggggl teeggl eleg tgggl lettlgg ggg

1 >ell>>

2 eetgtlggtgggggggg >ggggglg)l)legeeg)ee)gllegtl)ttge)egglg))eg glete >)eg g >ggggglg)l)legeeg)ee)gllegtl)ttge)egglg)

eetgtlggtgggggggg etllelg

 >ggggglg)le

3 eetgtlggtgggggggg eenlg g >lllggl -

4 eetgtlggtgggggggg ggggg >lllggl -

5 >ggggglg)le>eetgtlggtgggggggg >ggggglg)l)legeeg)ee)gllegtl)ttge)egglg)>

6 eetgtlggtgggggggg >ggggglg)l)legeeg)ee)gllegtl)ttge)egglg) >lllggl -

7 eetgtlggtgggggggg eenlg g eetgtlggtgggggggg etllelg

)eg glete >)eg g)eg g

et)glglgtt1t ggggggggtt1t ggggg

 >ggggglg)le ggggg e t e tlgtgeg

t 1 t gge llg

gll le legeg

8 eetgtlggtgggggggg ggggg et)glglgtt11 ggggggggtt11 ggggg

eetgtlggtgggggggg etllelg

 >ggggglg)le ggggg e t e tlgtgeg t 1 1

1

Fig. 7. Design model of the Starting component

After the completion of the design model of a component, given interface
models of a component and its used components, ASD:Suite has been used to
formally verify absence of deadlocks, livelocks, illegal calls, and conformance
of the design model with respect to the interface model. Usually this revealed
quite a number of errors, both in the design model and the interface models.
Since changes in interface models affects other components this sometimes
leads to a chain of changes. However, since our components are kept small, it is
easy and fast (usually less than a second) to re-check these other components.

Specification review, code generation and integration. Although
the formal verification is very useful to detect errors, it does not guarantee that
the design model realizes the intended behaviour. For instance, the correct
relation between client calls and calls to used components is not checked.
Also the value of parameters is not verified. Hence, when all formal checks
succeed, the ASD models were reviewed by the project team. The review
process performed for the ASD models was similar to the review process of
any normal source code developed manually. After the team review, including
corrections and a re-check of the formal verification, C# source code was
generated automatically using ASD:Suite. This code is then integrated with
the manually coded components.

11

Osaiweran, Schuts, Hooman and Wesselius

Testing. At the end of each increment the ASD generated code plus the
manually coded components were exposed to black-box testing. Correspond-
ing test cases were specified and implemented before and in parallel with the
implementation of the increment. As a result of the black-box testing, a total
of three errors were found, two of which were related to ASD components
and one to the manually coded components. Note that the manually coded
components are rather straightforward and less complex than the control part
developed in ASD. The error in the manually coded components was due to
the existence of a null reference exception.

The first error in the ASD components was caused by a wrong order in
the response list of a stimulus event of a rule case. This error caused ASD
components to log messages in a reverse order. The second error was due to the
invocation of an illegal stimulus event in one of the Filter components, which
unexpectedly received an initialize request from one of its client components
although it was already initialized. Such a multi-client scenario is not checked
by ASD:Suite.

The entire PCS code was exposed to further testing on module level at the
end of all increments. After that, both manually written code and test code
were carefully reviewed by team members. As a result of review, minor issues
were identified and immediately resolved. Test cases were rerun in order to
assure that the rework after review did not break the intended behaviour of
the service.

5 Results

Throughout all increments, no major redesign was needed. In general, the
construction of all PCS components was rather smooth and gradually evolved
along the development increments. Both code and ASD models are stored in
a code management system, called IBM ClearCase [18].

Philips quality management enforces developers to comply with coding
standards provided by the TIOBE technology [26,1]. This created a prob-
lem, because the ASD generated code did not comply to the required coding
standard. However, changes of ASD components will always be carried out
on the level of the design models and changing the generated code directly is
not allowed. Hence it was acceptable to exclude the generated code from the
checks on the coding standard.

During the development of ASD components, we took care that the inter-
face and design models remained small. In our project, these models never
consist of more than 300 rule cases and include at most 2 asynchronous stim-
uli. Hence, the formal verification of interface and design models took less
than a second. Small models are also easy to inspect and to maintain. Keep-
ing the components small, however, increases the number of models. Since

12

Osaiweran, Schuts, Hooman and Wesselius

the verification is compositional, this does not increase the complexity of the
formal verification; each component is verified in isolation with respect to its
interfaces.

Feedback from independent test teams was positive and the service runs
stable and reliable. Team members of the PCS project appreciated the quality
of the service, and decided to further incorporate the ASD technology to
the development of other parts of the system. The behavioural verification
and the firm specification and code reviews provided a suitable framework
for increasing the quality, assisting the work, and decreasing potential efforts
devoted to bug fixing at later stages of the project.

The end quality result of the PCS service is remarkable, and the entire
service exhibited only 0.17 defect per KLOC. This level of quality favorably
compares to the industry standard defect rate of 1-25 defects per KLOC [20].
The PCS service was deployed on all PCs, and further tested by independent
teams responsible of developing the clinical applications on each PC. The
result of testing was that no errors were found and the service appeared to
function correctly on every PC, from the first run.

6 Concluding Remarks

We have described the experiences at Philips Healthcare with a component-
based development method which is supported by the commercial formal tool
ASD:Suite. The proposed workflow also includes test-driven development.
This approach has been used for the development of a basic power control
service. We list our main observations and lessons learned.

Test and integration. Concerning the code generated by ASD:Suite,
statement and function tests can be safely discarded since all possible execu-
tion scenarios have been covered by the model checker of this tool. However,
it is important to test the combination of ASD components and hand-written
components. In the PCS project this revealed a few errors.

Experience from other projects using more conventional approaches shows
that integrating concurrent components is usually a challenging task. It is of-
ten the case that components work correctly on their own, but do not function
as expected when they are integrated with one another. Sometimes, errors are
profound in length, hard to analyze and often tough to reproduce due to the
concurrent nature of components. Moreover, fixing an error in the code often
causes others to emerge, but unpredictably others to be unveiled with a great
potential of causing unexpected failures in the field.

Our experience with ASD differs from the observations of the previous
paragraph. Design errors were detected by the model checker early and au-
tomatically before any single line of code is being written or generated. The
behavioural verification thoroughly checked the correctness behaviour of com-

13

Osaiweran, Schuts, Hooman and Wesselius

ponents under all circumstances of use. It was often the case that fixing an
error caused other errors to emerge, which were deeper in length and complex-
ity than a previous one, but these design errors were detected with the click of
a button. Fixing these errors was done iteratively until components became
neat and clean from all sources of errors. Since formal verification of each
ASD design model was done with the interface specification of the boundary
components, integrating the code of all ASD design models is often quick and
accomplished without errors.

Quality management. While applying the proposed workflow, we ob-
served a few tensions with the current quality management system. The code
generated by ASD:Suite does not comply to the required coding standards
provided by the TIOBE technology. Moreover, the fact that ASD forces the
designer to define the response to all possible stimuli in all states leads to very
robust code, but it decreases the test coverage. In our case, it is acceptable
for quality managers to exclude ASD generated code from coverage metrics
and coding standards. In fact, the quality of the generated code turned out to
be very good, since the PCS components have been used frequently by several
parts of the system without any problem report.

In the version management system, ASD models and code are stored. Code
is used for fast build process, independent of the ASD:Suite tool. The models
are used for maintenance and to include change requests. New versions of the
ASD:Suite tool accepts models from previous versions.

Workflow. In the PCS project a lot of time was needed to clarify the
requirements, since there were many stakeholders at different sites. We believe
that in such a situation the formal ASD interface model are very useful. Since
ASD requires complete interface models, requirements have to be complete and
clear. Discussions to clarify the requirements resulted into new and changed
requirements and certainly improved the quality of the requirements.

Moreover, after identifying parts of the system that are most likely rather
stable, these parts can already be implemented using ASD in parallel with
ongoing discussions about unclear requirements. If the design is based on
a set of small components this can be done, since adapting and extending
small ASD models has proven to be easy. When large models are being used,
this could prove to be cumbersome. Further, the definition of ASD interfaces
enables concurrent engineering of components.

As mentioned above, an important benefit of the proposed workflow is that
the test and integration phase becomes more predictable.

Design. The use of ASD has a clear impact on the design and the defini-
tion of components. Because formal verification and code generation is only
possible for control components, the design should make a clear separation be-
tween data and control. Control components are generated using ASD:Suite
whereas test-driven development is used for the data components. Especially

14

Osaiweran, Schuts, Hooman and Wesselius

for designers used to object-oriented design this requires a paradigm shift.

Another important aspect is that ASD requires small components; as a
guideline a design model should not contain more than 250 rule cases, a few
asynchronous callbacks, leading to not more than approximately 3000 lines
of code. With these restrictions, the formal technique is rather easy to use
without much training and models are easy to understand and to modify.

Future Work. A disadvantage of having many small components is that
it is less clear whether together they realize the desired functionality. In
future work we would like to investigate whether additional formal techniques
can help to check the overall functionality of a set of components. Another
relevant direction that will be explored is the use of formal interface models
for conformance testing, using model-based testing techniques.

Acknowledgement

We would like to thank the anonymous reviewers and Tom Fransen for useful
comments on the text of this paper.

References

[1] Philips Healthcare - C# Coding Standard, Version 2.0. http://www.tiobe.com/content/
paperinfo/gemrcsharpcs.pdf, 2011.

[2] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University Press, New
York, NY, USA, 1996.

[3] K Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[4] J. Bicarregui, J. Fitzgerald, P.G. Larsen, and J. Woodcock. Industrial practice in formal
methods: A review. In A. Cavalcanti and D. Dams, editors, FM 2009: Formal Methods. Second
World Congress, volume 5850 of Lecture Notes in Computer Science, pages 810–813. Springer-
Verlag, 2009.

[5] G. Broadfoot. Introducing formal methods into industry using Cleanroom and CSP. Dedicated
Systems Magazine, 2005.

[6] G.H Broadfoot and P.J Broadfoot. Academia and industry meet: Some experiences of formal
methods in practice. In 10th Asia-Pacific Software Engineering Conferenc (APSEC 2003),
pages 49–58, 2003.

[7] ClearSy. Atelier B, 2011. Industrial tool supporting the B method, http://www.atelierb.
eu/en/.

[8] CSK Systems Corporation. VDMTools, 2011. Industrial tool supporting VDM++, http:
//www.vdmtools.jp/en/.

[9] Esterel Technologies. SCADE Suite, 2011. Model based development environment
dedicated to critical embedded software, http://www.esterel-technologies.com/products/
scade-suite/.

[10] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated Designs for
Object-oriented Systems. Springer, New York, 2005. Examples are available at http://www.
vdmbook.com.

15

http://www.tiobe.com/content/paperinfo/gemrcsharpcs.pdf
http://www.tiobe.com/content/paperinfo/gemrcsharpcs.pdf
http://www.atelierb.eu/en/
http://www.atelierb.eu/en/
http://www.vdmtools.jp/en/
http://www.vdmtools.jp/en/
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.vdmbook.com
http://www.vdmbook.com

Osaiweran, Schuts, Hooman and Wesselius

[11] Formal Systems (Europe) Ltd. FDR2 model checker, 2011. http://www.fsel.com/.

[12] Jan Friso Groote, Ammar Osaiweran, and Jacco H Wesselius. Experience report on developing
the front-end client unit under the control of formal methods. In Proceedings of the 27th ACM
Symposium on Applied Computing. ACM Press, in print., 2012.

[13] J.F Groote, A Osaiweran, and J.H Wesselius. Analyzing the effects of formal methods on the
development of industrial control software. In proceedings of the 27th IEEE ICSM 2011, pages
467–472, Williamsburg, VA, USA, September 25-30, 2011.

[14] C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[15] J. Hooman, R. Huis in ’t Veld, and M. Schuts. Experiences with a compositional model checker
in the healthcare domain. In Foundations of Health Information Engineering and Systems
(FHIES 2011), Pre-symposium Proceedings, pages 92–109. UNU-IIST Report 454, McSCert
Report 5. http://www.iist.unu.edu/ICTAC/FHIES2011/Files/fhies2011_8_17.pdf.

[16] Jozef Hooman. Specification and Compositional Verification of Real-Time Systems, volume
558 of Lecture Notes in Computer Science. Springer, 1991.

[17] P.J Hopcroft and G.H Broadfoot. Combining the box structure development method and CSP
for software development. Electronic Notes in Theoretical Computer Science, 128(6):127–144,
2005.

[18] IBM ClearCase. http://www-01.ibm.com/software/awdtools/clearcase/, 2011.

[19] R.C Linger. Cleanroom process model. IEEE Software, 11(2):50–58, 1994.

[20] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA,
2004.

[21] H. D. Mills. Stepwise refinement and verification in box-structured systems. Computer, 21:23–
36, 1988.

[22] S. Prowell, C. Trammell, R. Linger, and J. Poore. Cleanroom Software Engineering: Technology
and Process. Addison-Wesley, 1999.

[23] Stacy J. Prowell and Jesse H. Poore. Foundations of sequence-based software specification.
IEEE Transactions on Software Engineering, 29:417–429, 2003.

[24] M.T.W. Schuts. Improving software development. Masters thesis, Radboud University
Nijmegen, The Netherlands, 2010.

[25] A. Stellman and J. Greene. Applied Software Project Management. O’Reilly Media, 2005.

[26] TIOBE homepage. http://www.tiobe.com, 2011.

[27] Verum homepage. http://www.verum.com, 2011.

[28] J. Woodcock, P.G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice and
experience. ACM Computing Surveys, 41(4):1–36, 2009.

16

http://www.fsel.com/
http://www.iist.unu.edu/ICTAC/FHIES2011/Files/fhies2011_8_17.pdf
http://www-01.ibm.com/software/awdtools/clearcase/
http://www.tiobe.com
http://www.verum.com

	Introduction
	Integrating formal techniques in industrial workflow
	The Test-Driven Development approach
	The Analytical Software Design approach

	Context of the Power Control Service
	Steps of developing components of PCS
	Results
	Concluding Remarks
	Acknowledgement
	References

