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ABSTRACT

Context. Massive stars influence their environment via stellar winds, ionising radiation and supernova explosions. This is signified
by observed interstellar bubbles. Such “feedback” is an important factor for galaxy evolution theory and galactic windmodels. The
efficiency of the energy injection into the interstellar mediumvia bubbles and superbubbles is uncertain, and is usually treated as a
free parameter for galaxy scale effects. In particular, since many stars are born in groups it isinteresting to study the dependence of
the effective energy injection on the concentration of the stars.
Aims. We aim to reproduce observations of superbubbles, their relation to the energy injection of the parent stars and to understand
their effective energy input into the interstellar medium (ISM), as afunction of the spatial configuration of the group of parent stars.
Methods. We study the evolution of isolated and merging interstellarbubbles of three stars (25, 32 and 60M⊙) in a homogeneous
background medium with a density of 10mp cm−3 via 3D-hydrodynamic simulations with standard ISM thermodynamics (optically
thin radiative cooling and photo-electric heating) and time dependent energy and mass input according to stellar evolutionary tracks.
We vary the position of the three stars relative to each otherto compare the energy response for cases of isolated, merging and initially
cospatial bubbles.
Results. Due to mainly the Vishniac instability, our simulated bubbles develop thick shells and filamentary internal structuresin
column density. The shell widths reach tens of per cent of theouter bubble radius, which compares favourably to observations. More
energy is retained in the ISM for more closely packed groups,by up to a factor of three and typically a factor of two for intermediate
times after the first supernova. Once the superbubble is established, different positions of the contained stars make only a minor
difference to the energy tracks. For our case of three massive stars, the energy deposition varies only very little for distances up to
about 30 pc between the stars. Energy injected by supernovaeis entirely dissipated in a superbubble on a timescale of about 1 Myr,
which increases slightly with the superbubble size at the time of the explosion.
Conclusions. The Vishniac instability may be responsible for the broadening of the shells of interstellar bubbles. Massive star winds
are significant energetically due to their – in the long run – more efficient, steady energy injection and because they evacuate the space
around the massive stars. For larger scale simulations, thefeedback effect of close groups of stars or clusters may be subsumed into
one effective energy input with insignificant loss of energy accuracy.

Key words. Galaxies: ISM – ISM: bubbles – ISM: structure – hydrodynamics – Instabilities

1. Introduction

The properties of the interstellar medium (ISM), i.e. its morphol-
ogy with imprinted bubbles and superbubbles (Gruendl et al.
2000; Arthur 2007; Chu 2008; Sasaki et al. 2011) as well as
molecular-cloud fragments in formation or in dispersal, and its
level of turbulence, are strongly affected by the physics and
dynamics of stellar feedback (e.g. de Avillez & Breitschwerdt
2004, 2005; Dobbs et al. 2011b,a; Ntormousi et al. 2011). The
actual agents of stellar feedback are massive stars, born inthe
denser parts of the interstellar medium (for recent reviewssee
McKee & Ostriker 2007; Zinnecker & Yorke 2007). The inter-
action via winds and ionising radiation of a single massive star
with its surroundings is usually referred to as “interstellar bub-
ble” (Weaver et al. 1977): Strong winds are shocked close to the
star and produce a hot overpressured bubble, which drives an

⋆ E-mail: Martin.Krause@universe-cluster.de

expanding shell of swept-up, shocked ambient gas. The shell
may be partially or completely ionised by the Ultraviolet emis-
sion of the central star. The increased pressure may addition-
ally push the leading shock front. Interstellar bubbles areusu-
ally not energy conserving, because of the radiative lossesof
the shocked ambient medium (e.g. Weaver et al. 1977). This has
been nicely demonstrated by the observations of Gruendl et al.
(2000): For some bubbles, they resolve the radiative leading
shock wave, with the highly excited [O III ] tracing the hottest
outermost gas, and Hα tracing a somewhat cooler surface in-
side of [O III ]. This indicates that the leading shock front in
these cases is shock ionised rather than photo-ionised. Radiative
energy losses are substantial, but hard to quantify in detail (e.g.
Garcia-Segura & Mac Low 1995) and affect wind-blown and su-
pernova related bubbles alike.

Many molecular clouds host massive stars in groups. The
bubbles of these stars have to interact, because the sizes
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Table 1. Simulation parameters

Label Star mass/M⊙ X / pc Y / pc Z / pc Res./ pc n0/cm−3 To/ K
S25 25 0 0 0 2.1 10 121
S32 32 0 0 0 2.1 10 121
S60 60 0 0 0 2.1 10 121
3S0 25 0 0 0 2.1 10 121

32 0 0 0
60 0 0 0

3S1 25 -30 10 10 2.1 10 121
32 -25 -10 0
60 0 0 0

3S2 25 -60 20 10 2.1 10 121
32 50 -10 0
60 0 0 0

3S1-mr 25 -30 10 10 1.0 10 121
32 -25 10 0
60 0 0 0

3S1-hr 25 -30 10 10 0.52 10 121
32 -25 10 0
60 0 0 0

of the individual bubbles (parsecs, e.g. Weaver et al. 1977;
Gruendl et al. 2000) is comparable to the size of the par-
ent molecular clouds (Kainulainen et al. 2011). Also, in star
forming regions, smaller groups of stars are often located
within distances of tens of parsecs (e.g. Orion, Voss et al.
2010). The interaction of individual bubbles leads to the for-
mation of superbubbles (Tenorio-Tagle & Bodenheimer 1988;
Oey, Clarke, & Massey 2001; Chu 2008; Oey 2009 for reviews):
The expansion of the combined superbubble is often described
by the same model as for individual bubbles, which predicts
expansion rate and shell size, if the energy input and the am-
bient density are known. Superbubbles may reach sizes of
hundreds of parsecs (e.g. Tenorio-Tagle & Bodenheimer 1988;
Breitschwerdt & de Avillez 2006; Sasaki et al. 2011). But they
often appear to be too small and too bright in X-rays com-
pared to models (e.g. Oey & Garcı́a-Segura 2004; Jaskot et al.
2011). Possible explanations include energy dissipation due to
mass loading or uncertainties in the stellar wind data, e.g.due to
clumping.

Understanding of the physics of bubbles and superbubbles
is the key ingredient in order to gauge the efficiency of stel-
lar feedback. It is of particular importance to assess the effec-
tive energy input into the ISM. Our group has embarked on this
task, and has synthesised the total energy input into molecular
clouds for realistic stellar populations based on recent stellar
evolution models (Voss et al. 2009): Averaged over all massive
stars (8M⊙ < M < 120M⊙), the energy input due to winds is of
order 1050 erg/star. Supernovae contribute about ten times more.
The energy injection is extended over several tens of Myr and
has a peak near four Myr with a shallow decline afterwards.
Winds dominate before the peak and supernovae afterwards.
Substantial variations from cluster to cluster are expected due
to the sparser sampling at the massive end of the initial mass
function.

Stars are born in the densest regions of the ISM. Much of
the injected energy is therefore quickly lost to radiation in cool-
ing shock compressed shells. Hydrodynamic simulations have
been used to assess the effective energy input into the ISM. The
energy deposition efficiency of isolated massive stars in their
wind phase has been assessed in 2D hydrodynamic simulations
by Freyer et al. (2003, 2006). Though they include the effect of
photo-ionisation, they show that the gas dynamical effects are

dominated by the mechanical energy input: For example, for a
35 (60)M⊙ star, they expect only 17 (5) per cent of the energy
transfered to the ISM in their simulation being due to the ef-
fect of ionisation. They give their energy deposition efficiency
as fractions of the radiative energy input. Scaled to the mechani-
cal energy input, they find that about 38 (9) per cent of the input
energy has been added to their ISM at the end of their simula-
tions for the 35 (60)M⊙ star. The dynamics of two wind bubbles
(25 M⊙ and 40M⊙ stars) separated by 16.2 pc has been stud-
ied by van Marle et al. (2012). The two bubbles quickly merge,
sweeping the colliding parts of the wind shells away into the
bubble of the lower mass star, due to the pressure difference in
the bubbles. An aspherical superbubble is then formed, which
isotropizes after a few Myr. More interesting details are ob-
served which we refer to below, when we compare them with
our findings in Section 3. Ntormousi et al. (2011) have simu-
lated the merging of two superbubbles in 2D with identical stel-
lar content. One of the most interesting findings in the simula-
tions of Ntormousi et al. (2011) and van Marle et al. (2012) is
the occurrence of the Vishniac thin shell instability (Vishniac
1983). This instability is strongly suppressed in the simulations
of Freyer et al. (2003, 2006) due to the thickening of the shell
because of the increased pressure due to the ionisation. The
Vishniac instability is interesting as it may create observable fila-
mentary features, and thick filamentary shells, and thus discrim-
inate between models (van Marle & Keppens 2012).

Here, we address the effective energy injection into a homo-
geneous ISM for three interacting interstellar bubbles with 3D
hydrodynamics simulations, using standard ISM thermodynam-
ics. We neglect the effect of ionising radiation, because it is ex-
pected to be less important in this context (Freyer et al. (2003),
see e.g. Gritschneder et al. (2010) for the effects of ionising ra-
diation). We take as our starting element a group of three coeval
massive stars, 25, 32 and 60M⊙, respectively. We study the de-
position efficiency of energy injection as a function of distance
between the stars. We find a high efficiency in the wind phase,
comparable to the 2D results of Freyer et al. (2003, 2006) and
the 2D and 3D results of Fierlinger et al. (2012), details of bub-
ble merging similar to van Marle et al. (2012) and an enhance-
ment of the feedback efficiency by about a factor of two for
grouping of the stars closer than about a few tens of pc. The
energy of supernovae that explode within superbubbles is dis-
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Fig. 1. Test simulation of an isolated supernova in a homo-
geneous environment according to Tenorio-Tagle et al. (1990).
This test was run in 1D and spherical coordinates at radial reso-
lutions between 100 and 6400 cells with respective increments of
a factor of two and with the standard cooling and heating. Top:
density slices at different times (increasing from left to right).
Middle: evolution of thermal (thin lines) and kinetic (thick lines)
energy for the 100 (orange triple dot-dashed lines), 800 (solid
black lines), 6400 (red dashed lines) radial cells simulation.
Additionally a simulation with 3200 radial cells and enhanced
cooling is shown (blue dot-dashed lines, see text for details). The
left part of the plot zooms into the first 2000 yr of the evolution.
Bottom: Maximum compression at about 20,000 yr as a function
of resolution. The expected maximum compression at this time
is four for a strong adiabatic shock.

Fig. 2. Cumulative energy (top) and mass (bottom) input. We use
the output of a 25M⊙ (dashed, labels: Ms= M⊙), 32 M⊙ (dot-
ted) and a 60M⊙ star as input for our simulations, separately or
combined. The difference between the total mass output and the
initial mass indicates the mass of the dark remnant. The energy
is given in “Bethe”= 1051 erg.

sipated on a timescale of about 1 Myr. Additionally, we show
column density renderings of prominently Vishniac unstable 3D
shells, which should give a first approximation of the observa-
tional appearance of the Vishniac instability.

2. Simulations

We carry out 3D hydrodynamic simulations with the
Nirvana 3.5 code (Ziegler 2008, 2011), evolving the conserva-
tion equations for mass, momentum and energy. Nirvana 3.5 is a
conservative, finite volume code and combines block structured
adaptive mesh refinement (AMR) with parallelisation by the
message passing interface (MPI) library.

2.1. Numerics and code tests

The main solver modules are an HLLD solver (HLLDCT),
applying the 1D approximate Riemann solver of
Miyoshi & Kusano (2005) dimension-by-dimension in 3D,
and a second-order Central-Upwind scheme (CUCT, full
details in Ziegler 2011). We work in Cartesian coordinates
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throughout (apart from the radiative test case in this section).
In order to check the isotropy of the solution in this geometry
and also for differences between these solvers, we have re-run
and analysed the adiabatic blastwave test problem that comes
with the code with both solvers. Here, a fixed amount of thermal
energy is initially deposited in a finite circular region of 22 cells
diameter. In both cases, a reasonably spherically symmetric
bubble develops, with a forward shock, a contact surface and
a backward shock. The contact surface evolves identically for
both solvers, forward and backward shock are lead by the
solution of the CUCT solver by at most one cell. Hence, both
methods yield a very similar result for symmetrical bubble
expansion. For the same solver but different angular directions
other than the grid axes, the radii of the different features of
interest differ by typically one and up to about three grid cells.

As a radiative (see below for details about radiative cooling
and heating) test simulation, we have re-run the 1D-supernova
test of Tenorio-Tagle et al. (1990, Figure 1), also in spherical
coordinates, but otherwise with the same numerical settings as
for the 3D production runs below. Here, 1051 erg are deposited
within a radius of 1018 cm. Density and temperature are initially
assumed to be 1 cm−3 and 100 K, respectively, throughout the
computational domain. We use the CUCT solver with a uniform
mesh with a cell size between 5.6×10−3 pc (6400 cells in total)
and 0.36 pc (100 cells in total) for this test. The density slices
in Figure 1 (top) show the expected shape for such an explosion.
In their 1D test run, Tenorio-Tagle et al. (1990) find the outer
shock at 11 pc (24 pc) at 5,300 yr (47,806 yr). Our simulation
(10.4 pc at 5483 yr; 25.2 pc at 47,990 yr) reproduces this within
expectations. At 47,990 yr, our outer shock is about 5 % further
out then their solution at 47,806 yr. This is likely related to the
differences in the employed cooling functions (more details be-
low). The contact surface at 47,806 yr should be at 8 pc, which
agrees well with our result. During the energy conserving phase,
i.e. up to say 30,000 yr, we expect 28 % of the energy in kinetic
form and 72 % in thermal form, which is consistent with our
energy tracks (Figure 1, middle, to be compared with Figure 1a
in Tenorio-Tagle et al. (1990)) Cooling should become signifi-
cant around 33,000 yr, which is also in good agreement. After
the onset of cooling, the thermal energy should decline strongly,
this and the shape of the energy tracks are quite similar to the
findings of Tenorio-Tagle et al. (1990). We also find a secondary
shock wave in the shocked ambient gas due to the non-uniform
cooling of the shell, and a corresponding increase in the track
of the kinetic energy, as in Tenorio-Tagle et al. (1990) (another
weak shock from reflection at the origin is visible in the shocked
ambient gas in Figure 1, top). The analytically expected com-
pression ratio at the leading shock front is four. Because ofthe
strong decline of the solution inwards, one can however not ex-
pect to obtain exactly four in a numerical representation, but the
solution should converge towards four with increasing resolu-
tion. Our highest resolution run reaches a compression above 3.9
in the adiabatic phase, and we show in Figure 1 (bottom) that this
value converges well with increasing resolution.

The reduced density peak height decreases the cooling rates
slightly: The low resolution runs lag behind in thermal energy
decrease by at most about 3000 yr at 60,000–90,000 yr. The en-
ergy track is entirely converged from about 400 cells. The cross-
ing point of thermal and kinetic energy is around 80,000 yr inour
simulation compared to about 46,000 yr in Tenorio-Tagle et al.
(1990). This significant difference is due to the employed cool-
ing curve: Tenorio-Tagle et al. (1990) use the cooling curveof
Raymond et al. (1976), which features particularly strong cool-
ing around 106 − 107 K due to highly ionised Fe. The cool-

ing rates are uncertain by a factor of about two (Wiersma et al.
2009). Many, more recent, cooling curves tend to have lower
cooling rates than Raymond et al. (1976), including the standard
one for the NIRVANA-code, Slyz et al. (2005), which we use.
In order to verify that this is the reason for the differences in the
energy tracks between Tenorio-Tagle et al. (1990) and our result,
we tested a case where we increased the cooling rates ad hoc by
a factor of two (Figure 1, middle, blue dot-dashed lines). This
obviously shifts the result into the right direction. The increased
amount of thermal energy probably also leads to the slightlyfur-
ther advanced outer shock (compare above) at late times.

Thus, we reproduce the fundamental properties of the 1D test
of Tenorio-Tagle et al. (1990). The 3D nature of our simulations
demands some compromise regarding resolution. We expect that
this effect should affect energy tracks by a at most a few per cent.
We account for this in the discussion below.

We have initially selected the HLLDCT solver but encoun-
tered severe vacuum formation problems (very low pressure)
near contact surfaces for our high resolution runs. For all the
simulations presented in this article, we have therefore employed
CU CT.

We use standard ISM thermodynamics with radiative cool-
ing and photo-electric heating (see Piontek et al. (2009) for de-
tails), employing the standard iterative procedure of Nirvana 3.5.
Cooling is always strong for our wind shells, which tend to get
thin and eventually also Rayleigh-Taylor and Vishniac-unstable.
The instabilities evolve differently for different flux limiters:
Test simulations with all flux limiters provided (minmod, super-
bee, monotonised-centred, and Van Leer) showed that for the
monotonised-centred and the superbee limiters, the instabilities
are systematically different for parts of the shell which move par-
allel and diagonal to the grid axis. Van Leer and minmod both
yield almost isotropic results at our highest resolution, at the ex-
pense of being more diffusive, as expected. We have correspond-
ingly adopted the minmod flux limiter. Nirvana 3.5 offers an ad-
ditional multi-dimensional limiter which we also use, and where
we have adjusted the parameter experimentally to yield optimal
isotropy for shell instabilities.

2.2. Setup

The computational domain is a cubic Cartesian grid, 400 pc ona
side resolved by 24 cells for the base level. The mesh is refined
whenever a combined threshold of first and second derivativefor
density or respectively velocity is exceeded. Additionally, we al-
ways keep the wind injection region at the highest refinement
level. Effectively, the wind shell and everything inside is always
refined to the highest level. For most of our runs we use three
levels of adaptive mesh refinement, which would correspond to a
uniform grid of 1923 cells with a resolution of 2.1 pc. Simulation
3S1-mr and 3S1-hr use four and five levels of refinement, result-
ing in 1 and 0.5 pc resolution, respectively. Boundary conditions
are formally periodic, but we only use data from snapshots where
the shells are entirely contained in the computational domain.

We fill the grid initially with a homogeneous medium. Then
we choose one (three) injection regions of eight pc radius inev-
ery case. Each injection region gets assigned a star of a partic-
ular mass. We inject mass and thermal energy according to the
stellar evolutionary tracks of rotating stars of Meynet & Maeder
(2005) and wind velocities from Lamers et al. (1995) and
Niedzielski & Skorzynski (2002) for the Wolf-Rayet phase, as
compiled in Voss et al. (2009). We use 25, 32, and 60M⊙ stars,
with supernovae at 8.6, 7.0 and 4.6 Myr, respectively. The time
resolution of the stellar evolution table is 0.1 Myr. Cumulative
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Fig. 3. Column density integrated overZ-direction andY-direction (left and middle columns, respectively) and midplane density
(right column) for three different snapshot times from top to bottom for run 3S1-hr. The projections of the three massive stars into
the X-Y plane is indicated as small red stars in the density plots on the right. The 60M⊙ star blows the biggest bubble from the
origin. The 32M⊙ bubble towards its lower left (XY-plots) is only slightly bigger than the one of the 25M⊙ star above. The shell
forms spikes and dense clumps due to the combined action of Vishniac and thermal instability. A movie is provided with theonline
version.

mass and energy input are shown in Figure 2. The mass density
is initially set to 10mp cm−3 everywhere in the computational
domain. The temperature is set in equilibrium between cooling
and heating, 121 K. All velocities are initially zero. More details
for each individual run are provided in Table 1.

3. Results

The time evolution of our high resolution run 3S1-hr with three
stars at different locations is shown in Figures 3 and 4. At a given
time, the bubble size increases monotonically with the massof
the parent star, with the central 60M⊙ bubble dominating the
gas dynamics. As expected, the shocked ambient medium cools
very quickly and consequently gets compressed into a thin shell
for each bubble. The shell is subject to a combination of thermal
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Fig. 4. Figure 3 continued, but with all scales adapted to the snapshots presented in this figure.

and Vishniac (1983) instabilities1. The bubbles start to merge at
around 2 Myr. At the first snapshot in Figure 3 (1.95 Myr), the
shell interface between the 60M⊙ bubble and the 32M⊙ bubble
has just burst. Up to this point, each bubble has had its individ-
ual bubble pressure, which is largest for the 60M⊙ bubble. Its
hot gas can be seen to stream through the hole in the shell. The
shell interface then behaves much like a cloud, being ablated by
a wind (Pittard et al. 2005): Kelvin-Helmholtz instabilities at the

1 Although we have carefully chosen the flux limiter, the shellinsta-
bility evolves still somewhat anisotropically. This is similar to the 2D
results of Ntormousi et al. (2011) with the RAMSES code, where even
a five times higher spatial resolution could not get the shellinstabilities
completely isotropic.

contact surface lead to mixing of the cloud gas into the hot phase.
The shell interface has completely dispersed until the nextsnap-
shot at 4.05 Myr. We have checked the effect of different flux
limiters in this phase: Less diffusive ones allow smaller holes,
which delays the erosion process compared to the more diffu-
sive case. The final results are however very similar.

The density slice at 4.05 Myr shows the weaker winds of
the smaller stars to be pushed aside by the one of the most mas-
sive star. The larger part of the 60M⊙ bubble remains unaffected
by the action of the smaller stars. The 60M⊙ star explodes at
4.6 Myr. The sudden energy injection due to the supernova com-
presses the shell further (Figure 5) and accelerates it, triggering
the Rayleigh-Taylor instability (RTI). The RTI may cause fila-

6



Martin Krause et al.: Emergence of superbubbles – energy efficiency & Vishniac instabilities

Fig. 5. Maximum density as a function of time for runs 3S1-
hr (solid), 3S1-mr (dashed) and 3S1 (dotted). The horizontal
lines correspond to the critical compression above which the
Vishniac instability is triggered for supernova (lower line) and
wind (thicker upper line) shells according to Vishniac & Ryu
(1989). The axis on the right shows the overdensity factor over
the undisturbed ambient medium.

Fig. 6. One-dimensional slices in X-direction through run 3S1-hr
at timeT = 8.53 Myr. TheY andZ coordinates are chosen appro-
priately for the slices to include the position of the only remain-
ing star at that time (25M⊙ , atX = −30 pc, indicated by the star
in the middle diagram). Top: positive X-velocity (blue, dashed
line), negative x-velocity (red dash-dotted line) and sound speed
(solid black). Middle: pressure (logarithmic) . Bottom: density
(logarithmic). See text for details.

mentary structure inside the shell. Also, the outwards directed
flow field, centred around the most massive star before its ex-
plosion, is no longer present. Thus, from this time on, we find
filamentary gas inside the shell, seen in the individual density
slices. The effect of the winds of the smaller stars in this phase
can hardly be noticed. The second supernova (7.0 Myr) leads
to a further acceleration and compression of the shell, causing
more RTI filaments. The snapshot at 8.53 Myr shows the super-
bubble when 2 stars have exploded already, and the third is inits
Wolf-Rayet phase. This snapshot demonstrates nicely that our
ansatz with thermal energy injection may also cope with situa-
tions when the backward shock within the stellar ejecta is un-

Fig. 7. Shell details for the final snapshot of run 3S1-hr. Shown
is an X-Y zoom of density, pressure, temperature and Mach
number, as indicated on the individual panels, around the po-
sition of the maximum density, which is located at (X,Y,Z) =
(−30,−79,−52) pc. Velocity vectors are overlaid on the density
plot. The high density region is overpressured and has a temper-
ature below 20 K. See text for more details.

usually far from the star: One can clearly see the declining den-
sity away from the star due to adiabatic expansion (1D-slices in
Figure 6). The wind turns supersonic immediately outside the
driver and shocks roughly 20 pc away from the star. A second
structure is visible at varying distance from the star, up toabout
50 pc: This is what we would expect to be the forward shock in
the standard picture. Due to the high ambient pressure, it isonly
a sound wave. The pressure inside of this structure is slightly
reduced due to the ongoing expansion. The final supernova at
8.6 Myr causes again mass entrainment into the bubble due to
the RTI. The bubble then keeps expanding with decreasing inte-
rior density fluctuations until the end of the simulation at 15 Myr.

The highest densities in the shell, around 180 times the ambi-
ent density, are reached for roughly 1 Myr after each supernova,
where for the later two supernovae, the compression peaks have
merged (Figure 5). At late times the density increases again(see
below for details). We show a zoom on the highest density re-
gion in the final snapshot in Figure 7. The density maximum is
located in the dense shell, where two humps of the Vishniac in-
stability (compare Section 3.1 below) cross, and more towards
the interior of the bubble. The velocity field in the shell is still
dominantly outwards with substantial Mach numbers. Yet, prob-
ably enhanced by the large scale vortices which dominate the
shell interior at that time, there is also some non-radial mo-
tion. The slightly converging velocity field has to be responsible
for the high density, as the region is substantially overpressured
compared to the environment. At earlier times (compare above),
such maxima in density and pressure could have been in pressure
equilibrium with their surroundings. At this late time, thebubble
interior is already underpressured with respect to the environ-
ment, and so we expect that the maximum is temporary, unless
such clumps become self-gravitating. This seems quite likely,
given the pc-scale size, low temperature (below 20 K) and high
mass (few hundredM⊙ ) of the clump (Jeans length:≈ 2 pc).
Yet, self-gravity is not included in the simulations and therefore
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Fig. 8. Column density at a comparable late evolution time for
runs 3S1 (top) and 3S1-hr (bottom). The high resolution bubble
is more spherical, larger, achieves higher peak column densities
and the Vishniac instability is more pronounced.

details, such as triggered star formation, are beyond the scope of
this article.

3.1. Vishniac instability

The shells are subject to various instabilities. The Rayleigh-
Taylor instability is especially prominent during the strong ac-
celeration phases after each supernova. The Vishniac instability
develops when the shell decelerates. It is an overstability: dif-
ferences in column density for adjacent regions of a shell cause
gas flow from the high column density region into the region
with smaller column density. This continues in general until the
situation is reversed and the region with initially smallercol-
umn density finally has the greater one. Vishniac & Ryu (1989)
derive a critical overdensity for the shell over the unshocked
ambient gas of a factor 10 and 25 for a blastwave with ini-
tial energy injection and constant energy injection rate, respec-
tively, to become unstable, such that the peak density increases
in each cycle. The shell then develops a characteristic spiky pat-
tern (Ntormousi et al. 2011; Drake 2012, Figure 3), in density

Fig. 9. Analysis of the non-radial Mach number, i.e. the Mach
number perpendicular to the direction of the shell’s expansion.
Only the region with positiveX-coordinate, which corresponds
to the undisturbed part of the 60M⊙ bubble, is taken into ac-
count. Left: 4.05 Myr, right: 7.47 Myr. The upper parts show
the non-radial Mach number versus the logarithm of the den-
sity. Colour encodes the mass per bin, where each bin spans
0.05 in Mach number and 0.06 dex in logarithmic density. No
appreciable non-radial motions are found for the hot bubblein-
terior, whereas the dense shell material shows Mach numbers
of order unity. The lower parts show mass weighted non-radial
Mach number histograms (vertically collapsed versions of the
plots above). The plots are dominated by the quiescent ambient
medium. The mass with given non-radial Mach number declines
strongly around a Mach number of unity towards higher Mach
numbers as expected for shells dominated by the Vishniac insta-
bility.

slices. The 3D structure of the shell is granular with a regular fil-
amentary pattern (Figure 3 and 4). The regularity is of course
related to the grid structure, because this is the most impor-
tant perturbation. In column density, we find a web formed of
polygons. These polygons have typically four to six sides. The
sides are however not always aligned with the coordinate axis or
the diagonals, and some are clearly curved. The typical polygon
diameter is about 10 pc. At the intersections of the filaments,
density and column density achieve their highest values. These
points lag behind the shell. Particularly high densities may be
achieved, when left and right part of an inwards spike merge.
This seems to have happened for the density maximum at the
final snapshot we show in Figure 7. But from a detailed inspec-
tion of several snapshots, we conclude that this should happen
frequently. The three-dimensional structure of our superbubble
shells is very similar to the one of the smaller scale circum-stellar
shells of van Marle & Keppens (2012).

We show the peak density over time in Figure 5. Clearly,
the densest parts of the shell of run 3S1-hr satisfy the criteria of
Vishniac & Ryu (1989) from before 2 Myr throughout the simu-
lation, in agreement with Figure 3. The low resolution simulation
3S1 generally stays below the wind criterion of Vishniac & Ryu
(1989). Correspondingly, the Vishniac instability is muchless
pronounced (Figure 8). Mac Low & Norman (1993) have shown
that the instability is connected to transonic motions in the shell
perpendicular to the expansion direction. We evaluate these non-
radial velocities for the undisturbed (with respect to the interac-
tion of the bubbles of the other two stars, here we useX > 0) part
of the shell in Figure 9. The 2D mass weighted histogram over
logarithmic density and non-radial Mach number, with respect
to the local speed of sound, shows that only dense shell gas ac-
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Fig. 10. Top part: input (solid) and retained (dotted) energy for
run 3S1-hr. The responseR (retained energy divided by input
energy) is shown in the bottom part. See text for more details.

quires substantial non-radial Mach numbers. At high densities,
indeed most of the gas has Mach numbers around and below
unity.

3.2. Energy evolution: general observations

We show the total input energy over time together with the en-
ergy retained in the ISM where the initial thermal energy is sub-
tracted in Figure 10. The retained energy is generally belowthe
input energy because the gas is initially in radiative equilibrium
and suffers net radiative losses during the course of the simula-
tion. We define the responseR to be the energy retained in the
ISM divided by the input energy:

R(t) =
EISM(t)−EISM,0

Ein(t)
(1)

where we define as ISM the whole gas present in the computa-
tional domain, including the hot bubble interiors with their stel-
lar ejecta.
R is generally of order ten per cent. It is higher whenever the

energy input rate increases. This is especially well visible at the
time of the three supernovae at 4.6, 7.0 and 8.6 Myr. Here,R

reaches peak values between 20 to 40 per cent.R is smaller for
phases of decreasing energy input rate. This is particularly well
visible after a supernova. About 1 Myr after each supernova,R

drops to roughly five per cent. The characteristic decay timeof
the retained energy increases for each consecutive supernova.
When the energy input ceases, the ISM energy is lost to radiation
on a timescale of Myr, withR dropping to 2 per cent roughly
4 Myr after the last supernova.

Steady, continuous energy injection is clearly more effective
in energising the ISM than sudden bursts such as from infrequent
supernovae.

3.3. Resolution effects

We have repeated run 3S1-hr at a half and a quarter of the
original spatial resolution. Morphologically, the bubbles are less
spherical, smaller and the Vishniac instability is less developed
at lower resolution (Figure 8). We compare the energy evolu-
tion of the three runs in Figure 11. The retained energy differs
by much less than a factor of two between simulations at dif-
ferent resolution. The differences are more pronounced at later

Fig. 11. Resolution effects on the retained energy. Top part: re-
tained energy for run 3S1-hr (solid line, high resolution),3S-mr
(dashed line, intermediate resolution) and run 3S1 (dottedline,
low resolution). The bottom part shows the energy ratio 3S1-
hr/3S1-mr (solid line), 3S1-mr/3S1 (dashed line) and 3S1-hr/3S1
(dash-dotted line). In each case, the data for the higher resolution
run has been interpolated to the data output times of the lower
resolution run. The spikes at the supernova times are artefacts of
the interpolation process at the discontinuities of the functions.
The horizontal dashed line indicates equality for comparison.
The energy increases similarly for each doubling of resolution.
The general functional behaviour is independent of resolution.
See text for more details.

simulation times. Finer spatial resolution always leads tomore
energy in the ISM. For an increase of the resolution by a factor
of two, we find an increase of the retained energy by 20-30 per
cent. This agrees with the greater bubble diameter at higherres-
olution (Figure 8). The overall functional behaviour is very well
converged.

The reason for the changes with resolution is very likely
the details of the shell evolution. In the absence of other per-
turbations, instabilities are triggered on the resolutionlevel.
Additionally, the Vishniac instability is only marginallydevel-
oped at low resolution. This might lead to more non-radial ki-
netic energy at higher resolution, which is not immediatelyra-
diated away. Also, the peak density at a given time depends
strongly on resolution (Figure 5), which also changes the ther-
modynamics.

3.4. Energy evolution: varying stellar distances

We have carried out a set of simulations, where we varied the
positions and distances of the same three stars (Figure 12).
Because of computational limitations, these simulations have
been carried out at 2.1 pc resolution. This is physically justi-
fied by the convergence of the general shape of the energy tracks
(Figure 11). For obtaining the large distance limiting case, we
have simulated each of the three bubbles in a separate simula-
tion (S25, S32 and S60), and added their energy tracks for com-
parison to the other cases. We model the closely-spaced extreme
case, where the bubbles have merged instantaneously, by putting
the driver regions of the three stars on top of each other at the
grid origin (3S0). Additionally, we performed two simulations
with intermediate star positions (compare Table 1), where we
actually observe the bubble merging during the simulations(3S1
and 3S2).
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We see small differences in the energy tracks during the first
≈ 0.5 Myr. They are expected because during this time, the driver
region is evacuated and the bubble shape is established. It makes
of course a difference, if the three stars share the same driver re-
gion (3S0), or if each star has its own. Also shifting the driver
region on the grid makes the volume of the individual driver re-
gions slightly different, by a few per cent, due to resolution ef-
fects at the driver boundary. This translates to a few per cent
difference in total energy, which is visible in Figure 12 (bottom).

Once the bubbles are established properly on the grid, i.e.
after about 0.5 Myr, all configurations have essentially thesame
energy response until the first supernova at 4.6 Myr. The reason
for this is the predominance of the energy injection of the 60M⊙
star. The energy tracks begin to differ slightly after the first star
has exploded. The divergence increases abruptly after eachsu-
pernova. But for very long times after the final explosion, the
tracks converge again towards a common value.

Among the four configurations, the energy varies at times by
up to a factor of three. A typical value after the second supernova
is a factor of two. Throughout the simulation time, the energy
is essentially highest for run 3S0 (all stars at same place) and
lowest for very large distance (sum of S25, S32 and S60). The
two configurations with intermediate distances, where the bub-
bles merge during the respective simulations, show intermediate
energies. The run where the bubbles merge early (3S1) behaves
almost identical to the case where the driver regions are on top
of each other (3S0).

3.5. Shell widths

We find that our simulated shells are widened due to the Vishniac
instability. For the determination of the shell width, we average
the column density maps over the angle, and identify the shell
as radial interval where the column density is at least five per
cent higher than in the undisturbed medium. The shell width is
shown in Figure 13 as a function of time and radius, respec-
tively, for runs 3S1 and 3S1-hr. For this analysis, we only use
late snapshots, where the superbubbles are well established.

The shell width is typically in the tens of per cent regime
and increases with time. The result does not depend on the reso-
lution.

4. Discussion

We have investigated the environmental impact of a group of
three massive stars via 3D hydrodynamic simulation. Herein,
several assumptions and simplifications were necessarily intro-
duced:

We have adopted a uniform background density of
10 mp cm−3. On scales of ten pc and smaller, the den-
sity will in reality be at least a factor of ten higher (e.g.
Kainulainen et al. 2011). On scales of 100 pc, the density should
become equal to or even smaller than about 1mp cm−3 (e.g.
de Avillez & Breitschwerdt 2005). Hence, our choice should be
realistic for the tens of pc scales we simulate (compare also
Freyer et al. 2003, 2006; van Marle et al. 2012). The real ISM
has a rich spatial structure, whereas we use a homogeneous dis-
tribution. This is a significant difference. For a porous ISM, the
injected wind/SN energy could escape through low density re-
gions making the bubbles smaller (Fierlinger et al. 2012b, in
prep.). For such a situation, one should also expect pronounced
bubble asymmetries. Indeed, such asymmetries are found in ob-
servations (e.g. Churchwell et al. 2006). Yet, in order to beable

Fig. 12. Energy tracks for different simulations, where only the
positions of the three stars differ. Run labels in the legends are
explained in Table 1. S25+S32+S60 refers to the sum of the
energy tracks of the three simulations of the bubbles of the
isolated 25M⊙ , 32 M⊙ and 60M⊙ stars, respectively, which
corresponds to a very large distance. 3S0 is the opposite case,
where three stars are in the same region. Top: Absolute values.
Middle: Three-stars simulations relative to the sum of the three
isolated bubbles. Interpolations always use the 3S0 time base.
Interpolation artefacts are visible at the discontinuities due to
the supernovae (4.6, 7.0 and 8.6 Myr). Bottom: Difference of the
very similar energy tracks of runs 3S1 and 3S0, normalised to
3S0 as a percentage. The solid red line marks zero. The differ-
ence has been set to zero for the time intervals 10,000 yr around
each supernova in order to mask the interpolation artefacts. See
text for details.

to compare the effect of different spatial configurations of the
stars, and not to be dominated by local environmental effects it
is necessary to use a homogeneous background density.

We have found that with the standard ISM thermodynam-
ics, the peak shell density does not converge with finer reso-
lution. It is not immediately obvious that this should be so,as
the photo-electric heating we take into account could in princi-
ple have produced high enough pressure to limit the shell com-
pression. Yet, with our highest resolution of 0.5 pc, this has not
been the case. The shell density results from several effects: At
a given pressure level, there is a density and a temperature that
correspond to thermodynamic equilibrium. When the pressure
in the bubble increases, e.g. because a supernova has happened,
the shell can however not adjust immediately to the new equilib-
rium pressure level, because the gas has to be swept togetherin
a finite time. The inverse happens at late times (as demonstrated
in Figure 7) when the bubble pressure strongly decreases, but
the clumps in the shell cannot expand fast enough to remain in
pressure equilibrium. The compression is of course also limited
by the resolution. The non-convergence therefore means that the
bubble pressure is high enough for a sufficiently long time so that
compression of the shell, or some clumps therein, to even higher
densities may occur if one would repeat the simulation with an
even higher resolution. For gas on the thermodynamic equilib-
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Fig. 13. Shell width for column density maps. Top: Angle-
averaged column density over radius for run 3S1-hr at
12.56 Myr. From such plots, the shell width has been determined
as the radial range where the column density is at least five per
cent greater than at large radii (undisturbed gas). The shell width
determined in this way is shown in the middle plot as a function
of time, and in the bottom plot as a function of outer radius.
Black pluses are for run 3S1, red stars for run 3S1-hr. The aver-
age shell width does not depend significantly on resolution.

rium curve in the relevant density regime, higher densitiescor-
respond to lower temperatures. Compared to observations (e.g.
Preibisch et al. 2012), the ISM in star forming regions rarely
reaches temperatures below about 20 K, and 20 K to 100 K are
typical for the dense phase. Similar temperatures are also found
in our simulated shells. Other effects like magnetic fields, self-
gravity or feedback by the new stars, which in reality might form

Fig. 14. Pressure maps of run 3S1 (left) and 3S2 (right), shortly
after the second (top) and third (bottom) supernova.

in our dense clouds, may affect the cloud compression, but are
not included in our simulation. Thus, even if the compression
would increase still further if one would carry out the simula-
tions at yet higher resolution, this would not necessarily be more
realistic, as the high density clumps may be regarded as physi-
cal systems of their own with some of the physics necessary to
describe them properly not being present in our simulations.

The absolute value of the energy deposition is also resolution
dependent. It increases by about a factor of 1.2 if we double the
resolution. The reason for this is likely related to the Vishniac
instability: Vishniac & Ryu (1989) estimate the wavelengthat
which the growth rate is largest as:

λVI ,max≈ 0.3pc

(

Σ0

10−3gcm−2

)(

10−12dyncm−2

Pi

)(

10−9cms−2

a

)

,

where we have plugged in typical values for the column den-
sity Σ0, the internal pressurePi , and the shell decelerationa.
This is comparable to our best resolution. Therefore, finer res-
olution should still trigger strongly unstable Vishniac modes,
which seem to have an effect on the result. The minimum unsta-
ble wavelength is predicted to be 0.5λVI ,max. Unfortunately, for
the present study we did not have the computational resources
to probe these scales, but this should become possible in future.
In contrast to the Vishniac instability, the Rayleigh-Taylor insta-
bility continues to grow faster for smaller wavelengths. Thermal
conduction would be expected to be important at even smaller
scales of about 0.01 pc/n, wheren is the number density in
the shell (McKee & Cowie 1977). Thus, our absolute efficiency
numbers are lower limits.

At the level of this accuracy, 3D effects might be important,
because the shell instabilities should be 3D in nature. Up tothe
first supernova, our simulations are dominated by the wind of
the 60 M⊙ star, and may thus be compared to the 2D results
of Freyer et al. (2003). We find an energy response of at least
10 per cent, which compares to 9 per cent in the simulation of
Freyer et al. (2003), which is very similar. It might point tosome
effect in the direction that more energy is retained in the ISM in
3D simulations, but could also be related to numerical details or
the slightly higher density they use.

The general shape of the curves is however well converged
(compare Figure 11). As a further check, we have also resimu-
lated run 3S0 at the resolution of 3S1-hr. The energy deposition
ratio between the two high resolution simulations is very similar
to the one at low resolution. We therefore believe that the relative
trends of the energy deposition we report here are reliable.

We find that the Vishniac instability dominates the shell evo-
lution. We show that the instability in our simulations is con-
nected to the shells’ overdensity and to non-radial motionsin
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the shells, in agreement with the predictions of Vishniac & Ryu
(1989) and Mac Low & Norman (1993). Limiting the shell’s
overdensity by e.g. magnetic fields would therefore directly af-
fect the Vishniac instability.

From the column density plots (Figures 3, 4 and 8), it is
obvious that the observational appearance of the shell is dom-
inated by the Vishniac instability: If the shells were smooth, and
the maximum density would increase with resolution as seen in
our simulations (Figure 5), one would expect that the shell gets
thinner with finer resolution, as the smaller cells allow higher
compression. Yet, we find a radially averaged shell width of
tens of per cent of the outer radius independent of resolution
(Figure 13). In the low resolution simulation, much of the width
is due to the large scale distortion influenced by the grid direc-
tions. For the high resolution simulation the width is due tosmall
wavelength modes.

In their survey of 322 interstellar bubbles, Churchwell et al.
(2006) find typical shell widths of 20-40 per cent of the outer
radius. Thus, it seems unlikely that the development of the
Vishniac instability is frequently impeded by anything, e.g. lim-
ited compression due to magnetic fields, as this would again
make the shells thin. In other words, in order to study the effects
of magnetic fields one probably needs much higher numerical
resolution than adopted in our models.

The column density should give a rough indication on
observed morphologies. From the corresponding plots, we
find that the Vishniac instability should also lead to observ-
able filamentary structure inside the bubbles. This seems to
be the case for some shells associated with supernova rem-
nants (e.g. Crab, Hester 2008, compare also the discussion in
van Marle & Keppens (2012)), which confirms the above ana-
lysis. More detailed comparison would of course be interesting.

We find that the best way to inject energy into the ISM, i.e.
to achieve a high energy response is a continuous, steady en-
ergy injection. Supernovae dissipate their energy within about
1 Myr. We show the kinematics for run 3S0 (all stars at same po-
sition) in Figure 15. After each supernova, the shell accelerates
significantly. This means more kinetic energy in the shell. Yet
the increased expansion leads to fast adiabatic pressure loss of
the shell interior. The increased kinetic energy is quicklydissi-
pated at the leading radiative bow shock, as long as it is strongly
supersonic. In contrast, the energy fraction deposited in the ISM
in the wind phase remains roughly constant at ten per cent. Thus,
retaining the injected energy in an interstellar bubble requires
continuous energy injection.

The energy tracks of merging bubbles are entirely dominated
by these shell kinematics effects. For example, in run 3S1, the
merging process has clearly set in at 2 Myr (compare the high
resolution version, Figure 3) and continues for a few Myr there-
after. Yet, the energy track for this time interval is indistinguish-
able from run 3S2 (different positions of the stars) and even from
3S0 (no shell merging because drivers are at same location) and
the sum of S25, S32 and S60 (no shell merging because the stars
are sufficiently far away, realised by having them in different
simulations).

Exploding a supernova in a superbubble and not in its own
wind bubble leads to weaker radiative losses: Each supernova
shock heats first the bubble interior. It then makes a difference
how large the respective bubble is in communicating the thermal
energy to the shell: For larger bubbles, the heat energy is dis-
tributed over a greater volume. Thus the overpressure is smaller.
The force on the shell is correspondingly smaller. Hence, shell
acceleration and adiabatic losses of the bubble interior happen
on a longer timescale. This is the reason for the longer energy

Fig. 15. Shell kinematics (top: radius, middle: velocity, bottom:
acceleration), as functions of time for run 3S0. The velocity
points are averaged over time intervals of varying length, which
correspond to shell radii differences of at least 2 cells. The shell
velocity converges towards the ambient sound speed (red line).
Each supernova leads to a significant acceleration of the shell
(black crosses, bottom plot), followed by a comparably strong
deceleration (red stars).

decay timescale for each subsequent supernova. Consequently,
after a supernova, the energy decays fastest if the bubbles remain
isolated, as each star has a small bubble of its own.

Off-centre explosions are another significant effect for the
energy tracks: The first supernova always explodes roughly in
the middle of the superbubble. This must of course be so at least
for coeval stars, since its parent star also has the highest energy
output and is the dominant driver of the superbubble before it ex-
plodes. The energy tracks of the simulations with different spa-
tial configurations of the stars show little difference up to the
point when the second star explodes. This happens necessarily
significantly off-centre. The explosion accelerates first and most
efficiently the parts of the super-shell which are most nearby
(compare the pressure maps in Figure 14). Yet, if the bubblesare
fully merged at the time of the explosion (3S1) the effect is only
at the per cent level. This is due to the high sound speed within
the bubble, which communicates pressure differences quickly.
We notice a considerable effect on the energy track for run 3S2,
where the individual bubbles are still well identifiable at the time
of the final supernova.

Thus, especially where the shells are not yet fully merged
at the time of explosion, the off-centre location leads to a cer-
tain extent to a behaviour closer to the isolated bubble case.
Therefore, the energy tracks (Figure 12) of runs 3S1 and 3S2 es-
sentially do not leave the range spanned by the isolated bubbles
case (S25+S32+S60) and the cospatial parent star case (3S0).

Another finding which might seem curious is that all the en-
ergy tracks in Figure 12 converge at late times. Long after the
energy injection has ceased, the energy of the affected gas is
dominated by the kinetic energy of the shell. Because the swept
up mass is dominated by the action of the 60M⊙ star and the
final shell velocity is always similar to the sound speed of the
ambient medium, the overall energy increase is very similarin
all simulations.

Population synthesis of stellar groups/subgroups combined
with energy injection data from stellar evolutionary models
(Voss et al. 2009) show that the wind energy dominates within
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the first few Myr after the star formation event. Later, the en-
ergy input is dominated by supernovae. Observed subgroups
have an age difference of order a few Myr (Voss et al. 2010,
2012). Thus, it appears possible that the energy response (com-
pare equation (1)) is kept high for& 10 Myr by the wind con-
tributions of different subgroups coming in at slightly different
times. Observations find energy responses of about ten per cent
or higher (e.g. Oey & Garcı́a-Segura 2004; Voss et al. 2012).
This agrees very well with the results in the wind phase of our
highest resolution run and might suggest that additional effects,
which are not taken into account in our simulation and which
we believe should only increase the energy response, may not
dominate.

A similar energy response has also been inferred observa-
tionally for galactic winds (e.g. Veilleux et al. 2005), though
only the supernova energy has been taken into account for the
calculation. Galactic winds are thought to arise as a final merg-
ing stage from central superbubbles in star-forming galaxies. If
one wants to keep the energy response high in order to match
the constraints from the galactic wind observations, the individ-
ual bubbles should be closely spaced and merge early in order
to have as constant an energy input rate as possible. This is of
course the case for wind galaxies, such as M82, with their star
clusters and even super-star clusters (e.g. Förster Schreiber et al.
2003; Westmoquette et al. 2009). The same effect that we ob-
serve for individual stars, namely that their energy deposition is
higher, if they are closer together, should also apply to clusters
of stars: If two clusters are closer together, they should deposit
more energy into the ISM as if they were further apart.

5. Conclusions

We have simulated isolated interstellar bubbles and emerging su-
perbubbles which form from adjacent interstellar bubbles with
stellar distances of order tens of pc. Thus, our simulationsap-
ply, within the limitations outlined in Section 4 above, well
to hierarchically clustered star formation complexes likethe
Orion (Voss et al. 2010), Scorpius-Centaurus (Diehl et al. 2010)
or Carina (Voss et al. 2012) regions.

We find in our simulations that up to about the second su-
pernova the total energy of superbubbles is not strongly depen-
dent on the spatial configuration of the group of parent stars,
including zero and infinite distance. Off-centre energy injection
reduces the ISM energy response significantly only, if the in-
dividual bubbles are not yet fully merged. Thus, from before
the second supernova onwards the energy response is higher for
more closely packed configurations. We find on average about a
factor of two difference in energy response between the isolated
stars-case and the cospatial stellar configuration.

Supernovae increase the ISM energy only for very small
timescales of about 1 Myr, increasing with the size of the su-
perbubble at the time of the explosion. After that time, the re-
tained energy issmaller than immediately before the supernova
(Figure 10). The energy response drops by a factor of two shortly
after the supernova compared to the main sequence wind phase.
Our simulations are quite realistic regarding the time intervals
in between subsequent supernova events (compare Voss et al.
2009). Thus, we conclude that for realistic star clusters energy
is build up in the wind phases. Supernovae lead to large short
term energy variations, but only keep up the bubble energy in
the long run, at a roughly constant level.

We also find that supernovae that explode inside larger bub-
bles have a longer energy decay time. The 60M⊙ star has pro-
duced a bubble of& 80 pc diameter at the time it explodes. Thus

in order to obtain a physically sound feedback model, which is
currently lacking in studies of disk galaxies (Scannapiecoet al.
2012), it seems essential to account for the wind phase. Further,
since the energy deposition does essentially not depend on the
spatial configuration of the stars, up to stellar distances of about
30 pc in our simulations, it seems reasonable to use stellar clus-
ters as fundamental feedback units, not individual stars, or in
other words superbubbles rather than individual bubbles ofindi-
vidual stars, at least for a clustered star formation mode, which
should according to our simulations be more efficient for feed-
back purposes.

We have verified by comparison to theoretical work that the
appearance of our wind shells is dominated by the Vishniac in-
stability, which is now for the first time prominently seen in3D
simulations (this article and van Marle & Keppens 2012). High
resolution is essential to obtain the necessary shell overdensities
which are crucial for the development of the instability. This ef-
fect widens the shell significantly in column density plots,which
we suggest may explain the large observed shell widths of 20 per
cent of the outer radii and more. It also produces filamentary
structure in the shell which is also well visible in our column
density plots. We conclude that filamentary structure inside in-
terstellar bubbles may be related to the Vishniac instability.
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