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Abstract

We propose a technical reformulation of the measurement problem of quantum mechanics,
which is based on the postulate that the final state of a measurement is classical; this
accords with experimental practice as well as with Bohr’s views. Unlike the usual formu-
lation (in which the post-measurement state is a unit vector in Hilbert space), our version
actually opens the possibility of admitting a purely technical solution within the confines
of conventional quantum theory (as opposed to solutions that either modify this theory,
or introduce unusual and controversial interpretative rules and/or ontologies).

To that effect, we recall a remarkable phenomenon in the theory of Schrödinger oper-
ators (discovered in 1981 by Jona-Lasinio, Martinelli, and Scoppola), according to which
the ground state of a symmetric double-well Hamiltonian (which is paradigmatically of
Schrödinger’s Cat type) becomes exponentially sensitive to tiny perturbations of the po-
tential as ~ → 0. We show that this instability emerges also from the textbook wkb
approximation, extend it to time-dependent perturbations, and study the dynamical tran-
sition from the ground state of the double well to the perturbed ground state (in which
the cat is typically either dead or alive, depending on the details of the perturbation).

Numerical simulations show that adiabatically arising perturbations may (quite liter-
ally) cause the collapse of the wave-function in the classical limit. Thus, at least in the
context of a simple mathematical model, we combine the technical and conceptual virtues
of decoherence (which fails to solve the measurement problem but launches the key idea
that perturbations may come from the environment) with those of dynamical collapse
models à la grw (which do solve the measurement problem but are ad hoc), without
sharing their drawbacks: single measurement outcomes are obtained (instead of merely
diagonal reduced density matrices), and no modification of quantum mechanics is needed.

Motto

‘Another secondary readership is made up of those philosophers and physicists who—
again like myself—are puzzled by so-called foundational issues: what the strange
quantum formalism implies about the nature of the world it so accurately describes.
(. . . ) My presentation is suffused with a perspective on the quantum theory that
is very close to the venerable but recently much reviled Copenhagen interpretation.
Those with a taste for such things may be startled to see how well quantum compu-
tation resonates with the Copenhagen point of view. Indeed, it had been my plan
to call this book Copenhagen Computation until the excellent people at Cambridge
University Press and my computer-scientist friends persuaded me that virtually no
members of my primary readership would then have any idea what it was about.’

David Mermin, Quantum Computer Science: An Introduction (Preface)
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1 Introduction

Citizens of many democratic countries know the phenomenon of a “hung parliament”, in
which two major political parties have a large number of seats each, but are short of a
majority separately and mutually exclude each other as potential coalition partners. In
that case, tiny parties with just a few seats can tip the balance to the left or to the right
and hence, quite undemocratically, acquire an importance far exceeding their relative size.

An analogous phenomenon in quantum mechanics was discovered in 1981 by Jona-
Lasinio, Martinelli, and Scoppola [65, 66] (see also Section 3 below). Here, the ground
state of (say) a symmetric double-well Hamiltonian becomes exponentially sensitive (in
1/~) to tiny perturbations of the potential as ~ → 0. In particular, whereas the ground
state of the unperturbed Hamiltonian has two pronounced and well-separated peaks, the
ground state of the perturbed Hamiltonian typically features one of those peaks only and
hence may be said to have “collapsed”. We will call such a perturbation a “flea” [110].

As we will explain and make precise in Section 2, this phenomenon acquires acute
relevance for the measurement problem as soon as one accepts just two postulates:1

1. A measurement yields a classical snapshot (or “readout”) of a quantum state.2

2. The fundamental nature of quantum theory. This implies in particular that mea-
surement devices (like anything else) are ultimately quantum mechanical in nature.3

By the first clause of this conjunction, the post-measurement state of the pertinent appara-
tus should be a classical state, whilst by the second, it has to be the classical limit of some
quantum state. After coupling to some microscopic object, the latter state might evolve
into a superposition à la Schrödinger’s Cat, and this is what causes the measurement prob-
lem. But it is exactly in the classical limit that the sensitivity of the wave-function to the
flea arises! Thus the correct formulation of the measurement problem, viz. as a problem
concerning classical limits of quantum states, already contains the seed of its solution.

In Section 3 we review static aspects of “flea” instability (using the two-level system
as a pedagogical example), in that the perturbations are taken to be time-independent,
and the perturbed ground state is just studied for its own sake. This review is backed
up by a new, more technical analysis based on the wkb approximation familiar from the
textbooks,4 which we delegate to the appendix in order not to interrupt our story. In
order to trace the fate of Schrödinger’s Cat as a dynamical process, we need to take up
the dynamical study of the instability. In other words, the perturbation should be made
time-dependent, and in addition the transition from the unperturbed “Schrödinger Cat”
ground state to the perturbed ground state (in which the cat is either dead or alive) should
be followed in time. This will be done (mostly numerically) in Section 4, showing that the
analysis of the measurement problem given here in a toy example (including a derivation
of the Born rule) has a fighting chance of eventually being able to solve the problem.

In the closing Discussion section, we explore: possible generalizations of our approach,
connections with symmetry breaking and phase transitions, the role of quantum metasta-
bility, and finally the role of determinism and locality (vis-à-vis Bell’s Theorem etc.).

1We regard these as Wittgensteinian “hinge propositions” [114], on which modern physics is based.
2This is sometimes called Bohr’s doctrine of classical concepts [101], which accurately describes exper-

imental practice! See also [75] for a detailed analysis.
3For our work it is a moot point whether Bohr endorsed this second point as well; it is hard to say.
4The original expositions [28, 51, 59, 65, 66, 110] might be hard to follow for non-mathematicians (see,

however, [22]). Applications in chemistry and solid-state physics may be found in [23, 67, 84].
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2 Rethinking the measurement problem

2.1 Historical overview

Roughly speaking, the measurement problem consists in the fact that the Schrödinger
equation of quantum mechanics generically fails to predict that measurements have out-
comes. Instead, it apparently predicts (empirically) unacceptable “superpositions” thereof.
Slightly more technically, the problem is usually formulated in approximately the following
way (see e.g. the excellent presentations in [2, 18, 19] for more detail). Suppose that one
measures some observable O pertaining to a microscopic system S, in such a way that if S
is in an eigenstate Φi of O, then the associated macroscopic apparatus A is in state Ωi. It
is important to note that in this description (pure) states are seen as unit vectors in some
Hilbert space, as usual in quantum mechanics. Now, although there is hardly any problem
with the existence of a microscopic superposition Φ =

∑
i ciΦi of S (where

∑
i |ci|2 = 1),

the linearity of the Schrödinger equation implies that it would bring S +A into a similar
superposition Ψ =

∑
i ciΨi, Ψi ≡ Φi ⊗Ωi, which, if macroscopic,5 is never seen in nature.

Instead, as a matter of fact one always observes one of the states Ωi (or so it is claimed).
This problem was immediately recognized by the founders of quantum theory. In

response, in 1926, Born (generalizing earlier ideas of Bohr and Einstein on light emission
by atoms) stated that quantum theory indeed did not predict individual outcomes, but
merely computed their probabilities (according to the formula now named after him)
[14, 78]. In 1927, Heisenberg (again in the wake of Bohr’s electronic “quantum jumps”)
proposed the “collapse of the wave-packet” [57], which (in the above language) implies
that during the course of the measurement, the state Ψ miraculously “jumps” to one of
the states Ψi. Bohr immediately endorsed this idea, ordered that such quantum jumps
ought not to be analyzed any further, and claimed that they were the source of irreducible
randomness in physics. During the period 1927–1935 (with an aftermath running until
1949), Bohr famously defended these ideas against a highly critical Einstein [10], as did
Born [13]. Adding considerable conceptual and mathematical precision, von Neumann gave
an account of the measurement problem in his book from 1932 [89], which has formed the
basis for most discussions of the issue ever since. The early period was closed in 1935,
the year in which Schrödinger (following a correspondence with Einstein [43]) published a
penetrating analysis, including the metaphor around the cat later named after him [103].

The introduction of the collapse process (and the associated Born probabilities) has
turned out to be an incredibly successful move, on which practically all empirical successes
of quantum theory are based. This may well be the reason why few physicists are bothered
by the measurement problem: the underlying slick manoeuvre of ad hoc collapse seems an
acceptable price for these successes, unprecedented in science as they are. But for those in
the foundations of physics, there is no doubt that this is a pseudo-solution. Consequently,
despite arguments claiming to prove their non-existence [16, 19, 42], many solutions to the
measurement problem have been proposed. Among those, it is fair to say that at least the
quasi-philosophical solutions have failed to convince the scientific community at large.6

5This notion needs to be quantified, of course [2, 19]. See also [75] and the present paper.
6This is true in particular for the Many-Worlds (aka “Everett”) Interpretation [100], or the Modal

Interpretation of quantum mechanics [36], in which radical changes are proposed in the ontology and/or
the usual interpretative rules of the theory, without clarifying in any way what is really going on during
measurements (a question one indeed is not supposed to ask, according to received wisdom). Bohmian
mechanics (as a modern incarnation of de Broglie’s pilot-wave theory) does a better job here [33, 38, 39],
but its narrow applicability (at least in its current form), focusing as it does on position as the only physical
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Within the realm of technical approaches to the measurement problem, one may dis-
tinguish between those proposals that do and those that do not modify quantum theory.
Among the latter, the main effort so far has been towards attempts to eliminate interfer-
ence terms (i.e., between states like the Ψi above), sometimes accompanied by the (implicit
or explicit) suggestion that their removal would actually solve the problem.7

Such attempts come in (at least) two kinds. In the wake of the Swiss school [40, 60],
mathematical physicists typically use the formalism of superselection rules (see [72, 73]
for reviews and [108] for recent work in this direction), whereas theoretical physicists tend
to exploit decoherence (see [68, 102] for recent reviews). There seems to be a general
consensus, though, that neither of these solves the problem (at least in the form stated
above); they rather reconfirm it. Indeed, granted that measurements yield classical data,
since classical physics by definition does not have quantum-mechanical interference terms,
their disappearance in appropriate limiting situations (like the ones described by deco-
herence and/or superselection theory) is just a necessary condition that (in part) defines
measurement (which after all is supposed to produce some classical state as its outcome).8

Consequently, in our opinion the measurement problem is posed, rather than solved by
proving that such interference terms vanish under particular (limiting) conditions.9

In contrast, the dynamical collapse models of Pearle, Ghirardi–Rimini–Weber, and
others (cf. [2] for a comprehensive survey) do solve the measurement problem. But they
do so at a price: the Schrödinger equation is modified by adding a novel and universal
stochastic process that even makes the equation nonlinear, and which, like the solution of
Heisenberg and von Neumann, is ad hoc except for its goal of causing collapse.

The approach to the measurement problem we are going to propose below uses key
ideas from both dynamical collapse models and decoherence (and could not have been
conceived without the inspiration from these earlier approaches), but in such a way that
we avoid some of their drawbacks (though only in the context of a simple example, so far):

1. Dynamical collapse is obtained without modifying quantum theory.

2. While decoherence preserves all peaks (i.e., potential measurement outcomes) in the
density matrix, and hence subsequently needs e.g. some kind of a Many Worlds
Interpretation [63, 102, 113], our mechanism, if correct, leads to just one outcome.

Our approach starts with a technical reformulation of the measurement problem, which
relies on a specific mathematical formalism for dealing with classical states, including their
role as potential limits of quantum states. For completeness’ sake, we explain this first.

observable, makes it unattractive to many (including the authors). See some kinship in §5.4, however.
7This applies, for example, to the famous paper by Danieri, Loinger, and Prosperi [34], to early papers

on decoherence [117], and to much of the mathematical physics literature on the measurement problem,
including the work of the senior author [40, 60, 72, 73, 108]. We now regard such papers as mathematically
interesting but conceptually misguided, at least on this point. On the other hand, it is to the credit of
especially the Swiss school that it drew attention to the idea that measurement involves limiting procedures,
so that solutions of the measurement problem should at least incorporate the appropriate limits.

8In this sense even von Neumann’s book [89] is misleading, since he suggested that the act of observation
may be identified with a cut in the chain now named after him. What is right about this idea is that
observation is linked to a voluntary change of information, but it would have been preferable to point out
that such a change, in so far as it defines measurement, should be a loss of quantum information.

9Furthermore, despite its outspoken ambition to derive classical physics from quantum theory [68, 102,
117], decoherence hardly (if at all) invokes limits like Planck’s constant going to zero, which are needed,
for one thing, to derive the correct classical equations of motion (cf. [75, 76]).
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2.2 Intermezzo: classical states

In order to describe classical states as limits of quantum states, we need to describe all
states algebraically.10 Although this formalism implicitly uses the language of C*-algebras,
very little of that theory will be needed here [53, 74]. The main point is to have a unified
formalism for classical and quantum physics, from which the usual treatment in which
classical physics is described using phase spaces having the structure of (differentiable)
manifolds, whilst quantum physics is based on Hilbert spaces and operators, is a far cry.

Nonetheless, the necessary unification of these diverse instances of mathematical for-
malism may be achieved by focusing on the interplay between observables (or propositions)
and states (as opposed to the reification of the notion of a state inherent in the usual ap-
proach, which is particularly detrimental to the measurement problem). Indeed, classical
and quantum physics turn out to share the following mathematical structure:

• The observables comprise the (self-adjoint part of) a C*-algebra A.11

• The states are positive linear functionals ω : A→ C of norm one on A.12

• A pure state ω has no nontrivial convex decomposition, i.e., if ω = pω1 + (1− p)ω2

for some p ∈ (0, 1) and certain states ω1 and ω2, then ω1 = ω2 = ω.

In the main example of interest for this paper, which is a particle moving on the real line,
this abstract talk has a simple implementation (which suffices for what follows). Its main
feature is that, as Heisenberg had it, the difference between the classical and the quantum
setting lies in the non-commutativity of the observables in the latter (see also [25]).

Classical: The C*-algebra of observables isA0 = C0(R2), that is, the continuous functions
on the phase space R2 that vanish at infinity. The algebraic operations are defined
pointwise (e.g., (fg)(z) = f(z)g(z)), involution is (pointwise) complex conjugation,
and the norm is the supremum-norm. Hence A0 is commutative. A state µ : A0 → C
is essentially the same thing as a probability measure µ̂ on phase space through

µ(f) =

∫
R2

dµ̂ f. (2.1)

Such a probability measure may or may not be given by a probability density with
respect to the Liouville measure dpdq/2π, i.e., a positive L1-function χ on R2 s.t.∫

R2n

dpdq

2π
χ(p, q)f(p, q) =

∫
R2

dµ̂ f. (2.2)

This also implies that χ integrates to unity (with respect to the Liouville measure).
Pure states on C0(R2) are probability measures of the Dirac form δz, z ∈ R2, i.e.,
δz(f) = f(z) for f ∈ C0(R2), and hence bijectively correspond to points of R2. Such
states are not given by probability densities, however, as δ-functions are not in L1.

10An introduction for philosophers to the material in this section may be found in [75, Ch. 4&5].
11A C*-algebra is a complex algebra A that is complete in a norm ‖ · ‖ satisfying ‖ab‖ ≤ ‖a‖ ‖b‖ for all

a, b ∈ A, and has an involution a→ a∗ such that ‖a∗a‖ = ‖a‖2.
12Positivity of ω means that ω(a∗a) ≥ 0 for all a ∈ A. If A has a unit 1, then a state may equivalently

be defined as a positive linear functional ω : A→ C that satisfies ω(1) = 1.
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Quantum: The C*-algebra of observables is A = K(L2(R)) i.e., the algebra of compact
operators on the Hilbert space L2(R) of square-integrable wave-functions.13 Such
operators may be added and multiplied in the obvious way; involution is hermitian
conjugation, and the norm is the usual operator norm. States ρ : K(L2(R)) → C
bijectively correspond to density matrices ρ̂ on L2(R) through ρ(a) = Tr (ρ̂a). A
unit vector Ψ defines a density matrix |Ψ〉〈Ψ|, so that pure states ψ on K(L2(R))
bijectively correspond to unit vectors Ψ up to a phase (or to rays C ·Ψ) through

ψ(a) = 〈Ψ|a|Ψ〉 ≡ 〈Ψ, aΨ〉. (2.3)

In both cases, an idealized description has been used in order to avoid unnecessary math-
ematical complications: first, inherently to the C*-algebraic formalism, one works with
bounded operators (in quantum theory) and functions (classically).14 Second, the restric-
tion to functions vanishing at infinity and compact operators in the classical and the
quantum case, respectively, is also purely a matter of mathematical convenience.15

The following notion of convergence of quantum states to classical ones is standard
(cf. [27, 74, 95, 98] and many other sources),16 and has been used especially in quantum
chaology [91]. We first recall the coherent states, labeled by z = (p, q) ∈ R2,

Φ
(p,q)
~ (x) = (π~)−1/4e−ipq/2~eipx/~e−(x−q)2/2~, (2.4)

with associated Berezin quantization map f 7→ Q~(f), f ∈ C0(R2), Q~(f) ∈ K(L2(R)),

Q~(f) =

∫
R2n

dpdq

2π~
f(p, q)|Φ(p,q)

~ 〉〈Φ(p,q)
~ |. (2.5)

Now let (ρ~) be a family of quantum states, indexed by ~ (say ~ ∈ (0, 1]), with associated
density matrices (ρ̂~), and let ρ0 be a state on C0(R2), with associated probability measure
ρ̂0 on R2. The quantum states (ρ~) converge to the classical state ρ0 if for all f ∈ C0(R2),

lim
~→0

ρ~(Q~(f)) = ρ0(f). (2.6)

13A self-adjoint operator a on a Hilbert space is compact just in case it has a spectral decomposition
a =

∑
i λi|ei〉〈ei| (where |ei〉〈ei| is the orthogonal projection onto the ray Cei), where the eigenvectors (ei)

form an orthonormal basis of H, each nonzero eigenvalue λi has finite multiplicity, and if the eigenvalues
are listed in decreasing order of their absolute value (i.e., ‖a‖ = |λ1| ≥ |λ2| ≥ · · · ), then limα→∞ |λα| = 0.

14Although unbounded operators play a major practical role in physics (think of position and momen-
tum), they may be awkward to deal with due to domain issues and in any case they can theoretically be
avoided without any loss of generality. Indeed, unbounded self-adjoint operators a bijectively correspond
to bounded operators (or constructions involving those) in at least four different ways [96]. First, one
may pass to the unitary Cayley transform (a − i)(a + i)−1. Second, one may construct the associated
one-parameter unitary group t 7→ exp(ita) by Stone’s Theorem. Third, one may work with the bounded
spectral projections, from which the operator may be reconstructed by the spectral theorem. Fourth, one
could take the resolvents (a− λ)−1, λ /∈ R (whose typical integral kernels are Green’s functions).

15Classically, one could work with the (essentially) bounded integrable functions L∞(R2), whilst in
quantum theory one could take the algebra B(L2(R)) of all bounded operators on L2(R) (as opposed to
merely the compact ones). These broader classes can be constructed from the C0-functions or compact
operators by taking pointwise and weak (or strong) limits, respectively. Enlarging the class of observables
like that also brings in new continuity conditions on the states (namely σ-additivity and σ-weak continuity,
respectively). Imposing these leads to the same states as discussed above; without them, one obtains more.

16Often Weyl quantization QW~ is used instead of Berezin quantization Q~, as in [9], but for Schwartz
functions f on phase space these have the same asymptotic properties as ~ → 0 [74]. The advantage of
Berezin quantization is that it is well defined also for continuous functions vanishing at infinity, in that for
any unit vector Ψ ∈ L2(R) the map f 7→ 〈Ψ|Q~(f)|Ψ〉 defines a probability measure on phase space. In
contrast, the Wigner function defined by f 7→ 〈Ψ|QW~ (f)|Ψ〉 may fail to be positive, as is well known.
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In that case we write lim~→0 ρ~ = ρ0. The condition (2.6) more explicitly reads

lim
~→0

Tr (ρ̂~Q~(f)) =

∫
R2

dρ̂0 f, for all f ∈ C0(R2). (2.7)

If ρ~ = |Ψ~〉〈Ψ~|, then obviously

〈Ψ~|Q~(f)|Ψ~〉 =

∫
R2n

dpdq

2π~
χΨ~(p, q)f(p, q), (2.8)

where the probability density χΨ~ , called the Husumi function of Ψ~, is given by

χΨ~(p, q) = |〈Φ(p,q)
~ |Ψ~〉|2, (2.9)

in which the inner product is taken in L2(R). Consequently, if the limit in (2.6) exists for
specific ρ~ = |Ψ~〉〈Ψ~|, then the limit measure ρ̂0 is the weak (or pointwise) limit of the
probability measures µΨ~ defined by the probability densities χΨ~ according to (2.2).

Let us illustrate this formalism for the ground state of the one-dimensional harmonic
oscillator. Taking V (x) = 1

2
ω2x2 in the usual quantum Hamiltonian (with mass m = 1/2),

H~ = −~2 d
2

dx2
+ V (x), (2.10)

it is well known that the ground state is unique and that its wave-function

Ψ
(0)
~ (x) =

( ω

2π~

)1/4
e−ωx

2/4~ (2.11)

is a Gaussian, peaked above x = 0. As ~→ 0, this ground state converges to the ground

state ρ
(0)
0 = (0, 0) ∈ R2 (i.e., (p = 0, q = 0)) of the corresponding classical system. Slightly

less familiar, the same is true for the anharmonic oscillator (with small λ > 0), i.e.,

V (x) = 1
2
ω2x2 + 1

4
λx4, (2.12)

the peak, of course, now being only approximately Gaussian. But it is a deep and coun-
terintuitive feature of quantum theory that even the symmetric double-well potential

V (x) = − 1
2
ω2x2 + 1

4
λx4 + 1

4
ω4/λ = 1

4
λ(x2 − a2)2, (2.13)

where a = ω/
√
λ > 0 (assuming ω > 0 as well as λ > 0), has a unique quantum-

mechanical ground state [62, 97], despite the fact that the corresponding classical system
has two degenerate ground states, given by the phase space points ρ±0 ∈ R2 defined by

ρ±0 = (p = 0, q = ±a). (2.14)

This ground state wave-function Ψ
(0)
~ is again real and positive definite, but this time it has

two peaks, above x = ±a, with exponential decay |Ψ(0)
~ (x)| ∼ exp(−1/~) in the classically

forbidden region [62, 97]. As a quantum-mechanical shadow of the classical degeneracy,
energy eigenfunctions (and the associated eigenvalues) come in pairs. In what follows, we

will be especially interested in the first excited state Ψ
(1)
~ , which like Ψ

(0)
~ is real, but has

one peak above x = a and another peak below x = −a. See Figure 1.
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As ~→ 0, the eigenvalue splitting E1 − E0 vanishes exponentially in −1/~ like

∆ ≡ E1 − E0 ∼ (~ω/
√

1
2
eπ) · e−dV /~ (~→ 0), (2.15)

where the typical wkb-factor is given by

dV =

∫ a

−a
dx
√
V (x); (2.16)

see [46, 71] (heuristic), or [58, 62, 110] (rigorous) for details. Also, the probability density

of each of the wave-functions Ψ
(0)
~ or Ψ

(1)
~ contains approximate δ-function peaks above

both classical minima ±a. See Figure 2, displayed just for Ψ
(0)
~ , the other being analogous.

We can make the correspondence between the nondegenerate pair (Ψ
(0)
~ , Ψ

(1)
~ ) of low-

lying quantum-mechanical wave-functions and the pair (ρ+
0 , ρ

−
0 ) of degenerate classical

ground states more transparent by invoking the above notion of a classical limit. Indeed,

in terms of the corresponding algebraic states ψ
(0)
~ and ψ

(1)
~ , cf. (2.3), one has

lim
~→0

ψ
(0)
~ = lim

~→0
ψ

(1)
~ = ρ

(0)
0 , (2.17)

ρ
(0)
0 ≡ 1

2
(ρ+

0 + ρ−0 ), (2.18)

where ρ±0 are the pure classical ground states (2.14) of the double-well Hamiltonian.17 To
see this, one may either consider numerically computed Husumi functions, as shown in

Figure 3 (just for Ψ
(0)
~ , as before), or proceed analytically, combining the relevant estimates

in [56] or in [110] with the computations in §II.2.3 of [74]. Either way, it is clear that the

pure (algebraic) quantum ground state ψ
(0)
~ converges to the mixed classical state (2.18).

In contrast with Ψ
(0)
~ and Ψ

(1)
~ , the localized (but now time-dependent) wave-functions

Ψ±~ =
Ψ

(0)
~ ±Ψ

(1)
~√

2
, (2.19)

which of course define pure (algebraic) states as well, converge to pure classical states, i.e.,

lim
~→0

ψ±~ = ρ±0 . (2.20)

On the one hand this is not surprising, because Ψ±~ has a single peak above ±a, but
on the other hand it is, since neither Ψ+

~ nor Ψ−~ is an energy eigenstate (whereas their
limits ρ+

0 and ρ−0 are energy eigenstates, in the classical sense of being fixed points for
the Hamiltonian flow). The explanation is that the energy difference (2.15) vanishes
exponentially as ~→ 0, so that in the classical limit Ψ+

~ and Ψ−~ approximately do become
energy eigenstates. In similar vein, because of (2.15) the tunneling time τ = 2π~/∆ of
the oscillation between Ψ+

~ and Ψ−~ becomes exponentially large in 1/~ as ~→ 0.
Finally, in the above examples (and many others) time evolution of states is defined

both classically (by the Liouville equation for measures) and quantum mechanically (by
the von Neumann equation for density matrices), and provided that lim~→0 ρ~ = ρ0 as in
(2.6), time-evolution commutes with taking the classical limit: that is, for each fixed time
t ∈ R, one has Egorov’s Theorem in the form [74, Thm. II.2.7.2], [98]

lim
~→0

(ρ~(t)) = ρ0(t). (2.21)

17In (2.18) we regard classical states as probability measures on phase space; hence the addition on the
right-hand side is a convex sum of measures, which has nothing to do with addition in the particular phase
space R2 (whose linear structure is accidental and irrelevant).
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Figure 1: Double-well potential with ground state Ψ
(0)
~=0.5 and first excited state Ψ

(1)
~=0.5.

Figure 2: Probability densities for Ψ
(0)
~=0.5 (left) and Ψ

(0)
~=0.01 (right).

Figure 3: Husumi functions for Ψ
(0)
~=0.5 (left) and Ψ

(0)
~=0.01 (right).
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2.3 Reformulation of the measurement problem

We return to the measurement problem. If measurement is merely seen as the establish-
ment of certain correlations between two quantum systems, then the problem does not
arise, since a priori nothing is wrong with the existence of superpositions of such corre-
lated quantum states. What is wrong is that at first sight such superpositions seem to
survive the classical limit, as shown above by the ground state of the double-well poten-
tial. More generally, the measurement problem arises whenever in the classical limit a pure
quantum state converges to a mixed classical state, since in that case quantum theory fails
to predict a single measurement outcome. Rather, it suggests there are many outcomes,
not just because the wave-function has several peaks per se, but because in addition in
the classical limit each of these peaks converges to a different classical state.

Consequently, the measurement problem is by no means solved by proving that such
interference terms vanish under certain (limiting) conditions. Instead, the real problem is
to show that under realistic measurement conditions pure quantum states actually have
pure classical limits. Indeed, Schrödinger’s Cat is exactly of this nature [75, §6.6]:

• If one were to study the cat as a quantum system, nothing would be wrong with the
famous superposition it resides in. However, such a study is practically impossible.18

• The “paradox” arises only if one uses macroscopic variables in order to give a classical
description of the cat, so that notions like (being) “alive” or “dead” make sense. In

that case, the naive classical state of the cat is of the kind ρ
(0)
0 = 1

2
(ρ+

0 + ρ−0 ),
cf. (2.18), where (say) ρ+

0 stands for being alive and ρ−0 is the (classical) state of

death. A classical state like ρ
(0)
0 is indeed intolerable, but since our flea destabilizes

it, fortunately enough it cannot arise in practice (in theory, such a state could be
created in a totally isolated system, in which case its paradoxical features disappear).

Having endorsed the Bohrian (or rather: the experimentally relevant) view of what
a measurement is, we emphatically reject the (typically) accompanying claims that the
measurement process itself cannot be analyzed or described in principle, and that its
outcome is irreducibly random (except for special initial states).19 For if measurement by
definition produces some classical state from a quantum state, and quantum (field) theory
is agreed to be fundamental and hence classical physics is some limit of it [74, 75], then it
would seem almost perverse not to describe the pertinent limiting procedure explicitly.

Take our example of the classical limit of the double-well potential, cf. (2.19) etc. Its

ground state Ψ
(0)
~ = (Ψ+

~ +Ψ−~ )/
√

2 is supposed to model the combined post-measurement
state Ψ of some apparatus A coupled to a microscopic system S, where the latter was ini-
tially prepared in a superposition (Φ++Φ−)/

√
2, upon which the measurement interaction

brought S +A into the state (Φ+ ⊗ Ω+ + Φ− ⊗ Ω−)
√

2, cf. §2.1, so that Ψ±~ ' Φ± ⊗ Ω±.

18This appeal to “practice” does not mean that we are resigned to fapp (i.e., “for all practical purposes”)
solutions to the measurement problem. As in [73], we remain convinced that the classical description of a
measurement apparatus is a purely epistemic move, relative to which outcomes are defined. So even if it
were possible to study a cat as a quantum system, there would be no measurement problem, since in that
case there would be innumerable superpositions but not a single (undesirable) mixture of classical states.

19We share this rejection with the Bohmians [32]. The folk wisdom (shared by the Founding Fathers)
that the Copenhagen Interpretation has no measurement problem relies on these secondary Copenhagenian
claims, which indeed sweep the problem under the rug. Incidentally, these claims seem much more popular
than Bohr’s doctrine of classical concepts, which is generally not well understood, and/or mistaken for the
idea that the goal of physics is to explain experiments, or that reality does not exist, et cetera.
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We then interpret the double limit ~→ 0, t→∞ (in an appropriate order discussed below)
as the “unfolding” of the measurement, in that the apparatus A is described increasingly
classically whilst S disappears from the description.20 What happens in this process?

• According to the Copenhagen Interpretation, by some inexplicable mystery, at some
stage of the classical description the wave-function suddenly collapses.

• According to our analysis, the collapse is not inexplicable at all: it is caused by a
perturbation, and in principle it can be exactly described and followed in time.

Here it is important to note that the values ~ = 0 and t =∞ are never actually reached: we
are talking about limits! In particular, the instability of the ground state described in the
next section already arises for very small (as opposed to zero or ‘infinitesimal’) effective
values of ~. And this is how it should be: truly classical states (like strictly infinite
systems) do not exist in nature, but you should be able to make the difference between
the quantum-mechanical approximation to such a state and the actual limit state as small
as you like, for sufficiently small ~ and large t. Indeed, the whole point is that the usual

(superposition) state Ψ
(0)
~ of Schrödinger’s Cat does not have this feature: the classical

states that (almost) occur in nature are ρ+
0 (alive) and ρ−0 (dead), and for any ~ > 0,

the state ψ
(0)
~ defined by the wave-function Ψ

(0)
~ dramatically fails to approximate either

of these,21 although it perfectly well approximates the unphysical mixture 1
2
(ρ+

0 + ρ−0 ).
In other words, returning to the original mechanical meaning of the double-well system,
quantum mechanics is apparently unable to predict that a classical ball lies at the bottom
of either the right or the left well. Fortunately, and this is the key to our analysis of
the measurement problem, this inability is only apparent: depending on the sign and
localization of the perturbation δV of the double well (cf. the next section), the collapsed

states ψ
(δ)
~ induced by the “flea on the cat” do approximate either ρ+

0 or ρ−0 as ~→ 0.
However, this insight concerning perturbed ground states and their associated localized

wave-functions is only the first, static part of the solution of the measurement problem.
The dynamical part of the solution would be to find an appropriate time-dependent way
for the flea to jump onto Schrödinger’s Cat (in its superposition state), and either kill it,
or let it live. That is, one needs to find a suitable perturbed (but nonetheless unitary!)

quantum time-evolution operator U
(δ)
~ (t) such that the (algebraic) state ψ

(δ)
~ (t) defined

by the wave-function U
(δ)
~ (t)Ψ

(0)
~ converges to either ρ+

0 or ρ−0 as t → ∞ and ~ → 0.
Moreover, a completely satisfactory solution of the measurement problem (or at least of
its Schrödinger Cat instance) would have the additional property that measurement results
that are already pre-classical, which in this case means that they are either ψ+

~ or ψ−~ , be
stable under perturbations. This leads to the following conditions:

20The analogy with the thermodynamic limit will be discussed in §5.2. As to the limit ~→ 0, we repeat
[75, pp. 471–472] that although ~ is a dimensionful constant, in practice one studies the (semi)classical
regime of a given quantum theory by forming a dimensionless combination of ~ and other parameters; this
combination then re-enters the theory as if it were a dimensionless version of ~ that can indeed be varied.
The oldest example is Planck’s radiation formula, with the associated limit ~ν/kT → 0, and another
example is the Schrödinger operator (2.10), with mass reinserted, where one may pass to a dimensionless
parameter ~/λ

√
2mε, where λ and ε are typical length and energy scales, respectively.

21Paraphrasing Bell [6]: the difference between ρ±0 and ψ
(0)
~ can be made ‘as big as you do not like.’.
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lim
~→0,t→∞

ψ
(0)
~ (t) = either ρ+

0 or ρ−0 ; (2.22)

lim
~→0,t→∞

ψ+
~ (t) = ρ+

0 ; (2.23)

lim
~→0,t→∞

ψ−~ (t) = ρ−0 . (2.24)

As in (2.17) - (2.20), these conditions do not contradict each other, since in passing
from unit vectors Ψ to algebraic states ψ (which are quadratic in Ψ), linearity is lost.

Indeed, (2.17) - (2.18) would be impossible for unit vectors (noting that Ψ
(0)
~ and Ψ

(1)
~ are

orthogonal), but they are perfectly alright for algebraic states.22 This marks a decisive
difference with standard approaches to the measurement problem [2, 18, 19], which are
victim to “insolubility” theorems of the kind proved by Fine and others [16, 19, 42]. Such
theorems assume that the post-measurement state (if pure) is a unit vector in Hilbert
space (or a density matrix otherwise), and totally rely on the linearity of the Schrödinger
equation. In contrast, we take the post-measurement state to be classical by definition.

In the above setting, determining the correct way to take the double limit ~→ 0, t→∞
is a highly nontrivial problem. In the theory of semiclassical asymptotics [98] (with quan-
tum chaology as an important subfield [12, 41, 104, 115]), the goal of this limit is to find
the long-time behaviour of some quantum system by first describing the underlying classi-
cal system (especially if it is chaotic), and subsequently using suitable classical expressions
to approximate the corresponding quantum formulae. For example, suppose one wants to
find the time evolution of a wave-packet that initially is strongly (micro)localized, i.e., is
a coherent state for some small (effective) value of ~. For fixed time t, one has Egorov’s
Theorem (2.21), which, supplemented by exponentially small error terms, shows that for
any finite t the limit ~→ 0 delivers the above goal. But for large times there is a competi-
tion between the limit ~→ 0 making the state more localized (and hence more classical),
and the limit t→∞ making it less so (and hence more wave-like or quantum-mechanical).
Intuitively, spreading is enhanced if the classical dynamics is chaotic, and suppressed if it
is integrable. In the chaotic case, it turns out that (micro)localization defeats the spread
in time as long as t ≤ C ln(1/~), with C of order one, so that one may take the double
limit in the order ~→ 0, t→ C ln(1/~) [1, 15, 29]. If the system is integrable, on the other
hand, one expects to push this to much larger times t ∼ ~−k, for some k ∈ N.

Our situation is more complicated than that. First, in d = 1, time-dependent perturba-
tions of the “flea” type render the double-well potential no longer integrable, without the
perturbed dynamics becoming really chaotic either. Second, the initial state is the ground
state of the (unperturbed) double well, which is not even localized to begin with.23 Third,
we will actually invoke another limit, namely the adiabatic one. As we will explain in the
Discussion, combining these features poses a new problem in the practically unexplored
territory of quantum metastability, whose solution will not only involve new mathematical
results in semiclassical asymptotics, but also calls for genuinely new physical understand-
ing. For now, our goal is just to explain our program and provide a “proof of concept”
that it might work. Thus at the present stage we merely present some numerical results,
showing that for fixed small ~, localization takes place for sufficiently large t.

22Families of unit vectors like Ψ
(i)
~ , where i = 0, 1,+,−, typically do not have a limit as unit vectors (or

even as density matrices, including one-dimensional projections).
23As explained above, the nonlinearity inherent in the limit ~→ 0 makes it impossible to find the limit

of this ground state Ψ
(0)
~ by just adding the results for two localized wave-functions like Ψ+

~ and Ψ−~ .
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3 A collapse process within quantum mechanics

3.1 The “flea” perturbation of the double-well potential

Regarding the doubly-peaked ground state Ψ
(0)
~ of the symmetric double well as the

quantum-mechanical counterpart of a hung parliament, the analogue of a small party
that decides which coalition is formed is a tiny asymmetric perturbation δV of the poten-
tial. Indeed, the following spectacular phenomenon in the theory of Schrödinger operators
was discovered in 1981 by Jona-Lasinio, Martinelli and Scoppola [65, 66], using stochas-
tic techniques. Using more conventional methods, it was subsequently reconfirmed and
analyzed further by mathematical physicists [28, 51, 58, 59, 110].24 In view of this ex-
tensive mathematical literature, we hardly see a need for yet another rigorous treatment,
but rather take it as our goal to explain the main idea to physicists and philosophers.
This section just gives the key results; a more detailed (an novel) treatment using the
well-known wkb approximation from the textbooks may be found in the appendix.

Replace V in (2.10) by V + δV , where δV (i.e., the “flea”) is assumed to:

1. be real-valued with fixed sign, and C∞c (hence bounded) with connected support not
including the minima x = a or x = −a;25

2. satisfy |δV | >> e−dV /~ for sufficiently small ~ (e.g., by being independent of ~);

3. be localized not too far from at least one the minima, in the following sense.

First, for y, z ∈ R and A ⊂ R, we extend the notation (2.16) to

dV (y, z) =

∣∣∣∣∫ z

y
dx
√
V (x)

∣∣∣∣ ; (3.25)

dV (y,A) = inf{dV (y, z), z ∈ A}. (3.26)

Second, we introduce the symbols

d′V = 2 ·min{dV (−a, supp δV ), dV (a, supp δV )}; (3.27)

d′′V = 2 ·max{dV (−a, supp δV ), dV (a, supp δV )}. (3.28)

The localization assumption on δV is that one of the following conditions holds:

d′V < dV < d′′V ; (3.29)

d′V < d′′V < dV . (3.30)

In the first case, the perturbation is typically localized either on the left or on the
right edge of the double well, whereas in the second it resides on the middle bump.26

Under these assumptions, the ground state wave-function Ψ
(δ)
~ of the perturbed Hamilto-

nian (which had two peaks for δV = 0!) localizes as ~ → 0, in a direction which given
that localization happens may be understood from energetic considerations. For example,
if δV is positive and is localized to the right, then the relative energy in the left-hand part
of the double well is lowered, so that localization will be to the left. See Figures 4 - 6.

24The “Flea on the Elephant” terminology used in [110] for the phenomenon in question evidently
motivated the title of the present paper, which has identified the proper host animal at last!

25 Some of the details in this section depend on the latter assumption, but our overall scenario in Section
4 does not. For example, if the value and/or the curvature of one of the minima is decreased, then the
ground state wave-function will localize above that minimum, as follows from standard minimax techniques
taking single harmonic eigenfunctions as trial states [51, 97]. So collapse is actually easier in that case.

26Symmetric perturbations are excluded by 3, as these would satisfy d′V = d′′V .
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Figure 4: Flea perturbation of ground state Ψ
(δ)
~=0.5 with corresponding Husumi function.

For such relative large values of ~, little (but some) localization takes place.

Figure 5: Same at ~ = 0.01. For such small values of ~, localization is almost total.

Figure 6: First excited state for ~ = 0.01. Note the opposite localization area.
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In more detail, for the perturbed ground state we have (subject to assumptions 1–4):

Ψ
(δ)
~ (a)

Ψ
(δ)
~ (−a)

∼ e∓dV /~ (±δV > 0, supp(V ) ⊂ R+); (3.31)

Ψ
(δ)
~ (a)

Ψ
(δ)
~ (−a)

∼ e±dV /~ (±δV > 0, supp(V ) ⊂ R−), (3.32)

with the opposite localization for the perturbed first excited state (so as to remain orthog-
onal to the ground state).27 A more precise version of the energetics used above is then
as follows. The ground state tries to minimize its energy according to the rules:28

• The cost of localization (if δV = 0) is O(e−dV /~).

• The cost of turning on δV is O(e−d
′
V /~) when the wave-function is delocalized.

• The cost of turning on δV is O(e−d
′′
V /~) when the wave-function is localized in the

well around x0 = ±a for which dV (x0, supp δV ) = d′′V .

In any case, these results only depend on the support of δV , but not on its size: this means
that the tiniest of perturbations may cause collapse in the classical limit.

Although the collapse of the perturbed ground state for small ~ is a mathematical
theorem, supported (or rather illustrated) both by our numerical simulations and by the
wkb analysis in the appendix, it remains an enigmatic phenomenon of a purely quantum-
mechanical nature. Indeed, despite the fact that in quantum theory the localizing effect
of the flea is enhanced for small ~, the corresponding classical system has no analogue of
it. Trivially, a classical particle residing at one of the two minima of the double well at
zero (or small) velocity, i.e., in one of its degenerate ground states, will not even notice the
flea; the ground states are unchanged. But even under a stochastic perturbation, which
leads to a nonzero probability for the particle to be driven from one ground state to the
other in finite time (as some form of classical “tunneling”, where in this case the necessary
fluctuations come from Brownian motion), the flea plays a negligible role. For example, in
the case at hand the famous Eyring–Kramers formula for the mean transition time reads

〈τ〉 ∼=
2π√

V ′′(a)V ′′(0)
eV (0)/ε, (3.33)

where ε is the parameter in the pertinent Langevin equation dxt = −∇V (xt)dt+
√

2εdWt,
in which Wt is standard Brownian motion.29 Clearly, this expression only contains the
height of the potential at its maximum and its curvature at its critical points; most
perturbations satisfying assumptions 1–4 above do not affect these quantities.

27If δV has support on both sides of the real axis (which is possible in the case (3.30)), a more detailed
analysis of its shape is necessary in order to predict the direction of collapse [21].

28Compare [97, 110, p. 35] for such arguments. Nonetheless, the effect of the flea is counterintuitive even
from the point of view of quantum-mechanical tunneling: for example, with a perturbation of the kind
displayed in Figures 4 - 6, which falls under case (3.30), one would expect tunneling from the right into the
left-handed well to be discouraged, even increasingly so as ~ → 0, because the potential barrier through
which to tunnel has been heightened, but in fact the right-handed peak of the unperturbed ground state
tunnels to the left so as to localize the ground state wave-function. See §5.3 for further discussion.

29Cf. [7] (for mathematicians) or [55] (for physicists), and references therein.
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3.2 Two-level approximation

The instability of the ground state of the double-well potential under “flea” perturba-
tions as ~ → 0 is easy to understand (at least heuristically) if one truncates the infinite-
dimensional Hilbert space L2(R) to a two-level system living in C2 [58, 110].30 This

simplification is accomplished by keeping only the lowest energy states Ψ
(0)
~ and Ψ

(1)
~ , in

which case the full Hamiltonian (2.10) with (2.13) is reduced to the 2× 2 matrix

H0 = 1
2

(
0 −∆
−∆ 0

)
, (3.34)

with ∆ > 0 given by (2.15). We drop the label ~. The eigenstates of H0 are given by

Φ
(0)
0 =

1√
2

(
1
1

)
, Φ

(1)
0 =

1√
2

(
1
−1

)
, (3.35)

with energies E0 = − 1
2
∆ and E1 = 1

2
∆, respectively; in particular, E1 − E0 = ∆. If

Φ±0 =
Φ

(0)
0 ± Φ

(1)
0√

2
, (3.36)

as in (2.19), then

Φ+
0 =

(
0
1

)
, Φ−0 =

(
1
0

)
. (3.37)

Hence in this approximation Φ+
0 and Φ−0 play the role of wave-functions (2.19) localized

above the classical minima x = +a and x = −a, respectively, with classical limits ρ±0 . The
“flea”, then, is introduced as follows: if its support is in R+, then we put

δ+V =

(
0 0
0 δ

)
, (3.38)

where δ ∈ R is a constant, whereas a perturbation with support in R− is approximated by

δ−V =

(
δ 0
0 0

)
. (3.39)

Without loss of generality, let us take the latter (a change of sign of δ leads to the former).
The eigenvalues of H(δ) = H0 + δ−V are E0 = E− and E1 = E+, with energies

E± = 1
2
(δ ±

√
δ2 + ∆2), (3.40)

and normalized eigenvectors

Φ
(0)
δ =

1√
2

(
δ2 + ∆2 + δ

√
δ2 + ∆2

)−1/2
(

∆

δ +
√
δ2 + ∆2

)
; (3.41)

Φ
(1)
δ =

1√
2

(
δ2 + ∆2 − δ

√
δ2 + ∆2

)−1/2
(

∆

δ −
√
δ2 + ∆2

)
. (3.42)

Note that limδ→0 Φ
(i)
δ = Φ

(i)
0 for i = 0, 1. Now, if ~ → 0, then |δ| >> ∆, in which case

Φ
(0)
δ → Φ±0 for ±δ > 0 (and if we had started from (3.38) instead of (3.39), one would

have had the opposite case, i.e., Φ
(0)
δ → Φ∓0 for ±δ > 0). Thus the ground state localizes

as ~→ 0, which resembles the situation (3.31) - (3.32) for the full double-well problem.

30This approximation is extremely well known also in physics [79], but has hardly been studied in the
present context. It is too simple to display the behaviour (2.22) - (2.24), though. See also §5.1.
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4 Time-dependent collapse

As remarked in Section 2.3, for a solution of the measurement problem it is not enough
to just note that under a typical “flea” type perturbation (as defined in Section 3.1) the

ground state Ψ
(δ)
~ of the perturbed Hamiltonian is localized. In addition, the archetypal

Schrödinger Cat state Ψ
(0)
~ , which results from some measurement, needs to evolve into

Ψ
(δ)
~ under the influence of this perturbation. This is a problem in quantum metastability.

As a first orientation, we continue our discussion of the two-level system. The simplest
idea would be to launch the flea as a so-called “quench”, which means that for times t < 0
the dynamics is given by H0, upon which for t ≥ 0 the Hamiltonian is H0 + δ−V . Hence

H(t) =

(
δ(t) − 1

2
∆

− 1
2
∆ 0

)
, (4.43)

where δ(t) = 0 for t < 0 and δ(t) = δ for t ≥ 0. Writing Φ(0)(t) for the solution of the

corresponding time-dependent Schrödinger equation with initial condition Φ(0)(0) = Φ
(0)
0 ,

see (3.35), for the localization probability “on the left”, i.e., above x = −a, we find

PL(t) ≡ |〈Φ−0 ,Φ
(0)(t)〉|2 = PL(0) + 1

2

δ∆

δ2 + ∆2
·
[
cos

(
it

~

√
δ2 + ∆2

)
− 1

]
, (4.44)

where Φ−0 is given in (3.37). Since δ∆/(δ2 + ∆2) → 0 as ~ → 0, we see from this and
similar calculations for other initial states that for any t (including t → ∞ in whatever,
even ~-dependent, way), in the classical limit the initial state freezes rather than collapses.

Figure 7: Time evolution of the probabilities PL(t) and PR(t) = 1−PL(t). The left image
has δ = 0, the middle has moderate δ, and the third (displaying “freezing”) has large δ.

Towards less naive time-dependent models for the flea perturbation, we also investi-
gated adding white noise or Poisson noise to the time-dependent Schrödinger equation. In
the two-level case, the pertinent stochastic differential equations are

dΦ = −( 1
2
i∆σxdt+ iδσzdBt + 1

2
δ2dt)Φ; (4.45)

dΦ = −( 1
2
i∆σxdt+ (σz − I2)dNt)Φ, (4.46)

respectively, where (σk) are the Pauli matrices, Bt is Brownian motion, and Nt is a Poisson
process, both with tunable parameters. However, neither of these leads to dynamical
collapse in the classical limit: this is equivalent to strong noise, in which case a quantum
Zeno-like effect seems to dominate any desire of the system to localize. See also [8, 11, 83].
Similar (negative) conclusions follow for the full double well (at least, numerically).
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As far as we have been able to determine, the most effective way to produce dynamical
collapse is to let the flea jump on the cat adiabatically (cf. [52]). This is easily shown for
the two-level system, but we might as well return to the full double-well problem here.
We perturb this potential V with a flea with center b, width 2c, and height d, as follows:

δVb,c,d(x) =

{
d · e

1
c2
− 1
c2−(x−b)2 if |x− b| < c

0 if |x− b| > c
. (4.47)

One attractive possibility is then to let this perturbation arises adiabatically according to

V (x, t) =


V (x) if t ≤ 0;
V (x) + δVb,c,d(x) sin

(
πt
2T

)
if 0 ≤ t ≤ T ;

V (x) + δVb,c,d(x) if t > T.
(4.48)

The time-dependent Schrödinger equation can be solved numerically with the ground

state Ψ
(0)
~ as the initial condition at t = 0. This yields the following pictures,31 in which

dynamical localization is clearly visible, in agreement with the adiabatic theorem.32

Figure 8: Plots of both |Ψ(t)|2 and the corresponding Husumi function for the solution
Ψ(t) of the time-dependent Schrödinger equation defined by the potential (4.48), with
b = 7.5, c = 0.5, d = 0.3, ~ = 0.3, and T = 800. Starting in the upper left corner and
proceeding clockwise, the pictures correspond to t = 50, t = 100, t = 400, t = 800.

Of course, the symmetry of the situation implies that the Born rule holds if one averages
over all perturbations (which corresponds to averaging over a series of experiments) in any
reasonable way, i.e., any way in which δVb,c,d, δV−b,c,d, δVb,c,−d, and δV−b,c,−d have equal
probability. For in that case, according to the rules in Section 3.1 any collapse to the
left (in some experiment in a long run) will be accompanied by a collapse to the right (in
another experiment of the same run) if one of the signs changes. Hence the probabilities
for collapse to the left and to the right will both equal 1/2, in agreement with (2.18).

31A corresponding movie may be found on www.math.ru.nl/∼landsman/flea.avi.
32This states that under an adiabatic perturbation δV = δV (t/T ) the unperturbed ground state moving

under the perturbed Hamiltonian converges to the ground state of the latter as t→ T →∞ [52, 54].
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5 Discussion

In this section we deal with various issues around the flea, mostly calling for further
research. This will put our results in perspective, in particular addressing the question to
what extent an appropriate generalization of the mechanism we propose may be expected
to eventually solve the measurement problem. At this early stage, we just claim that
our simple example holds at least the promise of generalization, in our opinion even to
such an extent that the underlying mechanism for collapse, special and ad hoc as it may
undoubtedly look at first sight, may be universal. We explain our optimism in §5.1 and
§5.2. In §5.3 we draw attention to the main dynamical issue behind our proposal, and
finally in §5.4 we briefly discuss the role of determinism, locality, and Bell’s Theorem.

5.1 Universality of the mechanism

If anything, a post-measurement state must be stable. This suggests that ground states
are natural candidates. Furthermore, n distinct “peaks” of the wave-function of such a
ground state should bijectively correspond to n distinct measurement outcomes. This can
be realized, for example, in the double-well potential in the classical limit, as discussed in
the present paper, but also in the setting of large systems in the thermodynamic limit (cf.
§5.2 below). Either way, the abstract mechanism behind the collapse of the wave-function
is that the system has n low-lying energy eigenstates (of which the ground state is just
one), which become degenerate in the appropriate (i.e. classical or thermodynamic) limit,
and whose energy levels do not cross the remainder of the spectrum in this limit. Localized
perturbations that hardly change these energy levels and hence preserve this separation
then suffice to sufficiently shake up the ground state that it collapses to one of these peaks.

Beyond calculations and simulations like the ones presented in the main body of the
present paper, this effect is best studied abstractly, using the so-called interaction matrix
introduced by Helffer and Sjöstrand [58, 59, 110]. This matrix acts on an n-dimensional
vector space V spanned by a basis of conveniently chosen localized wave-functions,33 whose
linear span (i.e. V ) exponentially well approximates the linear span of the first n exact
eigenfunctions of the unperturbed Hamiltonian H~ (like (2.10)), as ~ → 0. In this basis,
the ground state of the H~ is approximately (1, 1, . . . , 1)/

√
n, displaying the n peaks of

the post-measurement state. Now if a perturbation δV has the properties just mentioned,
then the lowest n levels and eigenstates of H + δV can be studied using this compressed
form, resulting in the collapse studied throughout this paper: typically, as ~→ 0 the (ap-
proximate) perturbed ground state is one of the basis vectors itself and hence is localized.

This mechanism only uses linear algebra, and hence it is independent of the use of
the position representation in our basic double well example.34 For example, in large
spin systems (see below) the appropriate notion of localization refers to spin configura-
tions rather than position. All that matters is that the ground state of the original,
unperturbed Hamiltonian (which arguably models a typical post-measurement state) has
n peaks that become well separated in the appropriate (classical or thermodynamic) limit,
with n corresponding energy levels not crossing the rest of the spectrum in the limit.

33For potentials with n identical wells, this basis may be chosen to consist of the eigenfunctions of the n
individual wells with Dirichlet boundary conditions [58, 59]. For the quantum Ising model (cf. [70]), where
n = 2, one may take the state with all spins up and the state with all spins down, etc.

34 In this respect our approach has an edge over Bohmian mechanics and the grw theory, although it
remains to be shown that typical environments induce the right perturbations for the mechanism to apply.
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5.2 Symmetry breaking and phase transitions

The symmetric double-well potential provides one of the simplest models of spontaneous
symmetry breaking (ssb). Both the classical Hamiltonian and its quantization have a Z2

symmetry, given by reflection in the origin of the x-axis. As we have seen, a remarkable
difference between classical and quantum mechanics arises: the classical ground state is

degenerate and breaks the symmetry, whereas the quantum ground state Ψ
(0)
~ is unique

and hence symmetric. If we see the splitting of the ground state as a phase transition, then
evidently the quantum system has no phase transition, whereas its classical counterpart
does. At first sight this appears to be quite paradoxical, since the presence or absence of
symmetry breaking is a major qualitative feature of the system described either classically
or quantum-mechanically, while at the same time we quantitatively expect the classical
theory to be a limiting case of the quantum theory. Indeed, this is nothing but the
measurement problem in disguise: if, for any ~ > 0, the (delocalized) quantum ground
state prevails, then the classical ground states ρ±0 totally fail to be approximated by it.

We resolved this problem by the “flea” instability. Similarly, the ground state of a
large but finite quantum system (N < ∞) is typically unique and hence symmetric. But
at N = ∞, for suitable Hamiltonians ssb occurs, in that the ground state (or thermal
equilibrium state at low temperature) fails to be symmetric. Thus the limit N tends to
infinity does not approximate the phenomenon of ssb when N equals infinity.35 Based on
[70] and the discussion in §5.1, we expect to find some analogue of the “flea” perturbation
and expect it to be especially effective for large N . This should destabilize the ground
state so as to break the symmetry already in large but finite volume. Indeed, an instability
like this must underlie the Higgs mechanism (proved phenomenologically relevant in 2012).

5.3 Quantum metastability

As we see it, the measurement problem is ultimately a problem in quantum metastability.
Metastability is well understood if it is thermally driven, both in classical and in quantum
theory [55, 94, 106, 107], but in our approach the driving force is neither a heat bath
nor Brownian motion: quantum fluctuations are supposed to drive the old (unperturbed)
ground state to the new (perturbed) one. Little is known about this situation even heuris-
tically [90, 109]. What we can say is that the limit ~ → 0 seems a double-edged sword:
on the one hand, it causes the instability of the original ground state, and hence favours
static collapse (in that the perturbed ground state is localized, unlike the original one),
but on the other hand, it suppresses tunneling and hence slows down dynamical collapse
(i.e. the perturbed time-evolution of the unperturbed ground state into the localized per-
turbed one). Together with the adiabatic arrival of the flea,36 this appears to explain the
exceptionally long time it takes for localization to happen in our numerical simulations.

35 Like the measurement problem, this seemingly paradoxical situation does not seem to bother physicists
very much, although their Higgs mechanism relies on a resolution of it: apparently, in any finite volume
the system refuses to choose a ground state (or vacuum), although all perturbative calculations underlying
the successful Standard Model of elementary particle physics rely on such a choice. But it has been the
subject of recent discussions in the philosophy of science [4, 20, 80, 86, 92], in which some claim that this
“discontinuity” in passing from N < ∞ to N = ∞ is crucial for the possibility of emergence (‘More is
Different’), whilst others try to find arguments for continuity and hence defend some form of reductionism.

36If it happens to be true that measurement outcomes emerge adiabatically, it would be a marked break
with tradition, starting with von Neumann’s model, in which both the measurement interaction and the
alleged collapse take place instantly [89]. However, the recent notion of a “weak measurement” seems to
support our approach on this point [69, 82, 99]. We are indebted to Jos Groot for these references.
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5.4 Determinism and locality

In so far as determinism is concerned, there are two ways to look at our proposal.
First, the “flea” perturbation might itself be a genuine random process, perhaps be-

ing ultimately of quantum-mechanical origin. In that case, its own intrinsic randomness
(whatever that may mean) is simply transferred to the set of possible measurement out-
comes. Although in that case the flea may still be said to “cause” one particular outcome
(of some experiment), it would fail to restore determinism. Rather, the experiment merely
amplifies the randomness that was already inherent in the flea.37

Second, the flea might be deterministic (but is just modeled stochastically for prag-
matic reasons). This would open the door to a complete restoration of determinism. For
now the flea transfers its determinism to the experiment (rather than its randomness,
as in the previous scenario). The mistaken impression that quantum theory implies the
irreducible randomness of nature then arises because measurement outcomes are merely
unpredictable “for all practical purposes”, indeed in a way that (because of the exponential
sensitivity to the flea in 1/~) dwarfs even the unpredictability of classical chaotic systems.

Either way, the location of the flea plays a similar role to the position variable in
Bohmian mechanics [33, 39], i.e., it is essentially a hidden variable.38 As such, one has to
deal with well-known results like Bell’s Theorem [5, 18, 85] or the Free Will Theorem [17,
24, 30, 31, 61, 112]. In the analysis of these results, the notions of Outcome Independence
(oi) and Parameter Independence (pi), have come to play an important role, and these are
especially relevant to our situation.39 Briefly, the conjunction of oi and pi is equivalent to
Bell’s locality condition, and if the latter is satisfied, then also the Bell inequalities hold.
Since these are violated by quantum mechanics, any hidden variable theory compatible
with quantum mechanics must violate either oi or pi (or both). Deterministic hidden
variable theories necessarily satisfy oi, in which case both Bell’s Theorem and the Free
Will Theorem show that they must violate pi in order to be compatible with quantum
mechanics. A violation of pi leads to possible superluminal signalling only if the variable λ
can be controlled [85, 93]. If the wave-function Ψ is regarded as the “hidden” (sic) variable
λ, then quantum theory itself satisfies pi but violates oi (since Ψ can be controlled, the
other way round would be disastrous). Being a deterministic hidden variable theory,
Bohmian mechanics satisfies oi, and hence it violates pi [85]. The grw theory, on the
other hand, satisfies pi but violates oi [3, 48, 49, 93].

The fate of our own approach depends on the nature of the perturbation: if the flea
is deterministic, our theory behaves like Bohmian mechanics in this respect and hence
violates pi, whereas stochastic perturbations typically violate oi (and possibly also pi).

Either way, no conflict with the said theorems arises. Paraphrasing a comment often
made by Bell concerning Bohmian mechanics and grw [85]: the nonlocality of the collapse
mechanism we propose just reflects the nonlocality inherent in quantum mechanics itself.

37See [26] for a recent discussion of randomness amplification, which focuses on the way experiments
may be construed to amplify the randomness inherent in the (alleged) “free” choice of an experimentalist.

38What follows will hardly be new to specialists in these matters, but it needs to be stated clearly.
39Using the traditional scene where (Alice, Bob) are spacelike separated and perform experiments with

settings (a, b) and outcomes (x, y), respectively, a stochastic hidden variable λ (or rather the corresponding
theory) satisfies oi if Alice’s conditional probability P (x|a, b, y, λ) of finding x given (a, b, y, λ) is indepen-
dent of Bob’s outcome y, whereas the theory satisfies pi if her conditional probability P (x|a, b, λ) of finding
x given (a, b, λ) is independent of Bob’s setting b, and vice versa. These notions were originally introduced,
in slightly different form, by Jarrett [64]. Controversies around this terminology and its use of the sort
discussed in e.g. [18, 48, 85, 93, 105] seem irrelevant to our purposes.
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6 Appendix: the flea from wkb

In this appendix, we study the “flea” type perturbation from the point of view of the
wkb method of the physics textbooks (like [52, 71]).40 As explained in [44, 45], the
connection formulae stated in such books are actually correct only for simple potentials
like a single well, but with due modifications (see below), the formalism will reproduce
both the rigorous and the numerical results described in the main body of this paper.

6.1 Quantization condition for an asymmetric double well

We start by recalling some standard wkb formulas. The wkb wave-function in the clas-
sically allowed region without turning points (E > V (x)) can be written as

Ψ(x) ∼=
1√
p(x)

[
Ae

i
~
∫ x p(y)dy +Be−

i
~
∫ x p(y)dy

]
, (6.49)

where

p(x) =

{ √
[E − V (x)] if E ≥ V (x)

±i
√

[V (x)− E] if E < V (x)
. (6.50)

A similar formula holds for the classically forbidden region (E < V (x)), namely

Ψ(x) ∼=
1√
|p(x)|

[
Ce−

1
~
∫ x |p(y)|dy +De

1
~
∫ x |p(y)|dy

]
. (6.51)

These wave-functions can be connected across turning points via so-called connection
formulas, stated in books like [52]. First, we need to distinguish between two kinds of
turning points in the usual way: we use the coefficients Al, Bl, Cl and Dl for a left-hand
turning point and Ar, Br, Cr and Dr for a right-hand one. The lower limit of the integrals
in the above equations is always the coordinate of the turning point. The connection
formulas for a left-hand turning point are given by

(
Al
Bl

)
=

MCl/Dl→Al/Bl︷ ︸︸ ︷
eiπ/4

(
1
2
−i

− i
2 1

)(
Cl
Dl

)
or

(
Cl
Dl

)
=

MAl/Bl→Cl/Dl︷ ︸︸ ︷
e−iπ/4

(
1 i
i
2

1
2

)(
Al
Bl

)
, (6.52)

whilst those for a right-hand turning point are given by

(
Ar
Br

)
=

MCr/Dr→Ar/Br︷ ︸︸ ︷
eiπ/4

(
1 − i

2
−i 1

2

)(
Cr
Dr

)
or

(
Cr
Dr

)
=

MAr/Br→Cr/Dr︷ ︸︸ ︷
e−iπ/4

(
1
2

i
2

i 1

)(
Ar
Br

)
. (6.53)

Now consider a general asymmetric double well, as shown in Figure 9. This figure also
introduces part of the notation used.

40As opposed to the extremely sophisticated and mathematically rigorous methods of Helffer and
Sjöstrand [37, 58, 59], who somewhat confusingly suggest they use the ordinary wkb method.
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Figure 9: An asymmetric double-well potential V . The minima are a and b. We assume
that the particle has energy E. This provides us with turning points x1, x2, x3 and x4 and
hence with five distinct regions. Four of these regions are named with Roman numerals.

We need some more notation for the wkb coefficients used in our calculation. As in
(6.49) and (6.51), A,B and C,D denote the coefficients of the wkb wave-function in the
classically allowed region and the classically forbidden region, respectively. The number
attached to a letter shows to which turning point it belongs, e.g. A1 and B1 are the
coefficients of the wkb wave-function in region II with respect to x1 (i.e. x1 is the lower
boundary of the integral in (6.49)). We also need the following three quantities:

θ1 =
1

~

∫ x2

x1

p(x)dx, θ2 =
1

~

∫ x4

x3

p(x)dx, K =
1

~

∫ x3

x2

|p(x)|dx. (6.54)

A final quantity we need is

φ̃ = arg

[
Γ

(
1
2

+ i
K

π

)]
+
K

π
− K

π
ln

(
K

π

)
. (6.55)

We are interested in the limit K →∞, since this implies that the barrier is very high and
broad, which corresponds to the classical limit ~→ 0. Note that φ̃→ 0 as K →∞. Our
goal is the following quantization condition for the general double well in Figure 9:(

1 + e−2K
)1/2

=
cos(θ1 − θ2)

cos(θ1 + θ2 − π + φ̃)
. (6.56)

This condition can be derived in the following way:

1. We start out in region I (coefficients C1 and D1). The wave-function needs to be
square integrable, so we immediately see that C1 = 0.

2. Using the left connection matrix from (6.52), we move to region II (coefficients A1

and B1). We can then write the wkb wave-function with respect to x2 by using(
A2

B2

)
=

(
eiθ1 0
0 e−iθ1

)(
A1

B1

)
, (6.57)

which can be proved by changing the lower boundary of the integrals in the wkb
wave-function (6.49). The result is(

A2

B2

)
= eiπ/4

(
−ieiθ1
e−iθ1

)
D1. (6.58)
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3. In a similar way, we start in region IV (coefficients C4 and D4), and see that D4 = 0.
After moving to region III with a connection matrix and rewriting the wave-function
with respect to x3, we find(

A3

B3

)
= eiπ/4

(
e−iθ2

−ieiθ2

)
C4 . (6.59)

4. We now use a result derived in [44] to jump over the barrier and connect the wkb
wave-functions in region II and III, viz.41(

A2

B2

)
=

( (
1 + e2K

)1/2
e−iφ̃ ieK

−ieK
(
1 + e2K

)1/2
eiφ̃

)(
A3

B3

)
. (6.60)

5. Combining the above results (i.e. inserting (6.58) and (6.59) in (6.60)), we find

D1

C4
= i
[(

1 + e2K
)1/2

e−i(θ1+θ2+φ̃) + eKe−i(θ1−θ2)
]
, (6.61)

D1

C4
= −i

[(
1 + e2K

)1/2
ei(θ1+θ2+φ̃) + eKei(θ1−θ2)

]
. (6.62)

6. The equality of the above two equations leads to the quantization condition (6.56).

As will be discussed in the next two subsections, eqs. (6.56) and (6.61) have implications
for the energy levels and the wave-functions in an asymmetric double well.

6.2 Energy splitting in an asymmetric double-well potential

Assume that for a certain (unperturbed) symmetric double well and given energy E, the
constants θ1 and θ2 equal some value θ. As in Figure 9, we introduce a perturbation in
the right-hand well. For example, by (6.55), this means that θ = θ1 > θ2 for a positive
perturbation. We therefore write θ1 = θ, θ2 = θ − δ with δ ∈ R (e.g. δ > 0 in Figure 9).
The quantization condition (6.56) then becomes(

1 + e−2K
)1/2

=
cos(δ)

cos(2θ − δ − π + φ̃)
. (6.63)

We can solve for θ, yielding two solutions

θ± = (n+ 1
2
)π + 1

2
δ − 1

2
φ̃± 1

2
arccos

[
cos(δ)

(1 + e−2K)1/2

]
. (6.64)

This resembles the original quantization condition θ = (n+ 1
2
)π for a single well, which is

derived using connection formulas in [52]. Here, the energy levels have split up in pairs
around the original ones (where the minus sign in (6.64) corresponds to the lower energy
by (6.55)). To see what this means, we will examine this equation for two special cases.
We first set δ = 0 and check if this reproduces known results for a symmetric double well:

θ± = (n+ 1
2
)π − 1

2
φ̃± 1

2
arccos

[
1

(1 + e−2K)1/2

]
. (6.65)

41This result can also be found by applying the method of comparison equations, which is explained in
[116]. Further references are [81] and [88].
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Supposing that K is large, this means that

θ± ≈ (n+ 1
2
)π ± 1

2
e−K , (6.66)

since for K large, φ̃ ≈ 0 and arccos
(

1√
1+x2

)
= arctanx ≈ x for small x. We once again

find that the energy levels of the single well have split into two. As discussed in [45], this
leads exactly to the familiar energy splitting for a symmetric double-well potential stated
in texts like [71]. That means that our method for general double wells reproduces known
results for a symmetric one. Now that this has been confirmed, let us look at (6.64) in
the classical limit K →∞. Solving (6.64) for K →∞ (and so φ̃→ 0) gives

θ− = (n+ 1
2
)π (lower energy) ; (6.67)

θ+ = δ + (n+ 1
2
)π (higher energy). (6.68)

This differs from the symmetric well, which for K → ∞ gives a twofold degeneracy for
each energy level labeled by n. Equation (6.68) can be understood in the following way: in
the classical limit, tunneling is suppressed. Therefore, the particle is localized in one of the
wells, where it obeys the familiar quantization condition for a single well. If it is in the left
well, then θ1 = (n+ 1

2
)π = θ−, but if it is in the right well, we have θ2 = (n+ 1

2
)π = θ+−δ.

6.3 Localization in an asymmetric double-well potential

Now that we have analyzed the behaviour of the energy splitting, we turn to the wkb
wave-function. With the notation used in the previous section, (6.61) leads to

D1

C4
= i
[(

1 + e2K
)1/2

e−i(2θ±−δ+φ̃) + eKe−iδ
]
. (6.69)

Inserting (6.64), the reader can check that for δ ∈ [−π, π] one has

D1

C4
= sin(δ)eK ∓

√
sin2(δ)e2K + 1 . (6.70)

This allows us to derive localization of the wkb wave-function in the classical limitK →∞.
As can be seen from (6.58), D1 is a measure of the amplitude of the wkb wave-function
in regions I and II in Figure 9. In a similar way, (6.59) shows that C4 is a measure of
the amplitude of the wkb wave-function in regions III and IV. Therefore, the fraction
D1/C4 indicates whether the wave-function is localized, and if so, where. Doing the same
calculation again for δ ∈ [π, 3π] gives the above result multiplied by −1. Of course, this
can be generalized: for n ∈ Z and δ ∈ [(2n − 1)π, (2n + 1)π], the result (6.70) is correct
for n even and should be multiplied by −1 for n odd. This will not affect our conclusions,
as we will see. We consider some cases and check what (6.70) tells us:

• For δ = 0 (no perturbation), we find that D1
C4

= ∓1. The general double well has
pairs of energy levels (labeled by n). Such a pair consists of a lower and higher
lying level, corresponding to θ− and θ+ in (6.64), respectively. Here, we see that
for the lower level D1 = C4, i.e. the wkb wave-function is even. However, for the
higher level we find D1 = −C4, which means the wkb wave-function is odd. This
is a well-known fact and it is nice to see our method reproducing it. Note that this
conclusion is not only independent of n, but also of K, as expected.
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• For δ > 0, δ /∈ {kπ|k ∈ Z} (which corresponds to a positive perturbation in the right
well, e.g. the potential in Figure 9), we find, in the limit K →∞, that:

D1

C4
−→

{
∞ for θ− in (6.64) (lower energy)
0 for θ+ in (6.64) (higher energy)

.

Hence for low (high) energy, the wkb wave-function is localized on the left (right).

• For δ < 0, δ /∈ {kπ|k ∈ Z}, i.e., a negative perturbation in the right well, we find

D1

C4
−→

{
0 for θ− in (6.64) (lower energy)
∞ for θ+ in (6.64) (higher energy)

.

For the lower (higher) energy, the wkb wave-function is localized on the right (left).

• For δ ∈ {kπ|k ∈ Z\{0}}, something peculiar happens, in that either D1
C4

= ±1 or
D1
C4

= ∓1. This implies that no localization takes place.42

• So far, we have interpreted δ as the result of a perturbation in the right well. How-
ever, our approach allows us to interpret a positive perturbation in the right-hand
well as a negative one in the left-hand well, and vice versa. Therefore, the above
results change places if we put the perturbation in the left-hand well.

Our method produces the results we would expect. However, to be precise, the above
reasoning needs to be amended as follows. We have treated δ as a constant, but in reality
it depends on K. The reason for this is that K affects θ1 and θ2, and therefore δ = θ1−θ2,
via the quantization condition. Now consider a fixed energy level (i.e. fixed n and fixed
sign ± in (6.64)) in a given double-well potential that has a perturbation in one of the
wells. In the limit of completely decoupled wells (K →∞), we know this energy level has
some fixed limit higher than the minimum of the potential. As long as the perturbation is
below this energy level, we know that θ1 − θ2 6= 0 by (6.55). This means that there exists
some K0 such that |θ1− θ2| 6= 0 for any K > K0. We may then apply the above reasoning
to verify that our conclusions about localization are still correct.43
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42This can be explained by level crossing, i.e. certain energy levels of the two individual wells coincide.
43 To keep the discussion straightforward, we ignored the special case δ ∈ {kπ|k ∈ Z\{0}} here.
44Muller also notes that this paper reveals the ‘empiricist presuppositions’ of the authors. For example,

we are not worried about superpositions like Ψ =
∑
i ciΨi in §2.1 as such, despite the fact that most

quantum-mechanical observables, including the one (O) that is being measured, have no value in such
a state. Compared to classical physics this is admittedly a curious feature of quantum theory, but it
causes neither inconsistencies within the formalism nor disagreements with observation. Furthermore, it
has nothing to do with Ψ being a superposition (which is a basis-dependent statement), and in our view
it only leads to a problem (namely the measurement problem) if the device whose state Ψ represents is
classical (e.g., in being macroscopic). For in that case quantum mechanics naively (i.e. without the flea
mechanism) appears to assign numerous values to O, which seems unacceptable (rather than assigning no
value, which for the stated reasons we can live with both as theorists and as alleged empiricists).
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[44] N. Fröman and P.O. Fröman, Phase-Integral Method: Allowing Nearlying Transition Points (Springer,
1996).
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[103] E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Die Naturwissenschaften 23,
807–812, 823–828, 844–849 (1935).

[104] R. Schubert, Semiclassical behaviour of expectation values in time evolved Lagrangian states for
large times, Communications in mathematical physics 256, 239–254 (2005).

[105] M.P, Seevinck, Parts and Wholes: An Inquiry into Quantum and Classical Correlations (PhD Thesis,
Utrecht University, 2008). philsci-archive.pitt.edu/4583/.

[106] G. L. Sewell, Stability, equilibrium and metastability in statistical mechanics, Phys. Rep. 57, 307–342
(1980).

[107] G. L. Sewell, Quantum Theory of Collective Phenomena (Oxford University Press, 1986).

[108] G. L. Sewell, On the mathematical Structure of Quantum Measurement Theory,
arXiv:math-ph/0505032v2.

[109] M. Shifman, Advanced Topics in Quantum Field Theory (Cambridge University Press, 2012).

[110] B. Simon, Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant, J. Funct.
Anal. 63, 123–136 (1985).

[111] D.-Y. Song, Tunneling and energy splitting in an asymmetric double-well potential, Ann. Phys. 323,
2991–2999 (2008).

[112] A. Stairs, Quantum logic, realism, and value definiteness, Phil. SCience 50, 578–602 (1983).

[113] D. Wallace, Decoherence and its role in the modern measurement problem, arxiv:1111.2187.

[114] Ludwig Wittgenstein, On Certainty, transl. Denis Paul and G.E.M. Anscombe (Blackwell, Oxford,
1975).

[115] G. M. Zaslavsky, Stochasticity in quantum systems, Phys. Rep. 80 (1981), no. 3, 157–250.

[116] E. Zauderer, A uniform asymptotic turning point theory for second order linear ordinary differential
equations, Proc. Amer. Math. Soc. 31, 489–494 (1972).

[117] W.H. Zurek, Decoherence and the transition from quantum to classical. Physics Today 44 (10), 36–44

(1991).


	1 Introduction
	2 Rethinking the measurement problem
	2.1 Historical overview
	2.2 Intermezzo: classical states
	2.3 Reformulation of the measurement problem

	3 A collapse process within quantum mechanics
	3.1 The ``flea'' perturbation of the double-well potential
	3.2 Two-level approximation

	4 Time-dependent collapse
	5 Discussion
	5.1 Universality of the mechanism
	5.2 Symmetry breaking and phase transitions
	5.3 Quantum metastability
	5.4 Determinism and locality

	6 Appendix: the flea from wkb
	6.1 Quantization condition for an asymmetric double well
	6.2 Energy splitting in an asymmetric double-well potential
	6.3 Localization in an asymmetric double-well potential


