
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/111268

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16195716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111268


Noname manuscript No.
(will be inserted by the editor)

The Mizar Mathematical Library in OMDoc: Translation
and Applications

Mihnea Iancu · Michael Kohlhase · Florian

Rabe · Josef Urban

the date of receipt and acceptance should be inserted later

Abstract The Mizar Mathematical Library is one of the largest libraries of for-
malized mathematics. Its language is highly optimized for authoring by humans.
As in natural languages, the meaning of an expression is influenced by its (math-
ematical) context in a way that is natural to humans, but harder to specify for
machine manipulation. Thus its custom file format can make the access to the
library difficult. Indeed, the Mizar system itself is currently the only system that
can fully operate on the Mizar library.

This paper presents a translation of the Mizar library into the OMDoc for-
mat (Open Mathematical Documents), an XML-based representation format for
mathematical knowledge. OMDoc is geared towards machine support and inter-
operability by making formula structure and context dependencies explicit. Thus,
the Mizar library becomes accessible for a wide range of OMDoc-based tools for for-
mal mathematics and knowledge management. We exemplify interoperability by
indexing the translated library in the MathWebSearch engine, which provides an
“applicable theorem search” service (almost) out of the box.

1 Introduction

Mizar [TB85] is a representation format for mathematics that is close to mathemat-
ical vernacular used in publications. Mizar is also a formal system for completing
and verifying proofs written in the Mizar language. The continual development of
the Mizar system has resulted in a centrally maintained library of mathematics:
the Mizar mathematical library (MML). The MML is a collection of Mizar articles:

Mihnea Iancu
Computer Science, Jacobs University Bremen, E-mail: m.iancu@jacobs-university.de

Michael Kohlhase
Computer Science, Jacobs University Bremen, E-mail: m.kohlhase@jacobs-university.de

Florian Rabe
Computer Science, Jacobs University Bremen, E-mail: f.rabe@jacobs-university.de

Josef Urban
Computing and Information Sciences, Radboud University, E-mail: Josef.Urban@gmail.com



text-files that contain definitions, theorems, and proofs. Currently the MML (ver-
sion 4.166.1132) contains over 1000 articles with over 50000 theorems and over
10000 definitions.1 Introductory information on Mizar and the MML can be found
in [TR99] and [Wie99]. For the rest of this paper, we assume that the reader is at
least superficially familiar with these basic texts.

The Mizar language is based on Tarski-Grothendieck set theory [Try90] formal-
ized in (unsorted) first-order logic.2 In addition, Mizar provides a very expressive
and flexible type system that features dependent types as well as predicate restric-
tions [Ban03]. The Mizar language — in particular the type system and the input
syntax — are highly optimized for authoring by humans. Consider for instance
the following theorem:

for A being set holds
A is finite iff ex f being Function st rng f = A & dom f in omega

For a skilled mathematician this can be almost read and understood without Mizar-
specific training. The downside of this is that the Mizar system is currently the only
system that can fully operate on the Mizar library, and as a consequence, many feel
that the Mizar library is locked up in a custom file format that excludes it from the
methods and tools developed in the mathematical knowledge management (MKM)
communities.

In this paper, we show how he have remedied this situation by describing
and implementing a translation of the MML into the OMDoc/LF language. OMDoc

(Open Mathematical Documents [Koh06]) is an XML-based representation format
for mathematical knowledge geared towards making formula structure and context
dependencies explicit for machine support. OMDoc is parametric in the underly-
ing logical formalism, and we use its instantiation with the Edinburgh Logical
Framework (LF, [HHP93]) to formally define the Mizar language.

This Mizar to OMDoc transformation completely rethinks the information ar-
chitecture and indeed enhances the OMDoc language design in the process.

Our translation satisfies three requirements that are as indispensable for inter-
operability as they are hard to combine: (i) it preserves the human-oriented struc-
ture of Mizar expressions and declarations, e.g., the type system is not coded out;
(ii) it uses only the generic representational infrastructure of a simple framework
language (OMDoc/LF in our case) so that further processing is possible without
hard-coding any idiosyncrasies of Mizar; (iii) the result can be verified based on a
formal representation of the Mizar syntax and semantics in LF.

In the next section, we discuss related translations, the new information ar-
chitecture of ours and the concrete implementation. Details about the translation
can be found in [IKR11]. In section 3 we discuss interoperability and exemplify
the tool support by integrating a novel search engine into a web-based frontend
for Mizar formalization. Section 4 concludes the paper.

Mizar [TB85] is a representation format for mathematics that is close to mathe-
matical vernacular used in publications. Mizar is also a formal system for complet-
ing and verifying proofs written in the Mizar language. The continual development
of the Mizar system has resulted in a centrally maintained library of mathematics:
the Mizar mathematical library (MML). The MML is a collection of Mizar articles:

1 See http://mmlquery.mizar.org/ for up-to-date statistics.
2 Technically, theorem schemes and the Fraenkel operator of Mizar slightly transcend first-

order expressivity, but the language is first-order in style.

2

http://mmlquery.mizar.org/


text-files that contain definitions, theorems, and proofs. Currently the MML (ver-
sion 4.166.1132) contains over 1000 articles with over 50000 theorems and over
10000 definitions.3 Introductory information on Mizar and the MML can be found
in [TR99] and [Wie99]. For the rest of this paper, we assume that the reader is at
least superficially familiar with these basic texts.

The Mizar language is based on Tarski-Grothendieck set theory [Try90] formal-
ized in (unsorted) first-order logic.4 In addition, Mizar provides a very expressive
and flexible type system that features dependent types as well as predicate restric-
tions [Ban03]. The Mizar language — in particular the type system and the input
syntax — are highly optimized for authoring by humans. Consider for instance
the following theorem:

for A being set holds
A is finite iff ex f being Function st rng f = A & dom f in omega

For a skilled mathematician this can be almost read and understood without Mizar-
specific training. The downside of this is that the Mizar system is currently the only
system that can fully operate on the Mizar library, and as a consequence, many feel
that the Mizar library is locked up in a custom file format that excludes it from the
methods and tools developed in the mathematical knowledge management (MKM)
communities.

In this paper, we show how he have remedied this situation by describing
and implementing a translation of the MML into the OMDoc/LF language. OMDoc

(Open Mathematical Documents [Koh06]) is an XML-based representation format
for mathematical knowledge geared towards making formula structure and context
dependencies explicit for machine support. OMDoc is parametric in the underly-
ing logical formalism, and we use its instantiation with the Edinburgh Logical
Framework (LF, [HHP93]) to formally define the Mizar language.

This Mizar to OMDoc transformation completely rethinks the information ar-
chitecture and indeed enhances the OMDoc language design in the process.

Our translation satisfies three requirements that are as indispensable for inter-
operability as they are hard to combine: (i) it preserves the human-oriented struc-
ture of Mizar expressions and declarations, e.g., the type system is not coded out;
(ii) it uses only the generic representational infrastructure of a simple framework
language (OMDoc/LF in our case) so that further processing is possible without
hard-coding any idiosyncrasies of Mizar; (iii) the result can be verified based on a
formal representation of the Mizar syntax and semantics in LF.

In the next section, we discuss related translations, the new information ar-
chitecture of ours and the concrete implementation. Details about the translation
can be found in [IKR11]. In section 3 we discuss interoperability and exemplify
the tool support by integrating a novel search engine into a web-based frontend
for Mizar formalization. Section 4 concludes the paper.

3 See http://mmlquery.mizar.org/ for up-to-date statistics.
4 Technically, theorem schemes and the Fraenkel operator of Mizar slightly transcend first-

order expressivity, but the language is first-order in style.

3

http://mmlquery.mizar.org/


2 Translating Mizar to OMDoc

The motivations for a translation of the Mizar library are not particular to the
OMDoc format, and it is therefore not very surprising that the work reported on
in this paper is not the first attempt to translate the Mizar library.

When processing Mizar text we have the choice between two levels of language:
The pattern-level (presentation-level) language is the rich human-oriented exter-
nal syntax in which Mizar articles are written; and the constructor-level (semantic
level) is the machine-internal representation used in the Mizar system.

The Mizar project produces a hyper-linked, pretty-printed version of the as-
sertions of a Mizar article for publication in the journal Formalized Mathemat-

ics [Ban06a] with its electronic counterpart the Journal of Formalized Mathemat-

ics [JFM]. This pattern-level translation generates a human-oriented presentation
of Mizar articles, where formulae are presented in mathematical notation using
LATEX and parts of the Mizar logical language are verbalized.

There have been various early hand translations of selected Mizar articles for
benchmarking automated theorem provers (see e.g. [DW97]). In 1997/8 Czeslaw
Bylinski and Ingo Dahn translated the MML into a PROLOG syntax by extending
the Mizar system with a custom (constructor-level) PROLOG generator. This was
done independently of the main Mizar code base, and as a result soon desynchro-
nized with it. A structure-preserving transformation of constructor-level Mizar to
OMDoc has been also attempted in [BK07], but has remained partial. Constructor-
level Mizar has been used for information retrieval purposes in the MMLQ system
which provides a web interface to and a query language; see [Ban06b] for details.

Finally, the last author has defined a custom XML format in [Urb06c] cover-
ing initially mainly the constructor-level, and modified Mizar to use this format
internally. In this way it is ensured that this XML format cannot desynchronize
from the (often rapid) Mizar development, and can be used as a faithful transla-
tion layer for external tools. At the same time, this means that the format has
to be quite Mizar-oriented, and its use in generic MKM systems typically requires
a translation layer. One such layer — the MPTP system [Urb06b] — has been
developed for translation targeted at automated theorem proving systems based
on the TPTP syntax. The MPTP translation is mostly concerned with semantics
and formulas, the presentation layer is practically omitted there, and a custom
proof translation was only added experimentally later in [US08].

The work presented here is analogous to the MPTP translation in that it uses
the Mizar XML as an API suitable for implementing a translation to a general
mathematical format, allowing a number of independently developed general tools
to work with the MML.

2.1 Representing the Mizar Language in OMDoc

OMDoc is a content markup format and data model for mathematical documents.
It models mathematical content using three levels of abstraction:

Object Level: OMDoc uses OpenMath and MathML as established standards for the
markup of formulae. Mizar types, terms and formulas correspond to this level.

4



Statement Level: OMDoc supplies original markup for explicitly representing the
declarations and assertions in mathematical theories. Mizar definitions, theo-
rems, schemes, notations, and registrations correspond to this level.

Theory Level: Finally OMDoc offers original markup that allows for clustering
sets of statements into theories as well as specifying relations between them
(inclusions, morphisms). Mizar articles and imports between them correspond
to this level.

Core OMDoc concentrates on the structural relations between these mathematical
concepts. It deliberately avoids fixing language primitives for them and abstracts
from specific mathematical foundations. This is a crucial design choice that makes
OMDoc a universal representation format while remaining manageably simple.

For the case of Mizar, this means that core OMDoc does not feature exact
analogues to Mizar’s sophisticated definition principles. Neither can it adequately
represent the theoremhood property that defines the semantics of Mizar formulae.
This is not surprising because these features are highly specific to the syntax
and semantics of individual languages. The extension of core OMDoc with such
language-specific features is the role of pragmatic OMDoc, which we will discuss
next.

Core OMDoc uses a minimal set of conceptually orthogonal representational
primitives, resulting in expressions with canonical structure, which simplifies the
theoretical analysis and implementation of core OMDoc expressions (e.g., see [KRZ10]).
Pragmatic OMDoc, on the other hand, strikes a balance between verbosity and
formality. It permits introducing a complex representational infrastructure that
provides both a formal semantics and is intuitive for humans. In particular, the
semantics of these language-specific extensions is defined entirely within core OM-

Doc. Thus, OMDoc can provide multiple “pragmatic vocabularies” catering to dif-
ferent communities and their tastes.

OMDoc achieves a pragmatic object level by being parametric in the founda-
tional framework in which the syntax and semantics of a language are formalized.
More concretely, a logical framework — LF in our case — is described as an OMDoc

theory. Then a logic — Mizar’s first-order logic in our case — is defined as another
OMDoc theory with meta-theory LF; this in turn serves as the meta-theory for the
actual object language of interest — in our case Mizar’s Tarski-Grothendieck set
theory. Finally, individual Mizar articles are represented as (conservative) exten-
sions of this theory. The respective meta-theory induces the pragmatic semantics
of the object theories: In particular, the LF type system induces the definition of
well-formedness and provability of Mizar formulae. For the details, we refer to the
MMT fragment [RK11] of OMDoc for the general framework and to [IR11] for the
formalization of Mizar in LF.

To achieve a pragmatic statement level, we make use of statement patterns,
which were introduced recently in MMT by Fulya Horozal and the third author.
A statement pattern introduces a new kind of statement together with concrete
syntax for it. Moreover, it defines the semantics of these statements in terms of
core OMDoc. For example, standard first-order logic is defined using three patterns
for function symbols, predicate symbols, and axioms/theorems, respectively. A
pattern can have free variables, e.g., for the arity of a function symbol; and specific
instances of a pattern must provide substitutions for these free variables. To define
Mizar, we need to add several sophisticated patterns, e.g., we need a single pattern

5



for case-based implicit function symbol definitions. This way, we are able to give a
formalization of the syntax and semantics of both the object level and statement
level of Mizar. 5 Effectively, we are able to recover a fragment of OMDoc that is
isomorphic to Mizar.

2.2 Translating the Mizar Library to OMDoc

The representation of Mizar in OMDoc was the crucial prerequisite for translating
the MML to OMDoc: It provides an ideal translation target because the non-trivial
aspects of the translation can be delegated to the generic elaboration mechanisms
implemented in the MMT toolkit.

Every Mizar article is translated to an OMDoc theory that includes the OM-

Doc theory for Tarski-Grothendieck set theory and thus those for Mizar and LF.
The acyclic imports-relation between Mizar articles can be directly translated to
the inclusion relation between OMDoc theories. Then for each statement within
the article’s body, we identify the respective statement pattern and generate the
corresponding OMDoc instance. For a simple example, let us look at a theorem
statement from the article BOOLE

theorem for X being set holds X \/ {} = X

Mizar exports it as the following constructor-level XML representation:

<Proposition line="34" col="5" plevel="" propnr="1">
<For pid="0" vid="1">
<Typ kind="M" nr="1" pid="1" aid="HIDDEN" absnr="1"><Cluster/><Cluster/></Typ>
<Pred kind="R" nr="1" pid="9" aid="HIDDEN" absnr="1">
<Func kind="K" nr="6" pid="6" aid="XBOOLE_0" absnr="2">
<Var nr="1"/>
<Func kind="K" nr="5" pid="5" aid="XBOOLE_0" absnr="1"/>

</Func>
<Var nr="1"/>

</Pred>
</For>

</Proposition>

We will first translate the asserted formula — an object level expression — to
an OpenMath object.

All identifiers are translated to OpenMath symbols, which are identified by their
theory and name. Note that Mizar exports the identifiers in the MML text above
as pointers to arrays of constructors in Mizar articles. For instance, the identifier
set is identified as the first mode definition in article HIDDEN by the aid, kind and
absnr attributes in line 4. This representation is necessary to disambiguate the
overloaded user-visible names. We reuse this naming scheme and translate set to
the <OMS module="HIDDEN" name="M1"/>.

In general, we have to distinguish several cases. Logical symbols and constructs
are implicit in Mizar and do not have an internal Mizar identifier. In OMDoc, those
are declared in the respective meta-theory and translated accordingly. For exam-
ple, the operator for being st is translated to <OMS module="mizar" name="

for"/>. Non-logical symbols that are fixed in Mizar’s set theory such as set are
translated to symbols declared in the theories HIDDEN and TARSKI. Finally, every
article can refer to all locally declared or included identifiers. For example, the

5 The corresponding pragmatic theory level is ongoing work, but not needed for Mizar.

6



above theorem refers in line 5 to the 5th functor declared in the article XBOOLE 0,
i.e., {}. It is translated to the symbol <OMS module="XBOOLE_0" name="K5"/>. This
process works because we translate all articles to OMDoc theories in dependency
order.

Mizar expression forming constructs like the Pred element are translated into
OpenMath applications using the OMA element: Its first child is the applied con-
structor (a function, predicate, mode, attribute, structure, aggregator, or selector
identifier) and the remaining children are the arguments. Similarly, Mizar quanti-
fiers like the For element are translated into OpenMath bindings using the OMBIND

element and LF’s higher-order abstract syntax. As we see, the translation of ob-
jects only poses little problems given the XML representation. To understand the
translation of statement level constructs, let us continue with the theorem above.

In core OMDoc, it is translated to a symbol using the Curry-Howard repre-
sentation of formulae-as-types and proofs-as-terms. That means, we generate a
symbol with name T1 in the theory XBOOLE 0 whose type is given by the asserted
formula. Our translation currently does not cover proofs because Mizar can only
export partial proof objects. If proof objects were exported, we would similarly
translate a proof to an OpenMath object, using the proof constructors which are
already part of the OMDoc theory mizar. This OpenMath object would then occur
as the definiens of the symbol T1. In particular, because we are using the typing
relation of LF, OMDoc can guarantee the correctness of the proof.

While formally adequate, the Curry-Howard representation is not appealing to
many users. Therefore, we use pragmatic OMDoc instead: We declare a pattern for
theorems in the OMDoc theory mizar of the form

pattern theorem for f : prop, p : proof f  thm : f = p

Here we use an abbreviated OMDoc syntax where boldface keywords correspond
to OMDoc’s XML elements. theorem is the name of the pattern, and f and p are
free variables of the pattern that act as placeholders. Then, if F is the asserted
formula and P its proof, we generate in the theory XBOOLE 0 an instance of the
form

instance T1 of theorem with f = F, p = P,

which elaborates to the core OMDoc declaration

T1/thm : proof F = P.

Among the statement level constructs of Mizar, the translation of theorems is
the simplest case. We need more involved patterns for the remaining statements of
the Mizar language. In particular, these are the definitions (of functors, predicates,
modes, attributes, or structures), schemes, and registrations, all of which come
in multiple variants, e.g., case-based functor definition without default case. The
complete list of over 30 patterns that are part of the Mizar representation in OMDoc

can be found in [IKR11].

2.3 Implementation

The OMDoc theories defining the Mizar language have been written manually once
and for all. The translation of the Mizar library must be automated to be scalable.

7



We have implemented the translation as a complex processing pipeline within the
MMT tool.

1. Mizar is run over the whole library transforming miz input files to xml. This
represents the state before the work presented here.

2. Our translator reads all xml files (in dependency order) and parses them into
custom Scala classes that model the constructor level Mizar language.

3. The translator then translates each article into Scala classes for OMDoc. The
latter are part of the MMT tool, which serializes them as omdoc files. At this
point the Mizar-specific part of the translation is over.

4. The generic algorithms in the MMT tool elaborate the pragmatic OMDoc to
core OMDoc.

All involved files are available at https://tntbase.mathweb.org/repos/oaff/mml/.
The translator consists of 88 Scala classes and 47 Scala objects, which are available
at https://svn.kwarc.info/repos/MMT/src/mmt-mizar. Running the steps 2-4 of
the pipeline on all 1129 files of the MML takes 41:40 minutes using a Intel Core
i5-2410M Processor and 4GB of RAM. A fine grained breakdown is given in the
table below.

Format Total file size (raw/zipped) Generation time

Mizar source 77.5 MB / 13.5 MB —
Mizar XML 8.6 GB / 425.0 MB —
pragmatic OMDoc 894.8 MB / 22.7 MB 29:46 min
core OMDoc 1015.3 MB / 25.3 MB 11:54 min

3 Interoperability with OMDoc-based Applications

The Mizar to OMDoc translation interfaces the Mizar system and library to a vari-
ety of systems and tools developed directly for OMDoc or interfaced to it. In this
section, we will exemplify this by indexing the translated library in the Math-

WebSearch engine, a web service capable of crawling, indexing and querying
content-rich representation formats. Up to now, the MathWebSearch engine has
mainly been used on semi-formal mathematical content to answer instance queries,
which can help users find partially recalled formulae [KŞ06].

3.1 Applicable Theorem Search (ATS) via Unification Queries

For Mizar we can also index formula schemata: variables quantified by the univer-
sal quantifier ∀ and the dependent types constructor Π give rise to meta-variables
in the index, given a suitable extension of the MathWebSearch crawler. These
metavariables allow to pose unification queries to MathWebSearch and thus
query for theorems applicable to a given situation. We fortify our intuition on
this with an example: say we want to prove the reflexivity of ordinal division
(every ordinal divides itself)

for k being Ordinal ex a being Ordinal st k = k *^ a

8

https://tntbase.mathweb.org/repos/oaff/mml/
https://svn.kwarc.info/repos/MMT/src/mmt-mizar


The first (straightforward) step in the proof6 is to first fix k so that it becomes a
(local) constant of type Ordinal, and the goal changes to:

ex a being Ordinal st k = k *^ a

which reduces the proof to finding the theorem ORDINAL2:39:7

for A being Ordinal holds ( 1 *^ A = A & A *^ 1 = A )

which directly concludes the proof after splitting the conjunction. In this simple
example (chosen for the ease of exposition), it is reasonable to assume that a
knowledgeable Mizar user knows where to find ORDINAL2:39, but this might not be
the same for new users of the large Mizar library, or even experienced users who
have not worked with ordinals in Mizar before. We all know situations, where some
remote theorem would have saved us days or months of work. In our situation,
the existential structure of the subgoal above can directly be used as a unification
query k =k *^ $a, where $a is a query variable. Note that this query unifies with
subformula A *^ 1 = A of ORDINAL2:39. To enhance coverage we have extended the
crawler of MathWebSearch to include the symmetric version of all equalities, so
that we find $A= $A *^ 1 in the index. Indeed MathWebSearch reports a hit for
our query with unifier σ := {$A 7→ k, $a 7→ 1}. Note that σ already gives most of
the information needed to apply ORDINAL2:39 in the proof.

3.2 Realizing an ATS Service for Mizar

To index MML in MathWebSearch, the MMT tool generates a MathWebSearch

harvest — essentially the list of all OpenMath objects occurring in the OMDoc

files together with the URIs of their occurrences. The harvests for the MML take
up 154.2 MB (4.4 MB zipped), the substitution tree index uses 891 MB of RAM
and can be generated in 5:40 min. After indexing the MathWebSearch service is
ready to respond to search queries.

Even though the two extensions to the index creation were triggered by the
Mizar ATS application, we have realized them more generally and integrated them
into the MMT system: The properties of being universal quantifiers and symmetric
relations can be formulated for logics in general, by specifying logic views (MMT

morphisms between meta-theories) from a special theory of “universalness” and
“symmetry” respectively. Given a suitable development of the logics, an MMT-
aware MathWebSearch crawler can determine the universal quantifiers and sym-
metric logical constants and treat them specially in the way described above.

To make the ATS service usable for an average Mizar author, it needs to be
embedded into a development environment. For that we are experimenting with
the MizAR [US10] system, a frontend for verification, presentation, and automated
reasoning services for Mizar developed by the last author. We have extended MizAR
by a facility to generate MathWebSearch queries (in MML form; after all we do
not want the Mizar user to have to learn to pose MathWebSearch queries in the
native content MathML form). For that we employ the transformation described in

6 Indeed the actual proof in the Mizar library proceeds like this: The definition of ordinal di-
vision is at http://mizar.uwb.edu.pl/version/7.12.01_4.166.1132/arytm_3.html#D3, click
on the “reflexivity” keyword there and then on the “proof” keyword.

7 http://mizar.uwb.edu.pl/version/7.12.01_4.166.1132/html/ordinal2.html#T39

9

http://mizar.uwb.edu.pl/version/7.12.01_4.166.1132/arytm_3.html#D3
http://mizar.uwb.edu.pl/version/7.12.01_4.166.1132/html/ordinal2.html#T39


Section 2.3 again: The query (we directly use existentially quantified variables as
query variables for familiarity) is loaded into Mizar and exported as XML construc-
tor form. Our translator transforms into OMDoc and content MathML, which is
then passed on to the MathWebSearch web service via a HTTP POST request.
MathWebSearch answers this request with a list of hits, where a hit consists of a
URI reference which specifies the matching subterm together with a unifying sub-
stitution. Note that since the MathWebSearch index is fed by MizAR, the URIs
are MizAR URIs8, which can be used to cross-link results to the Mizar source. In
contrast to index creation, efficiency of query translation is of essence, but our
translation pipeline is fast enough in practice as queries are relatively small.

Fig. 1 A Mizar Proof Attempt with ATS Hints

Figure 1 shows the re-
sult of the integration de-
scribed above. Here, we are
in the proof of reflexivity
of ordinal division as de-
scribed above. The built-in
proof support by the Mizar

engine has failed, and the
MizAR system has called
the MathWebSearch en-
gine on the existential sub-
goal (which can be directly
translated into a Math-

WebSearch query as de-
scribed above). MathWeb-

Search returns the two
hits as clickable MizAR
links, the second9 one al-
lows to complete the proof
directly.

4 Conclusion

In this article we have described a translation of the Mizar mathematical language
to the OMDoc format and exhibited the interoperability afforded by interfacing
Mizar to an OMDoc-based service: the applicable theorem search service. The only
integration work necessary was on the MizAR side: the transformation had to
be integrated into index creation and query translation, and a user interface for
displaying results had to be developed. Note that even this simple integration
yields a new service for the Mizar community: earlier information retrieval services
like the MoMM [Urb06a] and MMLQ [Ban06b] systems provided subsumption-like
and database-like queries different from what unification queries provide. We plan
to investigate those in more details in the future in the MizAR setting, which we
also plan to integrate within the new MizarWiki platform [UARG10].

8 In fact, the URIs are not processed by MathWebSearch in any way, just reported back
when they correspond to a hit.

9 Note that result list ordering is almost completely unexplored territory for mathematical
search; see [PK11] for a discussion.

10



Currently, the Mizar to OMDoc translation does not cover proofs in the Mizar

library (arguably one of the most important parts), and we are planning to ex-
tend the coverage soon.10 To the extent that Mizar can export proofs, this will be
straightforward using our existing formalization of Mizar’s inference rules in LF.
The OMizar format currently only exists at the data structure level in the MMT

system. We also want to give it an XML syntax, so that it can be used as a more
accessible representation format for Mizar– and thus interoperability and/or stor-
age format. We hope that this will also inform us in the endeavor of creating a
truly universal pragmatic level of the OMDoc format.

Finally, the rudimentary ATS service we have presented in this paper serves as
a valuable test corpus and evaluation target for the MathWebSearch engine. The
ATS has already triggered extensions in the index creation as we have discussed
above. In the future, we will tackle types and restrictions, an issue we have all but
swept under the carpet in this paper that is of utmost practical importance as
the experience with the Mizar library shows. On the one hand we want to extend
the leftmost substitution trees used as an index structure in MathWebSearch to
cover typed unification. On the other hand, we want to extend the index so that it
can handle restrictions, i.e., if we have a theorem of the form ∀xA⇒ ∀yB ⇒ C, the
restrictions A and B should be passed along with the variables x and y, respectively.
However, in contrast to type constraints, which can be resolved eagerly during
typed unification, restrictions are residuated (i.e., accumulated in the result to be
discharged by the user or later reasoning processes). In settings like the Mizar logic
which has a complex, dependently typed type system, we conjecture that typed
unification and residuation have to be mixed to be effective. Note that simple
forms of typed unification are almost trivial to integrate into MathWebSearch,
but we want to make the treatment of types and restrictions logic-independent.
We conjecture, that this can be done in the same manner we have discussed for
the universal quantifiers and symmetry of equality via logic views.

Acknowledgements We gratefully acknowledge the contribution of two colleagues
in this article: Fulya Horozal for sharing her work on patterns and their elaboration
at a very early stage, and Corneliu Prodescu for his help with and extensions of
the MathWebSearch system.

References

ACD+10. Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence
Rideau, Renaud Rioboo, and Alan P. Sexton, editors. Intelligent Computer Math-
ematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus
2010, and 9th International Conference, MKM 2010, Paris, France, July 5-10,
2010. Proceedings, volume 6167 of Lecture Notes in Computer Science. Springer,
2010.

Ban03. Grzegorz Bancerek. On the structure of Mizar types. Electronic Notes in Theoret-
ical Computer Science, 85(7), 2003.

Ban06a. Grzegorz Bancerek. Automatic translation if Formalized Mathematics. Mechanized
Mathematics and Its Applications, 5(2):19–31, 2006.

10 Note that handling of proofs has been typically delayed to the second phase in similar
Mizar exporting projects like MPTP and MML Query, because a lot of useful functionality can
be developed already without proofs.

11



Ban06b. Grzegorz Bancerek. Information retrieval and rendering with MML Query. In Jon
Borwein and William M. Farmer, editors, Mathematical Knowledge Management
(MKM), number 4108 in LNAI, pages 266–279. Springer Verlag, 2006.

BK07. Grzegorz Bancerek and Michael Kohlhase. Towards a Mizar Mathematical Library
in OMDoc format. In R. Matuszewski and A. Zalewska, editors, From Insight to
Proof: Festschrift in Honour of Andrzej Trybulec, volume 10:23 of Studies in Logic,
Grammar and Rhetoric, pages 265–275. University of Bia lystok, 2007.

DW97. Ingo Dahn and Christoph Wernhard. First order proof problems extracted from
an article in the mizar mathematical library. In Ulrich Furbach and Maria Paola
Bonacina, editors, Proceedings of the International Workshop on First order The-
orem Proving, number 97-50 in RISC-Linz Report Series, pages 58–62. Johannes
Kepler Universität Linz, 1997.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143–184, 1993.

IKR11. Mihnea Iancu, Michael Kohlhase, and Florian Rabe. Translating the Mizar Math-
ematical Library into OMDoc format. KWARC report, Jacobs University Bremen,
2011.

IR11. M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathematical
Structures in Computer Science, 21(4):883–911, 2011.

JFM. Journal of formalized mathematics.
Koh06. Michael Kohlhase. OMDoc – An open markup format for mathematical documents

[Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.
KRZ10. Michael Kohlhase, Florian Rabe, and Vyacheslav Zholudev. Towards MKM in the

large: Modular representation and scalable software architecture. In Serge Autexier,
Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud
Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, number
6167 in LNAI. Springer Verlag, 2010.

KŞ06. Michael Kohlhase and Ioan Şucan. A search engine for mathematical formulae. In
Tetsuo Ida, Jacques Calmet, and Dongming Wang, editors, Proceedings of Artificial
Intelligence and Symbolic Computation, AISC’2006, number 4120 in LNAI, pages
241–253. Springer Verlag, 2006.

PK11. Corneliu C. Prodescu and Michael Kohlhase. Mathwebsearch 0.5 - open for-
mula search engine. In Wissens- und Erfahrungsmanagement LWA (Lernen, Wis-
sensentdeckung und Adaptivität) Conference Proceedings, sep 2011.

RK11. Florian Rabe and Michael Kohlhase. A scalable module system. Manuscript, sub-
mitted to Information & Computation, 2011.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi,
editor, Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence, pages 26–28, 1985.

TR99. Andrej Trybulec and Piotr Rudnicki. On equivalents of well-foundedness. Journal
of Automated Reasoning, 23(3-4):197–234, 1999.

Try90. Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,
1(1):9–11, 1990.

UARG10. Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A wiki for mizar:
Motivation, considerations, and initial prototype. In Autexier et al. [ACD+10],
pages 455–469.

Urb06a. Josef Urban. Momm - fast interreduction and retrieval in large libraries of formal-
ized mathematics. International Journal on Artificial Intelligence Tools, 15(1):109–
130, 2006.

Urb06b. Josef Urban. Mptp 0.2: Design, implementation, and initial experiments. J. Autom.
Reasoning, 37(1-2):21–43, 2006.

Urb06c. Josef Urban. XML-izing Mizar: making semantic processing and presentation of
MML easy. In Michael Kohlhase, editor, Mathematical Knowledge Management,
MKM’05, number 3863 in LNAI, pages 346 – 360. Springer Verlag, 2006.

US08. Josef Urban and Geoff Sutcliffe. Atp-based cross-verification of mizar proofs:
Method, systems, and first experiments. Mathematics in Computer Science,
2(2):231–251, 2008.

US10. Josef Urban and Geoff Sutcliffe. Automated reasoning and presentation support
for formalizing mathematics in mizar. In Autexier et al. [ACD+10], pages 132–146.

Wie99. Freek Wiedijk. Mizar: An impression, 1999.

12


	1 Introduction
	2 Translating Mizar to OMDoc
	2.1 Representing the Mizar Language in OMDoc
	2.2 Translating the Mizar Library to OMDoc
	2.3 Implementation

	3 Interoperability with OMDoc-based Applications
	3.1 Applicable Theorem Search (ATS) via Unification Queries
	3.2 Realizing an ATS Service for Mizar

	4 Conclusion

