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Rémi Munos remi.munos@inria.fr

INRIA Lille, SequeL Project, 40 avenue, Halley 59650, Villeneuve dAscq, France

Hilbert J. Kappen b.kappen@science.ru.nl

Department of Biophysics, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands

Abstract

We consider the problem of learning the opti-
mal action-value function in the discounted-
reward Markov decision processes (MDPs).
We prove a new PAC bound on the sample-
complexity of model-based value iteration
algorithm in the presence of a generative
model of the MDP, which indicates that
for an MDP with N state-action pairs
and the discount factor γ ∈ [0, 1) only
O
(
N log(N/δ)/

(
(1− γ)3ε2

))
samples are re-

quired to find an ε-optimal estimation of
the action-value function with the probabil-
ity 1 − δ. We also prove a matching lower
bound of Θ

(
N log(N/δ)/

(
(1−γ)3ε2

))
on the

sample complexity of estimating the optimal
action-value function by every RL algorithm.
To the best of our knowledge, this is the first
minimax result on the sample complexity of
estimating the optimal (action-)value func-
tion in which the upper bound matches the
lower bound of RL in terms of N , ε, δ and
1 − γ. Also, both our lower bound and up-
per bound improve on the state-of-the-art in
terms of 1/(1− γ).

1. Introduction

Model-based value iteration (VI) (Kearns & Singh,
1999; Buşoniu et al., 2010) is a well-known re-
inforcement learning (RL) (Szepesvári, 2010;
Sutton & Barto, 1998) algorithm which relies on

Appearing in Proceedings of the 29 th International Confer-
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an empirical estimate of the state-transition dis-
tributions to estimate the optimal (action-)value
function through the Bellman recursion. In the finite
state-action problems, it has been shown that an
action-value based variant of VI, model-based Q-value
iteration (QVI), finds an ε-optimal estimate of the
action-value function with high probability using only
T = Õ(N/

(
(1 − γ)4ε2

)
) samples (Kearns & Singh,

1999; Kakade, 2004, chap. 9.1), where N and γ denote
the size of state-action space and the discount factor,
respectively.1 Although this bound matches the best
existing upper bound on the sample complexity of
estimating the action-value function (Azar et al.,
2011), it has not been clear, so far, whether this
bound is a tight bound on the performance of QVI or
it can be improved by a more careful analysis of QVI
algorithm. This is mainly due to the fact that there is
a gap of order 1/(1− γ)4 between the upper bound of
QVI and the state-of-the-art result for lower bound,
which is of Ω̃

(
N/ε2

)
(Strehl et al., 2009).2 3

In this paper, we focus on the problems which are
formulated as finite state-action discounted infinite-
horizon Markov decision processes (MDPs), and prove
a new tight bound of O

(
N log(N/δ)/

(
(1− γ)3ε2

))
on

the sample complexity of the QVI algorithm. The new
upper bound improves on the existing bound of QVI by

1The notation g = Õ(f) implies that there are constants
c1 and c2 such that g ≤ c1f logc2(f).

2The result of (Strehl et al., 2009) is different from our
result since they consider the sample complexity of explo-
ration as opposed to the sample complexity of estimation.
However, based on their model, one can prove the same
lower-bound of Ω

(
N/ε2

)
on the sample complexity of es-

timating the optimal action-value function by using the
approach that we propose in this paper.

3The notation g = Ω̃(f) implies that there are constants
c1 and c2 such that g ≥ c1f logc2(f).
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an order of 1/(1− γ). We also present a new minimax
lower bound of Θ

(
N log(N/δ)/

(
(1 − γ)3ε2

))
, which

also improves on the best existing lower bound of RL
by an order of 1/(1−γ)3. The new results, which close
the above-mentioned gap between the lower bound and
the upper bound, guarantee that no learning method,
given the generative model of the MDP, can be signif-
icantly more efficient than QVI in terms of the sample
complexity of estimating the action-value function.

The main idea to improve the upper bound of QVI is
to express the performance loss of QVI in terms of the
variance of the sum of discounted rewards as opposed
to the maximum Vmax = Rmax/(1− γ) in the previous
results. For this we make use of Bernstein’s concen-
tration inequality (Cesa-Bianchi & Lugosi, 2006, ap-
pendix, pg. 361), which bounds the estimation error in
terms of the variance of the value function as opposed
to Vmax in previous works. We also rely on the fact
that the variance of the sum of discounted rewards, like
the expected value of the sum (value function), satis-
fies a Bellman-like equation, in which the variance of
the value function plays the role of the instant reward
in the standard Bellman equation (Munos & Moore,
1999). In the case of lower bound, we improve on the
result of Strehl et al. (2009) by adding some structure
to the class of MDPs for which we prove the lower
bound: In the new model, there is a high probability
for transition from every intermediate state to itself.
This adds to the difficulty of estimating the value func-
tion, since even a small estimation error may propa-
gate throughout the recursive structure of the MDP
and inflict a big performance loss especially for γ’s
close to 1.

The rest of the paper is organized as follows. After
introducing the notations used in the paper in Sec-
tion 2, we describe the model-based Q-value iteration
(QVI) algorithm in Subsection 2.1. We then state our
main theoretical results, which are in the form of PAC
sample complexity bounds in Section 3. Section 4 con-
tains the detailed proofs of the results of Sections 3,
i.e., sample complexity bound of QVI and a general
new lower bound for RL. Finally, we conclude the pa-
per and propose some directions for the future work in
Section 5.

2. Background

In this section, we review some standard concepts and
definitions from the theory of Markov decision pro-
cesses (MDPs). We then present the model-based Q-
value iteration algorithm of Kearns & Singh (1999).

We consider the standard reinforcement learn-

ing (RL) framework (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998) in which a learning agent inter-
acts with a stochastic environment and this interaction
is modeled as a discrete-time discounted MDP. A dis-
counted MDP is a quintuple (X,A, P,R, γ), where X

and A are the set of states and actions, P is the state
transition distribution, R is the reward function, and
γ ∈ (0, 1) is a discount factor. We denote by P (·|x, a)
and r(x, a) the probability distribution over the next
state and the immediate reward of taking action a at
state x, respectively.

Remark 1. To keep the representation succinct, in
the sequel, we use the notation Z for the joint state-
action space X×A. We also make use of the shorthand
notations z and β for the state-action pair (x, a) and
1/(1− γ), respectively.

Assumption 1 (MDP Regularity). We assume Z

and, subsequently, X and A are finite sets with car-
dinalities N , |X| and |A|, respectively. We also as-
sume that the immediate reward r(x, a) is taken from
the interval [0, 1].

A mapping π : X → A is called a stationary and
deterministic Markovian policy, or just a policy in
short. Following a policy π in an MDP means that
at each time step t the control action At ∈ A is given
by At = π(Xt), where Xt ∈ X. The value and the
action-value functions of a policy π, denoted respec-
tively by V π : X → R and Qπ : Z → R, are defined
as the expected sum of discounted rewards that are
encountered when the policy π is executed. Given
an MDP, the goal is to find a policy that attains
the best possible values, V ∗(x) , supπ V

π(x), ∀x ∈
X. Function V ∗ is called the optimal value func-
tion. Similarly the optimal action-value function is
defined as Q∗(x, a) = supπ Q

π(x, a). We say that a
policy π∗ is optimal if it attains the optimal V ∗(x)
for all x ∈ X. The policy π defines the state tran-
sition kernel Pπ as: Pπ(y|x) , P (y|x, π(x)) for all
x ∈ X. The right-linear operators Pπ·, P · and Pπ· are
then defined as (PπQ)(z) ,

∑
y∈XP (y|z)Q(y, π(y)),

(PV )(z) ,
∑

y∈XP (y|z)V (y) for all z ∈ Z and

(PπV )(x) ,
∑

y∈X
Pπ(y|x)V (y) for all x ∈ X, re-

spectively. The optimal action-value function Q∗ is
the unique fixed-point of the Bellman optimality op-
erator defined as (TQ)(z) , r(z) + γ(Pπ∗

Q)(z) for
all z ∈ Z. Also, the action-value function Qπ is the
unique fixed-point of the Bellman operator Tπ which
is defined as (TπQ)(z) , r(z) + γ(PπQ)(z) for all
z ∈ Z. One can also define the Bellman optimal-
ity operator and the Bellman operator on the value
function as (TV )(x) , r(x, π∗(x)) + γ(Pπ∗V )(x) and
(TπV )(x) , r(x, π(x)) + γ(PπV )(x) for all x ∈ X, re-
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spectively.4 5

2.1. Model-based Q-value Iteration (QVI)

The algorithm makes n transition samples from each
state-action pair z ∈ Z for which it makes n calls to the
generative model.6 It then builds an empirical model
of the transition probabilities as: P̂ (y|z) , m(y, z)/n,
where m(y, z) denotes the number of times that the
state y ∈ X has been reached from z ∈ Z. The al-
gorithm then makes an empirical estimate of the opti-
mal action-value function Q∗ by iterating some action-
value function Qk, with the initial value of Q0, through
the empirical Bellman optimality operator T̂.7

3. Main Results

Our main results are in the form of PAC (probably
approximately correct) bounds on the ℓ∞-norm of the
difference of the optimal action-value function Q∗ and
its sample estimate:

Theorem 1 (PAC-bound for model-based Q-value it-
eration). Let Assumption 1 hold and T be a positive
integer. Then, there exist some constants c and c0 such
that for all ε ∈ (0, 1) and δ ∈ (0, 1) a total sampling
budget of

T = ⌈cβ
3N

ε2
log

c0N

δ
⌉,

suffices for the uniform approximation error ‖Q∗ −
Qk‖ ≤ ε, w.p. (with the probability) at least 1 − δ,
after only k = ⌈log(6β/ε)/ log(1/γ)⌉ iteration of QVI

4It is important to note that T and T
π are contraction

with factor γ, i.e., for any pair of value functions V and V ′

and any policy π, we have ‖TV − TV ′‖ ≤ γ ‖V − V ′‖ and
‖TπV − T

πV ′‖ ≤ γ ‖V − V ′‖ (Bertsekas, 2007, Chap. 1),
where ‖ · ‖ shall denote the supremum (ℓ∞) norm which is

defined as ‖g‖ , maxy∈Y |g(y)|, where Y is a finite set and
g : Y → R is a real-valued function.

5For simplicity of the notations, in the sequel, we re-
move the dependence on z and x , e.g., writing Q for Q(z)
and V for V (x), when there is no possible confusion.

6The total number of calls to the generative model is
given by T = nN .

7The operator T̂ is defined on the action-value func-

tion Q, for all z ∈ Z, by T̂Q(z) = r(z) + γP̂V (z), with
V (x) = maxa∈A(Q(x, a)) for all x ∈ X. Also, the empirical

operator T̂
π is defined on the action-value function Q, for

every policy π and all z ∈ Z, by T̂
πQ(z) = r(z)+γP̂πQ(z).

Likewise, one can also define the empirical Bellman opera-

tor T̂ and T̂
π for the value function V . The fixed points of

the operator T̂ in Z and X domains are denoted by Q̂∗ and

V̂ ∗, respectively. Also, the fixed points of the operator T̂π

in Z and X domains are denoted by Q̂π and V̂ π, respec-
tively. The empirical optimal policy π̂∗ is the policy which

attains V̂ ∗ under the model P̂ .

algorithm.8 In particular, one may choose c = 68 and
c0 = 12.

The following general result provides a tight lower
bound on the number of transitions T for every RL al-
gorithm to achieve an ε-optimal estimate of the action-
value function w.p. 1 − δ, under the assumption that
the algorithm is (ε, δ, T )-correct:

Definition 1 ((ε, δ, T )-correct algorithm). Let QA

T

be the estimate of Q∗ by an RL algorithm A af-
ter observing T ≥ 0 transition samples. We say
that A is (ε, δ, T )-correct on the class of MDPs M if∥∥Q∗ −QA

T

∥∥ ≤ ε with probability at least 1 − δ for all

M ∈ M.9

Theorem 2 (Lower bound on the sample complex-
ity of estimating the optimal action-value function).
There exists some constants ε0, δ0, c1, c2, and a class
of MDPs M, such that for all ε ∈ (0, ε0), δ ∈ (0, δ0/N),
and every (ε, δ, T )-correct RL algorithm A on the class
of MDPs M the number of transitions needs to be at
least

T = ⌈β
3N

c1ε2
log

N

c2δ
⌉.

4. Analysis

In this section, we first provide the full proof of the
finite-time PAC bound of QVI, reported in Theorem 1,
in Subsection 4.1. We then prove Theorem 2, the RL
lower bound, in Subsection 4.2.

4.1. Poof of Theorem 1

We begin by introducing some new notation. Con-
sider the stationary policy π. We define V

π(z) ,

E[|∑ t≥0γ
tr(Zt) − Qπ(z)|2] as the variance of the

sum of discounted rewards starting from z ∈
Z under the policy π. Also, define σπ(z) ,

γ2
∑

y∈ZP
π(y|z)|Qπ(y) − PπQπ(z)|2 as the immedi-

ate variance at z ∈ Z, i.e., γ2
VY∼Pπ(·|z)[Q

π(Y )]. Also,
we shall denote vπ and v∗ as the immediate variance
of the value function V π and V ∗ defined as vπ(z) ,

γ2
VY∼P (·|z)[V

π(Y )] and v∗(z) , γ2
VY∼P (·|z)[V

∗(Y )],
for all z ∈ Z, respectively. Further, we denote the im-
mediate variance of the action-value function Q̂π, V̂ π

and V̂ ∗ by σ̂π, v̂π and v̂∗, respectively.

We now prove our first result which indicates that Qk

is very close to Q̂∗ up to an order of O(γk). Therefore,
to prove bound on ‖Q∗−Qk‖, one only needs to bound

8For every real number u, ⌈u⌉ is defined as the smallest
integer number not less than u.

9The algorithm A, unlike QVI, does not need to gener-
ate a same number of transition samples for every state-
action pair and can generate samples arbitrarily.
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‖Q∗ − Q̂∗‖ in high probability.

Lemma 1. Let Assumption 1 hold and Q0(z) be in
the interval [0, β] for all z ∈ Z. Then we have

‖Qk − Q̂∗‖ ≤ γkβ.

Proof. For all k ≥ 0, we have

‖Qk − Q̂∗‖ = ‖T̂Qk−1 − T̂Q̂∗‖ ≤ γ‖Qk−1 − Q̂∗‖.

Thus by an immediate recursion

‖Qk − Q̂∗‖ ≤ γk‖Q0 − Q̂∗‖ ≤ γkβ.

In the rest of this subsection, we focus on prov-
ing a high probability bound on ‖Q∗ − Q̂∗‖. One
can prove a crude bound of Õ(β2/

√
n) on ‖Q∗ −

Q̂∗‖ by first proving that ‖Q∗ − Q̂∗‖ ≤ β‖(P −
P̂ )V ∗‖ and then using the Hoeffding’s tail inequal-
ity (Cesa-Bianchi & Lugosi, 2006, appendix, pg. 359)

to bound the random variable ‖(P − P̂ )V ∗‖ in high
probability. Here, we follow a different and more
subtle approach to bound ‖Q∗ − Q̂∗‖, which leads
to a tight bound of Õ(β1.5/

√
n): (i) We prove in

Lemma 2 component-wise upper and lower bounds on
the error Q∗ − Q̂∗ which are expressed in terms of
(I−γP̂π∗

)−1
[
P − P̂

]
V ∗ and (I−γP̂ π̂∗

)−1
[
P − P̂

]
V ∗,

respectively. (ii) We make use of the sharp result of

Bernstein’s inequality to bound
[
P − P̂

]
V ∗ in terms of

the squared root of the variance of V ∗ in high proba-
bility. (iii) We prove the key result of this subsection
(Lemma 6) which shows that the variance of the sum
of discounted rewards satisfies a Bellman-like recur-
sion, in which the instant reward r(z) is replaced by
σπ(z). Based on this result we prove an upper-bound
of order O(β1.5) on (I − γPπ)−1

√
V(Qπ) for any pol-

icy π, which combined with the previous steps leads to
the sharp upper bound of Õ(β1.5/

√
n) on ‖Q∗ − Q̂∗‖.

We now prove the following component-wise bounds
on Q∗ − Q̂∗ from above and below:

Lemma 2 (Component-wise bounds on Q∗ − Q̂∗ ).

Q∗ − Q̂∗ ≤ γ(I − γP̂π∗

)−1
[
P − P̂

]
V ∗, (1)

Q∗ − Q̂∗ ≥ γ(I − γP̂ π̂∗

)−1
[
P − P̂

]
V ∗. (2)

Proof. We have that Q̂∗ ≥ Q̂π∗

. Thus:

Q∗ − Q̂∗ ≤ Q∗ − Q̂π∗

= (I − γPπ∗

)−1r − (I − γP̂π∗

)−1r

= (I − γP̂π∗

)−1
[
(I − γP̂π∗

)

− (I − γPπ∗

)
]
(I − γPπ∗

)−1r

= γ(I − γP̂π∗

)−1
[
Pπ∗ − P̂π∗]

Q∗

= γ(I − γP̂π∗

)−1
[
P − P̂

]
V ∗.

For Ineq. (2) we have

Q∗ − Q̂∗ = (I − γPπ∗

)−1r − (I − γP̂ π̂∗

)−1r

= (I − γP̂ π̂∗

)−1
[
(I − γP̂ π̂∗

)

− (I − γPπ∗

)
]
(I − γPπ∗

)−1r

= γ(I − γP̂ π̂∗

)−1
[
Pπ∗ − P̂ π̂∗]

Q∗

≥ γ(I − γP̂ π̂∗

)−1
[
Pπ∗ − P̂π∗]

Q∗

= γ(I − γP̂ π̂∗

)−1
[
P − P̂

]
V ∗,

in which we make use of the following component-wise
inequalities:

P̂π∗

Q∗ ≥ P̂ π̂∗

Q∗, and (I − γP̂ π̂∗

)−1 ≥ 0.

We now concentrate on bounding the RHS (right hand
sides) of (1) and (2), for that we need the following
technical lemmas (Lemma 3 and Lemma 4).

Lemma 3. Let Assumption 1 hold. Then, for any
0 < δ < 1 with probability 1− δ,

‖V ∗ − V̂ π∗‖ ≤ cv, and ‖V ∗ − V̂ ∗‖ ≤ cv,

where cv , γβ2
√
2 log(2|X|/δ)/n.

Proof. We begin by proving bound on ‖V ∗ − V̂ π∗‖:

‖V ∗ − V̂ π∗‖ = ‖Tπ∗

V ∗ − T̂π∗

V̂ π∗‖
≤ ‖Tπ∗

V ∗ − T̂π∗

V ∗‖
+ ‖T̂π∗

V ∗ − T̂π∗

V̂ π∗‖
≤ γ‖Pπ∗V ∗ − P̂π∗V ∗‖+ γ‖V ∗ − V̂ π∗‖.

By collecting terms we deduce:

‖V ∗ − V̂ π∗‖ ≤ γβ‖(Pπ∗ − P̂π∗)V ∗‖. (3)

By using a similar argument the same bound can be
proven on ‖V ∗ − V̂ ∗‖:

‖V ∗ − V̂ ∗‖ ≤ γβ‖(Pπ∗ − P̂π∗)V ∗‖. (4)
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We then make use of Hoeffding’s inequality to bound
|(Pπ∗ − P̂π∗)V ∗(x)| for all x ∈ X in high probability:

P(|((Pπ∗ − P̂π∗)V ∗)(x)| ≥ ε) ≤ 2e
−nε2

2β2 .

By applying the union bound we deduce:

P(‖(Pπ∗ − P̂π∗)V ∗‖ ≥ ε) ≤ 2|X|e
−nε2

2β2 . (5)

We then define the probability of failure δ as follows:

δ , 2|X|e
−nε2

2β2 . (6)

By plugging (6) into (5) we deduce:

P

[
‖(Pπ∗ − P̂π∗)V ∗‖ < β

√
2 log (2|X|/δ) /n

]
≥ 1− δ.

(7)
The results then follow by plugging (7) into (3)
and (4).

Lemma 4 relates v∗ to σ̂π∗

and σ̂∗. We make use of
this result in 5.

Lemma 4. Let Assumption 1 hold and 0 < δ < 1.
Then, w.p. at least 1− δ:

v∗ ≤ σ̂π∗

+ bv1, (8)

v∗ ≤ σ̂∗ + bv1, (9)

where bv is defined as

bv ,

√
18γ4β4 log 3N

δ

n
+

4γ2β4 log 3N
δ

n
,

and 1 is a function which assigns 1 to all z ∈ Z.

Proof. Here, we only prove (8). One can prove (9)
following similar lines.

v∗(z) = v∗(z)− γ2
VY∼P̂ (·|z)(V

∗(Y ))

+ γ2
VY∼P̂ (·|z)(V

∗(Y ))

≤ γ2
(
(P − P̂ )V ∗2

)
(z)

− γ2[(PV ∗)2(z)− (P̂ V ∗)2(z)]

+ γ2
VY∼P̂ (·|z)(V

∗(Y )− V̂ π∗

(Y ))

+ γ2
VY∼P̂ (·|z)(V̂

π∗(Y )),

It is not difficult to show that VY∼P̂ (·|z)(V
∗(Y ) −

V̂ π∗

(Y )) ≤ ‖V ∗ − V̂ π∗‖2, which implies that

v∗(z) ≤ γ2[P − P̂ ]V ∗2(z)

− γ2[(P − P̂ )V ∗][(P + P̂ )V ∗](z)

+ γ2‖V ∗ − V̂ π∗‖2 + v̂π
∗

(z).

The following inequality then holds w.p. at least 1−δ:

v∗(z) ≤ v̂π
∗

(z) + γ2


3β2

√

2
log 3

δ

n
+

2β4 log 3N
δ

n


 ,

(10)
in which we make use of Hoeffding’s inequality as well
as Lemma 3 and a union bound to prove the bound
on v∗ in high probability. It is not then difficult to
show that for every policy π and for all z ∈ Z: vπ(z) ≤
σπ(z). This combined with a union bound on all state-
action pairs in Eq.(10) completes the proof.

The following result proves a sharp bound on γ(P −
P̂ )V ∗, for which we make use of Bernstein’s inequal-
ity (Cesa-Bianchi & Lugosi, 2006, appendix, pg. 361)
as well as Lemma 4.

Lemma 5. Let Assumption 1 hold and 0 < δ < 1.
Define cpv , 2 log(2N/δ) and bpv as:

bpv ,

(
6(γβ)4/3 log 6N

δ

n

)3/4

+
5γβ2 log 6N

δ

n
.

Then w.p. 1− δ we have

γ(P − P̂ )V ∗ ≤
√

cpvσ̂π∗

n
+ bpv1, (11)

γ(P − P̂ )V ∗ ≥ −
√

cpvσ̂∗

n
− bpv1. (12)

Proof. For all z ∈ Z and all 0 < δ < 1, Bernstein’s
inequality implies that w.p. at least 1− δ:

(P − P̂ )V ∗(z) ≤

√
2v∗(z) log 1

δ

γ2n
+

2β log 1
δ

3n
,

(P − P̂ )V ∗(z) ≥ −

√
2v∗(z) log 1

δ

γ2n
− 2β log 1

δ

3n
.

We deduce (using a union bound):

γ(P − P̂ )V ∗ ≤
√
c′pv

v∗

n
+ b′pv1, (13)

γ(P − P̂ )V ∗ ≥ −
√

c′pv
v∗

n
− b′pv1, (14)

where c′pv , 2 log(N/δ) and b′pv , 2γβ log(N/δ)/3n.
The result then follows by plugging (8) and (9)
into (13) and (14), respectively, and then taking a
union bound.

We now state the key lemma of this section which
shows that for any policy π the variance V

π satisfies
the following Bellman-like recursion. Later, we use
this result, in Lemma 7, to bound (I − γPπ)−1σπ.
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Lemma 6. V
π satisfies the Bellman equation

V
π = σπ + γ2Pπ

V
π.

Proof. For all z ∈ Z we have

V
π(z) = E

[∣∣∣∣
∑

t≥0

γtr(Zt)−Qπ(z)

∣∣∣∣
2]

= EZ1∼Pπ(.|z)E

[∣∣∣∣
∑

t≥1

γtr(Zt)− γQπ(Z1)

− (Qπ(z)− r(z)− γQπ(Z1))

∣∣∣∣
2]

= γ2
EZ1∼Pπ(.|z)E

[∣∣∣∣
∑

t≥1

γt−1r(Zt)−Qπ(Z1)

∣∣∣∣
2]

− 2EZ1∼Pπ(.|z)

[
(Qπ(z)− r(z)− γQπ(Z1))

× E

(∑

t≥1

γtr(Zt)− γQπ(Z1)

∣∣∣∣Z1

)]

+ EZ1∼Pπ(·|z)(|Qπ(z)− r(z)− γQπ(Z1)|2)

= γ2
EZ1∼Pπ(.|z)E

[∣∣∣∣
∑

t≥1

γt−1r(Zt)−Qπ(Z1)

∣∣∣∣
2]

+ γ2
VZ1∼Pπ(·|z)(Q

π(Z1))

= γ2
∑

y∈Z

Pπ(y|z)Vπ(y) + σπ(z),

in which we rely on E(
∑

t≥1 γ
tr(Zt)− γQπ(Z1)|Z1) =

0.

Based on Lemma 6, one can prove the following result
on the immediate variance.

Lemma 7.

‖(I − γ2Pπ)−1σπ‖ ≤ β2, (15)

‖(I − γPπ)−1
√
σπ‖ ≤ 2 log(2)β1.5. (16)

Proof. The first inequality follows from Lemma 6 by
solving (6) in terms of Vπ and taking the sup-norm
over both sides of the resulted equation. In the case

of Eq.(16) we have 10

‖(I − γPπ)−1
√
σπ‖ =

∥∥∥∥∥∥

∑

k≥0

(γPπ)k
√
σπ

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

l≥0

(γPπ)tl
t−1∑

j=0

(γPπ)j
√
σπ

∥∥∥∥∥∥

≤
∑

l≥0

(γt)l

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σπ

∥∥∥∥∥∥

=
1

1− γt

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σπ

∥∥∥∥∥∥
,

(17)
in which we write k = tl + j with t is a positive inte-
ger. We now prove a bound on

∥∥∑ t−1
j=0(γP

π)j
√
σπ
∥∥

by making use of Jensen’s inequality as well as Cauchy-
Shwarz inequality:

∥∥∥∥∥∥

t−1∑

j=0

(γPπ)j
√
σπ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

t−1∑

j=0

γj
√
(Pπ)jσπ

∥∥∥∥∥∥

≤
√
t

∥∥∥∥∥∥

√√√√
t−1∑

j=0

(γ2Pπ)jσπ

∥∥∥∥∥∥

≤
√
t
∥∥∥
√

(I − γ2Pπ)−1σπ
∥∥∥

≤ β
√
t,

(18)

where in the last step we rely on (15). The result then
follows by plugging (18) into (17) and optimizing the
bound in terms of t to achieve the best dependency on
β.

Now, we make use of Lemma 7 and Lemma 5 to bound
‖Q∗ − Q̂∗‖ in high probability.

Lemma 8. Let Assumption 1 hold. Then, for any
0 < δ < 1:

‖Q∗ − Q̂∗‖ ≤ ε′,

w.p. 1− δ, where ε′ is defined as:

ε′ ,

√
17β3 log 4N

δ

n
+

(
6(γβ2)4/3 log 12N

δ

n

)3/4

+
5γβ3 log 12N

δ

n
.

(19)

Proof. By incorporating the result of Lemma 5 and

10 For any real-valued function f ,
√
f is defined as a

component wise squared-root operator on f .
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Lemma 7 into Lemma 2, we deduce that:

Q∗ − Q̂∗ ≤ b1,

Q∗ − Q̂∗ ≥ −b1,

w.p. 1− δ. The scalar b is given by:

b ,

√
17β3 log 2N

δ

n
+

(
6(γβ2)4/3 log 6N

δ

n

)3/4

+
5γβ3 log 6N

δ

n
.

The result then follows by combining these two bounds
and taking the ℓ∞ norm.

Proof of Theorem 1. We combine the proof of
Lemma 8 and Lemma 1 in order to bound Q∗ − Qk

in high probability. We then solve the resulted bound
w.r.t. n and k.11

4.2. Proof of the Lower-bound

In this section, we provide the proof of Theorem 2. In
our analysis, we rely on the likelihood-ratio method,
which has been previously used to prove a lower bound
for multi-armed bandits (Mannor & Tsitsiklis, 2004),
and extend this approach to RL and MDPs. We begin
by defining a class of MDPs for which the proposed
lower bound will be obtained (see Figure 1). We de-
fine the class of MDPs M as the set of all MDPs with
the state-action space of cardinality N = 3KL, where
K and L are positive integers. Also, we assume that
for all M ∈ M, the state space X consists of three
smaller sets S, Y1 and Y2. The set S includes K states,
each of those states corresponds with the set of actions
A = {a1, a2, . . . , aL}, whereas the states in Y1 and Y2

are single-action states. By taking the action a ∈ A

from every state x ∈ S, we move to the next state
y(z) ∈ Y1 with the probability 1, where z = (x, a).
The transition probability from Y1 is characterized by
the transition probability pM from every y(z) ∈ Y1 to
itself and with the probability 1 − pM to the corre-
sponding y(z) ∈ Y2.12 Further, for all M ∈ M, Y2

consists of only absorbing states, i.e., for all y ∈ Y2,
P (x|x) = 1. The instant reward r is set to 1 for every
state in Y1 and 0 elsewhere. For this class of MDPs,
the optimal action-value function Q∗ can be solved in
close form from the Bellman equation:

Q∗(z) = γV ∗(y(z)) =
γ

1− γpM
, ∀z ∈ S×A,

11Note that the total number of samples is then com-
puted by T = Nn.

12Every state y ∈ Y
2 is only connected to one state in Y

1

and S, i.e., there is no overlapping path in the MDP.

Figure 1. The class of MDPs considered in the proof of
Theorem 2. Nodes represent states and arrows show tran-
sitions between the states (see the text for details).

In the rest of the proof, we concentrate on proving the
lower bound for ‖Q∗ − QA

T ‖ for all z ∈ S×A. Now,
let us consider a set of two MDPs M∗ = {M0,M1} in
M with the transition probabilities

pM =

{
p M = M0,

p+ α M = M1,

where α and p are some positive numbers such that
0 < p < p + α ≤ 1, which will be quantified later in
this section. We assume that the discount factor γ is
bounded from below by some positive constant γ0 for
the class of MDP M∗. We denote by Em ad Pm the
expectation and the probability under the model Mm

in the rest of this section.

We follow the following steps in the proof: (i) we prove
a lower bound on the sample-complexity of learning
the value function for every state y ∈ Y on the class of
MDP M

∗ (ii) we then make use of the fact that the
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estimates of Q∗(z) for different z ∈ S×A are inde-
pendent of each others to combine these bounds and
prove the tight result of Theorem 2.

We begin our analysis of the lower bound by the fol-
lowing lemma:

Lemma 9. Define θ , exp
(
− c′1α

2t/(p(1 − p))
)
and

QA
t (z) as an empirical estimate of the action-value

function Q∗(z) by an RL algorithm A using t > 0 tran-
sition samples from the state y(z) ∈ Y1 for z ∈ X×A.
Then, for every RL algorithm A, there exists an MDP
Mm ∈ M

∗ and constants c′1 > 0 and c′2 > 0 such that

Pm(|Q∗(z)−QA

t (z)|) > ε) >
θ

c′2
, (20)

by the choice of α = 2(1− γp)2ε/(γ2).

Proof. To prove this result we make use of a contra-
diction argument, i.e., we assume that there exists an
algorithm A for which:

Pm((|Q∗(z)−QA

t (z)|) > ε) ≤ θ

c′2
, or

Pm((|Q∗(z)−QA

t (z)|) ≤ ε) ≥ 1− θ

c′2
,

(21)

for all Mm ∈ M
∗ and show that this assumption leads

to a contradiction. To prove this result, we need,
first, to introduce some notations: We define the event
E1(z) , {|Q∗

0(z)−QA
t (z)| ≤ ε} for all z ∈ S×A, where

Q∗
0 , γ/(1 − γp) is the optimal action-value function

for all z ∈ S×A under the MDP M0. We then define
k , r1 + r2 + · · ·+ rt as the sum of rewards of making
t transitions from y(z) ∈ Y1. We also introduce the
event E2(z), for all z ∈ S×A as:

E2(z) ,

{
pt− k ≤

√
2p(1− p)t log

c′2
2θ

}
.

Further, we define E(z) , E1(z) ∩ E2(z). We then
state the following technical lemma required for our
analysis.

Lemma 10. For all p > 1
2 :

P0(E2(z)) > 1− 2θ

c′2
.

Proof. We then make use of the following concentra-
tion inequality (Chernoff bound) for Binomial random
variables (Hagerup & Rüb, 1990). For p > 1

2 , we have

P0(E2(z)) > 1− e−
2tp(1−p) log

c′2
θ

2tp(1−p)

= 1− e− log
c′2
θ = 1− 2θ

c′2
,

, ∀z ∈ S×A.

Now, by the assumption that Pm(|Q∗(z) −QA
t (z)|) >

ε) ≤ θ/c′2 for all Mm ∈ M
∗, we have P0(E1(z)) ≥

1−θ/c′2 ≥ 1−1/c′2. This combined with Lemma 10 and
with the choice of c′2 = 6 implies that P0(E(z)) > 1/2,
for all z ∈ S×A. Based on this result, we prove the
following lemma:

Lemma 11. For all z ∈ S×A: P1(E1(z)) > θ/c′2.

Proof. We define W as the history of all the outcomes
of trying z for t times and the likelihood function
Lm(w) for all Mm ∈ M

∗ as:

Lm(w) , Pm(W = w),

for every possible history w and Mm ∈ M
∗. This func-

tion can be used to define a random variable Lm(W ),
where W is the sample random path of the process (se-
quence of observed transitions). The likelihood ratio
of the event W between two MDPs M1 and M0 can
then be written as:

L1(W )

L0(W )
=

(p+ α)k(1− p− α)t−k

pk(1− p)t−k

=
(
1 +

α

p

)k(
1− α

1− p

)t−k

=
(
1 +

α

p

)k(
1− α

1− p

)k 1−p
p
(
1− α

1− p

)t− k
p .

Now, by making use of log(1 − u) ≥ −u − u2 for 0 ≤
u ≤ 1/2 , and e−u ≥ 1− u for 0 ≤ u ≤ 1, we have

(
1− α

1− p

)(1−p)/p ≥ e
1−p
p

(
− α

1−p−( α
1−p )

2
)

≥
(
1− α

p

)(
1− α2

p(1− p)

)
,

for α ≤ (1− p)/2. Thus

L1(W )

L0(W )
≥
(
1− α2

p2
)k(

1− α2

p(1− p)

)k(
1− α

1− p

)t− k
p

≥
(
1− α2

p2
)t(

1− α2

p(1− p)

)t(
1− α

1− p

)t− k
p ,

since k ≤ t.

Using log(1 − u) ≥ −2u for 0 ≤ u ≤ 1/2, we have for
α2 ≤ p(1− p),

(
1− α2

2p(1− p)

)t ≥ exp
(
− 2t

α2

p(1− p)

)
≥ (2θ/c′2)

2/c′1 ,

and for α2 ≤ p2/2, we have

(
1− α2

p2
)t ≥ exp

(
− t

2α2

p2
)
≥ (2θ/c′2)

2(1−p)/(pc′1),
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On E2, we have t − k/p ≤
√
2 1−p

p t log(c2/(2θ)), thus

for α ≤ (1− p)/2,

(
1− α

1− p

)t− k
p ≥

(
1− α

1− p

)√2 1−p
p t log(c′2/2θ)

≥ e
−
√

2 α2

p(1−p)
t log(c′2/(2θ))

≥ e−
√

2/c1 log(c′2/θ) = (2θ/c′2)
√

2/c′1 .

We deduce that

L1(W )

L2(W )
≥ (2θ/c′2)

2/c′1+2(1−p)/(pc′1)+
√

2/c′1 ≥ 2θ/c′2,

for the choice of c′1 = 8. Thus:

L1(W )

L0(W )
1E ≥ 2θ/c′21E,

where 1E is the indicator function of the event E(z).
Then by a change of measure we deduce:

P1(E1(z)) ≥ P1(E(z)) = E1[1E] = E0

(
L1(W )

L0(W )
1E

)

≥ E0 [2θ/c
′
21E] = 2θ/c′2P0(E(z)) > θ/c′2,

where we make use of the fact that P0(Q(z)) >
1
2 .

Now by the choice of α = 2(1 − γp)2ε/(γ2), we
have α ≤ (1 − p)/2 ≤ p(1 − p) ≤ p/

√
2 when-

ever ε ≤ 1−p
4γ2(1−γp)2 . For this choice of α, we have

that Q∗
1(z) − Q∗

0(z) = γ
1−γ(p+α) − γ

1−γp > 2ε, thus

Q∗
0(z) + ε < Q∗

1(z) − ε. In words, the random event
{|Q∗

0(z)−Q(z)| ≤ ε} does not overlap with the event
{|Q∗

1(z)−Q(z)| ≤ ε}.
Now let us return to the assumption of Eq. (21),
which states that for all Mm ∈ M

∗, Pm(|Q∗(z) −
QA

t (z)|) ≤ ε) ≥ 1−θ/c′2 under Algorithm A. Based on
Lemma 11 we have P1(|Q∗

0(z) − QA
t (z)| ≤ ε) > θ/c′2.

This combined with the fact that {|Q∗
0(y) − QA

t (z)|}
and {|Q∗

1(z) − QA
t (z)|} do not overlap implies that

P1(|Q∗(z) − QA
t (z)|) ≤ ε/γ) ≤ 1 − θ/c′2, which vio-

lates the assumption of Eq. (21). The contradiction
between the result of Lemma 11 and the assumption
which leads to this result proves the lower bound of
Eq. (20).

Now by the choice of p = 4γ−1
3γ and c1 = 8100, we have

that for every ε ∈ (0, 3] and for all 0.4 = γ0 ≤ γ < 1
there exists an MDP Mm ∈ M

∗ such that:

Pm(|Q∗(z)−QA

t (z)|) > ε) >
1

c′2
e

−c1Tzε2

6β3 ,

This result implies that for any state-action z ∈ S×A,
the probability of making an estimation error of ε is at

least δ onM0 orM1 whenever the number of transition

samples Tz from z ∈ Z is less that ξ(ε, δ) , 6β3

c1ε2
log 1

c′2δ
.

We now extend this result to the whole state-action
space S×A.

Lemma 12. Assume that for every algorithm A, for
every state-action z ∈ S×A we have13

Pm(|Q∗(z)−QA

Tz
(z)| > ε|Tz = tz) > δ, (22)

Then for any δ′ ∈ (0, 1/2), for any algorithm A using
a total number of transition samples less than T =
N
6 ξ
(
ε, 12δ′

N

)
, there exists an MDP Mm ∈ M

∗ such that

Pm

(
‖Q∗ −QA

T ‖ > ε
)
> δ′, (23)

where QA

T denotes the empirical estimate of the opti-
mal action-value function Q∗ by A using T transition
samples.

Proof. First note that if the total number of observed
transitions is less than KL/2ξ(ε, δ) = (N/6)ξ(ε, δ),
then there exists at least KL/2 = N/6 state-action
pairs that are sampled at most ξ(ε, δ) times. Indeed,
if this was not the case, then the total number of tran-
sitions would be strictly larger than N/6ξ(ε, δ), which
implies a contradiction). Now let us denote those
states as z(1), . . . , z(N/6).

We consider the specific class of MDPs described in
Figure 1. In order to prove that (23) holds for any al-
gorithm, it is sufficient to prove it for the class of algo-
rithms that return an estimate QA

Tz
(z) for each state-

action z based on the transition samples observed from
z only (indeed, since the samples from z and z′ are in-
dependent, the samples collected from z′ do not bring
more information about Q∗(z) than the information
brought by the samples collected from z). Thus, by
defining Q(z) , {|Q∗(z)−QA

Tz
(z)| > ε}, we have that

for such algorithms, the events Q(z) and Q(z′) are con-
ditionally independent given Tz and Tz′ . Thus, there

13Note that we allow Tz to be random.
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exists an MDP Mm ∈ M
∗ such that:

Pm

(
{Q(z(i))c}1≤i≤N/6 ∩ {Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)

=

ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

)

Pm

(
{Q(z(i))c}1≤i≤N/6 ∩ {Tz(i) = ti}1≤i≤N/6

)

=

ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

)

∏

1≤i≤N/6

Pm

(
Q(z(i))

c ∩ Tz(i) = ti

)

≤
ξ(ε,δ)∑

t1=0

· · ·
ξ(ε,δ)∑

tN/6=0

Pm

(
{Tz(i) = ti}1≤i≤N/6

)
(1− δ)N/6,

from Eq. (22), thus

Pm

(
{Q(z(i))c}1≤i≤N/6

∣∣{Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)

≤(1− δ)N/6.

We finally deduce that if the total number of transition
samples is less than N

6 ξ(ε, δ), then

Pm(‖Q∗ −QA

T ‖ > ε
)
≥ Pm

( ⋃

z∈S×A

Q(z)
)

≥ 1− Pm

(
{Q(z(i))c}1≤i≤N/6

∣∣{Tz(i) ≤ ξ(ε, δ)}1≤i≤N/6

)

≥ 1− (1− δ)N/6 ≥ δN

12
,

whenever δN
6 ≤ 1. Setting δ′ = δN

12 , we obtain the
desired result.

Lemma 12 implies that if the total number of sam-
ples T is less than β3N/(c1ε

2) log(N/(c2δ)), with the
choice of c1 = 8100 and c2 = 72, then the probability
of ‖Q∗−QA

T ‖ ≤ ε is at maximum 1−δ on either M0 or
M1. This is equivalent to the statement that for every
RL algorithm A to be (ε, δ, T )-correct on the set M

∗,
and subsequently on the class of MDPs M, the total
number of transitions T needs to satisfy the inequal-
ity T > β3N/(c1ε

2) log(N/(c2δ)), which concludes the
proof of Theorem 2.

5. Conclusion and Future Works

In this paper, we have presented the first minimax
bound on the sample complexity of estimating the
optimal action-value function in discounted reward
MDPs. We have proven that the model-based Q-value

iteration algorithm (QVI) is an optimal learning algo-
rithm since it minimizes the dependencies on 1/ε, N ,
δ and 1/(1 − γ). Also, our results have significantly
improved on the state-of-the-art in terms of depen-
dency on 1/(1− γ). Overall, we conclude that QVI is
an efficient RL algorithm which completely closes the
gap between the lower and upper bound of the sample
complexity of RL in the presence of a generative model
of the MDP.

In this work, we are only interested in the es-
timation of the optimal action-value function and
not the problem of exploration. Therefore, we did
not compare our results with the-state-of-the-art of
PAC-MDP (Strehl et al., 2009; Szita & Szepesvári,
2010) and upper-confidence bound based algo-
rithms (Bartlett & Tewari, 2009; Jaksch et al., 2010),
in which the choice of the exploration policy has an
influence on the behavior of the learning algorithm.
However, we believe that it would be possible to im-
prove on the state-of-the-art in PAC-MDP, based on
the results of this paper. This is mainly due to the fact
that most PAC-MDP algorithms rely on an extended
variant of model-based Q-value iteration to estimate
the action-value function, but they use the naive re-
sult of Hoeffding’s inequality for concentration of mea-
sure which leads to non-tight sample complexity re-
sults. One can improve on those results, in terms of
dependency on 1/(1 − γ), using the improved analy-
sis of this paper which makes use of the sharp result
of Bernstein’s inequality as opposed to the Hoeffding’s
inequality in the previous works. Also, we believe that
the existing lower bound on the exploration complexity
of any reinforcement learning algorithm (Strehl et al.,
2009) can be significantly improved in terms of depen-
dency on 1/(1 − γ) based on the new class of MDPs
presented in this paper.
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Szita, I. and Szepesvári, Cs. Model-based reinforce-
ment learning with nearly tight exploration com-
plexity bounds. In Proceedings of the 27th Interna-
tional Conference on Machine Learning, pp. 1031–
1038. Omnipress, 2010.


