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Abstract. From the mathematical point of view, the
contact shape optimization is a problem of nonlinear
optimization with a specific structure, which can be ex-
ploited in its solution. In this paper, we show how to
overcome the difficulties related to the nonsmooth cost
function by using the proximal bundle methods. We de-
scribe all steps of the solution, including linearization,
construction of a descent direction, line search, stop-
ping criterion, etc. To illustrate the performance of
the presented algorithm, we solve a shape optimization
problem associated with the discretized two-dimensional
contact problem with Coulomb’s friction.

Keywords

Clarke calculus, nonsmooth optimization, prox-
imal bundle method, shape optimization.

1. Introduction

Shape optimization problems arise naturally in me-
chanical engineering whenever the design requirements
include an optimal performance of a machine or a gad-
get comprising several bodies in mutual contact. From
the mathematical point of view, these problems can
be characterized by a locally Lipschitz continuous cost
function, which is differentiable in most but not all
points. Moreover, its gradient is not defined explicitly
even in the point, at which it exists. Shape optimiza-
tion problems have the following form:{

minimize f(x)
subject to x ∈ Ω ⊂ Rn. (1)

The solution of such problems can be obtained by
a suitable iterative algorithm – its typical structure
reads as follows.

Algorithm 1 Basic iterative algorithm.
Step 0: (Initialization)
Find a feasible starting point x1 ∈ Ω and set k = 1.

Step 1: (Stopping criterion)
If xk is "close enough" to the required solution then STOP.

Step 2: (Direction finding)
Find a feasible descent direction dk ∈ Rn:
f(xk + tdk) < f(xk) and xk + tdk ∈ Ω for some t > 0.

Step 3: (Line search)
Find a step size tk > 0 such that:
tk ≈ arg min

t>0
{f(xk + tdk)} and xk + tdk ∈ Ω.

Step 4: (Updating)
Set xk+1 = xk + tkdk, k = k + 1 and go on to Step 1.

The hardest difficulty is the direction searching in
Step 2 since the cost function f mentioned in the above
section is not differentiable but only locally Lipschitz
continuous. This implies that to minimize the func-
tion f , we can choose an algorithm from the follow-
ing two classes: derivative-free methods (like genetic
algorithms) and methods that use the subgradient in-
formation (like subgradient or bundle methods). Since
the subgradient information is available for our prob-
lem, we have chosen the latter class of algorithms. In
this paper, the proximal bundle method (see [4]) is pre-
sented. This method needs the function value f(x) and
one (arbitrary) Clarke subgradient of f at x in every
step of the iteration process.

Key terms and theorems are introduced in the first
part of this paper and then some important sections
present direction finding, line search or subgradient
aggregation in detail. To show the functionality of
the presented algorithm, we solve a shape optimization
problem with the discretized two-dimensional contact
problem with Coulomb’s friction in the last part.
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2. Proximal Bundle Method

2.1. Nonsmooth Analysis - Clarke
Calculus

Before we come to the derivation of the aforementioned
method, it is necessary to be familiar with the neces-
sary theory. Since we often use the term generalized
gradient and subgradients, it is suitable to define them.

Definition 1. A function f : Ω ⊂ Rn → R is said to be
Lipschitz continuous on Ω if there exists some constant
L = L(Ω) > 0 such that

|f(x)− f(y)|≤ L‖x− y‖, ∀x, y ∈ Ω. (2)

Definition 2. A function f :Rn → R is said to be
Lipschitz continuous at x ∈ Rn if there exists a neigh-
bourhood U of x and a constant L = L(U) > 0 such
that

|f(x)− f(y)|≤ L‖x− y‖, ∀y ∈ U. (3)

Definition 3. A function f :Rn → R is said to be
locally Lipschitz continuous in Rn if this function f is
Lipschitz continuous at x ∈ Rn for every x ∈ Rn.

Definition 4. Let Ω ⊂ Rn. Then conv (Ω) denotes the
convex hull of the set Ω, which is defined by:

conv (Ω) =

{ n∑
i=1

λixi

∣∣∣∣ n ∈ N, λ ∈ Rn, x1, · · · , xn ∈ Ω,

λi ≥ 0,∀i,
n∑
i=1

λi = 1

}
. (4)

Remark 1. The set conv (Ω) is the set of all convex
combinations of the points in Ω.

Definition 5. Let the objective function f :Rn → R be
locally Lipschitz continuous (in Rn). The generalized
gradient of the objective function f at x ∈ Rn is the set

∂f(x) = conv

{
g ∈ Rn

∣∣∣∣ g = lim
i→∞

∇f(xi),

xi → x, xi /∈ Ωf

}
, (5)

where Ωf = {x ∈ Rn, f is not differentiable in x}.

Each element g ∈ ∂f(x) is called a subgradient
of the objective function f at x.

Definition 6. Let f be locally Lipschitz continuous
at x ∈ Rn. Then the generalized (Clarke) directional
derivative of f at the point x in the direction v is de-
fined by:

f◦(x; v) = max
{
gT v | g ∈ ∂f(x)

}
, (6)

for all v ∈ Rn.

We illustrate the previous definition Def. 5 in the
following example.

Example 1 (Generalized gradient). Find the general-
ized gradient of a given function f at x = 0, where

f(x) = |x− 1| + |x| + |x+ 1|. (7)
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Fig. 1: Graph of function f .

This function (see its graph in Fig. 1) can be rewritten
in the form

f(x) =


−3x if x ∈ (−∞,−1) ,
−x+ 2 if x ∈ 〈−1, 0) ,
x+ 2 if x ∈ 〈0, 1) ,
3x if x ∈ 〈1,+∞) .

(8)

As the function f is not smooth at x = 0, we
have to use one-sided limits of the derivatives of the
function f to compute the generalized gradient (see
Def. 5). Let us start with the interval (0, 1). For each
x ∈ (0, 1) the derivative is ∇f(x) = 1 and therefore
g = lim

i→∞
∇f(xi) = 1 applies for xi → 0+. We analo-

gously have g = lim
i→∞

∇f(xi) for xi → 0−. The gener-
alized gradient of f at x is then:

xi → 0+ : g = 1
xi → 0− : g = −1

}
∂f(0) = conv {−1, 1}, (9)

and its graph can be seen in Fig. 2.
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Fig. 2: Graph of the generalized gradient of f at x = 0.
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In a similar way, we can compute the generalized gra-
dient of the function f for all x ∈ R (see its graph in
Fig. 3).

0

-1

-2

-3

1

2

3

-4 2 4x

Fig. 3: Graph of the general gradient of f .

2.2. Optimality Conditions

Here are some necessary conditions for a constrained
and for an unconstrained optimization problem. We
should note that these conditions are only basic ones.

1) Optimality Conditions for Unconstrained
Problems

Theorem 1. Let f be Lipschitz continuous at x and
let f attain its local minimum at x, then

• o ∈ ∂f(x),

• f◦(x; v) ≥ 0 for all v ∈ Rn.

Consider the first part o ∈ ∂f(x) and note that in the
Exm. 1 above, the function f attains its local minimum
at x = 0. The generalized gradient of f at x = 0 is the
convex hull of {−1, 1}, which is the interval 〈−1, 1〉,
and it is no surprise that 0 ∈ 〈−1, 1〉.

Theorem 2. Let f be a convex function, then the fol-
lowing conditions are equivalent:

• f attains its global minimum at x,

• o ∈ ∂f(x),

• f◦(x; v) ≥ 0 for all v ∈ Rn.

2) Optimality Conditions for Constrained
Problems

Tangent and normal cones are closely related to the
optimality conditions for constrained problems, thus it
is important to define them.

Definition 7. Let Ω be a nonempty subset of Rn. The
set Ω is called convex if

(1− λ)x+ λy ∈ Ω, (10)

whenever x ∈ Ω, y ∈ Ω and λ ∈ 〈0, 1〉.

Definition 8. The tangent cone of a convex set Ω at
x ∈ Ω is defined by:

TΩ(x) =
{
y ∈ Rn | there exist ti → 0+

and yi → y so that x+ tiyi ∈ Ω } . (11)

Definition 9. The normal cone of the convex set Ω at
the point x ∈ Ω is given by the formula:

NΩ(x) =
{
z ∈ Rn | yT z ≤ 0 for all y ∈ TΩ(x)

}
. (12)

N xΩ ( )
N xΩ ( )

T xΩ ( ) T xΩ ( )

x

xΩ Ω

Fig. 4: Examples of the tangent and normal cones of given con-
vex set Ω.

We can see some examples of the tangent and normal
cones in Fig. 4. Now, we can write the corresponding
conditions.

Theorem 3. Let f be Lipschitz continuous at x ∈ Ω
and let x be a minimizer of the function f over the set
Ω, then

o ∈ ∂f(x) +NΩ(x). (13)

Theorem 4. If the function f is convex and if the
set Ω is also convex, then the following conditions are
equivalent:

• o ∈ ∂f(x) +NΩ(x),

• f attains its global minimum at x over the set Ω.

For proofs of Thm. 1, Thm. 2, Thm. 3, Thm. 4 and
further details on the theory of nonsmooth analysis the
interested reader is reffered to [4], [6] or [5]. Further
definitions, pictures and examples can be found there.
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2.3. Derivation of the Method

Consider the following nonlinear constrained optimiza-
tion problem:

minimize f(x)
subject to Cx ≤ b,

xmin ≤ x ≤ xmax,

 (14)

where the objective function f :Rn → R is locally
Lipschitz continuous in Rn, C ∈ Rm×n is an con-
straint matrix, b ∈ Rm is a right-hand side vector and
xmax ∈ Rn, xmin ∈ Rn are bound vectors. To make
these notations simple we suppose that the simple
bounds xmin, xmax are included in the linear system
Cx ≤ b. For further details on the proximal bundle
method the interested reader is reffered to [4].

1) Direction Finding

Our aim is to solve the problem with respect to d ∈ Rn

minimize f(xk + d)− f(xk),
subject to xk + d ∈ Ω,

}
(15)

where Ω = {x ∈ Rn | Cx ≤ b} and d is the descent
direction.

Suppose that we have some starting point x1 ∈
Ω, the current iteration point xk ∈ Ω and that
we have subgradients gfj ∈ ∂f(yj) for all j ∈
Jkf , where Jkf ⊂ {1, . . . , k} is a nonempty in-
dex set and where yj ∈ Ω is an auxiliary point.
Denoting

fkj = f (yj) +
(
gfj

)T
(xk − yj) , (16)

the linearization of our cost function is

f j (x) = fkj +
(
gfj

)T
(x− xk) for all j ∈ Jkf , (17)

but we can rewrite the formulation Eq. (16) into its
recursive form

fk+1
j = fkj +

(
gfj

)T
(xk+1 − xk) for all j ∈ Jkf . (18)

Moreover, we can employ this linearization for poly-
hedral approximation of the objective function (e.g. in
Fig. 5)

f̂k(x) = max{ f j(x) | j ∈ Jkf }, (19)

and then we can define the improved polyhedral func-
tion Ĥk

Ĥk(x) = f̂k(x)− f(xk) for all x ∈ Rn. (20)

By employing the proximal bundle idea (the idea of
adding a penalty to be able to limit the step length)

Fig. 5: Illustration of the linearization.

and after a series of adjustments, we can rewrite the
whole problem Eq. (15) into its dual form

min
λ,ν

1
2uk
‖
∑
j∈Jk

f

λjg
k
j +

∑
i∈I

νiCi‖2

+
∑
j∈Jk

f

λjα
k
f,j +

∑
i∈I

νiα
k
C,i,

subject to
∑
j∈Jk

f

λj = 1,

and λ, ν ≥ 0,


(21)

where uk is the weight, αkf,j are subgradi-

ent errors
(
αkf,j = f(xk)− fkj , for j ∈ Jkf

)
and

αkC,i are errors of the constraints subgradients(
αkC,i = −Cixk + bi, for i ∈ I = {1, . . . ,m}

)
. We

denote the solution of the problem Eq. (21) as λk and
νk.

2) Subgradient Aggregation

There is still one hidden but equally important diffi-
culty in the problem Eq. (21). Let us consider the
index set Jkf . How to choose this set? The simplest
option seems to let

Jkf = {1, . . . , k} . (22)

However, this is not the case. Because, in every it-
eration step, the index set will enlarge, which causes
larger and larger memory requirements. We have to
find another way.

In 1985, Kiwiel presented the subgradient
aggregation strategy. The idea is to aggregate
the constraints made up by the previous subgradi-
ents. This strategy allows us to keep the quantity
of constraints bounded. First, we need to scale the
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multipliers for all j ∈ Jkf and to be able to do that, we
denote λkf =

∑
j∈Jk

f

λkj , then the aggregate subgradients

can be presented.

Definition 10. We define the scaled multipliers for all
j ∈ Jkf by:

λ̃kj =

{
λkj /λ

k
f if λkf > 0,

1/|Jkf | if λkf = 0,
(23)

and the aggregate subgradients by:

pkf =
∑
j∈Jk

f

λ̃kj g
f
j , (24)

f̃kp =
∑
j∈Jk

f

λ̃kj f
k
j , (25)

α̃kf,p =
∑
j∈Jk

f

λ̃kjα
k
f,j , (26)

where αkf,j = f(xk)− fkj is the linearization error.
And finally the aggregate linearization is defined by:

f̃p(x) = f̃kp + (pkf )T (x− xk). (27)

The vector pkf is unknown at the beginning, but we
can solve this lack by generating pkf recursively (see
Eq. (31)). Let x1 ∈ Ω be a feasible starting point, then
we begin the algorithm with this settings: y1 = x1,
p0
f = gf1 ∈ ∂f(y1), f1

p = f1
1 = f(y1) and J1 = {1} and

we also define αkf,p = f(xk)− fkp .

Using stated equations, we are able to rewrite the
problem Eq. (21) in suitable form to keep the index set
bounded. Via restriction and dualization we obtain

min
λ,ν

1
2uk
‖
∑
j∈Jk

f

λjg
k
j + λpp

k−1
f +

∑
i∈I

νiCi‖2

+
∑
j∈Jk

f

λjα
k
f,j + λpα

k
f,p +

∑
i∈I

νiα
k
C,i,

subject to
∑
j∈Jk

f

λj + λp = 1,

and λj , λp, ν ≥ 0.


(28)

Suppose that we found the Lagrange multipliers of
the problem above λkp , λkj for all j ∈ Jkf and νki for all
i ∈ I = {1, . . . ,m}. First, we sum up the multipliers
λkf = λkp+

∑
j∈Jk

f

λkj and then we can scale the multipliers

λ̃kj =

{
λkj /λ

k
f if λkf > 0,

1/
(
|Jkf |+1

)
if λkf = 0,

(29)

λ̃kp =

{
λkp/λ

k
f if λkf > 0,

1/
(
|Jkf |+1

)
if λkf = 0,

(30)

and figure up the aggregate subgradients

pkf =
∑
j∈Jk

f

λ̃kj g
f
j + λ̃kpp

k−1
f , (31)

f̃kp =
∑
j∈Jk

f

λ̃kj f
k
j + λ̃kpf

k
p , (32)

where fkp is updated recursively by fkp = fk−1
p +

tkL

(
pkf

)T
dk.

Now we are able to choose the index set Jkf bounded
without any difficulties. Several types of selection exist
and the simplest one (not necessarily the best one) is
to keep the length of the index set bounded and replace
the oldest element in Jkf by the new one as it can be
seen below:

J5
f = {1, 2, 3, 4, 5} ⇒ J6

f = {2, 3, 4, 5, 6} ⇒ . . .

⇒ J10
f = {6, 7, 8, 9, 10} .

3) Nonconvexity

Let us recall that αkf,j = f(xk)−fkj is the linearization
error. If f is convex, then αkf,j ≥ 0 for all j ∈ Jkf and
f j(x) ≤ f(x) for all x ∈ Ω. It means that our lin-
earization approximates the cost function f from bel-
low and αkf,j indicates how good our linearization is.
But this is true only if the cost function f is convex.
Unfortunately, in the nonconvex case, the inequality
f j(x) ≤ f(x) is not valid at every x ∈ Ω. The linear
approximation can be above the cost function f and
the linearization error may takes values less then zero.
We can see this situation in Fig. 6.

f x < f xj

f, j

( ) ( )

> 0α

f x f xj

f, j

( ) > ( )

< 0α

k

k

Fig. 6: Linear approximation of a nonconvex function.

So what to do when the cost function f is not con-
vex? Due to this (we can say) difficulty, we need to
generalize the subgradient error αkf,j . We will use the
subgradient locality measure. To achieve this, we will
also need some information about the distance between
the trial point yj and the actual iteration point xk.
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Definition 11. Let us define the distance measure at
every iteration k by:

skj =

 ‖xj − yj‖+
k−1∑
i=j

‖xi+1 − xi‖ for j = 1, .., k − 1,

‖xk − yk‖ for j = k.
(33)

And now we are able to define the aforementioned sub-
gradient locality measure.

Definition 12. At every iteration step k, the subgra-
dient locality measure is defined by:

βkj = max
{
|αkf,j |, γ

(
skj
)2}

for all j ∈ Jkf , (34)

where γ ≥ 0 is the distance measure parameter, which
is equal to zero, when the cost function is convex.

We choose the parameter γ heuristically. As it can
be seen, we did not use the aggregate subgradients,
which were described in the previous subsection. It is
still important to be able to reduce the memory re-
quirements, so we also define the aggregate version of
the distance measures.

Definition 13. Denoting s1
f = 0, the aggregate dis-

tance measures at each iteration step k are defined by:

s̃kf =
∑
j∈Jk

f

λkj s
k
j + λ̃kps

k
f ,

sk+1
f = s̃kf + ‖xk+1 − xk‖,

 (35)

and the subgradient locality measures by:

βkj = max

{
|αkf,j |, γ

(
skj
)2} for all j ∈ Jkf ,

β̃kf,p = max

{
|α̃kf,p|, γ

(
s̃kf

)2
}

for all j ∈ Jkf ,

β̃kp = λkf β̃
k
f,p,

 (36)

where γ ≥ 0 is the distance measure parameter. Set
the parameter γ = 0, if f is convex.

4) Line Search

The descent direction dk = − 1

uk

(
λkfp

k
f +

∑
i∈I

νki Ci

)
and the awaited decrease vk = f̂k(xk+dk)−f(xk) < 0
are known. But we do not know yet how far we can
go in the direction dk to evaluate the next value xk+1.
A solution to this problem was presented by Kiwiel in
1990 in his contribution [3].

After the initial setting of parameters, we are search-
ing for the maximum value tkL ∈ 〈0, 1〉 that fulfils fol-
lowing conditions:

a) f(xk + tkLdk) ≤ f(xk) +mLt
k
Lvk,

b) C(xk + tkLdk) ≤ b,

c) tkL ≥ t.

If such a parameter exists, we obtain the so-called long
serious step

xk+1 = xk + tkLdk,
yk+1 = xk+1.

(37)

If only the first condition a) holds and also
0 < tkL < t, we take the short serious step: choose
tkR ∈ 〈tkL, 1〉 and

xk+1 = xk + tkLdk,
yk+1 = xk + tkRdk,

(38)

and finally, in the case when tkL = 0, we have the null
step

xk+1 = xk,
yk+1 = xk + tkRdk.

(39)

5) Weight Update

One of the last but still very important questions is
the choice of weight update uk. We cannot keep uk
constant, because it could make some difficulties (e.g. if
the parameter uk is large, values |vk| and ‖dk‖ will be
very small and therefore all the steps will be taken as
the serious ones and the decrease will be small).

This seemingly small difficulty was also solved by
Kiwiel in 1990. The whole weight update strategy can
be found in the book [4] and in the article [3].

2.4. Description of the Proximal
Bundle Method Algorithm

At the beginning of our algorithm, we need to set sev-
eral parameters such as stopping tolerance εS > 0,
which is used in the stopping criterion; the maximum
number of stored subgradients Mg ≥ 2; the line search
parametersmL,mR, t and distance parameters γf > 0.

In the next step of the algorithm, we should find
multipliers λkp, λkj by solving the dual problem, see
Eq. (28). In the first half of the algorithm, there is also
the stopping criterion. We need to evaluate whether
wk ≤ εS , where wk = 1

2‖pk‖
2+β̃kf,p, holds or not. If so,

the algorithm stops and we obtain the desired result.
Otherwise the algorithm continues by line search and
after finding the step size, we make the linearization
update.

The final part of the algorithm consists of the
weight update and the index set updating Jk+1

f =

Jkf ∪ {k + 1}, but if the size of Jk+1
f > Mg, we set

Jk+1
f = Jk+1

f \
{

min j | j ∈ Jk+1
f

}
as we exemplified
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in the subsection Subgradient aggregation. Now it re-
mains to increase the iteration counter k by 1 and to
repeat the whole algorithm from the part with the dual
problem.

3. Numerical Experiment

The proximal bundle method described in the previous
sections will now be used to solve a model example.
We chose the shape optimization of a discretized two-
dimensional contact problem with Coulomb friction as
the model example. Shape optimization is a part of
the optimal control, in which the control variables are
linked to the geometry of elastic bodies that are in con-
tact. The aim of the problem on the lower level, which
is contact problem with friction is to find the set of the
state variables for the fixed vector of control variables.
The state vector contains variables which describe the
displacements, and the variables which describe the
normal stress on the contact boundary. Hereafter, the
contact problem with Coulomb friction will be con-
sidered as the state problem. The mapping describ-
ing the solution of the state problem (i.e. the vector
of the displacements and the contact stresses) for the
prescribed control variable is named as the control–
state mapping. A typical feature of the contact shape
optimization with Coulomb friction is its nonsmooth
character due to the fact that the respective control–
state mapping is typically nondifferentiable. Shape
optimization of a discretized two-dimensional contact
problem with Coulomb friction was considered in [1].
Shape optimization of a discretized three-dimensional
contact problem with Coulomb friction was considered
in [2]. Sensitivity analysis (computation of the subgra-
dients of the minimized function) with help of calculus
of Clarke (for 2D case) and calculus of Mordukhovich
(for 3D case) was proposed in mentioned papers [1]
and [2]. In this contribution, we approximate subgra-
dients only numerically by the forward finite difference
approximation.

Example 2. Now let us deal with the shape optimiza-
tion of a discretized two-dimensional contact problem
with Coulomb friction only briefly. Let J be a cost
function. The shape optimization problem is defined
generally as follows

minimize J (α,S(α)),

subject to α ∈ Uad,

}
(40)

where the admissible set Uad is given by:

Uad :=
{
α ∈ Rd : 0 ≤ αi ≤ C0, i = 0, 1, . . . , d− 1,

|αi+1 − αi|≤ C1h, i = 0, 1, . . . , d− 2,
C21 ≤ meas Ω(α) ≤ C22} .

We will try to smooth down the peaks of the nor-
mal contact stress distribution. To this aim, we should

minimize the max-norm of the discrete normal contact
stress λ. The objective function J , however, must be
continuously differentiable to ensure that the composite
function J (α,S(α)) is locally Lipschitz, so we will use
the p power of the p norm of the vector λ with p = 4
as the objective function J . The shape optimization
problem then reads as follows:

minimize ‖λ‖44,
subject to α ∈ Uad.

}
(41)

The vector α denotes the control vector, u denotes
the displacement and λ denotes the normal stress and
mapping S:α ∈ Uad ⊂ Rd → (u, λ) ∈ R3p denotes
the control–state mapping. Number d is the dimension
of the control vector α, p is the number of the nodes
of the discretized elastic body Ω(α) and Uad is the set
of the admissible control variables. For more detailed
description, see [1].

The shape of the elastic body Ω(α), α ∈ Uad, is
defined through a Bezier function Fα as follows (cf.
Fig. 7):

Ω(α) = {(x1, x2) ∈ R2 | x1 ∈ (0, a), Fα(x1) < x2 < b},

where the vector α contains the control points of the
Bezier function Fα.

Fig. 7: The elastic body and applied loads.

From Fig. 7 we can also see the distribution of
external pressures on the boundary ΓP , given as
P 1 = (0;−200 MPa) on (0, 2) × {1}, while P 2 =
(100 MPa; 40 MPa) on {2} × (0, 1) Further, Γu is the
part of the boundary where the zero displacements are
prescribed.

The set of the admissible designs Uad is specified as
follows: a = 2, b = 1 and C0 = 0.75, C1 = 1, C21 =
1.8, C22 = 2. The Young modulus E = 1 GPa and the
Poisson constant σ = 0.3 are used for the definition
of the mapping S. The value of the coefficient of the
Coulomb friction is 0.25. The state problem on Ω(α)
is discretized by isoparametric quadrilateral elements of
Lagrange type. The total number of nodes (vertices of
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quadrilaterals) is 3976 for any α ∈ Uad. The dimension
of the control vector α, generating the Bezier function
and defining Ω(α), is d = 8.

The stopping tolerance was set to εS = 1 ·10−6. This
required precision was reached after 11 iterations. We
depict the initial shape in Fig. 8 and the distribution
of the von Mises stress in the loaded body in Fig. 9.
Figure 10 shows the optimal shape and Fig. 11 shows
the von Mises stress in the deformed optimal body. Fi-
nally, figures Fig. 12 and Fig. 13 compare the contact
normal stresses for the initial and optimal shape, re-
spectively. Note that during the optimization process
the initial value J (α0) = 2.8612 · 1011 of the cost func-
tional dropped to J (αopt) = 1.0695 ·1011. The decrease
of the peak stress is also quite significant. The experi-
ment was carried out in Mathworks Matlab.

Fig. 8: Example, initial design – the initial shape of the body.

Fig. 9: Example, initial design – the distribution of the von
Mises stress.

Fig. 10: Example, optimal design – the optimal shape of the
body.

Fig. 11: Example, optimal design – the distribution of the von
Mises stress.
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Fig. 12: Example, normal stress for the initial design.
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Fig. 13: Example, normal stress for the optimal design.

4. Conclusion

In this contribution we have briefly introduced the
proximal bundle method for nonsmooth optimization
problems with linear constraints Cx ≤ b and with some
simple bounds xmin, xmax. We also outlined the imple-
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mented algorithm, which was employed to solve our
model example. We tried to deal with the shape opti-
mization of a discretized two-dimensional contact prob-
lem with Coulomb friction. To find a solution, we had
to solve nonsmooth minimization problem with linear
and box constraints. To be able to solve even more
complicated nonsmooth problems, we should enhance
our algorithm with solver for nonlinear constraints and
to improve the line search part.
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