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We present measurements of the differential cross section dσ/dpγ
T for the associated production of a c-

quark jet and an isolated photon with rapidity |yγ | < 1.0 and transverse momentum 30 < pγ
T < 300 GeV.

The c-quark jets are required to have |yjet| < 1.5 and pjet
T > 15 GeV. The ratio of differential cross sections

for γ + c to γ + b production as a function of pγ
T is also presented. The results are based on data

corresponding to an integrated luminosity of 8.7 fb−1 recorded with the D0 detector at the Fermilab
Tevatron pp̄ Collider at

√
s = 1.96 TeV. The obtained results are compared to next-to-leading order

perturbative QCD calculations using various parton distribution functions, to predictions based on the
kT-factorization approach, and to predictions from the sherpa and pythia Monte Carlo event generators.

© 2013 Elsevier B.V.

In hadron–hadron collisions high-energy photons are mainly
produced directly in a hard parton scattering process. For this rea-
son, and due to their pointlike electromagnetic coupling to the
quarks, they provide a clean probe of parton-level dynamics. Pho-
tons in association with a charm (c) quark are produced primarily
through the Compton-like scattering process gc → γ c, which dom-
inates up to photon transverse momenta with respect to the beam
axis of pγ

T ≈ 70–80 GeV, and through quark–antiquark annihila-
tion, qq̄ → γ g → γ cc̄, which dominates at higher pγ

T [1]. Inclusive
γ +c production may also originate from processes like gg → cc̄ or
cg → cg , where the fragmentation of a final state c-quark or gluon
produces a photon [1]. Photon isolation requirements substantially
reduce the contributions from these processes. Measurements of
the γ + c-quark jet differential cross section as a function of pγ

T
improve our understanding of the underlying production mecha-
nism and provide useful input for the c-quark parton distribution
functions (PDFs) of the colliding hadrons.

1 Visitor from Augustana College, Sioux Falls, SD, USA.
2 Visitor from The University of Liverpool, Liverpool, UK.
3 Visitor from UPIITA–IPN, Mexico City, Mexico.
4 Visitor from DESY, Hamburg, Germany.
5 Visitor from SLAC, Menlo Park, CA, USA.
6 Visitor from University College London, London, UK.
7 Visitor from Centro de Investigacion en Computacion – IPN, Mexico City, Mexico.
8 Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
9 Visitor from Universidade Estadual Paulista, São Paulo, Brazil.

In this Letter, we present measurements of the inclusive γ + c-
jet production cross sections using data collected from June 2006
to September 2011 with the D0 detector in pp̄ collisions at√

s = 1.96 TeV which correspond to an integrated luminosity of
8.7 ± 0.5 fb−1 [2]. The cross section is measured differentially as
a function of pγ

T for photons within rapidities |yγ | < 1.0 and
30 < pγ

T < 300 GeV, while the c-jet is required to have |yjet| < 1.5

and pjet
T > 15 GeV. In comparison to our previous γ + c-jet mea-

surement [3], we now retain all events having at least one jet
originating from a charm quark, as opposed to considering only the
events in which the charm jet candidate is the jet with highest pT .
To increase the signal yield and study a trend in the data/theory
ratio observed in Ref. [3], we have extended the rapidity [4] re-
gion from |yjet| < 0.8 to |yjet| < 1.5 and combine regions with
positive and negative products of rapidities, yγ yjet. In addition, an
increased integrated luminosity by about a factor of nine allows
the pγ

T range to be extended to higher values.
The data set and event selections used in our measurement are

similar to those used in the recently published measurement of
the γ +b-jet differential cross section [5]. However, because of the
difficulty in discriminating c-jets from light jets, this measurement
adopts a different strategy for the estimation of the c-jet fraction.
Here we apply a significantly more stringent requirement for se-
lecting heavy-flavor jets (originating from c and b quarks) in order
to suppress the rates of light jets (originating from light quarks or
gluons) by an additional factor of 2.5–3. This small residual con-
tribution of light jets is then subtracted from the selected data
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events prior to performing the fit with the discriminant templates
of b-jets and c-jets to extract the c-jet fraction. Using this event
selection criteria, we reproduce the results for the γ + b-jet cross
section, measure the γ + c-jet cross section and calculate the ratio
σ(γ + c)/σ (γ + b) in bins of pγ

T . Common experimental uncer-
tainties and dependence on the higher-order corrections in theory
are reduced in the ratio, allowing a precise study of the relative
σ(γ + c)/σ (γ + b) rates.

The D0 detector is a general purpose detector described in
detail elsewhere [6]. The subdetectors most relevant to this anal-
ysis are the central tracking system, composed of a silicon mi-
crostrip tracker (SMT) and a central fiber tracker (CFT) embedded
in a 1.9 T solenoidal magnetic field, the central preshower detector
(CPS), and the calorimeter. The CPS is located immediately before
the inner layer of the central calorimeter and is formed of approx-
imately one radiation length of lead absorber followed by three
layers of scintillating strips. The calorimeter consists of a central
section (CC) with coverage in pseudorapidity of |ηdet| < 1.1 [7],
and two end calorimeters (EC) extending coverage to |ηdet| ≈ 4.2,
all housed in separate cryostats, with scintillators between the
CC and EC cryostats providing sampling of developing showers
for 1.1 < |ηdet| < 1.4. The electromagnetic (EM) section of the
calorimeter is segmented longitudinally into four layers (EMi, i =
1–4), with transverse segmentation into cells of size �ηdet ×�φ =
0.1 × 0.1 [7], except EM3 (near the EM shower maximum), where
it is 0.05 × 0.05. The calorimeter allows for a precise measurement
of the energy and direction of electrons and photons, providing
an energy resolution of approximately 4% (3%) at an energy of
30 (100) GeV, and an angular resolution of about 0.01 radians. The
energy response of the calorimeter to photons is calibrated using
electrons from Z boson decays. Since electrons and photons in-
teract differently in the detector material before the calorimeter,
additional energy corrections as a function of pγ

T are derived using
a detailed geant-based [8] simulation of the D0 detector response.
These corrections are largest, ≈ 2%, at photon energies of about
30 GeV.

The data used in this analysis are collected using a combina-
tion of triggers requiring a cluster of energy in the EM calorimeter
with loose shower shape requirements. The trigger efficiency is
≈ 96% for photon candidates with pγ

T ≈ 30 GeV and ≈ 100% for
pγ

T > 40 GeV.
Offline event selection requires a reconstructed pp̄ interaction

vertex [9] within 60 cm of the center of the detector along the
beam axis. The missing transverse momentum in the event is re-
quired to be less than 0.7pγ

T to suppress the background contribu-
tion from W → eν decays. These requirements are highly efficient
(� 98%) for signal events.

The photon selection criteria in the current measurement are
identical to those used in Ref. [5]. The photon selection efficiency
and acceptance are calculated using samples of γ + c-jet events,
generated using the sherpa [10] and pythia [11] event generators.
The samples are processed through a geant-based [8] simulation
of the D0 detector response, followed by reconstruction using the
same algorithms as applied to data. As in Ref. [5], in the effi-
ciency and acceptance calculations the photon is required to be
isolated at the particle level by E iso

T = Etot
T (0.4) − Eγ

T < 2.5 GeV,
where Etot

T (0.4) is the total transverse energy of particles within a

cone of radius R= √
(�η)2 + (�φ)2 = 0.4 centered on the photon

and Eγ
T is the photon transverse energy. The particle level includes

all stable particles as defined in Ref. [12]. The photon acceptance
varies within (82–90)% with a relative systematic uncertainty of
(2–5)%, while the efficiency to pass photon identification criteria is
(68–85)% with 3% systematic uncertainty.

At least one jet with pjet
T > 15 GeV and |yjet| < 1.5 must be

reconstructed in each event. Jets are reconstructed using the D0

Run II algorithm [13] with a cone radius of R= 0.5. The jet accep-
tance with respect to the pjet

T and |yjet| varies between 91% and
100% in different pγ

T bins. Uncertainties on the acceptance due to
the jet energy scale, jet energy resolution, and the difference be-
tween results obtained with sherpa and pythia are in the range of
(1–4)%. A set of criteria is imposed to have sufficient information
to classify the jet as a heavy-flavor candidate: the jet is required
to have at least two associated tracks with pT > 0.5 GeV with at
least one hit in the SMT, and at least one of these tracks must have
pT > 1.0 GeV. These criteria have an efficiency of about 90%.

To enrich the sample with heavy-flavor jets, a neural net based
b-tagging algorithm (b-NN) is applied. It exploits the longer life-
times of b-flavored hadrons in comparison to their lighter coun-
terparts, after the rejection of long-lived K 0

s and Λ decays [14].
The inputs to the b-NN combine information from the impact pa-
rameter of displaced tracks and the topological properties of sec-
ondary vertices reconstructed in the jet to provide a continuous
output value that tends towards one for b-jets and zero for light
quark jets. Events are required to contain at least one jet satisfy-
ing b-NN output > 0.7. This b-tagging selection suppresses light
jets to less than 5% of the heavy-flavor enhanced sample. The effi-
ciency for b- and c-jets to satisfy the b-tagging requirements in the
simulation is scaled by the data-to-Monte Carlo (MC) correction
factors parametrized as a function of jet pT and η [14]. Depend-
ing on pγ

T , the selection efficiency for this requirement is (8–10)%
for c-jets with relative systematic uncertainties of (6–23)%, caused
by uncertainty on the data-to-MC correction factors. The maxi-
mum difference between the efficiencies for c-jets arising from the
Compton-like and annihilation subprocesses is about 10%.

The relative rate of remaining light jets (“light/all”) in the sam-
ple after the final selection is estimated using sherpa and pythia

γ + jet events, taking into account the data-to-MC correction
factors as described in Ref. [14]. The light jet rates predicted by
pythia and sherpa agree within 5%. The central predictions are
taken from sherpa, which agrees with measured γ + jet [15] and
γ + b-jet [5] cross sections within (10–25)%.

After application of all selection requirements, 130,875 events
remain. We estimate the photon purity using an artificial neural
network discriminant [5]. The distribution of the output of this dis-
criminant (O NN) is fitted to a linear combination of templates for
photons and jets obtained from simulated γ + jet and dijet sam-
ples, respectively. An independent fit is performed in each pγ

T bin.
It yields photon purities between 62% and 99%, which are close to
those obtained in Ref. [5]. Their systematic uncertainties are of a
comparable magnitude, (5–9)%.

The invariant mass of all charged particles associated with a
displaced secondary vertex in a jet, MSV, is a powerful variable to
discriminate c- from b-jets. Since the MSV templates for light and
c-jets after application of tight b-tagging requirements are quite
close to each other, we first subtract the remaining small fraction
(1–5%) of light jets from the data. Then the c-jet fraction is de-
termined by fitting MSV templates for c- and b-jets to the (γ +
heavy-flavor jet) data. Jets from b quarks contain secondary ver-
tices that have in general larger values of MSV as compared to
c-jets and the region beyond MSV > 2.0 GeV is strongly dominated
by b-jets. The templates for b- and c-jets are obtained from pythia

samples of γ +b-jet and γ +c-jet events, respectively, and are con-
sistent with the templates generated using sherpa. The templates
for jets arising from the Compton-like and annihilation subpro-
cesses are also similar to each other.

The result of a maximum likelihood fit to the MSV templates,
normalized to the number of events in data, is shown in Fig. 1
for the 50 < pγ

T < 60 GeV bin as an example. Fits in the other pγ
T

bins are of similar quality. As shown in Fig. 2, the estimated c-jet
fraction obtained from the fits in the final selected heavy-flavor
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Fig. 1. (Color online.) Distribution of secondary vertex mass after all selection cri-
teria for a representative bin of 50 < pγ

T < 60 GeV. The expected contribution from
the light-jet component has been subtracted from the data. The distributions for
the b-jet and c-jet templates (with statistical uncertainties) are shown normalized
to their respective fitted fractions.

sample after subtraction of the light-jet component drops with
increasing pγ

T , on average, from about 52% to about 40%. The cor-
responding fit uncertainties range between (4–32)%, increasing to-
wards higher pγ

T , and are dominated by the limited data statistics.
Since the fits are performed independently in each pγ

T bin, these
uncertainties are uncorrelated from bin to bin. Additional system-
atic uncertainties are estimated by varying the relative rate of light
jets by ±50% and by considering the differences in the light-jet
predictions from sherpa and pythia event generators. These two
sources lead to uncertainties on the c-jet fraction of about (5–9)%
and 6%, respectively.

Systematic uncertainty on the measured cross sections due to
the b-NN selection is estimated by performing the measurement
with looser b-NN selections: requiring b-NN output > 0.3 or > 0.5
instead of 0.7. In both cases, this significantly increases the light-
jet rate and also changes the c- and b-jet fractions, resulting in a
variation of the γ + c-jet cross section of � 7%. This variation is
taken as a systematic uncertainty on the cross section.

The data, corrected for photon and jet acceptance, reconstruc-
tion efficiencies and the admixture of background events, are pre-
sented at the particle level [12] for comparison with predictions
by unfolding the data for effects of detector resolution.

Fig. 2. The c-jet fraction in data after subtraction of light-jet background as a func-
tion of pγ

T derived from the template fit to the heavy quark jet data sample after
applying all selections. The error bars include statistical and systematical uncertain-
ties. Binning is the same as given in Table 1.

The differential cross sections of γ + c-jet production are ex-
tracted in nine bins of pγ

T . They are listed in Table 1 and are
shown in Fig. 3. The data points are plotted at the values of pγ

T
for which the value of a smooth function describing the depen-
dence of the cross section on pγ

T equals the averaged cross section
in the bin [16].

The statistical uncertainty of the results ranges from 2% in the
first pγ

T bin to 11% in the last pγ
T bin. The total systematic un-

certainty varies between 14% and 42% across these bins. The main
sources of uncertainty at low pγ

T are due to the photon purity (up
to 8%), the c-jet fraction (10–33%), and the luminosity (6%) [2].
The total systematic uncertainties (δsyst) and the bin-to-bin uncor-
related components (δunc

syst) are shown in Table 1.
Next-to-leading order (NLO) perturbative QCD predictions of or-

der O(α2
s ) [1,17], with the renormalization scale μR , factorization

scale μF , and fragmentation scale μ f all set to pγ
T , are given in Ta-

ble 1. The uncertainty from the scale choice is estimated through
a simultaneous variation of all three scales by a factor of two, i.e.,
for μR,F , f = 0.5pγ

T and 2pγ
T , and is found to be similar to those

for γ + b-jet predictions (5–30)%, being larger at higher pγ
T [5].

The NLO predictions utilize cteq6.6M PDFs [18] and are cor-
rected for non-perturbative effects of parton-to-hadron fragmen-
tation and multiple parton interactions. The latter are evaluated
using sherpa and pythia MC samples generated using their default
settings [10,11]. The overall corrections vary within 0.90–0.95 with

Table 1
The γ + c-jet production cross sections dσ/dpγ

T in bins of pγ
T for |yγ | < 1.0, pjet

T > 15 GeV and |ηjet| < 1.5 together with statistical uncertainties (δstat), total systematic
uncertainties (δsyst), and the uncorrelated component of δsyst (δunc

syst). The column δtot shows total experimental uncertainty obtained by adding δstat and δsyst in quadrature.
The last four columns show theoretical predictions obtained within NLO QCD, kT-factorization, and by the pythia and sherpa event generators.

pγ
T bin (GeV) 〈pγ

T 〉 (GeV) dσ/dpγ
T (pb/GeV)

Data δstat (%) δsyst (δunc
syst) (%) δtot (%) NLO QCD kT fact. pythia sherpa

30–40 34.2 8.83 2 15 (3) 15 10.5 6.88 6.55 10.0
40–50 44.3 3.02 3 14 (3) 15 2.96 2.19 2.21 3.47
50–60 54.3 1.33 3 14 (4) 14 1.03 8.59×10−1 8.10×10−1 1.36
60–70 64.5 6.15×10−1 3 14 (5) 14 4.15×10−1 4.12×10−1 3.39×10−1 5.52×10−1

70–90 78.1 2.73×10−1 3 14 (5) 14 1.39×10−1 1.68×10−1 1.24×10−1 1.87×10−1

90–110 98.6 8.61×10−2 4 16 (8) 17 3.80×10−2 6.09×10−2 3.90×10−2 5.36×10−2

110–140 122 2.79×10−2 5 19 (11) 19 1.06×10−2 2.34×10−2 1.23×10−2 1.77×10−2

140–180 156 9.54×10−3 7 24 (17) 26 2.49×10−3 7.11×10−3 3.07×10−3 4.39×10−3

180–300 216 1.16×10−3 11 42 (32) 43 2.79×10−4 1.44×10−3 4.01×10−4 5.83×10−4
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Fig. 3. (Color online.) The γ + c-jet differential production cross sections as a func-
tion of pγ

T . The uncertainties on the data points include statistical and systematic
contributions added in quadrature. The horizontal error bars show the pγ

T bins. The
measurements are compared to the NLO QCD calculations [1,17] using cteq6.6M
PDFs [18] (solid line). The predictions from sherpa [10], pythia [11] and kT factor-
ization approach [19,20] are shown by the dash-dotted, dotted and dashed lines,
respectively.

an uncertainty of � 2% assigned to account for the difference be-
tween the two MC generators.

The predictions based on the kT-factorization approach [19,20]
and unintegrated parton distributions [21] are also given in Ta-
ble 1. The resummation of gluon diagrams with gluon transverse
momentum (kT) above a scale μ of order 1 GeV, leads to a broad-
ening of the photon transverse momentum distribution in this ap-
proach [19]. The scale uncertainties on these predictions vary from
about −28%/ + 31% at 30 < pγ

T < 40 GeV to about +14%/ + 5% in
the last pγ

T bin.
Table 1 also contains predictions from the pythia [11] event

generator with the cteq6.1L PDF set. It includes only 2 → 2 matrix
elements (ME) with gc → γ c and qq̄ → γ g scatterings (defined at
LO) followed by g → cc̄ splitting in the parton shower (PS). We
also provide predictions by the sherpa MC event generator [10]
with the cteq6.6M PDF set [18]. Matching between the ME par-
tons and the PS jets follows the prescription given in Ref. [15],
with the matching scale taken to be 15 GeV. Systematic uncertain-
ties are estimated by varying the ME–PS matching scale by ±5 GeV
around the chosen central value [22], resulting in a ±7% cross sec-
tion variation.

All theoretical predictions are obtained using the photon isola-
tion requirement of E iso

T < 2.5 GeV. The predictions are compared
to data in Fig. 3 as a function of pγ

T . The ratios of data over
the NLO QCD calculations and of the various theoretical predic-
tions to the NLO QCD calculations are presented in Fig. 4. The
NLO predictions with cteq6.6M agree with mstw2008 [23] and
abkm09nlo [24] within 10%. Parameterizations for models contain-
ing intrinsic charm (IC) have been included in cteq6.6c [25]. Here
we consider the BHPS IC model [26,27], based on the Fock space
picture of the nucleon structure [28], in which intrinsic charm
appears mainly at large momentum fractions x, and the sea-like
model in which the charm PDF is sea-like, similar to that of the
light-flavor sea quarks. The NLO QCD predictions based on these
intrinsic charm models are normalized to the standard cteq pre-
dictions and are also shown in Fig. 4. Both non-perturbative intrin-
sic charm models predict a higher γ + c-jet cross section. In the

Fig. 4. (Color online.) The ratio of γ + c-jet production cross sections to NLO pre-
dictions for data and theoretical predictions. The uncertainties on the data include
both statistical (inner error bar) and total uncertainties (full error bar). Also shown
are the uncertainties on the theoretical QCD scales and the cteq6.6M PDFs. The ra-
tio for intrinsic charm models [25] are presented as well as the predictions given
by kT-factorization [19,20], sherpa [10] and pythia [11].

case of the BHPS model, the ratio grows with pγ
T , while an oppo-

site trend is exhibited by the sea-like model.
The measured cross sections are in agreement with the NLO

QCD predictions within theoretical and experimental uncertain-
ties in the region of 30 < pγ

T � 70 GeV, but show systematic
disagreement for larger pγ

T . The cross section slope in data dif-
fers significantly from the NLO QCD prediction. The results sug-
gest a need for higher-order perturbative QCD corrections in the
large pγ

T region, which is dominated by the annihilation process
qq̄ → γ g (with g → cc̄), and resummation of diagrams with ad-
ditional gluon radiation. In addition, the underestimation of the
rates for diagrams with g → cc̄ splittings may result in lower the-
oretical predictions of cross sections as suggested by LEP [29],
LHCb [30] and ATLAS [31] results. The prediction from the kT-
factorization approach is in better agreement with data at pγ

T >

120 GeV. However, it underestimates the cross section in the low
and intermediate pγ

T region. The γ + c-jet cross section as pre-
dicted by sherpa becomes higher than the NLO QCD prediction
at large pγ

T , but is still lower than the measured values. It has
been suggested that combining NLO parton-level calculations for
the ME with PS predictions [32] will improve the description of
the data [33].

In addition to measuring the γ +c-jet cross section, we also ob-
tain results for the γ +b-jet cross section using the new tight b-NN
selection. The values of the obtained γ + b-jet cross section agree
within 10% (i.e. within uncertainties) with the published results [5]
obtained with a looser b-NN selection. We use them to calculate
the ratio σ(γ + c)/σ (γ + b) in bins of pγ

T . In this ratio, many
experimental systematic uncertainties cancel. Also, theory predic-
tions of the ratio are less sensitive to the scale uncertainties, and
effects from missing higher-order terms that impact the normaliza-
tions of the cross sections. The remaining uncertainties are caused
by largely (65–67%) correlated uncertainties coming from the fit-
ting of c-jet and b-jet MSV templates to data, and by other uncer-
tainties on the c-jet fractions discussed above. The systematic un-
certainties on the ratio vary within (6–26)%, being largest at high
pγ

T . Theoretical scale uncertainties, estimated by varying scales by
a factor of two (to μR,F , f = 0.5pγ

T and 2pγ
T ) in the same way for
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Table 2
The σ(γ + c)/σ (γ + b) cross section ratio in bins of pγ

T for |yγ | < 1.0, pjet
T > 15 GeV and |ηjet| < 1.5 together with statistical uncertainties (δstat), total systematic uncertain-

ties (δsyst), and the uncorrelated component of δsyst (δunc
syst). The column δtot shows total experimental uncertainty obtained by adding δstat and δsyst in quadrature. The last

four columns show theoretical predictions obtained using NLO QCD, kT-factorization, pythia and sherpa event generators.

pγ
T bin (GeV) 〈pγ

T 〉 (GeV) σ(γ + c)/σ (γ + b)

Data δstat (%) δsyst (δunc
syst) (%) δtot (%) NLO QCD kT fact. pythia sherpa

30–40 34.2 5.83 1 6 (3) 6 5.81 4.30 5.10 6.17
40–50 44.3 5.03 1 6 (3) 6 5.28 4.01 4.97 5.28
50–60 54.3 4.90 1 7 (3) 7 4.79 3.83 4.66 4.79
60–70 64.5 4.55 1 8 (4) 8 4.37 3.91 4.34 4.21
70–90 78.1 4.97 1 8 (4) 8 3.83 3.88 3.99 3.54
90–110 98.6 4.22 2 9 (6) 9 3.19 3.83 3.59 2.95

110–140 122 3.73 3 10 (6) 11 2.60 3.86 3.00 2.50
140–180 156 4.34 5 13 (10) 14 2.12 3.53 2.44 2.19
180–300 216 3.38 8 26 (22) 27 1.73 4.04 1.98 1.93

Fig. 5. (Color online.) The ratio of γ + c-jet and γ + b-jet production cross sections
for data together with theoretical predictions as a function of pγ

T . The uncertainties
on the data include both statistical (inner error bar) and total uncertainties (full
error bar). Predictions given by kT-factorization [19,20], sherpa [10] and pythia [11]
are also shown. The pythia predictions with a contribution from the annihilation
process increased by a factor of 1.7 are shown as well. The predictions for intrinsic
charm models [25] are also presented.

σ(γ + c) and σ(γ + b) predictions, are also significantly reduced.
Specifically, residual scale uncertainties are typically � 10% for the
kT-factorization approach and � 4% for NLO QCD, which indicates
a much smaller dependence of the ratio on the higher-order cor-
rections. Experimental results as well as theoretical predictions for
the ratios are presented in Table 2.

Fig. 5 shows the measured ratio σ(γ + c)/σ (γ + b) as a func-
tion of pγ

T and a comparison with various predictions. There is
good agreement with NLO QCD, sherpa and pythia predictions
in the region 30 < pγ

T � 70 GeV, while kT-factorization predicts
smaller ratios than observed in data. At higher pγ

T , data show
systematically higher ratios than NLO QCD, sherpa and pythia pre-
dictions, while kT-factorization starts agreeing with data within
uncertainties. We also show NLO predictions with the BHPS [26,
27] and sea-like IC models [25] used to predict γ + c-jet cross
section, while standard cteq6.6M is used to predict the γ + b-jet
cross section. The BHPS model agrees with data at pγ

T > 80 GeV,
while the sea-like model is significantly beyond the range of data
points. BHPS model would better describe the ratio to data with a
small shift in normalization. As with the γ + c-jet measurement,
the σ(γ + c)/σ (γ + b) ratio can also be better described by larger
g → cc̄ rates than those used in the current NLO QCD, sherpa

and pythia predictions. To test this, we have increased the rate

of the annihilation process (where c-jet is always produced due
to g → cc̄ splitting) in the pythia predictions. The best descrip-
tion of data is achieved by increasing the rates by a factor of 1.7
with χ2/ndf � 0.7 (compared to χ2/ndf = 4.1 if such a factor is
unity). However, according to our estimates using the signal events
simulated with sherpa, there are also about (10–35)% (higher for
larger pγ

T ) events with two c-jets. Assuming that one jet is com-
ing from gluon initial state radiation followed by g → cc̄ splitting,
the required overall correction factor would be smaller by about
(8–24)%.

In conclusion, we have measured the differential cross section
of γ + c-jet production as a function of pγ

T at the Fermilab Teva-
tron pp̄ collider. Our results cover the kinematic range 30 < pγ

T <

300 GeV, pjet
T > 15 GeV, |yγ | < 1.0, and |yjet| < 1.5. In the same

kinematic region, and in the same pγ
T bins, we have measured

the σ(γ + c)/σ (γ + b) cross section ratio. None of the theoreti-
cal predictions considered give good description of the data in all
pγ

T bins. Such a description might be achieved by including higher-
order corrections into the QCD predictions, while at pγ

T � 80 GeV
the observed difference from data may also be caused by an un-
derestimated contribution from gluon splitting g → cc̄ [29–31] in
the annihilation process or by contribution from intrinsic charm.
The presented results can be used for further development of the-
oretical models to understand production of high energy photons
in association with heavy-flavor jets.
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