
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111114

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16195562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111114

Towards a Language for Coherent Enterprise Architecture Descriptions

Henk Jonkers1, René van Buuren1, Farhad Arbab3, Frank de Boer3, Marcello Bonsangue4,
Hans Bosma5, Hugo ter Doest1, Luuk Groenewegen4, Juan Guillen Scholten3, Stijn Hoppenbrouwers2,

Maria-Eugenia Iacob1, Wil Janssen1, Marc Lankhorst1, Diederik van Leeuwen1, Erik Proper2,
Andries Stam4,5, Leon van der Torre3, Gert Veldhuijzen van Zanten2

1Telematica Instituut, P.O. Box 589, 7500 AN Enschede, the Netherlands
Phone: +31 53 4850485, fax: +31 53 4850400, e-mail: Henk.Jonkers@telin.nl

2University of Nijmegen, Nijmegen, the Netherlands.
3Centrum voor Wiskunde en Informatica, Amsterdam, the Netherlands

4Leiden Institute for Advanced Computer Science, Leiden, the Netherlands
5Ordina Public Consulting, Rosmalen, the Netherlands

Abstract

A coherent description of architectures provides insight,
enables communication among different stakeholders
and guides complicated (business and ICT) change proc-
esses. Unfortunately, so far no architecture description
language exists that fully enables integrated enterprise
modelling. In this paper we focus on the requirements and
design of such a language. This language defines generic,
organisation-independent concepts that can be special-
ised or composed to obtain more specific concepts to be
used within a particular organisation. It is not our inten-
tion to re-invent the wheel for each architectural domain:
wherever possible we conform to existing languages or
standards such as UML. We complement them with miss-
ing concepts, focussing on concepts to model the relation-
ships among architectural domains. The concepts should
also make it possible to define links between models in
other languages. The relationship between architecture
descriptions at the business layer and at the application
layer (business-IT alignment) plays a central role.

1. Introduction

Changes in a company’s strategy and business goals have
significant consequences for the organisation structure,
processes, software systems, data management and tech-
nical infrastructures. Companies have to adjust processes
to their environment, open up internal systems and make
them transparent to both internal and external parties.
Architectures are a way to chart the complexity involved.

Many enterprises have recognised the value of archi-
tectures and to some extent make use of them during sys-

tem evolution and development. Depending on the type of
enterprise or maturity of the architecture practice, in most
cases a number of separate architectural domains are dis-
tinguished such as product, business, information and
application domain. For each architectural domain archi-
tects have their own concepts, modelling techniques, tool
support, visualisation techniques and so on. Clearly, this
way of working does not necessarily lead to a coherent
view on the enterprise.

Entrepises want to have insight into complex change
processes. The development of coherent views of an en-
terprise and a disciplined architectural working practice
significantly contribute to the solution of this complex
puzzle. Coherent views provide insight and overview,
enable communication among different stakeholders and
guide complicated change processes. Unfortunately there
is a downside to this euphoria. So far no architecture de-
scription language exists that fully enables integrated en-
terprise modelling.

There is a need for an architecture language that en-
ables coherent enterprise modelling. Architects need
proper instruments to constructs architectures in a uni-
form way. Figure 1 illustrates the scope of such an inte-
grated set of architecture instruments. Important elements
of such an approach include:
• The development of a coherent enterprise modelling

language.
• Development of specialised views and visualisation

techniques in order to provide insight for different
stakeholders.

• Development of analysis techniques that aid in un-
derstanding the complex models.

Architects Stakeholders

Architecture
models

Visualisation

techniques

Analysis
techniques

Architects Stakeholders

Architecture
models

Visualisation

techniques

Analysis
techniques

Figure 1. Scope of architecture support

By using a uniform modelling language architects can
avoid a Babel-like confusion. At the same time an archi-
tectural modelling language should allow the develop-
ment of specialised visualisation techniques for different
stakeholders, such as end-users, project managers, system
developers, etc. After all, architectures are the means by
which architects communicate with the different stake-
holders, and this communication works best if it is tai-
lored towards the specific concerns and information needs
that they have. Additionally, analysis techniques, for ex-
ample, impact-of- change analysis, provide ways to study
the properties of an integrated model in more detail. In
this way architecture provides the desired insight and
overview, which allows a well-organised change process.
We realise that multiple languages and dialects will al-
ways exist. Striving for one unique language would be
like chasing windmills. Therefore, the flexibility to use
other languages is recognised, and is addressed by means
of a specialisation and generalisation requirement of the
language itself. In our view a well-defined enterprise ar-
chitecture language forms the core of such an architecture
approach. In this paper we focus on the requirements and
a first design of such a language. It is not our intention to
re-invent the wheel for each architecture domain. When
possible we follow standards, such as UML, as closely as
possible. The focus is on the identification of specific
relationship concepts and the definition of cross-domain
relations.

In order to arrive at a coherent architectural descrip-
tion, several architectural domains and layers as well as
their relations must be modelled. This paper describes the
first steps towards a language to support this. The rela-
tions between the business and application layer, which
play a central role in this version of the language, are a
first contribution to the solution of the business-ICT
aligment problem that we try to tackle.

The structure of this paper is as follows. In Section 2
we give an overview of related work. Section 3 describes
principles that provide requirements for our language. In
Section 4 the actual metamodel is presented. Section 5
illustrates the use of the language with an example. Fi-

nally, in Section 6 we draw some conclusions and give
some suggestions for future work.

2. Related work

For the state of the art in enterprise modelling, we have to
consider languages for organisation and process model-
ling and languages for application and technology model-
ling. Although there is a trend towards considering the
relationship between the organisational processes and the
information systems and applications that support them
(often referred to as “business-IT alignment), modelling
techniques to really express this relationship hardly exist
yet.

A wide variety of organisation and process modelling
languages are currently in use: there is no single standard
for models in this domain. The conceptual domains that
are covered differ from language to language. In many
languages, the relations between domains are not clearly
defined. Also, most languages are not really suitable to
describe architectures: they provide concepts to model,
e.g., detailed business processes, but not the high-level
relationships between different processes. Some of the
most popular languages are proprietary to a specific soft-
ware tool. Relevant languages in this category include:
• The ebXML set of standards for XML-based elec-

tronic business, developed by OASIS and
UN/CEFACT, specifies the Business Process Speci-
fication Schema [4]. It provides a standard frame-
work by which business systems may be configured
to support execution of business collaborations con-
sisting of business transactions. It is focussed on the
external behaviour of processes for the sake of auto-
mating electronic commerce transactions. It is there-
fore less suited for general enterprise architecture
modelling.

• The Business Process Modeling Language BPML [1]
of the Business Process Management Initiative, is an
XML-based language for modelling business proc-
esses that has roots in the workflow management
world. It can be used to describe the inner workings
of, e.g., ebXML business processes.

• IDEF [9], originating from the US Ministry of De-
fence, is a collection of 16 (unrelated) diagramming
techniques, three of which are widely used: IDEF0
(function modelling), IDEF1/IDEF1x (information
and data modelling) and IDEF3 (process description).

• ARIS [16] is part of the widely used ARIS Toolset.
Although ARIS also covers other conceptual do-
mains, there is a clear focus on business process
modelling and organisation modelling.

• The Testbed language for business process modelling
[5], is used by a number of large Dutch organisations

in the financial sector, was developed by the
Telematica Instituut. We have gained a lot of experi-
ence with both the definition and the practical use of
this language, and it has provided important inspira-
tion for the definition of business-layer concepts.

In contrast to organisation and business process model-
ling, for which there is no single dominant language, in
modelling applications and technology the Unified Mod-
elling Language (UML) [3], has become a true world
standard.

UML is the mainstream modelling approach within
ICT, and its use is expanding into other areas, e.g., in
business modelling [6]. Another example is the UML
profile for for Enterprise Distributed Object Computing
(EDOC), which provides an architecture and modelling
support for collaborative or Internet computing, with
technologies such as web services, Enterprise Java Beans,
and Corba components [15]. This makes UML an impor-
tant language not only for modelling software systems,
but also for business processes and for general business
architecture. UML has either incorporated or superseded
most of the older ICT modelling techniques still in use.
However, UML is not easily accessible and understand-
able for managers and business specialists; therefore, spe-
cial visualisations and views of UML models should be
provided. Another important weakness of UML is the
large number of diagram types, with poorly defined rela-
tions between them. Given the importance of UML, other
modelling languages will likely provide an interface or
mapping to it.

Architecture description languages (ADLs) define
high-level concepts for architecture description, such as
components and connectors. A large number of ADLs
have been proposed, some for specific application areas,
some more generally applicable, but mostly with a focus
on software architecture. In [13] the basics of ADLs are
described and the most important ADLs are compared
with each other. Most have an academic background, and
their application in practice is limited. However, they
have a sound formal foundation, which makes them suit-
able for unambiguous specifications and amenable to dif-
ferent types of analysis.

The ADL ACME [8] is widely accepted as a standard
to exchange architectural information, also between other
ADLs. There are initiatives to integrate ACME in UML,
both by defining translations between the languages and
by a collaboration with OMG to include ACME concepts
in UML 2.0 [19]. In this way, the concepts will be made
available to a large user base and be supported by a wide
range of software tools. This obviates the need for a sepa-
rate ADL for modelling software systems. The Architec-
ture Description Markup Language (ADML) was
originally developed as an XML encoding of ACME. The

Open Group promotes ADML as a standard for enterprise
architectures.

The Reference Model for Open Distributed Processing
(RM-ODP) is a joint ISO/ITU-T standard for the specifi-
cation open distributed systems. It defines five viewpoints
on an ODP system that each has their own specification
language. For example, for the enterprise viewpoint,
which describes purpose, scope and policies of a system,
the RM-ODP Enterprise Language has been defined in
which, e.g., business objectives and business processes
can be modelled [11].

Although the above overview shows that there is a
fairly complete language coverage of the the seperate
architectural domains, the integration between the lan-
guages for the different domains is weak. In this paper,
therefore, we focus on a language that makes this integra-
tion possible. Within the architectural domains, we reuse
elements from existing languages as much as possible.

3. Language requirements and principles

In this section we discuss the principles underlying our
approach, which provide requirements for the architecture
description language.

3.1 Metamodel flexibility

A key challenge in the development of a general meta-
model for enterprise architecture is to strike a balance
between the specificity of the concepts used in different
organisations and a very general set of architecture con-
cepts which reflects a view of systems as a mere set of
interrelated entities. This effort is illustrated in Figure 2.
At the base of the triangle, we find the metamodels of the
architecture modelling concepts used by specific organi-
sations, as well as a variety of existing modelling lan-
guages and standards. At the top of the triangle we find
the “most general” metamodel for system architectures,
essentially a metamodel merely comprising the notions of
“thing” and “relationship”.

ProcessApplication

Company-specific
concepts, standards

Enterprise
architecture concepts

Generic concepts

m
or

e
ge

ne
ric

m
or

e
sp

ec
ifi

c

Object

Relation

Figure 2. Concepts at three levels of specificity

The metamodel that we propose defines the concepts
somewhere between these extremes, referred to as ‘enter-

prise architecture concepts’. These concepts are applica-
ble to describe enterprise architectures of any informa-
tion-intensive organisation and, if desired, they can be
further specialised or composed to form concepts tailored
towards a more specific context. Alternatively, as will be
explained in the next subsection, the enterprise architec-
ture concepts can be used to integrate more specific mod-
els described in other languages.

The enterprise architecture concepts themselves can be
defined as specialisations or compositions of the generic
concepts at the top of the triangle. Another way to look at
this is to view the generic concepts as a general means to
define the enterprise architecture concepts: they can be
considered the concepts to describe the metamodel. This
is a powerful tool to attain metamodel flexibility (see,
e.g., [12]). This approach is very similar to OMG’s Meta
Object Facility (MOF) [14], which, at the highest abstrac-
tion level, defines a hardwired meta-metamodel that is
used to define metamodels for different languages. It is
subject to further study within the project whether the
MOF meta-metamodel can be used as the basis for our
most generic language.

3.2 Integration of heterogeneous models

In current practice, architectural descriptions are hetero-
geneous in nature: each domain has its own description
techniques, textual or graphical, informal or with a pre-
cise meaning. One of the most important goals of our
metamodel is to bridge the gaps between these domains,
by providing a common conceptual foundation for archi-
tectural descriptions.

There are two ways in which the incorporation of dif-
ferent languages can be achieved:
• The concepts of other languages can be described in

terms of our general concepts, for example, as spe-
cialisations or compositions of these concepts. In
other words, the complete descriptions are translated
into our model.

• Descriptions in other languages, or parts thereof, can
be associated with objects in our model. This may be
done in a ‘formal’ way, in which certain ‘main’ con-
cepts from the original language are mapped onto our
concepts. However, a simple link, for example a text
document is also possible. The models in the original
language remain intact. This solution is illustrated in
Figure 3.

An advantage of the former solution is that analysis and
visualisation techniques defined for the enterprise archi-
tecture concepts can be applied to the entire model. An
advantage of the latter solution is that existing descrip-
tions can be reused as a whole, in a form that is still rec-

ognisable by the original designer. Our metamodel should
allow for both types of model integration.

Process 2 Process 1
a

b
c

Process 1
a

b
c

Process 1

UML component
diagram

Testbed process
diagram

Generic enterprise
architecture concepts

Service x

UML activity diagram

Application A

Figure 3. Linking heterogeneous models

3.3 Multiple views and visualisations

In accordance with IEEE standard 1471 [10], we assume
that, given an architectural description, different views on
this model can be created. These views only show se-
lected aspects of the complete description that are rele-
vant for a certain type of stakeholder. Views are described
with the same concepts (or a subset of the concepts) used
for a complete architectural description.

Another important principle in our approach is that we
separate the definition of the concepts and their represen-
tation. For the precise description of concepts it suffices
to define the abstract syntax [7] and their semantics (de-
pending on the application of the models, e.g., to perform
certain types of analysis). The concrete syntax, i.e., the
actual (graphical) notation that is used to represent the
concepts and their relationships, can be chosen independ-
ently of their formal definition; this notation may depend
on, for example, the selected view or the preferences of
an organisation. Figure 4 illustrates the separation of the
(input) model, views on this model and the representation
of these views. A viewpoint definition, based on stake-
holder concerns, determines the selection (or derivation)
of view content and the way in which this content is pre-
sented (or visualised) to the stakeholder. In certain view
presentations, it may be possible to modify the view con-
tent, which in turn may modify the original model. This is
indicated by the ‘update’ arrows in the figure.

 Presentation Presentation Viewpoint Viewpoint
Models Models

Model View
presentation

View
content

select
derive
select
derive

visualise

update update update
‘content
space’

‘visualisation
space’

Viewpoint Viewpoint

Architect Stakeholder Architect Stakeholder

Figure 4. Separation of models, views and
presentations

 For practical reasons, however, it may be useful to define
a ‘basic representation’ of the concepts, as we will do to
express our example in Section 5.

4. The metamodel

In the previous sections the requirements for an architec-
ture language were discussed. In this section we further
explore the design of such a language resulting in a first
version of a metamodel for coherent architecture descrip-
tions.

4.1 Framework

When studying architecture methods like TOGAF (see
http://www.togaf.org) or tools like ARIS [16], and taking
into account our experience in actual organisations, it
appears that roughly the following architectural domains
can be distinguished:
• The Product domain describing the products or ser-

vices that an enterprise offers tot its customers
• The Organisation domain describing the actors (em-

ployees, organisational units), and the roles they may
fulfil, working togehter in processes to deliver prod-
ucts.

• The Process domain describing business processes or
business functions that offer products or services

• The Information domain describing information that
is relevant from a business perspective

• The Data domain describing information suitable for
automated processing

• The Application domain describing software applica-
tions that support business processes or functions

• The Technical infrastructure domain describing
hardware platforms and technical communication in-
frastructure needed to support applications.

As observed earlier, an important requirement for our
language is to abstract from domain-specific concepts as
much as possible. Revealing the similarities between the

concepts used in the above domains yields a first abstrac-
tion that leads to a more generic language. In our view a
‘system’ in a broad sense, for example, an organisation or
software system, primarily consists of a set of actors (“ac-
tive things”) that have at least three aspects that should be
considered. Actors have structure, i.e. actors can be com-
posed of other actors. In this sense, structure describes the
static properties of an actor. Actors show behaviour (dy-
namics) and are likely to exchange information.

Next to the identification of these three aspects, we
take a common layered approach distinguishing a busi-
ness, application and technology layer. These aspects to-
gether with the different layers constitute a framework
(see Figure 5) consisting of nine cells. The cells in this
framework show resemblance to of the cells in the Zach-
man framework [18]. For further clarification the archi-
tectural domains mentioned earlier are projected into this
framework.

The goal of this paper is not to present a new frame-
work: the framework is mainly intended to guide the de-
sign of the metamodel. We observe that to identify
relevant concepts that fill the cells in the framework, the
framework does not have to be strictly applied. It is im-
possible and undesirable to define strict boundaries be-
tween layers or aspects. Especially considering the fact
that we focus on the relation among architectural do-
mains, it is likely that concepts are required to link the
various aspects and layers. Typically, such concepts cross
the boundaries indicated in the framework.

Business
layer

Application
layer

Technology
layer

Information
aspect

Behaviour
aspect

Structure
aspect

Process
domain

Organisation
domain

Information
domain

Data
domain

Application domain

Technical infrastructure domain

Product
domainBusiness

layer

Application
layer

Technology
layer

Information
aspect

Behaviour
aspect

Structure
aspect

Process
domain

Organisation
domain

Information
domain

Data
domain

Application domain

Technical infrastructure domain

Product
domain

Figure 5. Architectural framework

We develop our description language step by step. For
each next step we validate concepts and add new concepts
or relations. In this, we follow a ‘middle-out’ approach:
the focus of this paper is on the business and application
layers. In a later stage, among other things the product
domain and the technology layer will be added.

4.2 Relations

As observed in the introduction, this paper focuses on the
business and application layers. Moreover, we focus on
the concepts that are required to model the “operational”

issues in an enterprise; i.e. the issues that directly contrib-
ute to the primary processes and business goals. Our aim
is to describe the relations between existing concepts or
define specific relationship concepts in order to arrive at
the desired coherence. Therefore, we draw inspiration
from existing architecture languages or approaches such
as UML, Testbed [5] and the RM-ODP Enterprise Lan-
guage [11].

In addition to the concepts that are required to describe
the various architectural domains, inter-domain meta-
models are necessary to define the relation concepts be-
tween two or more domains. In this way, a hierarchy of
domain and inter-domain metamodels can be constructed
(see Figure 6).

Domain metamodel Domain metamodel

‘main’
concepts

relation
concepts ‘main’

concepts

relation
concepts

Inter-domain metamodel
relation

concepts

Figure 6. Domain and inter-domain concepts

The order in which the aspects are presented is arbitrary:
any two aspects may be related to each other. In contrast,
the layers in the framework constitute a functional or sys-
tem hierarchy. We do not model all inter-layer relations
explicitely. Following a common layered approach (e.g.,
OSI-model) layers are directly related only to layers di-
rectly above or below them.

In order to preserve the readability and clarity of mod-
els, we do not model the ‘diagonal’ relations between
cells explicitly. In our view these relations are not re-
quired for modelling the main coherency. These relations
can be derived if necessary.

4.3 Concepts and metamodel

It is our assumption that, in principle, the same generic
concepts can be used to describe the structure, behaviour
and information aspect of systems in all three layers of
the framework in Section 4.1. In spite of the general ap-
plicability of these generic concepts, it is still very useful
to also define the concepts specific to each layer. These
specific concepts are more easily recognised by the rele-
vant stakeholders. Moreover, they are needed to make the
relations between the layers explicit, which is an impor-
tant goal of our approach. In most cases, the layer-specific
concepts are straightforward specialisations of the generic
concepts.

In Table 1 we first summarise the most important ge-
neric concepts that we have identified, after wich we dis-
cuss their main relationships.

Concept Description
Behaviour
element

Unit of behaviour. Services can be
offered or used by a behaviour ele-
ment

Action Atomic behaviour element per-
formed by a single actor

Process Grouping of causally related actions
Function Grouping of actions according to,

e.g., required expertise, skill, re-
sources, etc.

Interaction Atomic behaviour element per-
formed by more than one actor

Service Behaviour made available to the
environment. A service is offered
by a behaviour element and can be
used by another behaviour element.

Transaction Grouping of interactions with the
environment, with a predefined
result and with restrictions on the
order in which the interactions may
occur

Event Something that happens and may
influence behaviour (e.g., a trigger)

Actor/component Entity that is capable of performing
behaviour

Interface The (logical) location where the
behavour of an component can be
accessed

Role Representation of a collection of
responsibilities that may be fulfilled
by one or more actors

Collaboration/
Connector

Connects roles and interfaces with
actors and components respectively

Data object Representation of information
Message Data objects intended to be ex-

changed by actors
Document Persistent representation of data

expressed by means of some me-
dium

Medium Physical entity or system sub-
stantiating data

Information The interpretation of data as per-
ceived by an actor

Table 1. Overview of concepts

Figure 7 gives an overview of the overall generic meta-
model using standard UML notation. It shows the main
concepts for each of the aspects, as well as the main links

between the aspects. The relations between aspects are
indicated by bold lines and the relations within an aspect
by normal lines.

Process

∗
∗

∗ ∗

∗

Simple
service

Composite
service

Function

Composite
behaviour

Action

Collaboration/
Connector

∗

∗

∗

Information

Trans -
action

2..*

Composite
actor/

component

∗

Simple
actor/

Component

∗

Data
collection

∗

Data
item

Structure
aspect

Behaviour
aspect

∗

manipulates

performs

Document

Information
aspect

Medium Message

contributes to

Actor/
Component

∗

offers

uses

carries

fulfils

Data
object

Role/
Interface

∗
Behaviour
element Service

exchanges

∗

∗

affects

results in

accessible
via

Event

Inter -
action

Figure 7. Summary of metamodel

A distinction is made between the externally visible be-
haviour of an actor (services) and the internal behaviour
that is required to realise these services. Services are ac-
cessible via the role/interface of an actor, whereas the
actor or component itself performs the actual behaviour.
A behaviour element can manipulate or use data elements
in various ways. A message is exchanged between actors
via services. A link between the information and the
structure aspect that we distinguish is that information
may pertain to a certain actor. Manipulation of data by an
actor always involves behaviour. Clearly, there are more
direct relations between the structure domain and other
aspects such as governance and responsibility. However,
this does not fall under the “operational” view that we
consider in this paper.

Up to now we considered the relations between as-
pects. The corresponding metamodel in Figure 7 is ge-
neric in the sense that it applies to both layers. In Table 2
we give a possible translation of the most important con-
cepts to more specific terms for the business layer and the
application layer concepts.

Figure 8 shows a condensed version of the metamodel
worked out for the business and application layer, empha-
sising the relations between the layers.

Generic Business layer Application
layer

Action Business activity Operation
Process Business process Flow
Function Business

function
Software func-
tion

Interaction Business interac-
tion

Application in-
teraction

Service Organisational
service

Application ser-
vice

Transaction Business transac-
tion

Application
transaction

Actor/component Business actor Application
component

Role/Interface Role Interface
Collaboration/
Connector

Collaboration Connector

Data object Business object Data object

Table 2. Specialisations of the concepts at the
business and application layer

Information
aspect

Behaviour
aspect

Structure
aspect

Business layer

Application layer

Software
function

ComponentComponent

Business
behaviour
element

External
application

service

Data
object
Data
object

offers

uses

exposes

manipulates
performs

Interface

has

accesses

Business
object

Organisational
service

offersuses

performsmanipulates

exposes
Role

ActorActor

fulfils

Figure 8. Core of the metamodel

In our view the strongest relation between the layers lies
within the behaviour aspect. In line with the trend towards
‘service orientation’, both at the business level (‘service
organisation’) and the application level (e.g., web ser-
vices), we relate the layers by means of services (see
Figure 9). In each layer, internal and external services are
defined. Internal services are offered and used within the
layers. External services, on the other hand, are offered by
a layer and used by its next higher layer. Moreover, ex-
ternal services of a higher layer may depend on services
in the same architectural layer or one layer below. Exam-
ples are external business services (“customer services”)

or external application services that are used by “the busi-
ness”.

Business
level

Application
level

Technology
level

Environ-
ment

external
organisational services

internal
application services

external
technology services

internal
organisational services

external
application services

‘customers’

internal
technology services

Business
level

Application
level

Technology
level

Environ-
ment

external
organisational services

internal
application services

external
technology services

internal
organisational services

external
application services

‘customers’

internal
technology services

Figure 9. Hierarchy of services

For the information aspect, we do not directly link be-
tween the two layers: data objects in the application layer
are available to the business layer only through services
that are offered by applications. A business object is a
unit of information that is relevant from a business per-
spective. It can be substantiated by a medium like a
physical document or text on a computer screen. Without
the active mediation of an application service, a business
representation of application data cannot be achieved: for
example, a printing service (realised by a printer and
printing application) is required to transform a Word
document into a hardcopy.

As for the structure aspect, an (application) interface is
the location where components in the application layer
interact with business actors. Therefore, ‘interface’ can be
considered a linking concept comparable to the service
concept for the behaviour aspect.

Summarising we observe that behaviour is the central
aspect: structure and information are linked through be-
haviour. We note that the current relations concepts cap-
ture the main relations between the concepts from
different layers and aspects. It is likely that other relations
exist or that further refinement of the relations results in
more relation types.

5. Example

Let us illustrate the use of our concepts by means of a
simple example. For this purpose, we first propose a basic
representation of the concepts.

ActorActor RoleRole

ComponentComponent Inter-
face

Connector

process

functionfunction

Service

Trans-
action
Trans-
action

DataData MessageMessage
Document

Event Manipulates Performs

Offers Uses Triggers

Figure 10. Representation of main concepts

Figure 11 provides an example of a model for the busi-
ness layer, describing the three aspects and their relation-
ships. It describes a situation where a client requests
insurance and receives an invoice for the premium. The
model is not complete but shows how business layer con-
cepts can be used.

Take out insurance

Receive
request

Process
request

Collect
premium

Premium
collection
Premium
collectionClientClient

Insurance
buyer

Insurance
buyer

InsurerInsurerArchiSuranceArchiSurance

Request
sent

Request
insurance

Invoice

Figure 11. Example business layer model

The client and insurance company (ArchiSurance) are
represented by the Insurance buyer and Insurer role, re-
spectively. The request of the client results in a trigger
(open arrow) for the ‘Take out insurance’process, which
consists of several sub-processes. Each sub-process gen-
erates a trigger for the next sub-process, indicated by the
open arrow. After the request has been received and proc-
essed the sub-process ‘Collect premium’ offers the ‘Pre-
mium collection’ transaction in which the Insurance buyer

and Insurer settle the agreement. The invoice is sent to the
Insurance buyer as part of the collect premium transac-
tion.

Figure 12 provides an example of a model for the ap-
plication layer. Numerous views on this model are possi-
ble that all emphasise other elements of the model. In
order to emphasise the three aspects and their relation-
ships, we create a layered view distinguishing the infor-
mation, behaviour and structure aspects. It describes an
application consisting of two components, linked by
means of a connector. Each component realises an appli-
cation function, which in turn offers an application ser-
vice that can be used by the ‘business’ (closed arrows).
The two application functions are linked by means of an
internal application service, which uses a message to
transfer the required transaction data. The ‘Billing’ func-
tion also uses ‘pricing data’, which is internal to this func-
tion.

Financial Application

Accounting
Component

Billing
Component

Transaction
processing Billing

Transaction data Pricing data

Application
Structure

Application
Behaviour

Application
Information

Transaction
entry

Bill
creation

Transaction data
provisioning

Billing data

Financial Application

Accounting
Component

Billing
Component

Transaction
processing
Transaction
processing BillingBilling

Transaction dataTransaction data Pricing dataPricing data

Application
Structure

Application
Behaviour

Application
Information

Transaction
entry

Bill
creation

Transaction data
provisioning

Billing dataBilling data

Figure 12. Example application layer model

Joining the two previous figures by relating the subproc-
esses “Process request” and “Collect premium” with the
services “Transaction entry” and “Premium collection”
yields a coherent model. In this way the business layer
and application layer are linked, taking into account the
three aspects and their relationships. From this model the
link can be derived between, for example the request for
insurance and the application components required to
support this request. Adding relevant attributes and as-
signing appropriate values may allow for more complex
types of analysis.

Note that it would be helpful to develop views (see
Section 3.3) that may be used to select and visualise the
relevant elements from this model (which for this small
example already becomes fairly complex). For example, a
simple view to show only how application services sup-
port the sub-processes at the business layer may provide

useful insight for several stakeholders in the organisation
(see Figure 13).

Take out insurance

Submit
request

insurance

Collect
premium

Transaction
entry

Bill
creation

Billing dataBilling data

Process
request

Figure 13. View of the link between the layers

6. Conclusions and future work

In this paper we identified a number of principles and
requirements for a language for coherent enterprise de-
scriptions, and we presented a first version of such a lan-
guage. This languages serves to bring the many separate
architectural descriptions for specific domains closer to-
gether, as at present no architectural language exists that
makes it possible to describe the coherence of an enter-
prise as a whole. Since separate languages and their cor-
responding approaches are deeply embedded in
organisations it is not recommendable to develop an en-
tirely new language. Therefore, our new language aims to
embrace and complement successful and widely adopted
languages.

The concepts of our language for enterprise architec-
ture description holds the middle between the detailed
concepts used in various organisations and very general
architecture concepts which view systems merely as enti-
ties and their inter-relations. Proper generalisation and
specialisation mechanism to link concepts from a generic
architecture language and specific modelling languages
are still required for the practical application of the lan-
guage.

The language forms a basis for bridging the heteroge-
neity of existing languages. Although the details still need
to be worked out, potentially models originating from
various tools can be linked. This stimulates possible reuse
in a form that is still recognisable for the original de-
signer.

In an architecture that encompasses several models,
multiple views provide an essential instrument to handle
the complexity. Based on the complex coherent model,
relevant information can be selected depending on the
stakeholder concerns. Likewise, it is possible to present
this information in a way that suits the stakeholder.

Concepts in our metamodel have been inspired by in-
ternational standards and cover the business and applica-
tion layers. For each layer the information, behaviour and

structure aspects are described, as well as the main rela-
tions between these aspects. Moreover, the relations be-
tween the business and application layers are identified.
We think that services are a suitable way to relate the lay-
ers with respect to the behaviour aspect. The relations
between the layers with respect to the other aspects are
weaker. Both the structure and information aspect be-
tween two layers are linked mainly through behaviour.

By means of a simple example we showed that our
concepts can be used to make a coherent description cov-
ering all aspects and layers within an enterprise. Even this
limited example demonstrates that the complexity of the
integrated models will be a problem. The development of
views that select and visualise relevant elements from
these models for specific stakeholds helps to fully exploit
the models.

The work described in this paper is part of an ongoing
project called ArchiMate. Here we focus on the general
requirements of an architecture language and the core
concepts and their relations. Further work will involve,
among other things:

• Further specification of the detailed relations be-
tween concepts, aspects and layers.

• Further specification of concepts, for example, by
means of attributes.

• Extension of the metamodel to the technological
infrastructure layer and product domain.

• Formalisation of the metamodel to allow for
analysis or automated visualisation.

• Identification of relevant viewpoints and related
visualisations.

• Integration with other tool support environments.
• Further practical validation of the metamodel.

Acknowledgements

This paper results from the ArchiMate project
(http://archimate.telin.nl), a research initiative that aims to
provide concepts and techniques to support architects in
the visualisation, communication and analysis of inte-
grated architectures. The ArchiMate consortium consists
of ABN AMRO, Stichting Pensioenfonds ABP, the Dutch
Tax and Customs Administration, Ordina, Telematica
Instituut, Centrum voor Wiskunde en Informatica, Katho-
lieke Universiteit Nijmegen, and the Leiden Institute of
Advanced Computer Science.

We would like to thank Henk Eertink for his valuable
comments to improve this paper.

References

[1] Arkin, A., Business Process Modeling Language,
BPMI.org, 2002.
http://www.bpmi.org/bpmi-downloads/BPML1.0.zip

[2] Boer, F. de, M. Bonsangue, R. van Buuren, L. Groenewe-
gen, S. Hoppenbrouwers, H. Jonkers, M. Lankhorst, E.
Proper, A. Stam and L. van der Torre, Concepts for Archi-
tectural Description, H. Jonkers (ed.), ArchiMate delivera-
ble D2.2.1, version 1.0. Telematica Instituut,
TI/RS/2003/007, Enschede, the Netherlands, Jan. 2003.

[3] Booch, G., J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley, 1999.

[4] Business Process Project Team, ebXML Business Process
Specification Schema Version 1.01, UN/CEFACT and
OASIS, 11 May 2001.
http://www.ebxml.org/specs/ebBPSS.pdf

 [5] Eertink H., W. Janssen, P. Oude Luttighuis, W. Teeuw and
C. Vissers, ‘A business process design language’. In: Pro-
ceedings of the 1st World Congress on Formal Methods,
Toulouse, France, 1999.

[6] Eriksson, H.-E. and M. Penker, Business Modeling with
UML: Business Patterns at Work, J. Wiley, 2000.

[7] Erwig, M., ‘Abstract syntax and semantics of visual lan-
guages’, Journal of Visual Languages and Computing, 9
(5), 1998, pp. 461-483.

[8] Garlan, D., R.T. Monroe and D. Wile, ‘ACME: An archi-
tecture description interchange language’, in Proceedings
of CASCON ’97, Toronto, Candada, Nov, 1997, pp. 169-
183.

[9] IDEF, Integration Definition for Function Modeling
(IDEF0) Draft, Federal Information Processing Standards
Publication FIPSPUB 183, U.S. Department of Commerce,
Springfield, VA, USA, Dec. 1993.

[10] IEEE Computer Society. IEEE Std 1471-2000: IEEE Rec-
ommended Practice for Architectural Description of Soft-
ware-Intensive Systems, Oct. 9, 2000.

[11] ITU–T Recommendation X.911 ISO/IEC 15414. Informa-
tion technology – Open Distributed Processing – Reference
Model – Enterprise Language. International Telecommuni-
cation Union, 2001.

 [12] Karagiannis, D. and H. Kühn, ‘Metamodelling platforms’.
In K. Bauknecht et al. (eds.), Proceedings 3rd International
Conference EC-Web 2002 - DEXA 2002, Aix-en-Provence,
France, Sept. 2002, p. 182. (Springer-Verlag, LNCS 2455.)

[13] Medvidovic, N. and R.N. Taylor, ‘A classification and
comparison framework for software architecture descrip-
tion languages’, IEEE Transactions on Software Engineer-
ing, 26 (1), Jan. 2000, pp. 70-93.

[14] Object Management Group, Meta Object Facility (MOF)
Specification, version 1.4, April 2002.

[15] Object Management Group, UML Profile for Enterprise
Distributed Object Computting (EDOC), OMG final
adopted specification ptc/02-02-05,
http://www.omg.org/docs/ptc/02-02-05.pdf

[16] Scheer, A.-W., Business Process Engineering: Reference
Models for Industrial Enterprises, Springer, Berlin, 2nd
ed., 1994.

[17] Soley, R. and the OMG Staff Strategy Group, Model
Driven Architecture, Object Management Group White Pa-
per, Draft 3.2, Nov. 2000.

[18] Sowa, J.F. and J.A. Zachman, ‘Extending and formalizing
the framework for information systems architectures’, IBM
Systems Journal, 31(3), 1992, pp. 590-616.

[19] U2 Partners, Unified Modeling Language: Superstructure,
version 2.0, 2nd revised submission to OMG RFP ad/00-09-
02, Jan. 6, 2003.

