
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The version of the following full text has not yet been defined or was untraceable and may

differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111085

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/111085

Using Type and Constructor
Classes to Interpret Object

Structures
Peter Achten and Rinus Plasmeijer

Computing Science Institute, University of Nijmegen, 1 Toernooiveld, 6525ED, Nijmegen,
The Netherlands

peter88@cs.kun.nl, rinus@cs.kun.nl

Objects in the object-oriented programming paradigm consist of a state and a number of
methods. Objects interact by calling methods. The method of an object A, when applied, up-
dates the state of A and may reply to its caller. Although the interaction between two objects
is local, it has a global effect: all objects that had A in scope before the interaction, now
should have A with a changed state in scope. In this paper we present a small framework in a
pure, strongly typed, functional language in which we can define objects of arbitrary state and
objects that consist of objects of arbitrary state. The objects in these structures can interact
locally. Because we work in a functional framework, we need to define this local interaction
between any two objects in an arbitrary object structure on a global level. This meaning is de-
fined by an interpretation function on the global object structure level. We show that it is not
possible to assign a type to this interpretation function in a standard polymorphic Mil-
ner/Mycroft type system, but instead need to strengthen the type system with type classes
and constructor classes. The importance of this class of structures is illustrated by two appli-
cations of the framework: we obtain a model of composable state based processes, and show
how to build composable Graphical User Interfaces with local state.

1 Introduction

The effort of constructing software in a given programming language or programming
system can be eased greatly if the system has tools to construct software components
in isolation and compose these components afterwards to obtain new software com-
ponents. Reasoning about the behaviour of software components constructed in this
way is enhanced if it can be defined in such a system to what extent the internal state
of a component is protected from external access. A successful exponent of such a
system is the object-oriented programming paradigm.

There are many object-oriented languages, such as Smalltalk (Goldberg and
Robson, 1983; Goldberg, 1992), Eiffel (Meyer, 1992), and C++ (Stroustrup, 1991).
The object-oriented paradigm has been studied in functional languages as well. Some
recent studies that also contain many pointers to other research in this area are Abadi
(1994), Bruce (1994), and Pierce and Turner (1994). The main emphasis in these
studies has been to unify the whole of the object-oriented paradigm, including con-
cepts as objects, classes, inheritance, and so on, within a functional framework.

In this paper we concentrate on one specific aspect of the object-oriented
paradigm, namely the construction of objects and compositions of objects. We present
a small, strongly typed framework in a pure functional language in which we can de-
fine objects in isolation and compose objects from objects. In our framework we study
two kinds of objects. The first kind of objects consist of a local state and one state
transition function. The second kind of objects have a local state as well, but their
state transition function can also change a context of fixed type. In both cases this

state transition function defines the behaviour of that object. Composition in this
framework is obtained by allowing objects to contain other objects in their local state.
The resulting object structures can have arbitrary type, and can be arbitrarily deeply
nested. The behaviour of an object structure is defined with a special interpretation
function.

Objects in our object structures interact by applying the method of an arbitrary
object that is in their scope. The method of an object A, when applied, updates the
state of A and may respond to its caller with an answer. The update of the state mod-
els a truly destructive update: to all objects that had A in their scope before the inter-
action now have A in their scope with a changed state. If we would proceed in a simi-
lar way to define local interaction between any two objects in an object structure in a
functional style, we will not obtain the desired meaning. Due to the functional seman-
tics the object interaction results in a new instance of A that is in scope only of the
calling object. Consequently, if we want to model this in a pure functional framework,
then a local interaction (changing the state of some object) has a global effect (all ob-
jects now refer to the new object with the changed state). Basically we need to define
an interpretation function on the global level as a function from object structure to
object structure.

The type system of the functional language in this account must be sufficiently
flexible not to restrict the types of the local state of objects, but also be sufficiently
powerful to result in a strongly typed system. In this paper we show that the standard
polymorphic Milner/Mycroft type system (Milner, 1978; Mycroft, 1984) that forms
the basis of the type systems of many functional programming languages is not pow-
erful enough to assign a type to the interpretation function. We show that to type the
interpretation function of objects of the first kind we need to resort to type classes as
in Haskell (Hudak et al., 1992), and in case of objects of the second kind constructor
classes (Jones, 1993; 1995).

The functional language we use in this paper is Clean (Brus et al., 1987;
Nöcker et al., 1991; Plasmeijer and van Eekelen, 1993). The type system of Clean is
based on a polymorphic Milner/Mycroft type system. Clean version 1.0 (Plasmeijer
and van Eekelen, 1994) has been extended with overloading based on type classes and
constructor classes.

The layout of this paper is as follows. In Section 2 we introduce our frame-
work of objects and also show why it is not possible to assign a type to the interpreta-
tion functions in a polymorphic Milner/Mycroft type system. Section 3 introduces
type classes and constructor classes as incorporated in the type system of Clean.
Given this type system we can assign types to the interpretation functions. This is
shown in Section 4. The object structures represent an important class of program-
ming problems and can be applied in a wide range of areas. In Section 5 we give two
applications of this framework. We develop a small framework of compositional state
based processes, and a framework of compositional Graphical User Interface pro-
grams. We discuss related work in Section 6, and present conclusions in Section 7.
Finally, we give some leads to current and future work in Section 8.

2 A framework of objects

Objects of the first kind in our framework are structured pairs of a state value and a
function that, given this state value, computes a next state value of the same type. The
polymorphic record type Object s defines the type of an object with a local state of
type s and a state transition function of type s→s. Every value of type Object s is an
object of the first kind in our framework.

:: Object s
= { state :: s,
 change:: s -> s
 }

In Clean type constructors and type variables are denoted by character sequences
starting with a capital and lowercase respectively. Type definitions start with the ‘::’
symbol. Record types are between ‘{’ and ‘}’ and consist of at least one field defini-
tion. A field definition consists of a field name, followed by a type definition. Field
definitions are separated by ‘,’. The type of a function with arguments of type a1,…an

and result type a is denoted by ‘a1…an->a’.
Composition in our framework is obtained by the observation that due to poly-

morphism the local state of an object can contain any type able expression. In particu-
lar it can be a value that contains, or is, an object value. In this way we can compose
arbitrarily deeply nested structures of objects of arbitrary local state type. Because
values of type Object can contain nested occurrences of objects we call such values
object structures.

The meaning associated with an object value is that whenever the object
‘needs to act’, its action depends on its local state and is defined by its state transition
function. The operational behaviour of an object structure is defined by an interpreta-
tion function ϕ. ϕ, when applied to an object, applies the state transition function of
the object to the local state of the object, and then continues recursively with all object
elements in the new local state value. When applied to an argument that is neither an
object nor a pair ϕ simply yields its argument and terminates.

Below we give the recursive equations that define ϕ. (In Clean variables are
character sequences starting in lowercase. The expression ‘r.y’ denotes the selection
of the value of a field named y of a record value r. An update of this field with a new
value E is denoted by ‘{r & y=E}’. The expression ‘x=:E’ binds the variable x to the
value denoted by E.) Function alternatives are checked in textual order, and matched
for patterns. So ϕ’s first alternative matches object values, and its second alternative
matches all other arguments.

ϕ obj=:{state=s,change=f} = {obj & state=s1}
where
 s1 = ϕ (f s)
ϕ x = x

Figure 1 The recursive equations of ϕ.

Because we want to have a strongly typed system, let’s see if we can derive the type
of ϕ in a polymorphic Milner/Mycroft type system. We start with considering the first
alternative. From the argument pattern we derive that obj::(Object x). So we can as-
sume ϕ::(Object x)→y for y to be fixed during type derivation. Because obj::(Object
x), we have that s::x, and f::x→x. Let M≡(f s). Then M::x. The application ϕ::((Object
x)→y) M::x has a type conflict, because there is no unifier for the type terms (Object
x) and x.

The type conflict is due to the fact that the argument type of ϕ is limited to
object values. We can modify the scheme by tagging the alternatives that constitute an
object structure, and obtain the following scheme. The type constructor Object is an
algebraic data type. The alternatives of Object define that it is either an object (Obj) or
something else (Else). (In Clean definitions of alternative constructors of algebraic
data types are separated by ‘|’. By convention of presentation we print alternative
constructors of algebraic types in boldface.)

:: Object s
= Obj (Object s) (Object s)->(Object s)
| Else s

ϕ (Obj s f) = Obj (ϕ (f s)) f
ϕ (Else x) = Else x

Figure 1a Type tagged recursive equations of ϕ.

We can now derive that ϕ has type (Object x)→(Object x), but unfortunately the type
restricts all leaf states to be of the same type x. There is no escape from this problem.
In Section 4 we show that to assign a type to ϕ, and use the original definition of Ob-
ject, we need to resort to type classes.

Objects of the second kind in our framework have a local state of polymorphic
type s and a state transition function that not only changes the local state value but
also a global context value of polymorphic type c that is fixed for all objects. So the
type of this transition function is (s,c)→(s,c). Let the type of such kind of object
structures be the record type (CObject s c) below. Every value of type (CObject s c) is
an object of the second kind in our framework.

:: CObject s c
= { state :: s,
 change:: (s,c) -> (s,c)
 }

If the local state of an object of type (CObject s c) contains an object structure of type
(CObject t c) then this is a legal composition of object structures of the second kind.

Again, we define an interpretation function ϕc for object structures of the sec-
ond kind. Analogous to ϕ, ϕc when applied to the pair of an object structure of type
(CObject s c) and a context value of type c, applies the state transition of the object to
the pair of its local state and context value, and then continues recursively with all
object structures in the pair formed by the new local state and context value. ϕc, when
applied to an argument that is not the pair of an object structure, leaves its argument
unchanged and terminates. Below we give the recursive equations that define ϕc.

ϕc (obj=:{state=s,change=f},c) = ({obj & state=s1},c1)
where

(s1,c1) = ϕc (f (s,c))
ϕc x = x

Figure 2 The recursive equations of ϕc.

As with ϕ we cannot assign a type to ϕc in a polymorphic Milner/Mycroft type sys-
tem. In Section 4 we show that it is also not possible to assign a type in a system ex-
tended with type classes. The additional typing power we need is obtained by con-
structor classes. First we will introduce type classes and constructor classes of the
Clean type system in the next section.

3 Type and constructor classes in Clean

In this section we introduce the overloading mechanism of Clean 1.0 (Plasmeijer and
van Eekelen, 1994) based on type and constructor classes. Type classes have been in-
troduced in Haskell (Hudak et al., 1992). Constructor classes introduced in Gofer

(Jones, 1993; 1995), are a generalisation of type classes. Although type classes can be
simulated in a polymorphic type system with records and higher-order functions such
a simulation can be very inefficient. Including type classes in the type system of a lan-
guage offers the compiler opportunities to generate good code in many cases
(Plasmeijer and van Eekelen, 1994). Clean’s type classes and constructor classes do
not differ essentially from those of Haskell and Gofer. In contrast with Gofer, over-
loaded type and function definitions can be defined, applied, exported and imported in
the module system of Clean in the same way as other language constructs can. This
allows a programmer in the course of software development to add new instances to
existing overloaded schemes. Below we some examples of overloading in Clean.

In Clean 1.0 the basic way to define an overloaded function is by the overload
declaration. Consider for instance the definition of an overloaded, infix, equality op-
erator == that is applied to two arguments of the same type and yields True whenever
the arguments are equal.

overload (==) infix 2 x :: x x -> Bool

An overload declaration specifies a type scheme. The type variable before ‘::’ speci-
fies in which positions the function type is overloaded. Defining an instance of an
overloaded function is done by uniform substitution of this type variable with a flat
type definition. A type definition is flat if it is of the form T a1…an with T a type con-
structor of arity n, ai a type variable, and ai≠aj for i≠j. Synonym types are not legal
type instances. The type variables in the substitution type are taken disjoint from the
type variables in the type scheme. So given the overload declaration:

overload g x :: (x,y) x -> (x,y)

taking the instance (x,y) does not result in the type ((x,y),y) (x,y) → ((x,y),y) but in
the type ((v,w),y) (v,w) → (v,w). This is important when we try to solve the local
state problem in the next section. Observe that the result type of taking an instance is
always a legal type.

One can also overload a group of functions. Such an overloaded group is a
type class. For instance, suppose that we also define an overloaded, infix, ordering
operator < along with ==.

class Eq x
where
 (==) infix 2 :: x x -> Bool
 (<) infix 2 :: x x -> Bool

Function definitions that use overloaded functions become overloaded themselves
only if the Clean system is not able to infer a restricted context of application of such
a function. Consider the following two functions:

eqnultuple (a,b) = a==0 && b==0
eqtuple (a,b) (c,d) = a==c && b==d

Although eqnultuple uses the overloaded == it can be inferred that an Integer in-
stance is used due to the constant 0. So we obtain the derived type (Int, Int) → Bool.
However, this cannot be inferred in case of eqtuple . In its type definition one needs
to add the type classes of the overloaded functions, hence the type is (x,y) (x,y) →
Bool | Eq x & Eq y.

Using type classes one specifies polymorphic type schemes of functions in
which the type variables can be instantiated with different types. Constructor classes

take a further step in this direction. The type scheme in a constructor class system al-
lows type variables on type constructor positions. This permits a programmer to de-
fine function and type schemes that offers a restricted form of polymorphism in their
type constructors.

Defining an instance of a function overloaded in a constructor position is also
done by uniform substitution of this type variable with a partial flat type. A type defi-
nition is partial flat if it is a flat type of the form T a1…ak with T a type constructor of
arity n and 0≤k≤n. After substitution the resulting type must be a legal polymorphic
type definition. Note that in contrast with type classes this is not always the case.

An illustration of constructor classes is the ubiquitous map example below.
Given a function f::a → b, map applies f to all elements of some object of type c of a
in order to obtain an object of type c of b. The example defines overloaded instances
of f for lists and trees.

overload map c :: (a->b) (c a) -> c b

instance map []
map f [x:xs] = [f x:map f xs]
map _ [] = []

:: Tree x
= (/\) infixl 0 (Tree x) (Tree x)
| Leaf x

instance map Tree
map f (l /\r) = map f l /\ map f r
map f (Leaf x) = Leaf (f x)

In Clean the type of a list of elements of type x is denoted by ‘[x]’. The empty list is
denoted by ‘[]’, and a list with head elements a1,…an and tail list a is denoted by
‘[a1,…an : a]’. The example shows that binary alternative constructors may appear on
infix positions. In the next section we will encounter more elaborate examples of the
use of constructor classes. For a wide range of examples see Jones (1993, 1995).

4 The type of the interpretation functions

In this section we assign types to the interpretation functions ϕ and ϕc introduced in
Section 2. First we define the classes Objects and Objectsc with single members ϕ and
ϕc respectively.

class Objects x
where
ϕ :: x -> x

class Objects c x
where
ϕc :: (x,c) -> (x,c)

We first attend to the task of assigning a type to ϕ. From Figure 1 we can derive that
the type instances for which ϕ should be overloaded are (Object s) and ‘something
else’. We define ‘something else’ to be everything that is not to be interpreted as an
object. Every value x that is not to be interpreted as an object is denoted by the con-
struction Local x for which we introduce the following type.

:: Local s = Local s

So ϕ is overloaded with (Object s) and (Local s). Now consider the definition of ϕ. In
case of (Object s), the local state component state may contain further Object or
Local structures. If we want to apply ϕ recursively to the state field, then we need
to restrict the application to the type class Objects of ϕ. In case of (Local s), ϕ simply
is the identity function. A straightforward definition of ϕ then becomes:

instance Objects (Object s) | Objects s
where
ϕ :: (Object s) -> Object s | Objects s
ϕ obj=:{state=s,change=f} = {obj & state=s1}
where

s1 = ϕ (f s)

instance Objects (Local s)
where
ϕ :: (Local s) -> Local s
ϕ x = x

Observe the similarity between this definition of the instances of ϕ with the recursive
equations given in Figure 1.

Before we continue with objects of the second kind, we add a small refinement
to object structures. Due to the restriction of the local state type constructor to be of
class Objects the type system enforces the local state of an object structure to be an-
other object structure. Consequently, in this framework an object is either a terminal
value of type Local, or an object structure of type Object which local state is an ob-
ject. Of course the local state should also be used to store local information of the ob-
ject. We refine this by the following two combinator type constructors:

:: List s = List [s]
:: Pair s t = Pair s t

With List one combines an arbitrary number of objects of the same type and Pair
combines two objects of different type. Finally, we collect these type instances and
definitions into one definition module, given in Figure 3. This sums up the framework
of object structures of the first kind.

:: Local s = Local s
:: Pair s t = Pair s t
:: List s = List [s]
:: Object s = { state :: s,
 change:: s -> s }

instances Objects
where
Local s,
Pair s t | Objects s & Objects t,
List s | Objects s,
Object s | Objects s

Figure 3 The framework of objects of the first kind.

We will now assign a type to ϕc, the interpretation function for objects of the second
kind. As a first attempt we simply follow the scheme we used for ϕ, and define in-
stances of ϕc for (CObject s c) and (Local s). If we instantiate x with (CObject s c)
then, as explained in Section 3, the substitution mechanism introduces a fresh variable
name for c. So the type instances of ϕc we end up with are:

instance Objects c (CObject s c)
where
ϕ :: (CObject s d, c) -> (CObject s d, c)
…
instance Objects c (Local s)
where
ϕ :: (Local s, c) -> (Local s, c)
…

These type instances violate the desired property of legal compositions of objects of
the second kind that the context of the composite structure is of the same type as the
context we started with. In the type class system we cannot enforce type equality be-
tween the c type variable of the scheme and the c type variable of a type instance.
However, this can be done if we use constructor classes and the following alternative
type scheme of ϕc:

class Objects c x
where
ϕc :: (x c,c) -> (x c,c)

This scheme expresses that ϕc must be applied to a type constructor x that depends on
the type variable c. If we substitute the partial type (CObject s) for x in the type
scheme then we obtain the required type (CObject s c). Although it is legal to substi-
tute the type constructor Local for x this results in the type (Local c). This type is in-
appropriate because it means that the type of the local state of an object has always
the type of the context. The definition of Local can be changed as follows to undo this
(and also for the combinator constructor types List and Pair):

:: Local s c = Local s
:: List s c = List [s c]
:: Pair s t c = Pair (s c) (t c)

So now we can instantiate x with (CObject s) and (Local s) (and analogously also
(List s) and (Pair s t)). We also add the constructor class restrictions and obtain the
following instance definitions of ϕc.

instance Objects c (CObject s) | Objects c s
where
ϕc :: (CObject s c, c) -> (CObject s c, c) | Objects c s
ϕc (obj=:{state=s,change=f},c)
= ({obj & state=s1},c1)
where

(s1,c1) = ϕc (f (s,c))

instance Objects c (Local s)
where
ϕc :: (Local s c, c) -> (Local s c, c)
ϕc x = x

Again, observe the similarity between this definition of the instances of ϕc with the re-
cursive equations of Figure 2. Figure 4 gives the collection of the definitions of object
structures of the second kind.

:: Local s c = Local s
:: Pair s t c = Pair (s c) (t c)
:: List s c = List [s c]
:: CObject s c = { state :: s,
 change:: (s,c) -> (s,c) }

instances Objects c

where
Local s,
Pair s t | Objects c s & Objects c t,
List s | Objects c s,
CObject s | Objects c s

Figure 4 The framework of objects of the second kind.

5 Applications of the framework

In this section we discuss two applications of the object framework. In the first exam-
ple we show how to construct a framework of compositional processes, and in the
second example we show how to construct Graphical User Interface programs. The
examples are inspired by earlier work on the development of a concept of interactive
process (Achten et al., 1993; Achten and Plasmeijer, 1993; 1995) and their composi-
tion in a functional framework (Achten and Plasmeijer, 1994). In this section we will
consider simplified versions of these systems.

5.1 Building process structures

In this section we consider how to obtain a small framework of compositional, state
based processes. A process is basically an object of the first kind in our framework: it
is a structured pair of a local state and a state transition function. The semantics of a
process is the subsequent application of the interpretation function ϕ. We do not con-
sider termination (processes evaluate infinitely) nor are we specific about the state
transition function. Instead we concentrate on the composition of processes.

Because simplified processes are objects of the first kind, we can apply the
scheme developed in Section 4 and obtain a framework of composable processes. A
straightforward way to achieve this is to make use of the modular structure of Clean.
Let the definitions in Figure 3 be defined in a module named objects , and the def-
initions in Figure 4 be defined in a module named cobjects . If we want processes
to be synonym with objects of the first kind then we can simply define a new module,
say processes , that imports the module objects , and add the synonym type def-
inition :: Process s :== Object s. The processes structures that can be defined now are
completely equivalent with object structures of the first kind.

definition module processes

import objects

:: Process s :== Object s

In Achten and Plasmeijer (1994) an inter-process communication primitive called
data sharing has been introduced. Communication by data sharing is based on the fact
that processes are state transition systems. In essence, an arbitrary number of process-
es Pi can communicate by data sharing if their local states si are of the form si=(l i ,s).
So the local states have a common substructure s and state transition functions of type
si→si. In our framework we can identify such processes as objects of the second kind.
Such a set of processes form a process group. In our framework we can define pro-
cess groups as follows:

:: Group s share
= { share :: share,
 processes :: [s share]
 }

The type (Group s share) defines a process group as a structured pair of a shared
value of type share and a list of s structures that depend on share. For s we intend to
substitute process types. It appears that there are three sorts of process types that make
sense to be substituted for s:

(1) Substitution with the type Process gives a process of type (Object share). This
is a process that depends exclusively on the shared state.

(2) Substitution with the type (CProcess local) (given below) gives a process of
type (CObject local share). This is a process that has a local state and changes
also the shared state.

:: CProcess local share :== CObject local share

(3) Substitution with the type (SProcess local) (given below) gives a process of
type (Object local). This is a process with a local state that simply ignores the
shared state.

:: SProcess local share :== Object local

The fourth logical process that has neither a local nor a shared state is not considered
to be a process because it has no state at all.

If we add the collection of new process definitions to the module processes
defined above we obtain the following framework of composable processes. Observe
that because synonym types are not legal type instances, the type SProcess has been
defined as an algebraic type. The type instance Object is imported from objects .
The other type instances and Local, Pair, and List are imported from cobjects .

definition module processes

from objects import Object, Objects
from cobjects import CObject,CObjects,Local,Pair,List

:: Process s :== Object s
:: CProcess l s :== CObject l s
:: SProcess l s = SObject (Object l)
:: Group s share = { share :: share,
 processes :: [s share] }

instance Objects
where
Group s share | Objects s,
SProcess l s | Objects s

Figure 5 A framework of compositional processes including data sharing.

5.2 Building Graphical User Interfaces

One way to look at the construction of functional programs with Graphical User Inter-
faces is to regard them as state transition systems. This point of view has been ex-
plored extensively in the Clean Event I/O project (Achten et al., 1993; Achten and
Plasmeijer, 1993; 1995). In this system it seemed to be very difficult to define local
state easily. In this section we show how we can use the object framework to solve
this issue. First we give a simplified version of the sort of Graphical User Interface el-
ements that we like to extend with local state.

Figure 6 gives a simplified version of the Event I/O system. In essence the
system consists of a tagged set of state transition functions that change the same state
of polymorphic type s. The tagged functions are values of type GUI s. A value of this
type defines that a Graphical User Interface element is either: (a) a button element
with a name and a state transition function that defines its meaning; (b) an edit text
field with an initial string value; (c) a window that contains further Graphical User
Interface elements. A program then is basically an object of the first kind: it consists
of an initial value of the state and a set of Graphical User Interface elements, defined
as a list. In this system we can dynamically add and remove GUI elements in a pro-
gram. The associated semantics is a slightly adapted version of the interpretation
function ϕ. We do not consider its definition.

:: GUI s
= Button String (s->s) (a)
| Edit String (b)
| Window [GUI s] (c)
:: Program s
= { pstate:: s,
 pGUI :: [GUI s]
 }

Figure 6 A simple system of Graphical User Interface elements.

If we compose GUI objects in this system by allowing the state of a GUI object to
contain other GUI objects, we need to enforce a nested GUI object to change the same
state s. This composition requires object composition of the second kind with a con-
text of type s. To obtain this we define the type CGUI which is basically a CObject in
disguise:

:: CGUI s c
= { guistate:: s,
 guidef :: GUI (s,c)
 }

Figure 7 gives the resulting definition of the system of compositional Graphical User
Interfaces. To be able to define overloaded instances we also define the class GUIs
which contains an adapted version of the interpretation function ϕc that we do not dis-
cuss. The type instances we substitute the state with is the familiar list. The final link
we need to make between a program (which was basically an object of the first class)
and GUI objects is by a small change in the definition of the type of a program. A
program is a structured value of a state of type s and a GUI object that depends on this
state. The function doProgram that is provided for programmers to start evaluation
of such a program defines that the type instances of a program are indeed GUI ob-
jects. This function is basically the interpretation function ϕc.

:: Program s gui

= { pstate :: s,
 pGUI :: gui s
 }
:: CGUI s c
= { guistate:: s,
 guidef :: GUI (s,c)
 }
:: GUI s
= Button String (s->s)
| Edit String
| Window [GUI s]

doProgram :: state (Program state gui) -> state | GUIs gui

class GUIs x
where
ϕc :: (x c,c) -> (x c,c)

instances GUIs
where
Local s | GUIs s,
Pair s t | GUIs s & GUIs t,
List s | GUIs s,
GUI,
CGUI s | GUIs s

Figure 7 A compositional Graphical User Interface system.

6 Related work

As we stated in the introduction, a lot of research has been done in the area of object-
oriented programming in functional languages, we mentioned the studies by Abadi
(1994), Bruce (1994), and Pierce and Turner (1994). In this paper we have concen-
trated on the issue of constructing objects and compositions of objects from objects.
In the other studies objects all exist on a global level, and they are not concerned with
object compositions.

Our approach of defining objects has been inspired by the work of Pierce and
Turner (1994). In their scheme, objects are given essentially by the same record
structure as our Object type, but the state is hidden using existential quantification.
Expressed in Clean (which also has Existential Types), their Object type becomes:

:: Object E.s
= { state :: s,
 change:: s -> s
 }

In Clean all type variables of a type constructor appear as arguments on the left-hand-
side of a type definition. Prefixing a type variable with ‘E.’ indicates existential quan-
tification. With this type of Object we can now easily define recursive data structures
that contain objects each having a different type of the state field. Take for example
[{state=3, change=I}, {state=True, change=I}] (with I x = x) which is a list of ob-
jects and has type [Object Void]. In a type instance the specially defined type con-
structor Void must be substituted for all existentially quantified type arguments.

Defining objects in this way, and object composition as in our framework
simplifies the task of assigning types to ϕ and ϕc. We have ϕ::(Object Void) →

(Object Void) and ϕc::(Object Void c, c) → (Object Void c, c). But this framework has
as disadvantage that parent objects no longer have access to the state of their child
objects. To solve this problem nested objects can allow access only via the change
function. Consequently, objects are no longer of similar structure because different
objects have different access. One can use overloading to introduce new objects, but
the essential flaw of this approach is that it is no longer possible to define an interpre-
tation function that can be overloaded for all cases without recompilation.

7 Conclusions

In this paper we have presented a functional, type-safe framework of compositional
state based objects. The concept of state transition systems is very general and can be
applied in many ways. The framework demonstrates that state transition systems can
be composed flexibly and uniformly. It should be observed that the composite struc-
tures that are defined in the framework do not require the additional overloading typ-
ing power of type classes and constructor classes. The additional typing power has
been necessary only to assign types to the interpretation functions. These interpreta-
tion functions define the operational semantics of composite object structures. In a
well designed system they are not in scope of the programmer. We think that this ac-
count gives an interesting and useful application of the use of type and constructor
classes in functional programming.

8 Current and future work

Currently we are evaluating in what way the framework as defined in this paper can
be incorporated in the Clean Event I/O system and enhance its design. We have paid
attention in Section 5 how we can build process structures in this framework. In the
same way we can incorporate the framework to build Graphical User Interface struc-
tures. The resulting system will remedy the main flaws of the simple, basic Event I/O
system which also have been observed by Noble and Runciman (1994).

Acknowledgements

The authors would like to thank Sjaak Smetsers, Eric Nöcker, and Marko van Eekelen
for the many discussions on the use of type and constructor classes. Sjaak Smetsers
has extended the type system of Clean with type and constructor classes.

References

Abadi, M. 1994.
Baby Modula-3 and a theory of objects. In Journal of Functional Program-
ming 4(2), April 1994, Cambridge University Press, pp. 249-283.

Achten, P.M., van Groningen J.H.G., and Plasmeijer, M.J. 1993.
High Level Specification of I/O in Functional Languages. In Launchbury, J.,
Sansom, P. eds., Proceedings Glasgow Workshop on Functional Program-
ming, Ayr, Scotland, 6-8 July 1992. Workshops in Computing, Springer-Ver-
lag, Berlin, 1993, pp. 1-17.

Achten, P.M. and Plasmeijer, M.J. 1993.
The Beauty and the Beast. Technical Report No.93-03, March 1993. Research
Institute for Declarative Systems, Department of Informatics, Faculty of
Mathematics and Informatics, University of Nijmegen.

Achten, P.M. and Plasmeijer, M.J. 1994.
A Framework for Deterministically Interleaved Interactive Programs in the
Functional Programming Language Clean. In Bakker, E. ed. Proceedings
Computing Science in the Netherlands, CSN’94, Jaarbeurs Utrecht, The
Netherlands, November 21-22, Stichting Mathematisch Centrum, Amsterdam,
1994, pp. 30-41.

Achten, P.M. and Plasmeijer, M.J. 1995.
The ins and outs of Clean I/O. In Journal of Functional Programming 5(1) -
January 1995, Cambridge University Press, pp. 81-110.

Bruce, K.B. 1994.
A paradigmatic object-oriented programming language: Design, static typing
and semantics. In Journal of Functional Programming 4(2), April 1994, Cam-
bridge University Press, pp. 127-206.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. 1987.
Clean: A Language for Functional Graph Rewriting. In Kahn. G. ed. Proceed-
ings of the Third International Conference on Functional Programming Lan-
guages and Computer Architecture, Portland, Oregon, USA, LNCS 274,
Springer-Verlag, pp. 364-384.

Goldberg, A. 1992.
Object-Oriented Programming Languages. In Sebesta, R.W. Concepts of Pro-
gramming Languages (2nd ed.). The Benjamin/Cummings Publishing Com-
pany, Inc.

Goldberg, A. and Robson, D. 1983.
Smalltalk-80—The Language and its Implementation. Addison-Wesley, Read-
ing, MA.

Hudak, P., Peyton Jones, S., Wadler, Ph., Boutel, B., Fairbairn, J., Fasel, J.,
Hammond, K., Hughes, J., Johnsson, Th., Kieburtz, D., Nikhil, R.,
Partain, W., and Peterson, J. 1992.
Report on the Programming Language Haskell. ACM SigPlan Notices 27, (5),
pp. 1-164.

Jones, M.P. 1993.
A system of constructor classes: overloading and implicit higher-order poly-
morphism. In Proceedings of Conference on Functional Programming Lan-
guages and Computer Architecture. Copenhagen, Denmark, 9-11 June 1993.
ACM Press, pp. 52-61.

Jones, M.P. 1995.
A system of constructor classes: overloading and implicit higher-order poly-
morphism. In Journal of Functional Programming 5(1) - January 1995, Cam-
bridge University Press, pp. 1-35.

Meyer, B. 1992.
Eiffel: the language. Prentice Hall International (UK) Ltd, 1992.

Milner, R.A. 1978.
Theory of Type Polymorphism in Programming. In Journal of Computer Sci-
ence and System Sciences. Vol. 17, no. 3, pp. 348-375.

Mycroft, A. 1984.
Polymorphic Type Schemes and Recursive Definitions. In Proceedings of the
sixth International Conference on Programming. LNCS 167, Springer-Verlag,
pp. 217-228.

Noble, R. and Runciman, C. 1994.
Functional Languages and Graphical User Interfaces - a review and a case
study. Department of Computer Science, University of York, England, Febru-
ary 3, 1994.

Nöcker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
1991.
Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds., Proceed-
ings of Parallel Architectures and Languages Europe, June, Eindhoven, The
Netherlands. LNCS 506, Springer-Verlag, pp. 202-219.

Pierce, B.C., and Turner, D.N. 1994.
Simple type-theoretic foundations for object-oriented programming. In Jour-
nal of Functional Programming 4(2), April 1994, Cambridge University Press,
pp. 207-247.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1993.
Functional Programming and Parallel Graph Rewriting. Addison-Wesley
Publishing Company 1993.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1994.
Clean 1.0 Reference Manual. Technical Report, in preparation. University of
Nijmegen, The Netherlands.

Stroustrup, B. 1991.
The C++ Programming Language (2nd ed.). Addison-Wesley, Reading, MA,
1991.

