-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

N\

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/111084

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

https://core.ac.uk/display/16195532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111084

Thelnsand Outs of Clean I/0

PETER ACHTEN AND RINUS PLASMEIJER
Computing Science Institute, University of Nijmegen,
1 Toernooiveld, 6525ED, Nijmegen, the Netherlands
(e-mail: peter88@cs.kun.nl, rinus@cs.kun.nl)

Abstract

Functional programming languages have banned assignment because of its undesirable
properties. The reward of this rigorous decision is that functional programming languages
are side-effect free. There is another side to the coin: because assignment plays a crucial
role in Input/Output (1/0O), functional languages have a hard time dealing with 1/O- Func
tional programming languages have therefore often been stigmatisateesr to imper-

ative programming languages because they cannot deal with I/O veryinvidis paper

we show that I/O can be incorporated in a functional programming language without loss
of any of the generally accepted advantages of functional programming languages. This
discussion is supported by an extensivecamnt of the 1/0 system offered by the lazy, pu-

rely functional programming language Clean. Two aspects that are paramount in its /O
system make the approach novel with respect to other approaches. These aspects are the
technique ofexplicit multiple environment passingnd theEvent I/O frameworko pro-

gram Graphical User 1/O in a highly sttuced and high-level way. Clean file I/O is as
powerful and flexble as it is in common imperative languages (one can read, write, and
seek directly in a file). Clean Event I/O provides gnaammers with a high-level frame

work to specify complex Graphical User I/O. It has been used to write applications such
as a window-based text editor, an object based drawing program, a relational database,
and a spreadsheet program. These graphical interactive programs aletelyrmachine
independent, but still obey the look-and-feel of the concreteélavinenvironment being

used. The specifications are completely functional and make extensive use of uniqueness
typing, higher-order functions, and alymic data types. Efficient implementations are
present on the Macintosh, Sun (X Windows under Open Look), and PC (0S/2).

1 I ntroduction

Functional programming languages live in a world from wisissignmentor de-
structive updatinghas been banned because of its undesirable properti@sg Liv
without assignment has proven to be very successful, and many accounts have
been written of the advantages of living in a world free of side-effects (Backus,
1978; Hughes, 1990). However, in order to write useful applications, it must be
possible for functional programs to interact with the outside world. Doing 1/0O
means manipulation of 1/0 resources, such as files, keyboards, mice, and screens.
In the real world these resources are globallgeasible, and mdpulations of

them are in essence assignments. This implies that functiortaldgas cannot

use I/O resources in the same direct, unrestricted way as for example imperative

languages can. For this reason functionagisyes are oén stigmatised asfe-
rior to imperative programming languages because theynotudeal with I/O
very well

Research on the incorporation of purely functional 1/O into functionarpno-
ming languages has evolved into basically two styles of solutgirsambased
solutions ancenvironmentbased solutionsStreambased methods have been pro-
posed in a (token) stream style (Henderson, 1982; Turner, 1990; Huddk
1992; Carlsson and Hallgren, 1993) and continuation style (Thompson, 1990;
Dwelly, 1989; Perry, 1988). Essentially, stream based methods transfanpuéan
streaminto anoutput stream The output stream is not exsluely used for pro-
ducing output only, it is also used for requesting input. Some entity outside the
program (usually the operating system) handles the output requests sigdgpro
the proper inputEnvironmentbased methods are enviroent passing methods
(Williams and Wimmers, 1988; Backu al, 1990) and methods using monads
(Peyton Jones and Wadler, 1993). In these solutions functions essentially operate
directly on a special object, thevironment that represents thstate of the
world. In literature environment based methods are also knowidaseffecting
I/0 systems (Gordon, 1993).

The Clean 1/O system that is presented in this paper is an environment based
approach and contributes to the research in functional I/O in twor mspects.

The first aspect is the use of arplicit multiple environment passirgtyle
throughout the system givingxplicitanddirect access to 1/O resources. This has
been made possible by thimiqueness Type Systeoh Clean (Smetserst al,
1993; Barendsen and Smetsers, 83 Plasmeijer and van Eekelen, 1993)
which enables safe andsteicted updates in a pure and functional framework. The
second aspect provides programmers with the Clean Event 1/O Viiakne
(Achtenet al, 1993; Achten and Plasmeijer, 1993) tognam Graphical User I/O

in ahighly strudured anddeclarativeway. The specifiations of interactive pro
grams are functional and ggrams can be reasoned about withany assumption
about operating systems. The 1/0 system destrates that functional languages
are well suited for 1/0, by making extensive use of uniqueness typing, and well
known functional programming féares such as higher-order functions, polymor
phism, and algebraic types.

The paper starts with brief introductions to Clean and Uniqueness Types
(sections 2 and 3). The explicit multiple envino@nt passing style is defined in
section 4. Clean file I/O is discussed in section 5, and section 6 presents the Clean
Event I/O system. Section 7 discusses how interactive programs candeicon
ted in the Clean Event I/O system, and section 8 briefly views the implatioen
of the Clean Event I/O system. Section 9 compares solaedewvork with our
approach. Finally the conclusions are presented in section 10, and current and fu
ture research on futional I/O is presented in section 11.

2 Clean

Clean (Bruset al, 1987; Nockeeet al, 1991; Plasmeijer and van Eekelen, 1993) is

a lazy functional programming language based on Term Graph Rewriting
(Barendreget al, 1987). To give an idea of what Clean programs look like, figure

1 presents an example of the well-knowmofiacci function. The examples in this
paper are presented in the new Clean 1.0 syntax (Plasmeijer and van Eekelen,
1994,in preparatior). Where appropriate, the textcludes renarks on peculiafi

ties of this ndation.

fib :: Int -> Int
fibl =1
fib2 =2

fibn =fib (n-1)+fib(n-2)

Start :: Int
Start = fib 100

Figurel A Clean program for fibonacci. Function definitions are optionally
preceded by their type definition. Type symbols start with a capital,
(type) variables always start in lowercase. Function names can start
either with a capital or in lowercase. An n-ary function narmedth
arguments of types...1T, and result typer has a type definitioh::
11 T2...Th — I. The special function nameiart gives the initial ex-
pression of the program.

Term Graph Rewriting systems are well suited for efficient implementations of
functional languages (Groningex al, 1991; Smetserst al, 1991; Plasmeijer and
van Eekelen, 1993). Graph rewriting is actually used in many impletrmrgaf
functional languages. The main differenceveeen Clean and other lazy futioe

nal languages is that in Clean graph rewriting is explien the semantics of the
language. In Clean, the function application to be wat&ld is repreented by a
possibly cyclic computation graph. Function definitions areallgtd'erm Graph
Rewriting rules. Each rule alternative is a graph with a left-hand side root
(L.H.S.) and a right-hand side root (R.H.S.). Figure 2 depicts the graptustruc
of the thirdfib alternative. Each node in the graph contaisgrabol(fib, +, -, 1,

2) andargumentspointing to other nodes.

LH.S.:

A

Figure2 The third alternative of the fibonacci rule depicted as a graph.

In Clean, reasoning about gn@ams is reasoning about computation graphs. It is
straightforward to denote cyclic structures and shared computations. For instance,
the semantics of Clean prescribe that the @gnt noden is shared in the compu

tation graph constructed on the right-hand side of ttaengte explicitly reflect-

ing the call-by-need evaluation which is commonly used in the actual implemen
tation of functional languages.

Term graph rewriting obeys the functional semantics. Figure 3 illustrates one
formal rewrite step of the computation grafi®n100 of the fibonacci example (the
implementation is done in a much more efficient way!). The initial grapbd-
sists of only one redex, namely the gréiphi00, which matches the third alterna
tive of thefib rewrite rule. Rewriting this redex occurs in the foliog way: a
new graph is created for those nodes of the right-hand side of the rule that are new
to the computation graph (in the example these are two ndaeketifib, and no-
des labelledt, -, 1, and2). This process is called graph exdem). After ex-
tending the computation graph, the original computation graph root is overwritten
with the root of the extended graph that matches the right-hand side of the rule
(c). In term graph rewriting terminology this process is called ‘redirection’ of the
left-hand side root to the right-hand side root. Finally, the nodes that have become
unreachable from the new root of the computation graph are garbdgetaxbl

(d).

root:

(a) The root expression (b) Graph extension

A
w [1] [2]

(c) Graph redirection (d) Garbage collection
Figure3 One rewrite step of the initial expression of the fibonacci example.

In general, a computation graph consists of several redices. The rewriting process
needs aeduction strategyo determine what redex should be rewritten. The de-
fault reduction strategy of Clean is the lazy functional strategy. A (sub)graph that
contains no redex is said to bemormal form A (sub)graph in which the root

node is not a function symbol is said to bedot normal form In the remainder

of this paper when we discuss Clean we will use the tenctionsfor rewrite ru-

lesand vice versa for caenience.

3 Uniqueness Types

Because Clean is based on a typed Term Graph Rewriting system it is possible in
this system to use type informian to state properties of graph©ne such inte

esting property states that a specific sub graph of a computation graph is not
shared by any other node of that graph. A sub graph that fulfils this property is
said to appeanniquelyin the computation graph. More formally the uniqueness
property is stated as follows (Plasmeijer and van Eekelen, 1993):

A noden of a graphG is unique with respect to a nodm of G if n is only
reachable from the root o6 viam and there exists exactly one path fromto n.

root of G

Figure4 The uniqueness property depicted.

Why is this an interesting property? To answer this question, it is necessaty to re
call the rewriting semantics of Clean. In this system, rewriting a matching fule al
ternative in a computation graph (the redex) creates a completely new graph
matching the right-hand side of the rule alternative. The redex root is redirected to
the newly created graph. If we know that an offered argument of this rule-is uni
gue with respect to the application naad®d it is not used in the function body
then it will becomegarbage In that case a new @@t can be constructed by mak

ing use of the old one. This means that onedestructively updatesuch an agu-

ment to construct the functiongelt. If the offered argument of the rule is not
known to be unique with respect to the application node then it is illegal to reuse
the argument because it might be shared.

It would be nice if at compile time the uniqueness of arguments and results of
functions could be determined. Unfortunately, this is undecidable. In Clean a de
cidable approximation has beercarporated usingyniqueness TypgSmetsers
et al, 1993; Barendsen and Smetsers, H9BB Uniqueness Types differ from
Linear Types (Girard, 1987; Wadler, 198pdefined on lambda calculus. An es-
sential difference is that in the analysis of Uniqueness Tygraphsplay a cru-
cial role. Uniqueness Typesstrict the use of graphs and function applicatiams
a program, whereas Linear Typesstrict the use of variables inside function def-
initions. The relationship between Uniqueness Types and Linear Types is a topic
of further investigation. Closer related work to the Uniqueness Type system is by
Guzman and Hudak (1990) who present an extended lambda calculus with state
operations which safety is warranted by the type system.

The Uniqueness Type System is quite a complex type system, and a formal
treatment of this syem is beyond the scope of this paper. The complete formal
framework of Uniqueness Types can be found in Barendsen and Smetsers (1993
a), the main results of this work have been published in Barendsen and Smetsers
(1993-b). The incorporation of this formal type system in Clean iscdbed in
Plasmeijer and van Eekelen (1984 preparatior). For this paper it is sufficient
to know that the uniquenesdréiute* can be assigned to any tysrfonynty-
pes, algebraic types, andibstract datatypes) by prefixing the attribute to the
type.

The uniqueness type system uses a kind of reference count analysishalled
ring analysis The sharing analysis allows an arbitrary number of references to a
unique object as long as it catatically deduce that the reference count will be
onewhenthe object is accessed by the function that wants it to be unique. The
sharing analysis marks each reference in a right-hand sidetashared(if it
could be shown that the object points to a not-shared objest)aved(other
wise). There are several cases to mark a reference not-shared. In case there is only
one reference in the right-hand side of a rule to a certain object (theneder
count of the object is one) the mark clearly should be not-shared. If it can be
shown that thevaluation orderis such that other references will be vanished on
time, they are not counted and the reference to be marked will still be marked as
not-shared. An example of such a situation is the reference to an object in both a
guardand itsguarded expressiarThe guard will be evaluatdmkforethe guarded

expression will be evaluated, so the reference is lost when the guarded expression
is evaluated. As a result, unique objects are allowed thbervedn guards.

Objects marked shared by the sharing analysis cannot be typed unique. So, the
sharing analysis is input for the type system to check uniqueness type consistency.
For each reference (argument in a node) it tereined how many other referen-
ces there will exist whenever the object is accessed (andaggdlto root normal
form) via this reference. The type checker verifies the caresst of the use of
uniqueness attributes in rules by exanmg all applications on the right-hand side
of a function to check that when a parameter or a result of a uragsi¢ype isle-
manded a unique graph of the demanded typeffered In this context dman-
ded type means that either the cepending formal parameter with the applied
function has a unigquenesgréiute or the result type with the defined function has
the uniqueness attribute.

The Uniqueness Types System is a powerful tool which provides a wide range
of interesting applications in the implementation and use of functional languages.
It provides the basis of efficient and functional 1/O, it can be used for the-mple
mentation of destructively updateable arrays and user-defined unique data struc
tures, it can be used in the analysis of memory usage of functional programs (as
has been done by Chirimaral, 1992 for a language based on Linear Types), and
it can serve as a general safe interfacing facility for functiongulages with the
imperative world.

4 Explicit multiple environment passing

Specifications of interactive programs require a method in weérjuenceof

I/O operations can be defined. In order to be able to reason properly about inter
active programs it is vital that these sequences be evaluatgutédietable order

(e.g.: in the teletype kind of interactive systems prompts must appéaeone

waits on user input) and that the evaluation of an I/O operation hamadiate

effect (when the prompt is demanded to appear it must show on the screen). In
this section we introduce an improved type of explicit environment passing
scheme that will provide these vital properties for a lazy functional language. This
scheme is used throughout the I/O system.

4.1 Explicit environment passing

Explicit environment passing schemm® well suited as methods for specifica
tions of interactive programs. In an explicit environment passing scheme there is
one speial data object imormal form theenvironment which is some sort of
encoding of (changes in) tistate of the worldA program doing 1/O is a function

that given an initial environment produces a new environment in which all-subse
guent chages are contained. Programs can change the state of the world and re-
trieve information from the world by functions that have access to thisoavi
ment. The evaluation of such a function consists of two actions: the state of the
world is changedmmediately and a new instance of the environment is yielded

in which the change to the state of the world is reflected. We will call the change
to the state of the world theffectof the function. Because we intend these func-
tions to have an immediate effect, they hyper-strictin their environment ar-
guments. As a result the environment argument will always be in normal form
beforethe function is evaluated. Functions that inspect (read) the world yield
what has been read. So, every access rule accounts for its effect on the state of the
world in the environment object. Each new operation is applied to the environ-
ment result of the prdous operation. Sequences of operations are easily ex-
pressed as sequences of function appboa on the environment.

Figure 5 gives a small example of what a typical explicit enviremnt passing
program looks like. Suppose we have an environment of\iypl. The fundion
echo is a simple recursive function axtorld. It retrieves a character from the-en
vironment by some predefined functigatChar and prints it on screen using
some predefined functioputChar. The recursion oécho terminates if a newline
character, denoted withn’, has been teeved bygetChar.

echo :: World -> World

echo world
| c="n" = world2
= echo world2
where
(c,worldl) =: getChar world
world2 =: putChar c world1

Figure5 An example of the explicit environment passing style. Guarded ex-
pressions are preceded by a conditional expresiitocal defini
tions of constant functions (which are actually sub graph expres-
sions) are defined by the symbol rather than the more customary
symbol.

The explicit environment passing style can be seen by thewat&y (which is a
value of typeWorld) is used to pass around the state of the world after each op-
eration. The effect of the program is rather obvious: if a user types thectdrar
sequencecy...cy’\n’ (all charactersj are not the newline chare), then the
screen will show the character sequeag®...c,. Moreover, the program exes-

ses succe$glly that each charactes is being put on screemmediately ater it

has been read am#forecharacter;,1 is being read.

This clear use of explicit environment passing schemes makes them very at
tractive as a lsis for a functional 1/0O system with direct access to I/O resources.
The idea of using explicitinrestrictedenvironment passing schemes is indeed not
new. Gordon (1993) mentiones the unlisted PhD thesis of Redelmeier (1984)
in which this idea is presented. However, there is a catch to unrestricted explicit
environment passing. The enviroent represents the world and as there is only
one world around one gets intoreis problems as soon as the environment is
duplicated or shared. Sharing the e@owiment allows the introduction of an arbi

trary number of environment changing sequences. The manipulations on the
world that are performed in one sequence are not recorded in the environments of
the other sequences. Because the world has been updated according to seme inter
leaving of these manipulations none of the resulting environment objects reflect
the state of that updated world anymore.

The program in figure 6 illustrates this catch. The functawch does two
things on the world: put a newline on screenvyldl), and echo the keys typed
by a user of the program usiagho from the previous example (lworld2). Sup-
pose the user of this program types the same character sequengén’ as pre-
viously. The output of the program can be any character seqagnge..c’n+1
with for somei (1<i<n+1), cj=\n’, ¢’j=cj (for j<i), andc’j=cj (for j>i) because the
order of evaluation ofvorld1 andworld2 is undetermined. So the state of the real
world contains the character sequentg’s...c’n+1. However, environment
world1 records a real world with state’, andworld2 records a real world with
statecy...ch\n’. Neither environment correctly reflects the state of the world.

catch :: World -> (World, World)

catchworld = (world1, world2)
where
world1 =: putChar ‘\n’ world
world2 =: echo world

Figure6 A program illustrating the danger of unrestricted environment pass-
ing.

Despite the catch, Clean 1/O is based on the explicit environment passing style.
The environment that is passed around in the Clean 1/O system is ciAtgpe.

The initial environment is given as an optional argument of3taet rule. It
should be noted that the environment object cannot bedimtax by a function
because it would introduce the possibility to introduce an arbitrary number of en
vironment objects. The only proper way to deal with the world is to regard it as a
parameter of a program. In order to avoid the catch, and to reflect the ‘unique’
nature of the actual world regsented by the environment, all envinoent opera-

tions require their environment argument to haveuthiguenesattribute (so the
example functions have the typgsChar :: *World - (Char, *World) andputChar

: Char *World - *World). Due to the Uniqueness Typing the Clean I/O system re
stricts access of the program to the environment, and prevents sharing and intro-
duction of multiple environments. The type system of Clegrctecatch due to

the fact thaputChar demandsvorld to have typeWorld, but insteadworld has
offered typeworld (becauseatch contains two references teorld). Obviously,

the offered type cannot be coerced to obtain the uniqueness attribute. The function
echo needs a small addition in its type definition to turn it into a correctly typed
Clean definition (see figure 7).

echo :: *World -> *World

echo world
| ¢c='"n" = world2
= echo world2
where
(c,worldl) =: getChar world
world2 =: putChar c world1

Figure7 The functiorecho now as a correctly typed Clean g@m.

4.2 Multiple environments

Environment pasag schemes based one single environmermnforce program-

mers to create spine of /O funtion applicationsin a program. This is a very se

vere restriction on functional program expressiveness, as programs are obliged to
over determine order of evaluation. To our knowledge, this is basically true for all
safe envionment based approaches in functional 1/0 (see also the discussion in
section 9.2)and also for all stream based appcbas (as they consider one single
stream that carries the 1/0O operations).

Reconsider for example tleeho function in figure 7. In this program the spine
of 1/0 operations is formed by the sequeng=tChar, putChar, getChar,
putChar,... of read/write opergons. However, for this program it is sufficient to
express that at least as many characters are read as there are characters printed.
This relationship cannot be defined in an environment passing scheme without
fixing an evalugion order.

The combination of explicit environment passing and Uniqueness Types is a
powerful one as it allows a very liberal and safe usmoltiple environments. In
trodudang multiple environments allows a program to define multiple sequences
of I/O operations without predetermining an evaluation order between these se
guences. Other advantages oingsmultiple environments are that such sequen-
ces of applications can be evaluateghamallel, and environments can be used to
supportmodularprogramming of interactive programs.

The Clean I/O system defineshierarchy of environmentgsee figure 8). The
refore in our terminologyenvironmentshould not be understood as an encoding
of the state of the world as a wholeit rather as specialised data structure that
encodes the state ofspecific part of the world These enviroments must be in-
dependent: oprations on one environment should not have an effect on another
environment. In the Clean environment hierarchy the toprenwient is the envi
ronment of type'world. Two sub environments can be retrieved from the world
environment bydecompositionOne represents the state of fie systenand the
other represents thevent streantommunication to and from Graphical User In
terface elements. Their corresponding typeshites and*Events respetively.

10

outer world

*World

events for
I/O devices

file system

*Files
*Events

Figure8 The Clean environment hierarchy.

The decomposition rul®penWorld of the world environment into the file system
and event stream envirorents has typ&world - (*Files, *Events). It should be
noted that as a salt the world is no longer available for subsequent use. The en-
vironments can be used in the program and finally compose a new world again,
by acompositionrule CloseWorld of reverse typéFiles *Events - *World. The

start rule of a Clean program that does I/O is always of tyuzeld - *World. In

this way environments that have contributed to the effect of the program are al
ways restored to the world environment. This is calleghienic useof environ-
ments.

5 Filel/O

Clean file /0 is a good example of an 1/0O system using the explicit multiple en
ronment passing scheme. The top environment of the file I/O system is the object
of type *Files introduced in the previous section that encodes the real world file
system. This envonment is again a container of yet smaller enviments: the
individual files thenselves (see figure 9).

file system

*Files

shared files
read access
only

writeable
files

*File

File
Figure9 The Clean environments for file handling.
A Clean file has typeile or *File. To open or close a file one needs a unique file

system. Writeable files are opened+gie; read only files do not require the uni
gueness attribute. Once a writeable file has been opened it cannot be opened again

11

until the file is closed. Read only files can be opened an arbitrary number of ti
mes, but cannot be opened as writeable filesrammg. Because read only files do

not change the state of the file system they do not need to be closed, but can be
made garbage safely when they are not needed anymore.

All this is controlled and administrated by the unique file system which is nee
ded for the opening and closing of all files. It should be noted that the unique file
system models the actual file system. All the file administration is in reality-hand
led by the operating system. This implies that there is no need whatsoever to ad
ministrate anything in Clean itself. This means that all file I/O is handledias ef
cient as possible because there is no administration overhead in the functional im
plementation component. The use of these files is as powerful, flexible, and effi
cient as it is in common imperative programmingglaages. For instance, in both
types of files File as well agFile) it is possible to perform random access (seeks).
The Clean file primitives allow all basic types to be written directly to files and
read from files. One can write to and read from writeable files in any order.

The programming style when using files is basically the explicit environment
passing style. Figure 10 shows an example of a file copyimgrgmothat illustra
tes the use oWorld, Files andFile. The first action of the program is to decom
pose the uniquevorld into the file systenfiles and event strearavents. The file
system is used to open the source and destination filessffingte is opened for
reading, using the pdefined functiorsFOpen, and therdest is opened writeable
by FOpen). As source is going to be read only it is opened as a shareable file.
The file dest is being writen into and must therefore have the unigss attri
bute. The functiortopyFile copies the contents gburce character by charaer
to dest. After completion of copying, the written file is closed in the file system,
and the final world is composed from the file system and the event stream.

Start :: *World -> *World

Start world

= newWorld
where
(files, events)
(sourceOpen, source, filesl)
(destOpen, dest, files2)
destl
newWorld

: OpenWorld world

:SFOpen “Source” FReadData files
:FOpen “Dest” FWriteData files1

: copyFile source dest

: CloseWorld (CloseFile destl files2) events

copyFile :: File *File -> *File
copyFile source dest
| readOK = copyFile sourcel (FWriteC ¢ dest)
= dest
where
(readOK, c, sourcel) =: SFReadC source

Figure10 A program copying a file nameburce to a file namedest.

12

6 Graphical User I/0

The techniques involved in programming Graphical User Interfaces make&an in
resting area of research because the corresponding@r@phical User 1/Q is
radically different from file 1/0 and is much more complicated. In a Graphical
User Interface system the Graphical User I/O is dotieeinwith Graphical User
Interface elements such asndows menus anddialogues These interface ele-
ments are characterised by a highly interactive behaviour. Applications that use
Graphical User Interface systems have a very dynamic use of interface elements.
Graphical User Interface systems anent drivenAn event is a data object-re
cording a true event in the outside world or the operating system. Events come
from different sources: the user of a program communicates with that program via
interface objects in the course of which events are generated (e.g.: key presses,
mouse movements). The e@ting system uses events to comroate to the pro-
gram that things have been changed (e.g.: windows become partiabie yvisi
programs are scheduled). Finally, miyaulations of the iterface objects by the
program may genete events as well (e.g.: opening and closing of windows or
dialogues). The operialg system provides these events for programs by the so
calledevent streamThe event stream is ageence of events. In this sequence
event A precedes eventiB A has ocurred before B.

The Clean Event I/O system is the framework a program uses to do Graphical
User I/0. The Clean Event I/O system isadstract Graphical User Intéace In
the Clean Event I/O system Graphical User I/O is defined entirelyakhistract
devices Abstract devices are abstractions of categories of concrete interface ele
ments. The Clean Event I/O system provides four abstract devicesirthew
device,menu device, dialoguedevice, andimer device. Abstract devices are
specified on a high level of abstraction making extensive uaggebraic types
Abstract device specifications defimdich Graphical User Interface elements are
used by the program, ambw these elementimteractwith the user or other ele-
ments. Clean Event I/O programs afwstract event driverAn abstract event is
always defined in theontextof an abstract device element. Clean Event I/O
programs do not retrieve abstract events, but rather dabetract event han
dlers An abstract event handler igumctionthat is included in the abstractuiee
specification. Only when the corresponding abstract event occurs the abstract
event handler is evaluated. The abstract event handler is applied to the current
state of the program and yields a new state. The state of the program consists of
the data the program needs at run-time, and the run-time state of its interface ele
ments. A Clean Event I/O program has access to its interface elements at run-time
via a special uniquenvironmentof type*IOState. A Clean Event I/O program
only needs to specify the abstract devices to create an interactive program. The
Clean Event I/O system takes care that the abstract devices are correctly mapped
to the concrete devices, and that the concrete events are correctly mapped to ab
stract events.

In section 6.1 we show how abstract devices and its interface elements are de
fined using algebraic types. Section 6.2 focusses on the abstract event handlers,

13

and explains how these functions affect the run-time state of the program and the
interface elements. Section 6.3 defines how the Clean Event I/O system uses the
abstract device definitions, and the appropriate environments to create a running
program. Section 6.4 briefly describes the abstract devices other than the menu
device. Finally, setton 6.5 gives a small example of an interactive program.

6.1 Defining abstract devices

Abstract devices provide Clean programmers with a high level view of Graphical
User Interface elements. These abstract interface elements are specified-by func
tional expressions that are instances of a set of predefined algebraic types (see fi
gure 11 and 12). For each abstract device there is defined an algebraic type that
fully specifies how the individual interface elements of that abstract device should
be defined. Because the algebraic types contain functions that have to operate on
the same type of program state, the type definitions are parameterized with the
type variables which reflects the type of the program state.

DeviceSystems = TimerSystem [TimerDef s]
| MenuSystem [MenuDef s]
| WindowSystem [WindowDef s]
| DialogSystem [DialogDef s]

Figure 11 The algebraic type definition of devices. The tjgds a list ofa.
The symbols printed iboldface are alternative constructors of the
algebraic type (variants of the type).

MenuDef s
= PullDownMenu Menuld MenuTitle SelectState [MenuElement s]
MenuElement s
= Menultem Menultemld ItemTitle KeyShortcut SelectState (MenuFunction s)
| CheckMenultem Menultemld ItemTitle KeyShortcut SelectState MarkState
(MenuFunction s)
SubMenultem Menuld ItemTitle SelectState [MenuElement s]

I

| MenultemGroup MenultemGroupld [MenuElement s]
| MenuRadioltems Menultemlid [RadioElement s]
| MenuSeparator

RadioElement s

= MenuRadioltem Menultemld ItemTitle KeyShortcut SelectState (MenuFunction s)
MenuFunctions == s (IOState s) -> (s, |I0State s)

KeyShortcut = Key KeyCode | NoKey

Figure 12 The algebraic typ#enuDef to define individual menus. The type
MenuFunction is a synonym type.

14

As an illustration of an abstract device definition, figure 13 gives an example of a
menu definition. The picture next to the definition shows the concrete device in
the case of the menu definition being mapped to a Macintosh system.

PullDownMenu Fileld “File” Able [
Menultem Newld “New” (Key ‘n’) Able New,
Menultem Openld “Open...” (Key ‘0’) Able Open,
Menultem Closeld “Close” (Key ‘w’) Unable Close,
MenuSeparator,

Menultem Saveld “Save” (Key's’) Unable Save, Tova S
Menultem SaveAsld “Save As...” NoKey Unable SaveAs, Bapa fe..
MenuSeparator,

Menultem Quitld “Quit” (Key ‘) Able Quit] Quit 36

Figure13 An example of a menu definition in Clean.

Algebraic types prove to be very useful as a medium for abstract device defini
tions in a functional language for several reasons. (1) In a functiompidge it is
trivial to add the abstract event handlers to algebraic types becausierfarare
‘first-class citizens’ and can be used in a curried way. For instance, the menu de
finition in figure 13 specifies that the program code that should be evaluated
when the menu item title@pen...” is sdected is the funtion namedpen. This

is the simple case. But it is also possible to define a higher order function applied
to an arbitrary number of arguments as abstract event handler, which is very hard
to realise in the classical imperative languages. (2) l&kgje types provide spe-
cification language of which the syntactical correctness isified by the type
checker. This eliminates obvious programming errors (like typing errors, er mix
ing up order of aguments) that occur rather frequently in text-based specifica
tions. (3) The use of algebraic types for all abstract device spéidfisgrovides

both the programmer as well as the deiam of the senantics with gormal nota

tion. A formal notation is invaluable to disdmguate discussions on the meaning

of individual interface elements. (4) Algebraic type definitions can be made very
intelligible and suggestive. We have carefully sho suggestive names for the
data constructors of the algebraic typeini&ibn of abstract devices which match
their actual appearances as much as possMsIWYS: What You Say Is What

You See). This is clearly illustrated by the example in figure 13. (5) Finally; read
able defintions of interface elements serve as gdodumentatiorof programs.

6.2 Abstract event handlers

Clean Event I/O programs are abstract event driven. Abstract events are defined
in the context of abstract devices. Consider for example the menu definitien in fi
gure 13. One abstract event defined in the context of this definitithe isienu

item namedOpen...” has been selectelt is easy to correlate the abstract event

15

with an abstract event handler, because the abstract event is defined in the context
of the algebraic definition. Therefore it is sufficient to add the abstract event
handler in the context of the abstract device definition that defines the abstract
event. So the response of the program to the abstract event is given by the func
tion Open.

A Clean Event I/O program consists of a number of abstract devices, which in
turn define the set of possible abstract events, and their corresponding abstract
event handlers. It is not determined in what order the abstract events will occur.
Each abstract event handler can be evaluated istais of the programn order
to handle the abstract event appropriately the abstract event handler needs to
know the state of the program. As a result the state of the program will have been
changed. So, an abstract event handlersise transition functionThe state of
the program is a data object which hd&ad type(not a fixed value) beause any
of the available abstract event handlers must be applicable.

The state of the program consists of a component controlled by the program
mer, and a component controlled by the Clean Event I/O system. The program
controlled component, called throgram state contains the data the program
needs during evaluation. The program state can have an arbitrary, but uniquely
attributed type. The component controlled by the Clean Event I/O system is an
abstract data type object which contains the run-time states of the interface ele-
ments of the program. This component is a uniquely attribengagfonmenthat is
specially crated for doing Graphical User 1/0. The type of the environment is
*|OState *s (it is a polymorphic type because this environment also contains the
abstract event handlers, which types are based on the program state*sf. type

Abstract event handlers change the state of the program. So the types of ab
stract event handlers are of the forms *(I0State *s) - (*s, *IOState *s). With
the abstract event handlers a programmer defines how the state of the program
should be affected in case the abstract event handler is triggered by an abstract
event. Changes on the program state component can be easily defined by the pro
grammer, because this component is defined by the programmerOStee en-
vironment is an abstract data object, so changes on this environment can only be
done via a library of predefined functions, thlestract device access functions
All device access functions take the explicit environment passing style. Their ty
pes are of the form14...T, *(I0State *s) - (T, *IOState *s). For example, tymal
operations on the menu interface elements at run-timeraiglinganddisabling
the entire menu system (also of segta menus or menu elementjidingandre-
movingmenu elements to and from menawgrking menu elements, anthang
ing titlesor abstract event handlexs menu elenents (see figure 14). As all envi
ronment operations, every abstract device access function changes the appropriate
interface element resources, and administratesffetin the newOState envi-
ronment.

16

EnableMenuSystem :: *(I0State *s) -> *|OState*s

DisableMenuSystem :: *(I0State *s) -> *|OState*s
EnableMenus : [Menuld] *(I0State *s) -> *|OState*s
DisableMenus : [Menuld] *(I0State *s) -> *|OState*s
EnableMenultems = [Menultemid] *(I0State *s) -> *|OState*s
DisableMenultems : [Menultemld] *(I0State *s) -> *|OState*s
MarkMenultems ' [Menultemld] *(I0State *s) -> *|OState*s
UnmarkMenultems . [Menultemid] *(IOState *s) -> *|OState*s
SelectMenuRadioltem : Menultemlid *(I0State *s) -> *|OState*s
ChangeMenultemTitles : [(Menultemld, String)] *(IOState *s) -> *IOState*s

ChangeMenultemFunctions :: [(Menultemld, MenuFunction *s)]
*(I0State *s) -> *|OState*s

InsertMenultems 1 MenultemGroupld Int [MenuElement *s]

*(I0State *s) -> *|OState*s
AppendMenultems :» MenultemGroupld Int [MenuElement *s]

*(I0State *s) -> *|OState*s
RemoveMenultems = [Menultemid] *(I0State *s) -> *|OState*s
RemoveMenuGroupltems :: MenultemGroupld [Int] *(I0State *s) -> *|OState*s

Figure14 The types of the menu device access functions of the Clean Event I/O
system.

6.3 Interactions

In section 4.2 we have introduced the event stream environment. The previous

two sedions presented how Graphical User Interface elements are defined by ab-

stract devices, discussed abstract event handlers, and introduced the state of a pro
gram. In this section we show how these elements of the Clean Event I/O system

are integrated by thiteraction concepto obtain a running interactive program.

This relation is roughly illustrated by the following equalities:

abstract device definitions + event streamGState
IOState + program state = interaction

An interaction is alynamic state transition systewhere thdransitionsare defi-

ned by the abstract event handlers of the abstract device definitions and where
evaluation is triggered by the occurrence of abstract events. The abstract device
definitions of an interaction are gathered in a single data object of type
:110System s == [DeviceSystem s] (see figure 11 for the type definition DE-
viceSystem). The library functionStartlO evaluates an interaction given initial
abstract device defitions of typelOSystem, the initial program state, the initial
actions of the interamn of typelnitlO (:: InitlO s == [(s, IOState s) - (s, IOState

s)]), and the event stream environment:

17

StartlO :: (I0System *s) *s (InitlO *s) *Events -> (*s, *Events)

StartlO performs three actions: (1) creation of the proper environments for the in-
teraction, (2) evaluation of the initial actions of the interaction, and (3) thaeseval
tion of the interaction until termination.

(1) startlO is provided with the definitions of the abstract devices that wil par
ticipate in the interaction. With these abstract device definitions the concrete
Graphical User Interface elements are created. As a result the abstract devices ap
pear to the user in their il run-time state. The environment of typeState is
filled with the run-time states of the concrete devices and their abstract event
handlers.

(2) The second action &tartlO is the evaluation of the initial actions of the in-
teraction. Suppose the initialtians are the list of transition functioffs...f,], and
the initial interaction state is the pd#ry, ioy). The result of the initial actions is
the new paifs,,ioq) = f,foq1-...-f (Sg,i00) With - being function corposition. The
initial actions are very convenient for an interaction to do initialisation actions
such as setting up files, verification procedures, and so on (it may evicie de
quit the interaction by applying the functiQuitlO to its I0OState environment).

(3) Finally, StartlO evaluates the interaction until termination. This is done by
an event loop which is a simple, recursive function. In each step it retrieves a
concreteevent from the event stream environment. If the concrete event should
be interpreted as an abstract event, the corresponding abstract event handler is
applied to theurrent interaction statés;,io;) to obtain thenew currentinteraction
state(s;;1,i0i:1). Theeffect of this transition (which is administrated im,;) is
paired with the concrete event that triggered the transition. The eventeloap
natesas soon as th®State component of the interaction state contains no more
concrete devices. The result ®fartlO is the final program state and the changed
event stream environment which ¢aims the pairs of concrete events that have
been parsed by the interaction and their effect, and the concrete events that have
not been parsed by the interaction.

An interaction that decides that it should terminate, can do so by removing all
concrete devices from its current interaction state. This can be done only with the
library function QuitlO with QuitlO :: *(I0State *s) - *IOState *s. QuitlO releases
the run-time resources of each device in the intema@and removes them from
thelOState component.

6.4 The other abstract devices

In this section we briefly discuss the abstract devices other than the menu device.
Their complete algebraic type definitions and abstract device access functions can
be found in van Eekeleet al (1993), and Plasmeijer and van Eekelen (1993). A
definition of the semantics of the 1/0 system is given in Achten (1i@9#repa-

ration).

18

The timer device

The timer device enables interactions to synchronise on an arbitrary number of
time intervals of arbitrary length. Timing is handled by assuming that all events
are provided with a time stamp. This mechanism cannot provide real-time timing
because the time needed to evaluate an abstract event handler may exceed a given
time interval. The abstract event handler of every active timer is therefaiie pro

ded with the discrete number of complete time wdés that have passed. The ac-
curacy of the timer device is adequate for most animation tasks, or checks that
need to be done at a regular basis.

The window device

Windows are the basic medium in which Graphical User Interface systems com
municate with users. An interaction can have an arbitrary number of windows
open. Windows arstack orderedvhich means that they can overlap. Of these
windows at most one window &tive. The active window is the window that re-
ceives all kepoard and mouse events. The interaction as well as the user can de-
cide which wirdow to activate. The active window is not demanded to respond to
user events: the addition of a keyboard and mouse event handler is optional. The
applicaion presents information to its users in a window by drawing into it. Each
window has docal drawing environmenf type *Picture. Pictures have finite
dimensions, given by theictureDomain.

The dialogue device

The dialogue device models structured communication betweegrgmoand
user. Applications can have an arbitrary number afogdjues open. The dialogue
device manages property and command dialogues, as well as notices. Dialogues
can change theodeof an interaction: when openedmeadaldialogue forces the
user of the interaction to deal with the Idigue entirely before any other actions
can take placeModelesdialogues are less demanding: the user may disregard
them and use them when convenient. Property dialogues are alwaykesspde
and are used to set properties of the interaction. Command dialogues can be mo
dal or modeless. Notices are simple modaladjaes to inform the user about un-
usual or dangerous sittians.

The contents of a dialogue is defined by a summary of ilsglia elements
rather than a single drawing environment as is the case wittows These dia-
logue elements are common dialogue elements such as (radio) buttons, (edit) text
fields, pop up elements, and check boxes but also user defined custom controls.
As a consequence, the definition of a dialogue is more complicated than the defi-
nition of a window because thayoutbetween dialogue eteents needs to be de-
fined. In order to ease the effort of defining dialogues, thiogiiee elements have
alayout attributeof algebraic typatemPos to influence their position. With this
layout attribute positions can be expressed relative to the size of the dialogue

19

(Left, Center, Right), relative toearlier placed items RightTo, Below, XOffset,
YOffset), or in absolute termsXfy, ltemBox).

6.5 Example

In this section we present an example program that uses sevetralchldevices

in order to illustrate how to program with the Clean Event Ilgalies. The pro-

gram is a simple address database. The user of the program can add and remove
addresses to and from the database, view the current list of addresses, and quit the
application. The end of this section contains the main fragment of the program
code which cotains the data structures and the abstract device tigfisi Some

minor fundions, constants, and the file I/O operations that manipulate the data
base file have been omitted for reasons of brevity. Figure 15 gives a snapshot of
the application running on a Macintosh system.

The data structures used in the program are the program Adidtes&Book),
the data structure of a single addre&ddfess), and a data structure for font-in
formation BookStyle). These data structures areratord typesin Clean 1.0, a
record type is an algebraic type witlactly onealternative constructor. The al-
terndive constructor does not need to be sfiediif the field names uniquely
identify the record type. Record types and record esmas always appear be
tween{} in a program. The arguments of a record expression can be selected by an
extended form opattern-matchingand by thdield namef the arguments.

The menu device defines the four commaogen, Add, Delete, andQuit of
the applicationOpen opens the window namedidresses in which the current
list of addresses is showadd opens thé&dit Address dialogue by which the user
can add addresses to the databBséete removes the currently selected address
from the database. It is initialljisabled because at start the user has selected no
addressQuit before terminating the interaction asks the user if any changes to the
database should be actually saved to the database file. This is dom®tice.a

In theEdit Address dialogue the user can fill in the text fields of an address.
Pressing the only dialogue button namefd triggers the abstract event handler
AddAddress. This function rérieves the edit text field values of the dialogue, and
creates an address record which seited in the current list of addresses. It in-
creases the picture range of tkidresses window, and redraws its contents.

The user of the application can select an address of the database by pressing
the mouse button when the mouse pointer is in the text area of that address in the
Addresses window. The abstract mouse events in Alddresses window are han-
dled by the mouse event hand&srlect. It determines which address ideszted,
enables selection of theelete command, unhilites the previously selected ad
dress, hilites the selected address, and fills the text fields &tthaddress dia-
logue with the address fields values of the selected address.

20

Open %0 [
Add... *A

Delete #D | Name: ||Hinus Plasmeijer

Edit Address

|Nijmegen

Addresses

Peter Achten Street: |1 Toernooiveld
Hijmegzen

1 Toernooiveld
Telur 080-652483 | TeLNr: [080-652644 |

Figure 15 A snapshot of the address database application while running on a
Macintosh system.

module addressBook

import delta, deltaFile, deltaSystem
import deltaEventlO, deltaWindow, deltaDialog, deltaMenu, deltaFont, deltaPicture

10 == |OState AddressBook
AddressBook = { addresslist : [Address],
selection o nt,
files o *Files)
Address = { name .. String,
city ;1 String,
street :: String,
tel o String }
BookStyle = { font :: Font,
maxWidth 2 nt,
lineHeight 2 int }

Start :: *World -> *World

Start world
= finalworld
where
(fs, es) =: OpenWorld world
({files = fs1}, esl) =: StartlO [MenuSystem menus] initialBook initiallO es
menus =: [PullDownMenu AddressMenuld "Book" Able [

Menultem Openld "Open" (Key '0") Able Open,

21

Menultem Addld "Add..." (Key'a) Able Add,
Menultem Deleteld "Delete" (Key 'd") Unable Delete,

MenuSeparator,

Menultem Quitld "Quit" (Key 'q") Able Quit]]
initialBook =: {addresslist =[], selection = 0, files = fs}
initiallO =: [ReadAddressBook, Open, Add]
finalWorld =: CloseWorld fs1 esl

Open :: *AddressBook *10 -> (*AddressBook, *10)
Open addressBook =: {addresslist = addresses} io
= (addressBook, OpenWindows [window] io)

where

window =: ScrollWindow Addressesld (10,10) "Addresses"
(ScrollBar (Thumb left) (Scroll bookStyle.maxWidth))
(ScrollBar (Thumb top) (Scroll bookStyle.lineHeight))
domain (100, itemHeight) (200, 200)
UpdateWindow [Mouse Able Select]

((left, top), _) =: domain

domain =: AddressesGetPictureDomain addresses

bookStyle =: AddressBookStyle

itemHeight =: NrLinesPerltem * bookStyle.lineHeight

Select :: MouseState *AddressBook *|O -> (*AddressBook, *10)
Select ((x,y), ButtonDown, _) addressBook=:{addresslist = addresses, selection = index} io
| =EmptyList addresses
= (addressBook, io)
= ({addressBook & selection = index1}, iol)
where
iol =: ChangelOState [EnableMenultems [Deleteld],
DrawIinWindow Addressesld [HiliteAddress index],
DrawInWindow Addressesld [HiliteAddress index1],
ChangeDialog AddDialogld fillTextFields]io
fillTextFields =:[ChangeEditText NameTIld address.name,
ChangeEditText CityTId address.city,
ChangeEditText StrtTld address.street,
ChangeEditText TeINrTId address.tel]
address : Getlndex index addresses
index1 : (y / itemHeight) + (Minimum 1 (y % itemHeight))
itemHeight =: NrLinesPerltem * AddressBookStyle.lineHeight
Select _ addressBook io = (addressBook, i0)

Add :: *AddressBook *10 -> (*AddressBook, *|O)

Add addressBook io

= (addressBook, OpenDialog editDialog io)
where

22

editDialog =: CommandDialog AddDialogld "Edit Address" [] AddId [
StaticText NameSId Left "Name:",

EditText NameTId
StaticText CitySld
EditText CityTId
StaticText StrtSid
EditText StrtTid
StaticText TelNrSid
EditText TelNrTId
DialogButton Addid

(RightTo NameSId) (MM 70.0) 1™,
Left "City:",

(Below NameTId) (MM 50.0) 1™,
Left "Street:",

(Below CityTlId) (MM 50.0) 1™,
Left "Tel.Nr:",

(Below StrtTld) (MM 30.0) 1™,
Center "Add" Able AddAddress]

AddAddress :: DialogInfo *AddressBook *IO -> (*AddressBook, *10)
AddAddress dialoginfo addressBook =: {addresslist = addresses} io
= DrawInWindowFrame Addressesld UpdateWindow addressBook2 iol

where

(addressBook?2, iol) =: ChangePictureDomain Addressesld domain addressBook1 io

addressBook1 =: {addressBook & addresslist = addresses1}

domain =: AddressesGetPictureDomain addressesl

addressesl =: Insert address addresses

address ={ name = GetEditText NameTId dialoginfo,
city = GetEditText CityTId dialoglinfo,
street = GetEditText StrtTld dialoginfo,
tel = GetEditText TeINrTId dialoginfo }

Delete :: *AddressBook *IO -> (*AddressBook, *10)

Delete addressBook =: {selection = index} io

= DrawlnWindowFrame Addressesld UpdateWindow addressBook2 io2

where

i02 =: DisableMenultems [Deleteld] iol1

(addressBook2, iol)

: ChangePictureDomain Addressesld domain addressBookl io

addressBookl =: {addressBook & addresslist = addresses1, selection = 0}
domain =: AddressesGetPictureDomain addressesl
addressesl =: Removelndex index addresses

Quit :: *AddressBook *10 -> (*AddressBook, *10)

Quit addressBook io

| button = noButton

= (addressBook, i02)

= WriteAddressBook addressBook i02
where
i02

1 QuitlO iol

(button, io1) =: OpenNotice (Notice ['Save changes to address file?"]
(NoticeButton yesButton =:1"Yes")
[NoticeButton noButton =: 2 "No"]) io

23

7 Structuring interactive programs

In many cases interactive programs can bedgosed into a number of distinct
interactive units. For instance, many applications offer users a facility to edit text.
Instead of programming these facilities over and over again for each newaappli
tion, one would like to write a text editing module once, and include it in some
way in various applications. In this section we will first show how interactions
can be used as interactive modules, and then proceed with indivicii@chlole-

vice elements.

In the Clean Event I/O system, interactions can be comlsagdentially or
nested Interactions are sequentially combined by function application: the event
stream result of an application 8fartlO is the argument of the second applica
tion of StartlO. Figure 16 gives an example of sequential interaction composition.
The functionseq when applied to two interaction definitioAsandB, first evalu-
ates interactiorA and then interactioB. For notational convenience, wetno
duce a synnym type :10Def s == (I0System s, s, InitlO s) that colects the inter
action definition components.

seq :: (IODef *s) (IODef *t) *Events -> *Events
seq (ioSystemA, programStateA, ioA) (ioSystemB, programStateB, ioB) events
= eventsB

where

(_, eventsB) =: StartlO ioSystemB programStateB ioB eventsA

(_, eventsA) =: StartlO ioSystemA programStateA ioA events

Figure1l6 Sequential composition of interactions. The _ symbol is a wild card
which is a convenient denotation for anonymous node identifiers.

Interactions can be nested with the library functimstiO. Any interaction can
start the evaluation of a new interaction during its own evaluation.

NestlO :: (I0System *s) *s (InitlO *s) *(I0State *t) -> (*s, *IOState *t)

The type ofNestlO is similar to the type oftartlO except for being applied to the
IOState environment of the running interaction rather than the event stream envi
ronment. The typea of the prayram state of a nested interaction is in general dif-
ferent from the type of the program state of thgarentinteraction that starts the
nested interaction. The nested interaction is completely evaluated and tenly af

its termination the parent inter@an continues evaluatiomMestlO takes care that
before the nested interéan takes over from the pant interaction, the parent is
hidden This means that all the vide Graphical User Interface elements of the
parent interaction disappear from screen, and cannot be accessed by the user. Af-
ter termination of the nested interaction, the parent interactismoignagain. As

a result, all interface elements of the parent interaction that had been hidden from
the user reappear. Interactions can be nested arbitrarily deep and arbitrarily many.

24

Figure 17 gives an example of a functititLine that provides a nested text edit-
ing facility.

editLine :: String *(10State *s) -> (String, *IOState *s)
editLine line io

= (linel, iol)
where
linel =: getEditLine s1
(s1,i01l) =: NestlO IOSystemEditor (InitialEditorState line) InitlOEditor io

Figure1l7 A text editing interaction that can be used in arbitrary interactions.

Another way to structure interactive programs is by the abstract device definitions
of the Clean Event I/O system. Because abstract device definitions are algebraic
types, it is possible to define functions that create abstraateldefinitions that

can beparameterizedThe program in figure 18 illustrates this idea. The function
simpleDraw creates a very simple drawing window. It is parterieed with an id

and a piture range. The interesting aspect of this window is that it can be applied
to any interaction because it ilymorphicin its program state. Access to the
program state is provided by further parameterization of thredifumscwith ty-

pes:: Add s == Point s - s toadd a point to the prgram state;; Del s == Point s

- s todeletea point from the program state, andets ==s - (s, [Point]) tore-

trieve all points drawn sofar. The drawing functiobgawPoint andErase Point

are both of typ@oint *Picture - *Picture. The mouse event handleack erases a

point if both the mouse button and the option modifier key are pressed, and draws
a point if the mouse is pressed (redasd of modifier keys). Figure 19 shows the
drawing window in action.

simpleDraw :: Windowld PictureDomain (Add *s) (Del *s) (Get *s) -> WindowDef *s
simpleDraw id pictureDomain add del get
= FixedWindow id (0,0) “Picture” pictureDomain (update get)

[Mouse Able (track id add del), Cursor CrossCursor]

update :: (Get *s) UpdateArea *s -> (*s, [*Picture -> *Picture])
update get _ s = (s1, map DrawPoint drawnPoints)

where

(s1, drawnPoints) =: get s

track :: Windowld (Add *s) (Del *s) MouseState *s *(IOState *s) -> (*s, *IOState *s)
track _ _ _ (_, ButtonUp, _) siio = (s, i0)
track id _ del (point, _, OptionOnly) s io

= (del point s, DrawInWindow id [ErasePoint point] io)
track id add _ (point, _, ') sio = (add points, DrawInWindow id [DrawPoint point] io)

Figure18 A window definition for a very simple drawing program.

25

=== Picture s
Prar
Ti Ty

nS T

Figure19 The drawing window in action.

8 Implementation of the interface

The Clean Event I/O system is given structure by the abstract device concept. The
programmer knows how to define abstract devices, and how to change them at
run-time using abstract device access functions. The abstract device concept also
gives structure to the implementation of the interface between the Clean Event
I/O system and concrete operating systems.

The interface between abstract devices and concrete devices boils down to five
distinct actions for each abstract devica: lfide concrete interface elements) (
map abstract device definitions to concrete interface elemehtsafslate con-
crete events into abstract events and evaluate corresponding abstract edent han
lers, @) free the resources of concrete interface elements guuaido the hiden
state of concrete interface elements. Each of these partictilznsais a particular
function, and so the interfacete2en abstract and concrete devices is a structure
of five abstract device interface functiofisee figure 20).

DeviceFunctionss == (HideFunction S @
OpenFunction s, (b)
DolOFunction s, (©
CloseFunction s, (d)
ShowFunction s) (€

HideFunction s == (IOState s) -> IOState s
OpenFunction s == (DeviceSystem s) (IOState s) -> I0State s
DolOFunction s == Event s (IOState s) -> (Bool, s, |I0State s)
CloseFunction s == (IOState s) -> I0State s
ShowFunction s == (IOState s) -> I0State s

Figure20 The types of the abstract device interface functions.

The abstract device interface functions and the abstract device access functions
provide the Clean Event I/O system with an abstract view of the operating system
for each abstract device. An important advantage of this approach is that porting
the Clean Event I/O system to other operating systems requires only the porting

26

of these funtions. Another advantage is that each operating system interface can
exploit the underlying operating system in order to obtain efficient implementa
tions.

9 Related work

As briefly discussed in the introduction, many solutions to deal with 1/O in-func
tional languages exist. In this section we discuss three approaches in détail: dia
gue combinators (Dwelly, 1989), monads (Peyton Jones and Wadler, 1993), and
FUDGETS (Carlsson and Hallgren, 1993).

9.1 Dialogue combinators

One of the early reports on how functional languages can be used to program dy
namic and complex Graphical User I/O is the papediaiogue comhiatorsby
Dwelly (1989). Dialogue combinators are a class of functions with well-defined
properties such that programs constructed by these functions behave dlica pre
table way. It is a discipline because programmers are not forced to program in this
style. The type of a dialogue combinatobDig s =s - [Inputs] - ([Outputs], s,
[Inputs]). A dialogue conbinator when applied to some object that represents the
state of the prgram (theprogram statein our terminology) of types, and a
stream of user input of tygénputs], produces a triple consisting of some output
of type [Outputs], the new prgram state, and the user input that has not been con-
sumed.

Programs are constructed by dialogue combinators, sugtll@salogue, Join,
andCond. NullDialogue : Dlg s produces no output, and leaves thegoamn state
and user input unchanged. The applicatiofodf: DIg s - Dlgs — Dlg s to two
dialogue combinatordl andd2 produces the dialogue combinator that first eval
uatesdl and thend2, and concatenates the outputdafto the output ofil. Con-
ditions are functions of typ&€nd s =s - [Inputs] — Boolean, which inspect the
program state and the user input and yield a Boolesultréelhe application of
Cond:Cnds - DIgs - DIgs - Dlg s to a conditionc and two alternative dialo
gue combinatorsll andd2 produces the dialogue combinator that perfodh#
¢ holds andd2 if not.

In order to program dynamic interfaces one special dialogue combinator,
TreeCase, is provided. The basic idea behind this combinator is that dynamic in-
terfaces can be defined by setsohdition-actionpairsi(c;,a;)...(c,a,)] or rules.

The TreeCase combinator searches the first conditigrof a rulei that is satis

fied, and then applies the actian The action is provided with the program state
and the user input as usual, but also with the set ofcalient rules
[(c1,a1)...(cn@n)]- The action may produce some output and change the program
state as usual, but it also yieldaew set of rulef(c’;,a'1)...(C'ma m)] Which is re
cursively applied torreeCase. A rule has typeDdbject tag s = Obj tag (Cnd s)
([Object tag s] — Dlg s), andTreeCase is a function of typdObject tag s] — Dlg

27

s. By providing aninitial set of rules, the B®viour ofTreeCase is determined if
the user inputs are known.

Even though the dialogue combinator approach is stream based, our approach
has remarkable similarities, as well as remarkable differences. The concepts on
which the dialogue combinator approach is based, namely those of dialogue
combinators as program state transition functions, sets of changing rules to pro
gram the behaviour of dynamic interfaces, andrieeCase dialogue combinator
to evaluate a dynamic interface can be retraced in our device concept. The main
differences of the Clean approach are the @lation of event stream handling,
the formalisation of the behaviour of the Graphical User Interface by the devices,
and the modularigan of programs by allowing an arbitrary amount of interac-
tions.

9.2 Monads

One of the currently widely investigated approaches to incorporate 1/0O in func
tional languages is the approach by Peyton Jones and Wadler (1993) based on
monads(Moggi, 1989; Wadler, 1990). The system is implemented in Haskell
(Hudaket al, 1992). As we said in the introduction, this is an (implicit) environ
ment based approach. The environment basically models the state of the machine.
Operdions (oractiong on the environment have a special type which deno-

tes “actions thatwhen performedmay do some I/O and then return a value of
type a”. For example, the actiongetclO :: 10 Char, andputclO :: Char - 10 ()

read a character from standard input and write a character to standard output. The
type () is a special type of the empty tuge

A programmercomposesctions with two combinatoksitiO :: a - 10 a, and
bindlO :: 10 a - (a - I0b) - 10 b. The applicationunitlO x denotes the action
that only returnx. The applicatiorbindlO m n (or using the Haskell infix nota-
tion m “bindIO" k) for an actionm :: 10 a, and a functiork :: a - 10 b, first does
m, which yields a value of typea, and then doels x, which yields a valug of
typeb. These two combinators actually form the monad. Two other combinators
are derived fronunitlO andbindlO, namelydonelO :: 10 () andseqlO :: 10 a - 10
b - 10 b. The combinatotonelO simply does nothing. The pfication m
*seqlO” n to two actionsn :: 10 a andn :: 10 b first doesm and then does, and
yields the result ofi.

If we compare the monad approach to our approach then there are some strik
ing differences. The environment that is manipulated in the monad approach is
implicit and ‘appears’ only in the type. As a result programming in the system
creates one single spine of 1/0 operations and therefore over determines order of
evaluaion (see the discussion in section 4.2), and combinators need to be pro-
vided in order to compose actions. To our knowledge combining monads of dif
ferent type is a rather tedious task which forms a serious practical restriction on
its use. It is interegtg to look at two extensions to th@ monad that are used to
create additional spines of 1/0O operations but in an unsafe manner, and see how
these can be defined in the explicit environment style.

28

The first extension is the combinatdelaylO :: 10 a - 10 a by which a pro-
gram carspark an action that is evaluatéuterleavedwith the main imperative
spine. This is a dangerous combinator because the result of the program-may de
pend on the evaldi®n order between the interleaved action and the main spine. It
should only be used if the programmer proves that the interleaved action cannot
interfere with the spine. In the explicit multiple environment passing style- inter
leaved I/O is obtained because two spines of 1/O can be defined on independent
environments. There is no need for proof obligation because environments are in
dependent by definition.

The second extesion is the combinatgrerformlO :: 10 a — a by which a pro-
gram sparks an action that is not connected to the main spine at all. Again, the
programmer has to prove that the action cannot cause any side-effects in-the pro
gram. This is clearly an example of unhygienic prograng (end of section 4.2).
In the Clean Event I/O system this situation cannot occur because an interactive
program needs to yield a result value of typéorld, which can only be done by
applying the composition rule to the event stream and file system environments.

9.3 FUDGETS

TheFUDGETSsystem by Carlsson and Hallgren (1993) is a system developed re-
cently in which the stream based functional I/O approach is unified with Graphi
cal User Interfaces (in particular the X Windows system). The bastepbiof

the approach is thiedget(functional widget). The fudget is the basicstrument

to receive and handle concrete events, and send commands to other fudgets.
Events and commands are communicated using streams. A fudgattkats

high level events of typa, and thasendscommands of type3, is a fudget of

type F a B. The system provides a set of primitive fudgets.

A program can create complex graphic interfaces by composing fudgets, and as
usual a number of combinators are provided to do so. For instance, theng@ombi
tor >+< puts two fudgets, andf, of typeF a, B, andF a, [3,, into a new fudgeft
of type F (a,+0a,) (B1+[;). The notationa+p is shorthand for the algebraic type
Either with Either a 3 = Left a | Right . The new fudget is the parallel compo
sition of f; andf,. Any message of typ®; is sent tof;, which results in a response
of type ;. Program code is connected in a fudget structure by defining code as
stream processing futions of predefined abstract data type o (3. The operator
absF turns such a function of ty@P o (3 into anabstract fudgebf typeF a (3.
BecauseSP is an abstract data type combinators are provided to create stream
procesing functions, namely thanput combinatorgetSP :: (a - SP a B) - SP
o B, and theoutputcombinatorputSP :: [a] - (SP a B) — SP a B. The applica-
tion getSP (\a -> sf) gets an incoming message of typend continues as the
stream processaf. The applicatiorputSP | sf outputs the messagesliand con-
tinues as the stream processoiFinally, to get an exautable program, the fudget
structure is offered to a function which takes care of the stream handling with the
operating system.

29

In contrast with the Clean Event I/O system, th®®EETS system has no cen
cept of a state that is accessible for the Graphical User Interfanergkethat are
part of the interaction. All state Iscal to a fudget. For both event handling and
communication, th&UDGETS system relies entirely on stream pessing. Ab-
stract fudgets are demanded to be written as stream processadng; &ocontinu-
ation style on the program. Although the paper describes how fudgets can be cre
ated dynamically, it is not clear if it is possible to dispose ofjéisl dynangally.
This is a necesary property of an 1/O system as Graphical User Interfaces are re-
cognised for their highly dynamic use of interface elements.

10 Conclusions

In this paper we have shown how file I/O and Graphical User I/O have been in
corporated in the lazy functional programming language Clean. File I/Qinede
entirely using the explicit multiple environment passing method. This method al
lows explicit handling of resources from the outside world, such as files, event
streams, windows, and so on. The direct use of the resources is safe due to the
Unigueness Types of Clean’s typing system. The reiginis that are imposed by

the Uniqueness Type System to the programmer do not seriously hamper the
functional expressiveness of the language. By the environment hierarchy-the out
side world is given structure, and multiple environments can be used in the same
program independently. The complexity of programming Graphical User Inter
faces is maaged by introducing several stages of abstraction. A program is struc
tured by partitioning it into a number of independent interactions. Edefat

tion can be considered on its own. An interaction is a dynamic statetitvansi
system which is castructed in a declarative style. An interaction is defined by an
initial set of devices and an initial program state. The devices are defined by alge
braic types which provide a concise and clear notation of the interfeceels.

The use of algebraic types to specify abstract devices and interactions is a very
flexible tool, as algebraic types can be manipulated easily in a functional lan
guage.

The Clean Event I/O library provides portability to very different operating
systems. We have made implementations of the 1/O library for the Sun under X
Window system, using the Open Look Interface Tool kit, and the NtatinWe
are currently working on an implementation on PC’s under OS/2. This means that
a Clean application created and tested on a Macintosh only needs to bpirecom
led to run exactly the same on a X Wow system. Still, the milting applica-
tions obey the different look-and-feels of these systems. Bteryi has been used
to write sewral large applications (a full-feathered text editor, a relational data
base aplication, a spreadsheet, a Turing machine prognarg environment, and
many games). The rdime perfomances of these programs are getitive with
im perative programs.

Finally, we hope to have shown not only by the extensive account of the Clean
I/0 system (and in particular the Uniqueness Typing) but also by the related
work, that functional laguages have very strong organisationaktedttive, and

30

expressive power. It is important that an I/O system for a functional language re
tains these strengths.

11 Current and futurework

Research on the Clean I/O system as presented in this paper lcastcird
mainly on how to make 1/O resources explicitly and safely available, and how to
program Graphical User I/O in a high-level and portable way. A technical report
on the operational semantics of the Clean I/O system is in preparation (which will
discuss the meaning of non-terminating interactive programs, and how to reason
about interactive programs). Part of our current and future research focuses on
making the I/O system more orthagad. Concrete topics in this area are to what
extent the window and dialoguewdee can be unified, and the completion of the
set of functions to structure and combine intéxecprograms. The other main

part of our research activities will be to investigate how the explicit multiple en-
vironment passing scheme can form a baseliftributed (or parallel)interactive
programs Topics in this area are the environment hierarchy of a world that con
tains many other worlds, and the investigation of communication primitives be-
tween interations.

Acknowledgements

We would like to thank Marko van Eekelen for comments on the text, and also for
pointing out that hygienic use of environments is not a programagngention

but rather an obligatory property of multiple environment passing schemes. We
would also like to thank the referees of the paper for their valuableneots.

References

Achten, P.M., van Groningen J.H.G., and Plasmeijer, M.J. 1993. High Level
Specification of 1/0 in Functional Languages. In Launchbury, J., Sansom, P.
eds., Proceedings Glasgow Workshop on Functional Programmifgr,
Scotland, 6-8 June 1992. Workshop Notes in Computer Science. Springer-
Verlag, Berlin, 1993, pp. 1-17.

Achten, P.M. and Plasmeijer, M.J. 1993. The Beauty and the Beabhical Re
port N0.93-03 March 1993. Research Institute for Declarative Systems, De-
partment of Informatics, Faculty of Mathematics and Informatics, Usityer
of Nijmegen.

Achten, P.M. 1994. Operational Semantics of Clean Eventliéchncal Report
in preparation. University of Nijmegen, The Netherlands.

Backus, J. 1978. Can Programming Be Liberated from the von Neuman Style? A
Functional Style and Its Algebra of ProgramsClammunications of the ACM
Vol.21 Nr.8, pp. 613-641.

Backus, J., Williams, and J., Wimmers, E. 1990. An introduction to the pregram
ming language FL. In Turner, D.A. ed?esearch topics in Functional Pro-
gramming Addison-Wesley Publishing Company, pp. 219-247.

31

Barendregt, H.P., Eekelen van, M.C.J.D., Glauwert, J.R.W., Kennaway, J.R.,
Plasmeijer, M.J., and Sleep, M.R. 1987. Term Graph Rewriting. In Bakker,
J.W. de, Nijman, A.J., and Treleaven, P.C. &tsceedngs of Parallel Archi-
tectures and Languages Eurgpgindhoven, The Netherlands, LNCZ9,

Vol.ll. Springer-Verlag, Berlin, pp. 141-158.

Barendsen, E. and Smetsers, J.E.W. 1@93onventional and UniquenessFy
ing in Graph Rewrite System$echnial Report CSI-R9328ecember 1993.
Computing Science Institute, Partment of Informatics, Faculty of Mathe-
matics and Informatics, University of Nijmegen.

Barendsen, E. and Smetsers, J.E.W. 1893onventional and Uniqueness Fyp
ing in Graph Rewrite Systems (extended abstract). In Shyamasundar, R.K. ed.
Proceedings of the Thirteenth Clenence on the Foundations of Software
Technology and Theetical Computer Scien¢cd5-17 December 1993, Bem
bay, India. LNCS/61. Springer-Verlag, Berlin, pp. 41-51.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, Plasmeijer, M.J., and
Barendregt, H.P. 1987. Clean: A Language for Functional Graph Rewriting. In
Kahn. G edProceedings of the Third International Conference on Functional
Programming Laguages and Computer @hitecture Portland, Oregon,
USA, LNCS274, Springer-Verlag, pp. 364-384.

Carlsson, M. and Hallgren, Th. 1998JDGETS- A Graphical User Interface in a
Lazy Functional Language. IRroc. of Conference on Functional Program-
ming Languages and Computer Architectu@penhagen, Denmark, 9-11
June 1993. ACM Press, pp. 321-330.

Chirimar, J., Gunter, C.A. and Riecke, J.G. 1992. Proving Memory Management
Invariants for a Language Based on Linear LogidPtaceedings of the ACM
Conference on Lisp and Functional Programmjr®an Francisco, California,
June 22-24, 1992. ACM Press, pp. 139-150.

Dwelly, A. 1989. Functions and Dynamic User InterfacesPtnceedings of
Fourth International Conference on Functional Programming Languages and
Computer Architecturgesimperial College, London, September 11-13, 1989,
pp. 371-381.

Eekelen, M.C.J.D. van, Huitema, H.S., Nocker, E.G.J.M.H., Plasmeijer, M.J., and
Smetsers, J.E.W. 1993. Concurrent Clean Language Manual - Version 0.8.
Technal Report No. 93-1,3June 1993. Research Institute for Declarative
Systems, Department of Informatics, Faculty of Mathematics and Informatics,
University of Nijmegen.

Girard, J-Y. 1987. Linear Logic. Ifiheoretical Computer Scien&@, pp. 1-102.

Gordon, A.D. 1993Functional Programming and Input/OutpuPhD Thesis.
University of Cambridge Computer Laboratory, Technical Report No. 285.

Guzman, J.C. and Hudak, P. 1990. Single-Threaded Polymorphic Lambda Calcu
lus. InProceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter SciencePhiladelphia, P.A., USA, June 4-7, 1990, pp. 333-343.

Groningen, J.H.G. van, Nocker, E.G.J.M.H., and Smetsers, J.E.W. 1991. Efficient
Heap Management in the Concrete ABC Machine. In Glaser, HartePeds,
ceedings of Third International Workshop on Implementation of #amal
Languages on Parallel ArchitectureBniversity of Southampton, UK. Teeh
nical Report Series CSTR 91-07.

32

Henderson, P. 1982. Purely Functional Operating Systems. In Darlington, J.,
Henderson, P., Turner, D.A. edBynctional programming and its appliea
tions Canmbridge University Press, pp. 177-192.

Hudak, P., Peyton Jones, S., Wadler, Ph., Boutel, B., Fairbairn, J., Fasel, J.,
Hammond, K., Hughes, J., Johnsson, Th., Kieburtz, D., Nikhil, R., Partain, W.,
and Peterson, J. 1992. Report on the Programming Language HASKEII.
SigPlan Notice7, (5), pp. 1-164.

Hughes, J. 1990. Why Functional Programming Matters. In Turner, D.ARed.,
search topics in Functional Programmingddison-Wesley Publishing Com-
pany, pp. 17-42.

Moggi, E. 1989. Computational lambda calculus and monadBraceedings of
the Fourth Annual Symposium on Logic in Quier ScienceJune 5-8, 1989,
California, Computer Society Press, pp. 14-23.

Nocker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer,
M.J. 1991. Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds,
Proceedings of Pardl Architectures and Languages Eurgphine, Eind
hoven, The Netherlands. LNC36, Springer-Verlag,pp. 202-219.

Perry, N. 1988. Functional I/O - a solution. Department of Computing, Imperial
College, London, Draft version.

Peyton Jones, S.L. and Wadler, Ph. 1993. Imperative Functional Programming. In
Proceedings of the Twentieth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Language€harleston, South Carolina, January
10-13, 1993, pp. 71-84.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 19ctional Programming and
Parallel Graph Rewriing. Addison-Wesley Publishing Company 1993.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1994. Clean 1.0 Reference Manual.
Technical Reportin preparation. University of Nijmegen, The Netherlands.

Redelmeier, D.H. 1984Towards Practical Functional ProgramminBhD The
sis. Computer Systems Research Group, University of Toronto, May 1984,
Technical Report CSRG-158.

Smetsers, J.E.W., Nécker, E.G.M.H, Groningen, J.H.G. van, and Plasmeijer, M.J.
1991. Generating Htient Code for Lazy Functional Lguages. In Hughes, J.
ed, Proceedings of Fifth International Conference on Functionaldgeam-
ming Larguages and Computer Architectu@ambridge, MA, USA, LNCS
523, Springer-Verlag pp. 592-617.

Smetsers, J.E.W., Barendsen, E., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
1993. Guaranteeing Safe Destructive Updates through a Type System with
Uniqueness Information for Graphs. Broceedings Workshop Graph Trans-
formations in Computer Sciencgchloss Dagstuhl, January 4-8, 1993. Lecture
Notes in Computer Science, Springer-Verlag, Berlin.

Thompson, S. 1990. Interactive Functional Programs. A Method and a Formal Se
mantics. In Turner, D.A. edResearch topics in Functional Programmijng
Addison-Wesley Publishing Company, University of Kent, pp. 249-285.

Turner, D.A. 1990. An Approach to Functional Operating Systems. In Turner,
D.A. ed.,Research topics in Functional Programmigddison-Wesley Pub
lishing Company, pp. 199-217.

Wadler, Ph. 199@. Linear types can change the world! In Broy, M., Jones, C.B.,
eds.,Programming Concepts and Methgdsnsterdam North-Holland.

33

Wadler, Ph. 1994. Comprehending monads. Rroceedings of the ACM Ctar-
ence on Lisp and Functional Programmimjce, ACM Press, pp. 61-78.

Williams, J.H. and Wimmers, E.L. 1988. Sacrificing simplicity for convenience:
Where do you draw the line? Iroceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Langu8gas
Diego, Cailfornia, January, pp. 169-179.

34

