
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111084

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16195532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111084

1

The Ins and Outs of Clean I/O

PETER ACHTEN AND RINUS PLASMEIJER
Computing Science Institute, University of Nijmegen,
1 Toernooiveld, 6525ED, Nijmegen, the Netherlands

(e-mail: peter88@cs.kun.nl, rinus@cs.kun.nl)

Abstract

Functional programming languages have banned assignment because of its undesirable
properties. The reward of this rigorous decision is that functional programming languages
are side-effect free. There is another side to the coin: because assignment plays a crucial
role in Input/Output (I/O), functional languages have a hard time dealing with I/O. Func-
tional programming languages have therefore often been stigmatised as inferior to imper-
ative programming languages because they cannot deal with I/O very well. In this paper
we show that I/O can be incorporated in a functional programming language without loss
of any of the generally accepted advantages of functional programming languages. This
discussion is supported by an extensive account of the I/O system offered by the lazy, pu-
rely functional programming language Clean. Two aspects that are paramount in its I/O
system make the approach novel with respect to other approaches. These aspects are the
technique of explicit multiple environment passing, and the Event I/O framework to pro-
gram Graphical User I/O in a highly structured and high-level way. Clean file I/O is as
powerful and flexible as it is in common imperative languages (one can read, write, and
seek directly in a file). Clean Event I/O provides programmers with a high-level frame-
work to specify complex Graphical User I/O. It has been used to write applications such
as a window-based text editor, an object based drawing program, a relational database,
and a spreadsheet program. These graphical interactive programs are completely machine
independent, but still obey the look-and-feel of the concrete window environment being
used. The specifications are completely functional and make extensive use of uniqueness
typing, higher-order functions, and algebraic data types. Efficient implementations are
present on the Macintosh, Sun (X Windows under Open Look), and PC (OS/2).

1 Introduction

Functional programming languages live in a world from which assignment (or de-
structive updating) has been banned because of its undesirable properties. Living
without assignment has proven to be very successful, and many accounts have
been written of the advantages of living in a world free of side-effects (Backus,
1978; Hughes, 1990). However, in order to write useful applications, it must be
possible for functional programs to interact with the outside world. Doing I/O
means manipulation of I/O resources, such as files, keyboards, mice, and screens.
In the real world these resources are globally accessible, and manipulations of
them are in essence assignments. This implies that functional languages cannot
use I/O resources in the same direct, unrestricted way as for example imperative

2

languages can. For this reason functional languages are often stigmatised as infe-
rior to imperative programming languages because they cannot deal with I/O
very well.

Research on the incorporation of purely functional I/O into functional program-
ming languages has evolved into basically two styles of solutions: stream based
solutions and environment based solutions. Stream based methods have been pro-
posed in a (token) stream style (Henderson, 1982; Turner, 1990; Hudak et al,
1992; Carlsson and Hallgren, 1993) and continuation style (Thompson, 1990;
Dwelly, 1989; Perry, 1988). Essentially, stream based methods transform an input
stream into an output stream. The output stream is not exclusively used for pro-
ducing output only, it is also used for requesting input. Some entity outside the
program (usually the operating system) handles the output requests and provides
the proper input. Environment based methods are environment passing methods
(Williams and Wimmers, 1988; Backus et al, 1990) and methods using monads
(Peyton Jones and Wadler, 1993). In these solutions functions essentially operate
directly on a special object, the environment, that represents the state of the
world. In literature environment based methods are also known as side-effecting
I/O systems (Gordon, 1993).

The Clean I/O system that is presented in this paper is an environment based
approach and contributes to the research in functional I/O in two major aspects.
The first aspect is the use of an explicit multiple environment passing style
throughout the system giving explicit and direct access to I/O resources. This has
been made possible by the Uniqueness Type System of Clean (Smetsers et al,
1993; Barendsen and Smetsers, 1993a-b; Plasmeijer and van Eekelen, 1993)
which enables safe and restricted updates in a pure and functional framework. The
second aspect provides programmers with the Clean Event I/O framework
(Achten et al, 1993; Achten and Plasmeijer, 1993) to program Graphical User I/O
in a highly structured and declarative way. The specifications of interactive pro-
grams are functional and programs can be reasoned about without any assumption
about operating systems. The I/O system demonstrates that functional languages
are well suited for I/O, by making extensive use of uniqueness typing, and well-
known functional programming features such as higher-order functions, polymor-
phism, and algebraic types.

The paper starts with brief introductions to Clean and Uniqueness Types
(sections 2 and 3). The explicit multiple environment passing style is defined in
section 4. Clean file I/O is discussed in section 5, and section 6 presents the Clean
Event I/O system. Section 7 discusses how interactive programs can be construc-
ted in the Clean Event I/O system, and section 8 briefly views the implementation
of the Clean Event I/O system. Section 9 compares some related work with our
approach. Finally the conclusions are presented in section 10, and current and fu-
ture research on functional I/O is presented in section 11.

3

2 Clean

Clean (Brus et al, 1987; Nöcker et al, 1991; Plasmeijer and van Eekelen, 1993) is
a lazy functional programming language based on Term Graph Rewriting
(Barendregt et al, 1987). To give an idea of what Clean programs look like, figure
1 presents an example of the well-known fibonacci function. The examples in this
paper are presented in the new Clean 1.0 syntax (Plasmeijer and van Eekelen,
1994, in preparation). Where appropriate, the text includes remarks on peculiari-
ties of this notation.

fib :: Int -> Int
fib 1 = 1
fib 2 = 2
fib n = fib (n - 1) + fib (n - 2)

Start :: Int
Start = fib 100

Figure 1 A Clean program for fibonacci. Function definitions are optionally
preceded by their type definition. Type symbols start with a capital,
(type) variables always start in lowercase. Function names can start
either with a capital or in lowercase. An n-ary function named f with
arguments of type τ1…τn, and result type τ has a type definition f ::
τ1 τ2…τn → τ. The special function named Start gives the initial ex-
pression of the program.

Term Graph Rewriting systems are well suited for efficient implementations of
functional languages (Groningen et al, 1991; Smetsers et al, 1991; Plasmeijer and
van Eekelen, 1993). Graph rewriting is actually used in many implementations of
functional languages. The main difference between Clean and other lazy functio-
nal languages is that in Clean graph rewriting is explicitly in the semantics of the
language. In Clean, the function application to be evaluated is represented by a
possibly cyclic computation graph. Function definitions are actually Term Graph
Rewriting rules. Each rule alternative is a graph with a left-hand side root
(L.H.S.) and a right-hand side root (R.H.S.). Figure 2 depicts the graph structure
of the third fib alternative. Each node in the graph contains a symbol (fib , +, -, 1 ,
2) and arguments pointing to other nodes.

4

+

2

R.H.S.:

--

1

fib fib

L.H.S.: fib

n:

Figure 2 The third alternative of the fibonacci rule depicted as a graph.

In Clean, reasoning about programs is reasoning about computation graphs. It is
straightforward to denote cyclic structures and shared computations. For instance,
the semantics of Clean prescribe that the argument node n is shared in the compu-
tation graph constructed on the right-hand side of the example explicitly reflect-
ing the call-by-need evaluation which is commonly used in the actual implemen-
tation of functional languages.

Term graph rewriting obeys the functional semantics. Figure 3 illustrates one
formal rewrite step of the computation graph fib 100 of the fibonacci example (the
implementation is done in a much more efficient way!). The initial graph (a) con-
sists of only one redex, namely the graph fib 100, which matches the third alterna-
tive of the fib rewrite rule. Rewriting this redex occurs in the following way: a
new graph is created for those nodes of the right-hand side of the rule that are new
to the computation graph (in the example these are two nodes labelled fib , and no-
des labelled +, -, 1, and 2). This process is called graph extension (b). After ex-
tending the computation graph, the original computation graph root is overwritten
with the root of the extended graph that matches the right-hand side of the rule
(c). In term graph rewriting terminology this process is called ‘redirection’ of the
left-hand side root to the right-hand side root. Finally, the nodes that have become
unreachable from the new root of the computation graph are garbage collected
(d).

fib

100

root:

--

+

21

fib fib

fib

100

root:

(a) The root expression (b) Graph extension

5

--

+

21

fib fib

fib

100

root:

--

+

21

fib fib

100

root:

(c) Graph redirection (d) Garbage collection

Figure 3 One rewrite step of the initial expression of the fibonacci example.

In general, a computation graph consists of several redices. The rewriting process
needs a reduction strategy to determine what redex should be rewritten. The de-
fault reduction strategy of Clean is the lazy functional strategy. A (sub)graph that
contains no redex is said to be in normal form. A (sub)graph in which the root
node is not a function symbol is said to be in root normal form. In the remainder
of this paper when we discuss Clean we will use the term functions for rewrite ru-
les and vice versa for convenience.

3 Uniqueness Types

Because Clean is based on a typed Term Graph Rewriting system it is possible in
this system to use type information to state properties of graphs. One such inter-
esting property states that a specific sub graph of a computation graph is not
shared by any other node of that graph. A sub graph that fulfils this property is
said to appear uniquely in the computation graph. More formally the uniqueness
property is stated as follows (Plasmeijer and van Eekelen, 1993):

A node n of a graph G is unique with respect to a node m of G if n is only
reachable from the root of G via m and there exists exactly one path from m to n.

m: F a1 … an

n:

root of G

Figure 4 The uniqueness property depicted.

6

Why is this an interesting property? To answer this question, it is necessary to re-
call the rewriting semantics of Clean. In this system, rewriting a matching rule al-
ternative in a computation graph (the redex) creates a completely new graph
matching the right-hand side of the rule alternative. The redex root is redirected to
the newly created graph. If we know that an offered argument of this rule is uni-
que with respect to the application node and it is not used in the function body
then it will become garbage. In that case a new object can be constructed by mak-
ing use of the old one. This means that one can destructively update such an argu-
ment to construct the function result. If the offered argument of the rule is not
known to be unique with respect to the application node then it is illegal to reuse
the argument because it might be shared.

It would be nice if at compile time the uniqueness of arguments and results of
functions could be determined. Unfortunately, this is undecidable. In Clean a de-
cidable approximation has been incorporated using Uniqueness Types (Smetsers
et al, 1993; Barendsen and Smetsers, 1993a-b). Uniqueness Types differ from
Linear Types (Girard, 1987; Wadler, 1990-a) defined on lambda calculus. An es-
sential difference is that in the analysis of Uniqueness Types, graphs play a cru-
cial role. Uniqueness Types restrict the use of graphs and function applications in
a program, whereas Linear Types restrict the use of variables inside function def-
ini tions. The relationship between Uniqueness Types and Linear Types is a topic
of further investigation. Closer related work to the Uniqueness Type system is by
Guzmán and Hudak (1990) who present an extended lambda calculus with state
operations which safety is warranted by the type system.

The Uniqueness Type System is quite a complex type system, and a formal
treatment of this system is beyond the scope of this paper. The complete formal
framework of Uniqueness Types can be found in Barendsen and Smetsers (1993-
a), the main results of this work have been published in Barendsen and Smetsers
(1993-b). The incorporation of this formal type system in Clean is described in
Plasmeijer and van Eekelen (1994, in preparation). For this paper it is sufficient
to know that the uniqueness attribute * can be assigned to any type (synonym ty-
pes, algebraic types, and abstract data types) by prefixing the attribute to the
type.

The uniqueness type system uses a kind of reference count analysis called sha-
ring analysis. The sharing analysis allows an arbitrary number of references to a
unique object as long as it can statically deduce that the reference count will be
one when the object is accessed by the function that wants it to be unique. The
sharing analysis marks each reference in a right-hand side as not-shared (if it
could be shown that the object points to a not-shared object) or shared (other-
wise). There are several cases to mark a reference not-shared. In case there is only
one reference in the right-hand side of a rule to a certain object (the reference
count of the object is one) the mark clearly should be not-shared. If it can be
shown that the evaluation order is such that other references will be vanished on
time, they are not counted and the reference to be marked will still be marked as
not-shared. An example of such a situation is the reference to an object in both a
guard and its guarded expression. The guard will be evaluated before the guarded

7

expression will be evaluated, so the reference is lost when the guarded expression
is evaluated. As a result, unique objects are allowed to be observed in guards.

Objects marked shared by the sharing analysis cannot be typed unique. So, the
sharing analysis is input for the type system to check uniqueness type consistency.
For each reference (argument in a node) it is determined how many other referen-
ces there will exist whenever the object is accessed (and evaluated to root normal
form) via this reference. The type checker verifies the correctness of the use of
uniqueness attributes in rules by examining all applications on the right-hand side
of a function to check that when a parameter or a result of a uniqueness type is de-
manded, a unique graph of the demanded type is offered. In this context deman-
ded type means that either the corresponding formal parameter with the applied
function has a uniqueness attribute or the result type with the defined function has
the uniqueness attribute.

The Uniqueness Types System is a powerful tool which provides a wide range
of interesting applications in the implementation and use of functional languages.
It provides the basis of efficient and functional I/O, it can be used for the imple-
mentation of destructively updateable arrays and user-defined unique data struc-
tures, it can be used in the analysis of memory usage of functional programs (as
has been done by Chirimar et al, 1992 for a language based on Linear Types), and
it can serve as a general safe interfacing facility for functional languages with the
imperative world.

4 Explicit multiple environment passing

Specifications of interactive programs require a method in which sequences of
I/O operations can be defined. In order to be able to reason properly about inter-
active programs it is vital that these sequences be evaluated in a predictable order
(e.g.: in the teletype kind of interactive systems prompts must appear before one
waits on user input) and that the evaluation of an I/O operation has an immediate
effect (when the prompt is demanded to appear it must show on the screen). In
this section we introduce an improved type of explicit environment passing
scheme that will provide these vital properties for a lazy functional language. This
scheme is used throughout the I/O system.

4.1 Explicit environment passing

Explicit environment passing schemes are well suited as methods for specifica-
tions of interactive programs. In an explicit environment passing scheme there is
one special data object in normal form, the environment, which is some sort of
encoding of (changes in) the state of the world. A program doing I/O is a function
that given an initial environment produces a new environment in which all subse-
quent changes are contained. Programs can change the state of the world and re-
trieve information from the world by functions that have access to this environ-
ment. The evaluation of such a function consists of two actions: the state of the
world is changed immediately, and a new instance of the environment is yielded

8

in which the change to the state of the world is reflected. We will call the change
to the state of the world the effect of the function. Because we intend these func-
tions to have an immediate effect, they are hyper-strict in their environment ar-
guments. As a result the environment argument will always be in normal form
before the function is evaluated. Functions that inspect (read) the world yield
what has been read. So, every access rule accounts for its effect on the state of the
world in the environment object. Each new operation is applied to the environ-
ment result of the previous operation. Sequences of operations are easily ex-
pressed as sequences of function applications on the environment.

Figure 5 gives a small example of what a typical explicit environment passing
program looks like. Suppose we have an environment of type World. The function
echo is a simple recursive function on World. It retrieves a character from the en-
vironment by some predefined function getChar and prints it on screen using
some predefined function putChar. The recursion of echo terminates if a newline
character, denoted with ‘\n’, has been retrieved by getChar.

echo :: World -> World
echo world
| c = ‘\n’ = world2

= echo world2
where
(c, world1) =: getChar world
world2 =: putChar c world1

Figure 5 An example of the explicit environment passing style. Guarded ex-
pressions are preceded by a conditional expression |. Local defini-
tions of constant functions (which are actually sub graph expres-
sions) are defined by the =: symbol rather than the more customary =
symbol.

The explicit environment passing style can be seen by the way world (which is a
value of type World) is used to pass around the state of the world after each op-
eration. The effect of the program is rather obvious: if a user types the character
sequence c1…cn‘\n’ (all characters ci are not the newline character), then the
screen will show the character sequence c1c2…cn. Moreover, the program expres-
ses successfully that each character ci is being put on screen immediately after it
has been read and before character ci+1 is being read.

This clear use of explicit environment passing schemes makes them very at-
tractive as a basis for a functional I/O system with direct access to I/O resources.
The idea of using explicit unrestricted environment passing schemes is indeed not
new. Gordon (1993) mentiones the unpublished PhD thesis of Redelmeier (1984)
in which this idea is presented. However, there is a catch to unrestricted explicit
environment passing. The environment represents the world and as there is only
one world around one gets into serious problems as soon as the environment is
duplicated or shared. Sharing the environment allows the introduction of an arbi-

9

trary number of environment changing sequences. The manipulations on the
world that are performed in one sequence are not recorded in the environments of
the other sequences. Because the world has been updated according to some inter-
leaving of these manipulations none of the resulting environment objects reflect
the state of that updated world anymore.

The program in figure 6 illustrates this catch. The function catch does two
things on the world: put a newline on screen (by world1), and echo the keys typed
by a user of the program using echo from the previous example (by world2). Sup-
pose the user of this program types the same character sequence c1…cn‘\n’ as pre-
viously. The output of the program can be any character sequence c’1c’2…c’n+1
with for some i (1≤i≤n+1), c’i=‘\n’ , c’j=c j (for j<i), and c’j=c j-1 (for j>i) because the
order of evaluation of world1 and world2 is undetermined. So the state of the real
world contains the character sequence c’1c’2…c’n+1. However, environment
world1 records a real world with state ‘\n’ , and world2 records a real world with
state c1…cn‘\n’ . Neither environment correctly reflects the state of the world.

catch :: World -> (World, World)
catch world = (world1, world2)

where
world1 =: putChar ‘\n’ world
world2 =: echo world

Figure 6 A program illustrating the danger of unrestricted environment pass-
ing.

Despite the catch, Clean I/O is based on the explicit environment passing style.
The environment that is passed around in the Clean I/O system is of type *World .
The initial environment is given as an optional argument of the Start rule. It
should be noted that the environment object cannot be introduced by a function
because it would introduce the possibility to introduce an arbitrary number of en-
vironment objects. The only proper way to deal with the world is to regard it as a
parameter of a program. In order to avoid the catch, and to reflect the ‘unique’
nature of the actual world represented by the environment, all environment opera-
tions require their environment argument to have the uniqueness attribute (so the
example functions have the types getChar :: *World → (Char, *World) and putChar
:: Char *World → *World). Due to the Uniqueness Typing the Clean I/O system re-
stricts access of the program to the environment, and prevents sharing and intro-
duction of multiple environments. The type system of Clean rejects catch due to
the fact that putChar demands world to have type *World , but instead world has
offered type World (because catch contains two references to world). Obviously,
the offered type cannot be coerced to obtain the uniqueness attribute. The function
echo needs a small addition in its type definition to turn it into a correctly typed
Clean definition (see figure 7).

10

echo :: *World -> *World
echo world
| c = ‘\n’ = world2

= echo world2
where
(c, world1) =: getChar world
world2 =: putChar c world1

Figure 7 The function echo now as a correctly typed Clean program.

4.2 Multiple environments

Environment passing schemes based on one single environment enforce program-
mers to create a spine of I/O function applications in a program. This is a very se-
vere restriction on functional program expressiveness, as programs are obliged to
over determine order of evaluation. To our knowledge, this is basically true for all
safe environment based approaches in functional I/O (see also the discussion in
section 9.2), and also for all stream based approaches (as they consider one single
stream that carries the I/O operations).

Reconsider for example the echo function in figure 7. In this program the spine
of I/O operations is formed by the sequence getChar, putChar, getChar,
putChar,… of read/write operations. However, for this program it is sufficient to
express that at least as many characters are read as there are characters printed.
This relationship cannot be defined in an environment passing scheme without
fixing an evaluation order.

The combination of explicit environment passing and Uniqueness Types is a
powerful one as it allows a very liberal and safe use of multiple environments. In-
troducing multiple environments allows a program to define multiple sequences
of I/O operations without predetermining an evaluation order between these se-
quences. Other advantages of using multiple environments are that such sequen-
ces of applications can be evaluated in parallel, and environments can be used to
support modular programming of interactive programs.

The Clean I/O system defines a hierarchy of environments (see figure 8). The-
refore in our terminology environment should not be understood as an encoding
of the state of the world as a whole but rather as a specialised data structure that
encodes the state of a specific part of the world. These environments must be in-
dependent: operations on one environment should not have an effect on another
environment. In the Clean environment hierarchy the top environment is the envi-
ronment of type *World . Two sub environments can be retrieved from the world
environment by decomposition. One represents the state of the file system and the
other represents the event stream communication to and from Graphical User In-
terface elements. Their corresponding types are *Files and *Events respectively.

11

outer world

*World

events for
I/O devices

*Events

file system

*Files

Figure 8 The Clean environment hierarchy.

The decomposition rule OpenWorld of the world environment into the file system
and event stream environments has type *World → (*Files, *Events) . It should be
noted that as a result the world is no longer available for subsequent use. The en-
vironments can be used in the program and finally compose a new world again,
by a composition rule CloseWorld of reverse type *Files *Events → *World . The
start rule of a Clean program that does I/O is always of type *World → *World . In
this way environments that have contributed to the effect of the program are al-
ways restored to the world environment. This is called hygienic use of environ-
ments.

5 File I/O

Clean file I/O is a good example of an I/O system using the explicit multiple envi -
ronment passing scheme. The top environment of the file I/O system is the object
of type *Files introduced in the previous section that encodes the real world file
system. This environment is again a container of yet smaller environments: the
individual files themselves (see figure 9).

writeable
files

*File

shared files
read access

only

File

file system

*Files

Figure 9 The Clean environments for file handling.

A Clean file has type File or *File. To open or close a file one needs a unique file
system. Writeable files are opened as *File ; read only files do not require the uni-
queness attribute. Once a writeable file has been opened it cannot be opened again

12

until the file is closed. Read only files can be opened an arbitrary number of ti-
mes, but cannot be opened as writeable files anymore. Because read only files do
not change the state of the file system they do not need to be closed, but can be
made garbage safely when they are not needed anymore.

All this is controlled and administrated by the unique file system which is nee-
ded for the opening and closing of all files. It should be noted that the unique file
system models the actual file system. All the file administration is in reality hand-
led by the operating system. This implies that there is no need whatsoever to ad-
ministrate anything in Clean itself. This means that all file I/O is handled as effi-
cient as possible because there is no administration overhead in the functional im-
plementation component. The use of these files is as powerful, flexible, and effi-
cient as it is in common imperative programming languages. For instance, in both
types of files (File as well as *File) it is possible to perform random access (seeks).
The Clean file primitives allow all basic types to be written directly to files and
read from files. One can write to and read from writeable files in any order.

The programming style when using files is basically the explicit environment
passing style. Figure 10 shows an example of a file copying program that illustra-
tes the use of World, Files and File . The first action of the program is to decom-
pose the unique world into the file system files and event stream events. The file
system is used to open the source and destination files (first source is opened for
reading, using the predefined function SFOpen, and then dest is opened writeable
by FOpen). As source is going to be read only it is opened as a shareable file.
The file dest is being written into and must therefore have the uniqueness attri-
bute. The function copyFile copies the contents of source character by character
to dest . After completion of copying, the written file is closed in the file system,
and the final world is composed from the file system and the event stream.

Start :: *World -> *World
Start world
= newWorld

where
(files, events) =: OpenWorld world
(sourceOpen, source, files1) =: SFOpen “Source” FReadData files
(destOpen, dest, files2) =: FOpen “Dest” FWriteData files1
dest1 =: copyFile source dest
newWorld =: CloseWorld (CloseFile dest1 files2) events

copyFile :: File *File -> *File
copyFile source dest
| readOK = copyFile source1 (FWriteC c dest)

= dest
where
(readOK, c, source1) =: SFReadC source

Figure 10 A program copying a file named Source to a file named Dest .

13

6 Graphical User I/O

The techniques involved in programming Graphical User Interfaces make an inte-
resting area of research because the corresponding I/O (Graphical User I/O) is
radically different from file I/O and is much more complicated. In a Graphical
User Interface system the Graphical User I/O is done entirely with Graphical User
Interface elements such as windows, menus, and dialogues. These interface ele-
ments are characterised by a highly interactive behaviour. Applications that use
Graphical User Interface systems have a very dynamic use of interface elements.
Graphical User Interface systems are event driven. An event is a data object re-
cording a true event in the outside world or the operating system. Events come
from different sources: the user of a program communicates with that program via
interface objects in the course of which events are generated (e.g.: key presses,
mouse movements). The operating system uses events to communicate to the pro-
gram that things have been changed (e.g.: windows become partially visible,
programs are scheduled). Finally, manipulations of the interface objects by the
program may generate events as well (e.g.: opening and closing of windows or
dialogues). The operating system provides these events for programs by the so-
called event stream. The event stream is a sequence of events. In this sequence
event A precedes event B iff A has occurred before B.

The Clean Event I/O system is the framework a program uses to do Graphical
User I/O. The Clean Event I/O system is an abstract Graphical User Interface. In
the Clean Event I/O system Graphical User I/O is defined entirely with abstract
devices. Abstract devices are abstractions of categories of concrete interface ele-
ments. The Clean Event I/O system provides four abstract devices: the window
device, menu device, dialogue device, and timer device. Abstract devices are
specified on a high level of abstraction making extensive use of algebraic types.
Abstract device specifications define which Graphical User Interface elements are
used by the program, and how these elements interact with the user or other ele-
ments. Clean Event I/O programs are abstract event driven. An abstract event is
always defined in the context of an abstract device element. Clean Event I/O
programs do not retrieve abstract events, but rather define abstract event han-
dlers. An abstract event handler is a function that is included in the abstract device
specification. Only when the corresponding abstract event occurs the abstract
event handler is evaluated. The abstract event handler is applied to the current
state of the program and yields a new state. The state of the program consists of
the data the program needs at run-time, and the run-time state of its interface ele-
ments. A Clean Event I/O program has access to its interface elements at run-time
via a special unique environment of type *IOState . A Clean Event I/O program
only needs to specify the abstract devices to create an interactive program. The
Clean Event I/O system takes care that the abstract devices are correctly mapped
to the concrete devices, and that the concrete events are correctly mapped to ab-
stract events.

In section 6.1 we show how abstract devices and its interface elements are de-
fined using algebraic types. Section 6.2 focusses on the abstract event handlers,

14

and explains how these functions affect the run-time state of the program and the
interface elements. Section 6.3 defines how the Clean Event I/O system uses the
abstract device definitions, and the appropriate environments to create a running
program. Section 6.4 briefly describes the abstract devices other than the menu
device. Finally, section 6.5 gives a small example of an interactive program.

6.1 Defining abstract devices

Abstract devices provide Clean programmers with a high level view of Graphical
User Interface elements. These abstract interface elements are specified by func-
tional expressions that are instances of a set of predefined algebraic types (see fi-
gure 11 and 12). For each abstract device there is defined an algebraic type that
fully specifies how the individual interface elements of that abstract device should
be defined. Because the algebraic types contain functions that have to operate on
the same type of program state, the type definitions are parameterized with the
type variable s which reflects the type of the program state.

:: DeviceSystem s = TimerSystem [TimerDef s]
| MenuSystem [MenuDef s]
| WindowSystem [WindowDef s]
| DialogSystem [DialogDef s]

Figure 11 The algebraic type definition of devices. The type [α] is a list of α .
The symbols printed in boldface are alternative constructors of the
algebraic type (variants of the type).

:: MenuDef s
= PullDownMenu MenuId MenuTitle SelectState [MenuElement s]

:: MenuElement s
= MenuItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s)
| CheckMenuItem MenuItemId ItemTitle KeyShortcut SelectState MarkState

 (MenuFunction s)
| SubMenuItem MenuId ItemTitle SelectState [MenuElement s]
| MenuItemGroup MenuItemGroupId [MenuElement s]
| MenuRadioItems MenuItemId [RadioElement s]
| MenuSeparator

:: RadioElement s
= MenuRadioItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s)

:: MenuFunction s == s (IOState s) -> (s, IOState s)
:: KeyShortcut = Key KeyCode | NoKey

Figure 12 The algebraic type MenuDef to define individual menus. The type
MenuFunction is a synonym type.

15

As an illustration of an abstract device definition, figure 13 gives an example of a
menu definition. The picture next to the definition shows the concrete device in
the case of the menu definition being mapped to a Macintosh system.

PullDownMenu FileId “File” Able [
MenuItem NewId “New” (Key ‘n’) Able New ,
MenuItem OpenId “Open…” (Key ‘o’) Able Open,
MenuItem CloseId “Close” (Key ‘w’) Unable Close,
MenuSeparator,
MenuItem SaveId “Save” (Key ‘s’) Unable Save ,
MenuItem SaveAsId “Save As…” NoKey Unable SaveAs,
MenuSeparator,
MenuItem QuitId “Quit” (Key ‘q’) Able Quit]

Figure 13 An example of a menu definition in Clean.

Algebraic types prove to be very useful as a medium for abstract device defini-
tions in a functional language for several reasons. (1) In a functional language it is
trivial to add the abstract event handlers to algebraic types because functions are
‘first-class citizens’ and can be used in a curried way. For instance, the menu de-
finition in figure 13 specifies that the program code that should be evaluated
when the menu item titled “Open…” is selected is the function named Open . This
is the simple case. But it is also possible to define a higher order function applied
to an arbitrary number of arguments as abstract event handler, which is very hard
to realise in the classical imperative languages. (2) Algebraic types provide a spe-
cification language of which the syntactical correctness is verified by the type
checker. This eliminates obvious programming errors (like typing errors, or mix-
ing up order of arguments) that occur rather frequently in text-based specifica-
tions. (3) The use of algebraic types for all abstract device specifications provides
both the programmer as well as the definition of the semantics with a formal nota-
tion. A formal notation is invaluable to disambiguate discussions on the meaning
of individual interface elements. (4) Algebraic type definitions can be made very
intelligible and suggestive. We have carefully chosen suggestive names for the
data constructors of the algebraic type definition of abstract devices which match
their actual appearances as much as possible (WYSIWYS: What You Say Is What
You See). This is clearly illustrated by the example in figure 13. (5) Finally, read-
able definitions of interface elements serve as good documentation of programs.

6.2 Abstract event handlers

Clean Event I/O programs are abstract event driven. Abstract events are defined
in the context of abstract devices. Consider for example the menu definition in fi-
gure 13. One abstract event defined in the context of this definition is the menu
item named ‘Open…’ has been selected. It is easy to correlate the abstract event

16

with an abstract event handler, because the abstract event is defined in the context
of the algebraic definition. Therefore it is sufficient to add the abstract event
handler in the context of the abstract device definition that defines the abstract
event. So the response of the program to the abstract event is given by the func-
tion Open.

A Clean Event I/O program consists of a number of abstract devices, which in
turn define the set of possible abstract events, and their corresponding abstract
event handlers. It is not determined in what order the abstract events will occur.
Each abstract event handler can be evaluated in any state of the program. In order
to handle the abstract event appropriately the abstract event handler needs to
know the state of the program. As a result the state of the program will have been
changed. So, an abstract event handler is a state transition function. The state of
the program is a data object which has a fixed type (not a fixed value) because any
of the available abstract event handlers must be applicable.

The state of the program consists of a component controlled by the program-
mer, and a component controlled by the Clean Event I/O system. The program
controlled component, called the program state, contains the data the program
needs during evaluation. The program state can have an arbitrary, but uniquely
attributed type. The component controlled by the Clean Event I/O system is an
abstract data type object which contains the run-time states of the interface ele-
ments of the program. This component is a uniquely attributed environment that is
specially created for doing Graphical User I/O. The type of the environment is
*IOState *s (it is a polymorphic type because this environment also contains the
abstract event handlers, which types are based on the program state of type *s).

Abstract event handlers change the state of the program. So the types of ab-
stract event handlers are of the form :: *s *(IOState *s) → (*s, *IOState *s). With
the abstract event handlers a programmer defines how the state of the program
should be affected in case the abstract event handler is triggered by an abstract
event. Changes on the program state component can be easily defined by the pro-
grammer, because this component is defined by the programmer. The IOState en-
vi ronment is an abstract data object, so changes on this environment can only be
done via a library of predefined functions, the abstract device access functions.
All device access functions take the explicit environment passing style. Their ty-
pes are of the form :: τ1…τn *(IOState *s) → (τ, *IOState *s) . For example, typical
operations on the menu interface elements at run-time are enabling and disabling
the entire menu system (also of separate menus or menu elements), adding and re-
moving menu elements to and from menus, marking menu elements, and chang-
ing titles or abstract event handlers of menu elements (see figure 14). As all envi-
ronment operations, every abstract device access function changes the appropriate
interface element resources, and administrates the effect in the new IOState envi-
ronment.

17

EnableMenuSystem :: *(IOState *s) -> *IOState*s
DisableMenuSystem :: *(IOState *s) -> *IOState*s
EnableMenus :: [MenuId] *(IOState *s) -> *IOState*s
DisableMenus :: [MenuId] *(IOState *s) -> *IOState*s
EnableMenuItems :: [MenuItemId] *(IOState *s) -> *IOState*s
DisableMenuItems :: [MenuItemId] *(IOState *s) -> *IOState*s
MarkMenuItems :: [MenuItemId] *(IOState *s) -> *IOState*s
UnmarkMenuItems :: [MenuItemId] *(IOState *s) -> *IOState*s
SelectMenuRadioItem :: MenuItemId *(IOState *s) -> *IOState*s
ChangeMenuItemTitles :: [(MenuItemId, String)] *(IOState *s) -> *IOState*s
ChangeMenuItemFunctions :: [(MenuItemId, MenuFunction *s)]

*(IOState *s) -> *IOState*s
InsertMenuItems :: MenuItemGroupId Int [MenuElement *s]

*(IOState *s) -> *IOState*s
AppendMenuItems :: MenuItemGroupId Int [MenuElement *s]

*(IOState *s) -> *IOState*s
RemoveMenuItems :: [MenuItemId] *(IOState *s) -> *IOState*s
RemoveMenuGroupItems :: MenuItemGroupId [Int] *(IOState *s) -> *IOState*s

Figure 14 The types of the menu device access functions of the Clean Event I/O
system.

6.3 Interactions

In section 4.2 we have introduced the event stream environment. The previous
two sections presented how Graphical User Interface elements are defined by ab-
stract devices, discussed abstract event handlers, and introduced the state of a pro-
gram. In this section we show how these elements of the Clean Event I/O system
are integrated by the interaction concept to obtain a running interactive program.
This relation is roughly illustrated by the following equalities:

abstract device definitions + event stream = IOState
IOState+ program state = interaction

An interaction is a dynamic state transition system where the transitions are defi-
ned by the abstract event handlers of the abstract device definitions and where
evaluation is triggered by the occurrence of abstract events. The abstract device
definitions of an interaction are gathered in a single data object of type
::IOSystem s == [DeviceSystem s] (see figure 11 for the type definition of De-
viceSystem). The library function StartIO evaluates an interaction given initial
abstract device definitions of type IOSystem , the initial program state, the initial
actions of the interaction of type InitIO (:: InitIO s == [(s, IOState s) → (s, IOState
s)]), and the event stream environment:

18

StartIO :: (IOSystem *s) *s (InitIO *s) *Events -> (*s, *Events)

StartIO performs three actions: (1) creation of the proper environments for the in-
teraction, (2) evaluation of the initial actions of the interaction, and (3) the evalua-
tion of the interaction until termination.

(1) StartIO is provided with the definitions of the abstract devices that will par-
ticipate in the interaction. With these abstract device definitions the concrete
Graphical User Interface elements are created. As a result the abstract devices ap-
pear to the user in their initial run-time state. The environment of type *IOState is
filled with the run-time states of the concrete devices and their abstract event
handlers.

(2) The second action of StartIO is the evaluation of the initial actions of the in-
teraction. Suppose the initial actions are the list of transition functions [f1…fn], and
the initial interaction state is the pair (s0, io0). The result of the initial actions is
the new pair (s1,io1) = fn·fn-1·…·f1 (s0 ,io0) with · being function composition. The
initial actions are very convenient for an interaction to do initialisation actions
such as setting up files, verification procedures, and so on (it may even decide to
quit the interaction by applying the function QuitIO to its IOState environment).

(3) Finally, StartIO evaluates the interaction until termination. This is done by
an event loop, which is a simple, recursive function. In each step it retrieves a
concrete event from the event stream environment. If the concrete event should
be interpreted as an abstract event, the corresponding abstract event handler is
applied to the current interaction state (s i,io i) to obtain the new current interaction
state (si+1 ,io i+1). The effect of this transition (which is administrated in io i+1) is
paired with the concrete event that triggered the transition. The event loop termi-
nates as soon as the IOState component of the interaction state contains no more
concrete devices. The result of StartIO is the final program state and the changed
event stream environment which contains the pairs of concrete events that have
been parsed by the interaction and their effect, and the concrete events that have
not been parsed by the interaction.

An interaction that decides that it should terminate, can do so by removing all
concrete devices from its current interaction state. This can be done only with the
library function QuitIO with QuitIO :: *(IOState *s) → *IOState *s . QuitIO releases
the run-time resources of each device in the interaction and removes them from
the IOState component.

6.4 The other abstract devices

In this section we briefly discuss the abstract devices other than the menu device.
Their complete algebraic type definitions and abstract device access functions can
be found in van Eekelen et al (1993), and Plasmeijer and van Eekelen (1993). A
definition of the semantics of the I/O system is given in Achten (1994, in prepa-
ration).

19

The timer device

The timer device enables interactions to synchronise on an arbitrary number of
time intervals of arbitrary length. Timing is handled by assuming that all events
are provided with a time stamp. This mechanism cannot provide real-time timing
because the time needed to evaluate an abstract event handler may exceed a given
time interval. The abstract event handler of every active timer is therefore provi-
ded with the discrete number of complete time intervals that have passed. The ac-
curacy of the timer device is adequate for most animation tasks, or checks that
need to be done at a regular basis.

The window device

Windows are the basic medium in which Graphical User Interface systems com-
municate with users. An interaction can have an arbitrary number of windows
open. Windows are stack ordered which means that they can overlap. Of these
windows at most one window is active. The active window is the window that re-
ceives all keyboard and mouse events. The interaction as well as the user can de-
cide which window to activate. The active window is not demanded to respond to
user events: the addition of a keyboard and mouse event handler is optional. The
application presents information to its users in a window by drawing into it. Each
window has a local drawing environment of type *Picture. Pictures have finite
dimensions, given by the PictureDomain.

The dialogue device

The dialogue device models structured communication between program and
user. Applications can have an arbitrary number of dialogues open. The dialogue
device manages property and command dialogues, as well as notices. Dialogues
can change the mode of an interaction: when opened, a modal dialogue forces the
user of the interaction to deal with the dialogue entirely before any other actions
can take place. Modeless dialogues are less demanding: the user may disregard
them and use them when convenient. Property dialogues are always modeless,
and are used to set properties of the interaction. Command dialogues can be mo-
dal or modeless. Notices are simple modal dialogues to inform the user about un-
usual or dangerous situations.

The contents of a dialogue is defined by a summary of its dialogue elements
rather than a single drawing environment as is the case with windows. These dia-
logue elements are common dialogue elements such as (radio) buttons, (edit) text
fields, pop up elements, and check boxes but also user defined custom controls.
As a consequence, the definition of a dialogue is more complicated than the defi-
nition of a window because the layout between dialogue elements needs to be de-
fined. In order to ease the effort of defining dialogues, the dialogue elements have
a layout attribute of algebraic type ItemPos to influence their position. With this
layout attribute positions can be expressed relative to the size of the dialogue

20

(Left, Center, Right), relative to earlier placed items (RightTo, Below, XOffset ,
YOffset), or in absolute terms (XY, ItemBox).

6.5 Example

In this section we present an example program that uses several abstract devices
in order to illustrate how to program with the Clean Event I/O libraries. The pro-
gram is a simple address database. The user of the program can add and remove
addresses to and from the database, view the current list of addresses, and quit the
application. The end of this section contains the main fragment of the program
code which contains the data structures and the abstract device definitions. Some
minor functions, constants, and the file I/O operations that manipulate the data-
base file have been omitted for reasons of brevity. Figure 15 gives a snapshot of
the application running on a Macintosh system.

The data structures used in the program are the program state (AddressBook),
the data structure of a single address (Address), and a data structure for font in-
formation (BookStyle). These data structures are all record types. In Clean 1.0, a
record type is an algebraic type with exactly one alternative constructor. The al-
ternative constructor does not need to be specified if the field names uniquely
identify the record type. Record types and record expressions always appear be-
tween {} in a program. The arguments of a record expression can be selected by an
extended form of pattern-matching, and by the field names of the arguments.

The menu device defines the four commands Open, Add , Delete , and Quit of
the application. Open opens the window named Addresses in which the current
list of addresses is shown. Add opens the Edit Address dialogue by which the user
can add addresses to the database. Delete removes the currently selected address
from the database. It is initially disabled because at start the user has selected no
address. Quit before terminating the interaction asks the user if any changes to the
database should be actually saved to the database file. This is done via a notice.

In the Edit Address dialogue the user can fill in the text fields of an address.
Pressing the only dialogue button named Add triggers the abstract event handler
AddAddress. This function retrieves the edit text field values of the dialogue, and
creates an address record which is inserted in the current list of addresses. It in-
creases the picture range of the Addresses window, and redraws its contents.

The user of the application can select an address of the database by pressing
the mouse button when the mouse pointer is in the text area of that address in the
Addresses window. The abstract mouse events in the Addresses window are han-
dled by the mouse event handler Select. It determines which address is selected,
enables selection of the Delete command, unhilites the previously selected ad-
dress, hilites the selected address, and fills the text fields of the Edit Address dia-
logue with the address fields values of the selected address.

21

Figure 15 A snapshot of the address database application while running on a
Macintosh system.

module addressBook

import delta, deltaFile, deltaSystem
import deltaEventIO, deltaWindow, deltaDialog, deltaMenu, deltaFont, deltaPicture

:: IO == IOState AddressBook
:: AddressBook = { addresslist :: [Address],

selection :: Int,
files :: *Files }

:: Address = { name :: String,
city :: String,
street :: String,
tel :: String }

:: BookStyle = { font :: Font,
maxWidth :: Int,
lineHeight :: Int }

Start :: *World -> *World
Start world
= finalWorld

where
(fs, es) =: OpenWorld world
({files = fs1}, es1) =: StartIO [MenuSystem menus] initialBook initialIO es
menus =: [PullDownMenu AddressMenuId "Book" Able [

MenuItem OpenId "Open" (Key 'o') Able Open,

22

MenuItem AddId "Add…" (Key 'a') Able Add,
MenuItem DeleteId "Delete" (Key 'd') Unable Delete,
MenuSeparator,
MenuItem QuitId "Quit" (Key 'q') Able Quit]]

initialBook =: {addresslist = [], selection = 0, files = fs}
initialIO =: [ReadAddressBook, Open, Add]
finalWorld =: CloseWorld fs1 es1

Open :: *AddressBook *IO -> (*AddressBook, *IO)
Open addressBook =: {addresslist = addresses} io
= (addressBook, OpenWindows [window] io)

where
window =: ScrollWindow AddressesId (10,10) "Addresses"

 (ScrollBar (Thumb left) (Scroll bookStyle.maxWidth))
 (ScrollBar (Thumb top) (Scroll bookStyle.lineHeight))

 domain (100, itemHeight) (200, 200)
 UpdateWindow [Mouse Able Select]

((left, top), _) =: domain
domain =: AddressesGetPictureDomain addresses
bookStyle =: AddressBookStyle
itemHeight =: NrLinesPerItem * bookStyle.lineHeight

Select :: MouseState *AddressBook *IO -> (*AddressBook, *IO)
Select ((x,y), ButtonDown, _) addressBook=:{addresslist = addresses, selection = index} io
| =EmptyList addresses
= (addressBook, io)
= ({addressBook & selection = index1}, io1)

where
io1 =: ChangeIOState [EnableMenuItems [DeleteId],

DrawInWindow AddressesId [HiliteAddress index],
DrawInWindow AddressesId [HiliteAddress index1],
ChangeDialog AddDialogId fillTextFields] io

fillTextFields =: [ChangeEditText NameTId address.name,
ChangeEditText CityTId address.city,
ChangeEditText StrtTId address.street,
ChangeEditText TelNrTId address.tel]

address =: GetIndex index addresses
index1 =: (y / itemHeight) + (Minimum 1 (y % itemHeight))
itemHeight =: NrLinesPerItem * AddressBookStyle.lineHeight

Select _ addressBook io = (addressBook, io)

Add :: *AddressBook *IO -> (*AddressBook, *IO)
Add addressBook io
= (addressBook, OpenDialog editDialog io)

where

23

editDialog =: CommandDialog AddDialogId "Edit Address" [] AddId [
StaticText NameSId Left "Name:",
EditText NameTId (RightTo NameSId) (MM 70.0) 1 "",
StaticText CitySId Left "City:",
EditText CityTId (Below NameTId) (MM 50.0) 1 "",
StaticText StrtSId Left "Street:",
EditText StrtTId (Below CityTId) (MM 50.0) 1 "",
StaticText TelNrSId Left "Tel.Nr:",
EditText TelNrTId (Below StrtTId) (MM 30.0) 1 "",
DialogButton AddId Center "Add" Able AddAddress]

AddAddress :: DialogInfo *AddressBook *IO -> (*AddressBook, *IO)
AddAddress dialogInfo addressBook =: {addresslist = addresses} io
= DrawInWindowFrame AddressesId UpdateWindow addressBook2 io1

where
(addressBook2, io1) =: ChangePictureDomain AddressesId domain addressBook1 io
addressBook1 =: {addressBook & addresslist = addresses1}
domain =: AddressesGetPictureDomain addresses1
addresses1 =: Insert address addresses
address =: { name = GetEditText NameTId dialogInfo,

city = GetEditText CityTId dialogInfo,
street = GetEditText StrtTId dialogInfo,
tel = GetEditText TelNrTId dialogInfo }

Delete :: *AddressBook *IO -> (*AddressBook, *IO)
Delete addressBook =: {selection = index} io
= DrawInWindowFrame AddressesId UpdateWindow addressBook2 io2

where
io2 =: DisableMenuItems [DeleteId] io1
(addressBook2, io1)

=: ChangePictureDomain AddressesId domain addressBook1 io
addressBook1 =: {addressBook & addresslist = addresses1, selection = 0}
domain =: AddressesGetPictureDomain addresses1
addresses1 =: RemoveIndex index addresses

Quit :: *AddressBook *IO -> (*AddressBook, *IO)
Quit addressBook io
| button = noButton
= (addressBook, io2)
= WriteAddressBook addressBook io2

where
io2 =: QuitIO io1
(button, io1) =: OpenNotice (Notice ["Save changes to address file?"]

(NoticeButton yesButton =: 1 "Yes")
[NoticeButton noButton =: 2 "No"]) io

24

7 Structuring interactive programs

In many cases interactive programs can be decomposed into a number of distinct
interactive units. For instance, many applications offer users a facility to edit text.
Instead of programming these facilities over and over again for each new applica-
tion, one would like to write a text editing module once, and include it in some
way in various applications. In this section we will first show how interactions
can be used as interactive modules, and then proceed with individual abstract de-
vice elements.

In the Clean Event I/O system, interactions can be combined sequentially, or
nested. Interactions are sequentially combined by function application: the event
stream result of an application of StartIO is the argument of the second applica-
tion of StartIO . Figure 16 gives an example of sequential interaction composition.
The function seq when applied to two interaction definitions A and B, first evalu-
ates interaction A and then interaction B . For notational convenience, we intro-
duce a synonym type :: IODef s == (IOSystem s, s, InitIO s) that collects the inter-
action definition components.

seq :: (IODef *s) (IODef * t) *Events -> *Events
seq (ioSystemA, programStateA, ioA) (ioSystemB, programStateB, ioB) events
= eventsB

where
(_, eventsB) =: StartIO ioSystemB programStateB ioB eventsA
(_, eventsA) =: StartIO ioSystemA programStateA ioA events

Figure 16 Sequential composition of interactions. The _ symbol is a wild card
which is a convenient denotation for anonymous node identifiers.

Interactions can be nested with the library function NestIO. Any interaction can
start the evaluation of a new interaction during its own evaluation.

NestIO :: (IOSystem *s) *s (InitIO *s) *(IOState *t) -> (*s, *IOState *t)

The type of NestIO is similar to the type of StartIO except for being applied to the
IOState environment of the running interaction rather than the event stream envi-
ronment. The type s of the program state of a nested interaction is in general dif-
ferent from the type t of the program state of the parent interaction that starts the
nested interaction. The nested interaction is completely evaluated and only after
its termination the parent interaction continues evaluation. NestIO takes care that
before the nested interaction takes over from the parent interaction, the parent is
hidden. This means that all the visible Graphical User Interface elements of the
parent interaction disappear from screen, and cannot be accessed by the user. Af-
ter termination of the nested interaction, the parent interaction is shown again. As
a result, all interface elements of the parent interaction that had been hidden from
the user reappear. Interactions can be nested arbitrarily deep and arbitrarily many.

25

Figure 17 gives an example of a function editLine that provides a nested text edit-
ing facility.

editLine :: String *(IOState *s) -> (String, *IOState *s)
editLine line io
= (line1, io1)

where
line1 =: getEditLine s1
(s1, io1) =: NestIO IOSystemEditor (InitialEditorState line) InitIOEditor io

Figure 17 A text editing interaction that can be used in arbitrary interactions.

Another way to structure interactive programs is by the abstract device definitions
of the Clean Event I/O system. Because abstract device definitions are algebraic
types, it is possible to define functions that create abstract device definitions that
can be parameterized. The program in figure 18 illustrates this idea. The function
simpleDraw creates a very simple drawing window. It is parameterized with an id
and a picture range. The interesting aspect of this window is that it can be applied
to any interaction because it is polymorphic in its program state. Access to the
program state is provided by further parameterization of three functions with ty-
pes :: Add s == Point s → s to add a point to the program state, :: Del s == Point s
→ s to delete a point from the program state, and :: Get s == s → (s, [Point]) to re-
trieve all points drawn sofar. The drawing functions DrawPoint and ErasePoint
are both of type Point *Picture → *Picture . The mouse event handler track erases a
point if both the mouse button and the option modifier key are pressed, and draws
a point if the mouse is pressed (regardless of modifier keys). Figure 19 shows the
drawing window in action.

simpleDraw :: WindowId PictureDomain (Add *s) (Del *s) (Get *s) -> WindowDef *s
simpleDraw id pictureDomain add del get
= FixedWindow id (0,0) “Picture” pictureDomain (update get)

 [Mouse Able (track id add del), Cursor CrossCursor]

update :: (Get *s) UpdateArea *s -> (*s, [*Picture -> *Picture])
update get _ s = (s1, map DrawPoint drawnPoints)

where
(s1, drawnPoints) =: get s

track :: WindowId (Add *s) (Del *s) MouseState *s *(IOState *s) -> (*s, *IOState *s)
track _ _ _ (_, ButtonUp, _) s io = (s, io)
track id _ del (point, _, OptionOnly) s io

= (del point s, DrawInWindow id [ErasePoint point] io)
track id add _ (point, _, _) s io = (add point s, DrawInWindow id [DrawPoint point] io)

Figure 18 A window definition for a very simple drawing program.

26

Figure 19 The drawing window in action.

8 Implementation of the interface

The Clean Event I/O system is given structure by the abstract device concept. The
programmer knows how to define abstract devices, and how to change them at
run-time using abstract device access functions. The abstract device concept also
gives structure to the implementation of the interface between the Clean Event
I/O system and concrete operating systems.

The interface between abstract devices and concrete devices boils down to five
distinct actions for each abstract device: (a) hide concrete interface elements, (b)
map abstract device definitions to concrete interface elements, (c) translate con-
crete events into abstract events and evaluate corresponding abstract event hand-
lers, (d) free the resources of concrete interface elements, and (e) undo the hidden
state of concrete interface elements. Each of these particular actions is a particular
function, and so the interface between abstract and concrete devices is a structure
of five abstract device interface functions (see figure 20).

:: DeviceFunctions s == (HideFunction s, (a)
OpenFunction s, (b)
DoIOFunction s, (c)
CloseFunction s, (d)
ShowFunction s) (e)

:: HideFunction s == (IOState s) -> IOState s
:: OpenFunction s == (DeviceSystem s) (IOState s) -> IOState s
:: DoIOFunction s == Event s (IOState s) -> (Bool, s, IOState s)
:: CloseFunction s == (IOState s) -> IOState s
:: ShowFunction s == (IOState s) -> IOState s

Figure 20 The types of the abstract device interface functions.

The abstract device interface functions and the abstract device access functions
provide the Clean Event I/O system with an abstract view of the operating system
for each abstract device. An important advantage of this approach is that porting
the Clean Event I/O system to other operating systems requires only the porting

27

of these functions. Another advantage is that each operating system interface can
exploit the underlying operating system in order to obtain efficient implementa-
tions.

9 Related work

As briefly discussed in the introduction, many solutions to deal with I/O in func-
tional languages exist. In this section we discuss three approaches in detail: dialo-
gue combinators (Dwelly, 1989), monads (Peyton Jones and Wadler, 1993), and
FUDGETS (Carlsson and Hallgren, 1993).

9.1 Dialogue combinators

One of the early reports on how functional languages can be used to program dy-
namic and complex Graphical User I/O is the paper on dialogue combinators by
Dwelly (1989). Dialogue combinators are a class of functions with well-defined
properties such that programs constructed by these functions behave in a predic-
table way. It is a discipline because programmers are not forced to program in this
style. The type of a dialogue combinator is Dlg s = s → [Inputs] → ([Outputs], s,
[Inputs]). A dialogue combinator when applied to some object that represents the
state of the program (the program state in our terminology) of type s, and a
stream of user input of type [Inputs], produces a triple consisting of some output
of type [Outputs], the new program state, and the user input that has not been con-
sumed.

Programs are constructed by dialogue combinators, such as NullDialogue, Join,
and Cond . NullDialogue : Dlg s produces no output, and leaves the program state
and user input unchanged. The application of Join: Dlg s → Dlg s → Dlg s to two
dialogue combinators d1 and d2 produces the dialogue combinator that first eval-
uates d1 and then d2, and concatenates the output of d2 to the output of d1. Con-
ditions are functions of type Cnd s = s → [Inputs] → Boolean, which inspect the
program state and the user input and yield a Boolean result. The application of
Cond: Cnd s → Dlg s → Dlg s → Dlg s to a condition c and two alternative dialo-
gue combinators d1 and d2 produces the dialogue combinator that performs d1 if
c holds and d2 if not.

In order to program dynamic interfaces one special dialogue combinator,
TreeCase , is provided. The basic idea behind this combinator is that dynamic in-
terfaces can be defined by sets of condition-action pairs [(c1,a1)…(cn,an)] or rules.
The TreeCase combinator searches the first condition ci of a rule i that is satis-
fied, and then applies the action a i. The action is provided with the program state
and the user input as usual, but also with the set of all current rules
[(c1,a1)…(cn,an)]. The action may produce some output and change the program
state as usual, but it also yields a new set of rules [(c’1,a’1)…(c’m,a’m)] which is re-
cursively applied to TreeCase. A rule has type Object tag s = Obj tag (Cnd s)
([Object tag s] → Dlg s) , and TreeCase is a function of type [Object tag s] → Dlg

28

s. By providing an initial set of rules, the behaviour of TreeCase is determined if
the user inputs are known.

Even though the dialogue combinator approach is stream based, our approach
has remarkable similarities, as well as remarkable differences. The concepts on
which the dialogue combinator approach is based, namely those of dialogue
combinators as program state transition functions, sets of changing rules to pro-
gram the behaviour of dynamic interfaces, and the TreeCase dialogue combinator
to evaluate a dynamic interface can be retraced in our device concept. The main
differences of the Clean approach are the elimination of event stream handling,
the formalisation of the behaviour of the Graphical User Interface by the devices,
and the modularisation of programs by allowing an arbitrary amount of interac-
tions.

9.2 Monads

One of the currently widely investigated approaches to incorporate I/O in func-
tional languages is the approach by Peyton Jones and Wadler (1993) based on
monads (Moggi, 1989; Wadler, 1990-b). The system is implemented in Haskell
(Hudak et al, 1992). As we said in the introduction, this is an (implicit) environ-
ment based approach. The environment basically models the state of the machine.
Operations (or actions) on the environment have a special type IO a which deno-
tes “actions that, when performed, may do some I/O and then return a value of
type a”. For example, the actions getcIO :: IO Char, and putcIO :: Char → IO ()
read a character from standard input and write a character to standard output. The
type () is a special type of the empty tuple () .

A programmer composes actions with two combinators unitIO :: a → IO a , and
bindIO :: IO a → (a → IO b) → IO b. The application unitIO x denotes the action
that only returns x. The application bindIO m n (or using the Haskell infix nota-
tion m `bindIO` k) for an action m :: IO a , and a function k :: a → IO b, first does
m, which yields a value x of type a, and then does k x, which yields a value y of
type b . These two combinators actually form the monad. Two other combinators
are derived from unitIO and bindIO, namely doneIO :: IO () and seqIO :: IO a → IO
b → IO b. The combinator doneIO simply does nothing. The application m
`seqIO` n to two actions m :: IO a and n :: IO b first does m and then does n, and
yields the result of n.

If we compare the monad approach to our approach then there are some strik-
ing differences. The environment that is manipulated in the monad approach is
implicit and ‘appears’ only in the IO type. As a result programming in the system
creates one single spine of I/O operations and therefore over determines order of
evaluation (see the discussion in section 4.2), and combinators need to be pro-
vided in order to compose actions. To our knowledge combining monads of dif-
ferent type is a rather tedious task which forms a serious practical restriction on
its use. It is interesting to look at two extensions to the IO monad that are used to
create additional spines of I/O operations but in an unsafe manner, and see how
these can be defined in the explicit environment style.

29

The first extension is the combinator delayIO :: IO a → IO a by which a pro-
gram can spark an action that is evaluated interleaved with the main imperative
spine. This is a dangerous combinator because the result of the program may de-
pend on the evaluation order between the interleaved action and the main spine. It
should only be used if the programmer proves that the interleaved action cannot
interfere with the spine. In the explicit multiple environment passing style inter-
leaved I/O is obtained because two spines of I/O can be defined on independent
environments. There is no need for proof obligation because environments are in-
dependent by definition.

The second extension is the combinator performIO :: IO a → a by which a pro-
gram sparks an action that is not connected to the main spine at all. Again, the
programmer has to prove that the action cannot cause any side-effects in the pro-
gram. This is clearly an example of unhygienic programming (end of section 4.2).
In the Clean Event I/O system this situation cannot occur because an interactive
program needs to yield a result value of type *World, which can only be done by
applying the composition rule to the event stream and file system environments.

9.3 FUDGETS

The FUDGETS system by Carlsson and Hallgren (1993) is a system developed re-
cently in which the stream based functional I/O approach is unified with Graphi-
cal User Interfaces (in particular the X Windows system). The basic concept of
the approach is the fudget (functional widget). The fudget is the basic instrument
to receive and handle concrete events, and send commands to other fudgets.
Events and commands are communicated using streams. A fudget that accepts
high level events of type α , and that sends commands of type β, is a fudget of
type F α β. The system provides a set of primitive fudgets.

A program can create complex graphic interfaces by composing fudgets, and as
usual a number of combinators are provided to do so. For instance, the combina-
tor >+< puts two fudgets f1 and f2 of type F α1 β1 and F α2 β2, into a new fudget f
of type F (α1+α2) (β1+β2). The notation α+β is shorthand for the algebraic type
Either with Either α β = Left α | Right β. The new fudget f is the parallel compo-
sition of f1 and f2. Any message of type α i is sent to fi, which results in a response
of type βi. Program code is connected in a fudget structure by defining code as
stream processing functions of predefined abstract data type SP α β . The operator
absF turns such a function of type SP α β into an abstract fudget of type F α β .
Because SP is an abstract data type combinators are provided to create stream
processing functions, namely the input combinator getSP :: (α → SP α β) → SP
α β, and the output combinator putSP :: [α] → (SP α β) → SP α β. The applica-
tion getSP (\a -> sf) gets an incoming message of type a and continues as the
stream processor sf. The application putSP l sf outputs the messages in l and con-
tinues as the stream processor sf. Finally, to get an executable program, the fudget
structure is offered to a function which takes care of the stream handling with the
operating system.

30

In contrast with the Clean Event I/O system, the FUDGETS system has no con-
cept of a state that is accessible for the Graphical User Interface elements that are
part of the interaction. All state is local to a fudget. For both event handling and
communication, the FUDGETS system relies entirely on stream processing. Ab-
stract fudgets are demanded to be written as stream processors, forcing a continu-
ation style on the program. Although the paper describes how fudgets can be cre-
ated dynamically, it is not clear if it is possible to dispose of fudgets dynamically.
This is a necessary property of an I/O system as Graphical User Interfaces are re-
cognised for their highly dynamic use of interface elements.

10 Conclusions

In this paper we have shown how file I/O and Graphical User I/O have been in-
corporated in the lazy functional programming language Clean. File I/O is defined
entirely using the explicit multiple environment passing method. This method al-
lows explicit handling of resources from the outside world, such as files, event
streams, windows, and so on. The direct use of the resources is safe due to the
Uniqueness Types of Clean’s typing system. The restrictions that are imposed by
the Uniqueness Type System to the programmer do not seriously hamper the
functional expressiveness of the language. By the environment hierarchy the out-
side world is given structure, and multiple environments can be used in the same
program independently. The complexity of programming Graphical User Inter-
faces is managed by introducing several stages of abstraction. A program is struc-
tured by partitioning it into a number of independent interactions. Each interac-
tion can be considered on its own. An interaction is a dynamic state transition
system which is constructed in a declarative style. An interaction is defined by an
initial set of devices and an initial program state. The devices are defined by alge-
braic types which provide a concise and clear notation of the interface elements.
The use of algebraic types to specify abstract devices and interactions is a very
flexible tool, as algebraic types can be manipulated easily in a functional lan-
guage.

The Clean Event I/O library provides portability to very different operating
systems. We have made implementations of the I/O library for the Sun under X
Window system, using the Open Look Interface Tool kit, and the Macintosh. We
are currently working on an implementation on PC’s under OS/2. This means that
a Clean application created and tested on a Macintosh only needs to be recompi-
led to run exactly the same on a X Window system. Still, the resulting applica-
tions obey the different look-and-feels of these systems. The library has been used
to write several large applications (a full-feathered text editor, a relational data-
base application, a spreadsheet, a Turing machine programming environment, and
many games). The runtime performances of these programs are competitive with
imperative programs.

Finally, we hope to have shown not only by the extensive account of the Clean
I/O system (and in particular the Uniqueness Typing) but also by the related
work, that functional languages have very strong organisational, abstractive, and

31

expressive power. It is important that an I/O system for a functional language re-
tains these strengths.

11 Current and future work

Research on the Clean I/O system as presented in this paper has concentrated
mainly on how to make I/O resources explicitly and safely available, and how to
program Graphical User I/O in a high-level and portable way. A technical report
on the operational semantics of the Clean I/O system is in preparation (which will
discuss the meaning of non-terminating interactive programs, and how to reason
about interactive programs). Part of our current and future research focuses on
making the I/O system more orthogonal. Concrete topics in this area are to what
extent the window and dialogue device can be unified, and the completion of the
set of functions to structure and combine interactive programs. The other main
part of our research activities will be to investigate how the explicit multiple en-
vironment passing scheme can form a base for distributed (or parallel) interactive
programs. Topics in this area are the environment hierarchy of a world that con-
tains many other worlds, and the investigation of communication primitives be-
tween interactions.

Acknowledgements

We would like to thank Marko van Eekelen for comments on the text, and also for
pointing out that hygienic use of environments is not a programming convention
but rather an obligatory property of multiple environment passing schemes. We
would also like to thank the referees of the paper for their valuable comments.

References

Achten, P.M., van Groningen J.H.G., and Plasmeijer, M.J. 1993. High Level
Specification of I/O in Functional Languages. In Launchbury, J., Sansom, P.
eds., Proceedings Glasgow Workshop on Functional Programming, Ayr,
Scotland, 6-8 June 1992. Workshop Notes in Computer Science. Springer-
Verlag, Berlin, 1993, pp. 1-17.

Achten, P.M. and Plasmeijer, M.J. 1993. The Beauty and the Beast. Technical Re-
port No.93-03, March 1993. Research Institute for Declarative Systems, De-
partment of Informatics, Faculty of Mathematics and Informatics, University
of Nijmegen.

Achten, P.M. 1994. Operational Semantics of Clean Event I/O. Technical Report,
in preparation. University of Nijmegen, The Netherlands.

Backus, J. 1978. Can Programming Be Liberated from the von Neuman Style? A
Functional Style and Its Algebra of Programs. In Communications of the ACM,
Vol.21 Nr.8, pp. 613-641.

Backus, J., Williams, and J., Wimmers, E. 1990. An introduction to the program-
ming language FL. In Turner, D.A. ed., Research topics in Functional Pro-
gramming, Addison-Wesley Publishing Company, pp. 219-247.

32

Barendregt, H.P., Eekelen van, M.C.J.D., Glauwert, J.R.W., Kennaway, J.R.,
Plasmeijer, M.J., and Sleep, M.R. 1987. Term Graph Rewriting. In Bakker,
J.W. de, Nijman, A.J., and Treleaven, P.C. eds. Proceedings of Parallel Archi-
tectures and Languages Europe, Eindhoven, The Netherlands, LNCS 259,
Vol.II. Springer-Verlag, Berlin, pp. 141-158.

Barendsen, E. and Smetsers, J.E.W. 1993-a. Conventional and Uniqueness Typ-
ing in Graph Rewrite Systems. Technical Report CSI-R9328, December 1993.
Computing Science Institute, Department of Informatics, Faculty of Mathe-
matics and Informatics, University of Nijmegen.

Barendsen, E. and Smetsers, J.E.W. 1993-b. Conventional and Uniqueness Typ-
ing in Graph Rewrite Systems (extended abstract). In Shyamasundar, R.K. ed.
Proceedings of the Thirteenth Conference on the Foundations of Software
Technology and Theoretical Computer Science, 15–17 December 1993, Bom-
bay, India. LNCS 761 . Springer-Verlag, Berlin, pp. 41-51.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, Plasmeijer, M.J., and
Barendregt, H.P. 1987. Clean: A Language for Functional Graph Rewriting. In
Kahn. G ed. Proceedings of the Third International Conference on Functional
Programming Languages and Computer Architecture, Portland, Oregon,
USA, LNCS 274 , Springer-Verlag, pp. 364-384.

Carlsson, M. and Hallgren, Th. 1993. FUDGETS - A Graphical User Interface in a
Lazy Functional Language. In Proc. of Conference on Functional Program-
ming Languages and Computer Architecture. Copenhagen, Denmark, 9-11
June 1993. ACM Press, pp. 321-330.

Chirimar, J., Gunter, C.A. and Riecke, J.G. 1992. Proving Memory Management
Invariants for a Language Based on Linear Logic. In Proceedings of the ACM
Conference on Lisp and Functional Programming, San Francisco, California,
June 22-24, 1992. ACM Press, pp. 139-150.

Dwelly, A. 1989. Functions and Dynamic User Interfaces. In Proceedings of
Fourth International Conference on Functional Programming Languages and
Computer Architectures, Imperial College, London, September 11-13, 1989,
pp. 371-381.

Eekelen, M.C.J.D. van, Huitema, H.S., Nöcker, E.G.J.M.H., Plasmeijer, M.J., and
Smetsers, J.E.W. 1993. Concurrent Clean Language Manual - Version 0.8.
Technical Report No. 93-13, June 1993. Research Institute for Declarative
Systems, Department of Informatics, Faculty of Mathematics and Informatics,
University of Nijmegen.

Girard, J-Y. 1987. Linear Logic. In Theoretical Computer Science 50, pp. 1-102.
Gordon, A.D. 1993. Functional Programming and Input/Output. PhD Thesis.

University of Cambridge Computer Laboratory, Technical Report No. 285.
Guzmán, J.C. and Hudak, P. 1990. Single-Threaded Polymorphic Lambda Calcu-

lus. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-
puter Science, Philadelphia, P.A., USA, June 4-7, 1990, pp. 333-343.

Groningen, J.H.G. van, Nöcker, E.G.J.M.H., and Smetsers, J.E.W. 1991. Efficient
Heap Management in the Concrete ABC Machine. In Glaser, Hartel eds, Pro-
ceedings of Third International Workshop on Implementation of Functional
Languages on Parallel Architectures. University of Southampton, UK. Tech-
nical Report Series CSTR 91-07.

33

Henderson, P. 1982. Purely Functional Operating Systems. In Darlington, J.,
Henderson, P., Turner, D.A. eds., Functional programming and its applica-
tions, Cambridge University Press, pp. 177-192.

Hudak, P., Peyton Jones, S., Wadler, Ph., Boutel, B., Fairbairn, J., Fasel, J.,
Hammond, K., Hughes, J., Johnsson, Th., Kieburtz, D., Nikhil, R., Partain, W.,
and Peterson, J. 1992. Report on the Programming Language Haskell. ACM
SigPlan Notices 27, (5), pp. 1-164.

Hughes, J. 1990. Why Functional Programming Matters. In Turner, D.A., ed., Re-
search topics in Functional Programming, Addison-Wesley Publishing Com-
pany, pp. 17-42.

Moggi, E. 1989. Computational lambda calculus and monads. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science, June 5-8, 1989,
California, Computer Society Press, pp. 14-23.

Nöcker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer,
M.J. 1991. Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds,
Proceedings of Parallel Architectures and Languages Europe, June, Eind-
hoven, The Netherlands. LNCS 506, Springer-Verlag,pp. 202-219.

Perry, N. 1988. Functional I/O - a solution. Department of Computing, Imperial
College, London, Draft version.

Peyton Jones, S.L. and Wadler, Ph. 1993. Imperative Functional Programming. In
Proceedings of the Twentieth Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, Charleston, South Carolina, January
10-13, 1993, pp. 71-84.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1993. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley Publishing Company 1993.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1994. Clean 1.0 Reference Manual.
Technical Report, in preparation. University of Nijmegen, The Netherlands.

Redelmeier, D.H. 1984. Towards Practical Functional Programming. PhD The-
sis. Computer Systems Research Group, University of Toronto, May 1984,
Technical Report CSRG-158.

Smetsers, J.E.W., Nöcker, E.G.M.H, Groningen, J.H.G. van, and Plasmeijer, M.J.
1991. Generating Efficient Code for Lazy Functional Languages. In Hughes, J.
ed, Proceedings of Fifth International Conference on Functional Program-
ming Languages and Computer Architecture Cambridge, MA, USA, LNCS
523 , Springer-Verlag pp. 592-617.

Smetsers, J.E.W., Barendsen, E., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
1993. Guaranteeing Safe Destructive Updates through a Type System with
Uniqueness Information for Graphs. In Proceedings Workshop Graph Trans-
formations in Computer Science, Schloss Dagstuhl, January 4-8, 1993. Lecture
Notes in Computer Science, Springer-Verlag, Berlin.

Thompson, S. 1990. Interactive Functional Programs. A Method and a Formal Se-
mantics. In Turner, D.A. ed., Research topics in Functional Programming,
Addison-Wesley Publishing Company, University of Kent, pp. 249-285.

Turner, D.A. 1990. An Approach to Functional Operating Systems. In Turner,
D.A. ed., Research topics in Functional Programming, Addison-Wesley Pub-
lishing Company, pp. 199-217.

Wadler, Ph. 1990-a. Linear types can change the world! In Broy, M., Jones, C.B.,
eds., Programming Concepts and Methods, Amsterdam North-Holland.

34

Wadler, Ph. 1990-b. Comprehending monads. In Proceedings of the ACM Confer-
ence on Lisp and Functional Programming, Nice, ACM Press, pp. 61-78.

Williams, J.H. and Wimmers, E.L. 1988. Sacrificing simplicity for convenience:
Where do you draw the line? In Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, San
Diego, California, January, pp. 169-179.

