
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/111083

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/16195531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/111083

A Framework for Deterministically Interleaved Interactive
Programs in the Functional Programming Language Clean

PETER ACHTEN AND RINUS PLASMEIJER
Computing Science Institute, University of Nijmegen,
Toernooiveld 1, 6525ED, Nijmegen, the Netherlands

(e-mail: peter88@cs.kun.nl, rinus@cs.kun.nl)

Abstract

In this paper we present a functional interleaved Event I/O system . This system is a generalization of the Event
I/O system as incorporated into the lazy, purely functional programming language Clean. The Interleaved Event
I/O system offers features that are more commonly found outside the functional scene. These features are dy-
namic process creation, and two well-known forms of inter-process communication: asynchronous message
passing , and data sharing . Both forms of communication are polymorphic and type-safe. As we are working in a
functional language, messages can contain higher-order functions and arbitrarily complex algebraic types. Com-
munication by data sharing is a restricted form of communication by global data structures. Nevertheless, the
new system is still completely functional because the generalization is done within the pure functional frame-
work. The Interleaved Event I/O system has been implemented and will become part of the new release of Clean.

1 Introduction

Research in the area of functional programming languages is increasingly paying more attention to the
incorporation of I/O into the functional programming paradigm, starting from an early paper by
Henderson (1982) to more recent work (Dwelly, 1989; Turner, 1990; Thompson, 1990; Peyton Jones
and Wadler, 1993; Carlsson and Hallgren, 1993). In this paper we present some recent results of the
research conducted on the incorporation of I/O into the lazy, purely functional programming language
Clean (Brus et al, 1987; Nöcker et al, 1991; Plasmeijer and van Eekelen, 1993). The I/O system of
Clean, the Event I/O system , enables programmers to have direct access to the file system, and to write
complex Graphical User Interface applications handling windows, menus, and dialogues, at a high
level of abstraction. At start, the major part of the research has focused on basic issues such as how to
incorporate I/O at all into the pure functional paradigm. Clean has a special type system called
Uniqueness Typing (Smetsers et al , 1993; Barendsen and Smetsers, 1993) that offers the possibility to
directly interface the pure functional world with the imperative world by guaranteeing single threaded
use of destructible objects. How Graphical User Interfaces can be suitably programmed in such a func-
tional language has been reported in Achten et al (1993) and Achten and Plasmeijer (1994).

The Event I/O system is a one process at a time system. At all times during evaluation of an Event
I/O program there is at most one interactive process running. This is not a satisfying situation for a
number of reasons: programs may want to spawn interactive processes that run at the same time with
the process that spawned them, and programs cannot be composed of interactive processes thus im-
proving on the modular structure of the program. In this paper we turn the Event I/O system into the
Interleaved Event I/O system, a system that allows programs for many processes at a time and sophis-
ticated inter-process communication. These forms of communication are asynchronous message
passing and data sharing . Both forms are type-safe and polymorphic. All this has been realized in a
pure functional framework such that the advantages of functional programming remain. In particular
can interactive processes communicate higher-order functions and arbitrary data structures to other
processes.

This paper starts with a brief introduction to Clean and the Event I/O system in section 2. Section 3
describes how the Event I/O system is turned into the Interleaved Event I/O system: section 3.1 ex-
plains how the Event I/O system can be changed in order to handle many processes at a time , section
3.2 introduces inter-process communication by asynchronous message passing, and section 3.3 intro-
duces inter-process communication by data sharing. In section 4 we present an example. Section 5
presents related work. Conclusions are drawn in section 6, and section 7 concludes with current and
future work.

2 The Clean Event I/O system

Clean (Brus et al, 1987; Nöcker et al, 1991; Plasmeijer and van Eekelen, 1993) is a lazy functional
programming language based on Term Graph Rewriting (Barendregt et al, 1987). The programs in this
paper are written in Clean 1.0 (Plasmeijer and van Eekelen, 1994, in preparation). Most of the lan-
guage constructs used in Clean 1.0 are customary in other functional languages such as Miranda1 and
Haskell. Where appropriate, the text includes remarks on peculiarities of Clean 1.0.

Interactive Clean programs are functions of type :: *World → *World . The type World is an environ-
ment. An environment is an abstract data type that encodes the state of a specific part of the real world
(such as the file system, individual files, menus, windows, dialogues, or timers). The type attribute * is
the type specification that the world is unique . The type system of Clean guarantees that any one func-
tion applied to an object of uniquely attributed type has access to this object such that the object can be
destructively updated without violating the functional semantics of the language (Smetsers et al, 1993;
Barendsen and Smetsers, 1993).

The Event I/O system provides programs with a hierarchy of environments that can be used to do
I/O (figure 1). From the unique world environment the unique file system environment of type *Files
and the unique event stream environment of type *Events can be retrieved from the world environ-
ment with the function OpenWorld :: *World → (*Files, *Events) . The file system environment contains
the individual file environments for file I/O. The event stream environment is discussed later. These
two environments can create a new unique world environment with the function of reverse type
CloseWorld :: (*Files, *Events) → *World .

outer world

*World

events for
I/O devices

*Events

file system

*Files

shared files
read access

only

File

writeable
files

*File

Figure 1 The Clean environment hierarchy.

Graphical User Interface applications are event driven. The event stream environment contains all the
events that are generated at run-time by the user (using mouse and keyboard) and the operating system
(for window updates). However, in Clean the programmer does not retrieve and handle events but in-
stead uses high-level functions of the Clean I/O library that provide the programmer with an abstract
view of the programming task. The Event I/O system takes care of all low level I/O handling. In order
to create a Graphical User Interface application, a programmer has to:

(a) define the abstract devices to be used,

(b) define the abstract event handlers to handle the abstract events, and

(c) apply the predefined function StartIO to these definitions, which maps the abstract device def-
initions to concrete Graphical User Interface elements, and recursively handles events by
calling the corresponding abstract event handlers.

(a) Abstract devices provide Clean programmers with a high level view of Graphical User Interface el-
ements. The Clean Event I/O system has four abstract devices: the window, menu , dialogue , and timer
device. Abstract interface elements are specified by functional expressions that are instances of a set of
predefined algebraic types (figure 2). For each abstract device an algebraic type is predefined that
fully specifies how the individual interface elements of that abstract device should be defined. The ab-

1 Miranda is a trademark of research software Limited.

stract event handlers that are contained in the abstract device definitions are transition functions of
type :: s → s of some process state of type s (see later on). Therefore the type definitions are parame-
terized with the type variable s.

:: IOSystem s = [DeviceSystem s]
:: DeviceSystem s = TimerSystem [TimerDef s]

| MenuSystem [MenuDef s]
| WindowSystem [WindowDef s]
| DialogSystem [DialogDef s]

:: MenuDef s
= PullDownMenu MenuId MenuTitle SelectState [MenuElement s]

:: MenuElement s
= MenuItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s)
| CheckMenuItem MenuItemId ItemTitle KeyShortcut SelectState MarkState (MenuFunction s)
| SubMenuItem MenuId ItemTitle SelectState [MenuElement s]
| MenuItemGroup MenuItemGroupId [MenuElement s]
| MenuRadioItems MenuItemId [RadioElement s]
| MenuSeparator

:: RadioElement s
= MenuRadioItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s)

:: MenuFunction s = s -> s
:: KeyShortcut = Key KeyCode | NoKey

Figure 2 Cleans predefined algebraic type definitions of abstract devices and the type MenuDef to define
individual menus. Type [α] means a list of α. The symbols printed in boldface are alternative data
constructors of the algebraic type.

As an illustration of an abstract device definition, figure 3 gives a typical example of a menu defini-
tion. The picture next to the definition shows the concrete device in the case of the menu definition
being mapped to a Macintosh system.

PullDownMenu FileId “File” Able [
MenuItem NewId “New” (Key ‘n’) Able new ,
MenuItem OpenId “Open…” (Key ‘o’) Able open ,
MenuItem CloseId “Close” (Key ‘w’) Unable close ,
MenuSeparator,
MenuItem SaveId “Save” (Key ‘s’) Unable save ,
MenuItem SaveAsId “Save As…” NoKey Unable saveAs,
MenuSeparator,
MenuItem QuitId “Quit” (Key ‘q’) Able quit]

Figure 3 An example of a menu definition in Clean.

(b) Abstract event handlers are higher-order function arguments of abstract device definitions. They
define the response of the interactive process to a specific abstract event . An abstract event is defined
in the context of an abstract device. Consider for example the menu definition in figure 3. One abstract
event defined in the context of this definition is the menu item named ‘Open…’ has been selected . The
abstract event handler that corresponds with this abstract event is the function open.

Abstract event handlers are functions that change the process state of the interactive process. The
process state is a predefined parameterized record type . In Clean a record type is an algebraic type
with exactly one alternative constructor. The alternative constructor does not need to be specified if its
field names uniquely identify the record type. Record types and record expressions always appear be-
tween {} in a program. The process state record type State ps consists of three fields: the program state
of type ps which reflects the logical state of the interactive process, the unique file system environ-
ment of type *Files , and the unique *IOState , an environment that contains the run-time states of the
concrete devices the interactive process uses, together with the event stream environment.

:: State ps = { pstate :: ps,
files :: *Files,
iostate :: *IOState *(State ps) }

Each interactive process has a fresh IOState environment. The IOState environment does not outlive
the lifetime of an interactive process. With the IOState environment abstract event handlers can
change the state of the Graphical User Interface elements at run-time. For this purpose the Event I/O
library has an extensive set of functions.

Because an abstract event handler defines a transition of the process state (of type State ps), the
type of an abstract event handler is :: *State ps → *State ps . So the algebraic type definitions of ab-
stract devices are parameterized with *State ps.

(c) Interactive processes can be created and terminated with the predefined functions StartIO and
QuitIO . In Clean the type definition of an n-ary function named f with arguments of type τ1…τn and
result type τ is f :: τ1 τ2…τn→τ (Common notation is f :: τ1→τ2→…→τn→τ).

StartIO :: (IOSystem *(State ps)) ps *World -> *World
QuitIO :: *(IOState *s) -> *IOState *s

StartIO is applied to a list of abstract device definitions that contain the definitions of the abstract
event handlers of type :: *State ps → *State ps, the initial value of the program state of type ps, and
the world environment. StartIO performs two actions: (1) creation of the proper environments for the
interactive process, and (2) the evaluation of the interactive process until termination.

(1) Given the abstract device definitions StartIO creates the corresponding concrete Graphical User
Interface elements. As a result the abstract devices appear to the user in their initial run-time state. The
environment of type *IOState is created and filled with the run-time states of the concrete devices and
their abstract event handlers.

(2) Then StartIO proceeds with the evaluation of the interactive process until termination. This is
done by an event loop, which is a simple, recursive function. In each step the event loop retrieves a
concrete event from the event stream environment, and if the concrete event should be interpreted as
an abstract event, applies the corresponding abstract event handler to the current process state to ob-
tain the new current process state. The effect of this transition is paired with the concrete event that
triggered the transition. The event loop terminates as soon as the IOState component of the process
state has been made empty. Abstract event handlers can make the IOState environment empty only
with the QuitIO function. The result of StartIO is a new unique world environment that contains the
new file system and event stream environments.

Figure 4 a summarizes the view a programmer has of the Event I/O system. Not included are the
actual abstract device type definitions (TimerDef, MenuDef , WindowDef, and DialogDef), and the ac-
tual library functions defined on IOState with which the programmer changes the run-time state of the
devices. Figure 4 b gives the internal definitions of StartIO, QuitIO , and IOState .

:: IOSystem s = [DeviceSystem s]

:: DeviceSystem s
= TimerSystem [TimerDef s]
| MenuSystem [MenuDef s]
| WindowSystem [WindowDef s]
| DialogSystem [DialogDef s]

:: State ps
= { pstate :: ps,

files :: *Files,
iostate :: *IOState *(State ps) }

:: IOState s

StartIO :: (IOSystem *(State ps)) ps *World -> *World
QuitIO :: *(IOState *s) -> *IOState *s

:: IOState s = { devices :: [DeviceState s],
events :: *Events }

StartIO :: (IOSystem *(State ps)) ps *World -> *World
StartIO ioSystem ps world
= CloseWorld (sn .files, sn.iostate.events)

where sn = eventloop s0
s0 = {pstate = ps, files = fs, iostate = io}
io = {devices = createDevices ioSystem, events = es}
(fs, es) = OpenWorld world

finalState :: (State ps) -> Bool
finalState s = s.iostate.devices = []

eventloop :: *(State ps) -> *State ps
eventloop s = loop finalState nextState s

loop :: (x -> Bool) (x -> x) x -> x
loop pred next x | pred x = x

= loop pred next (next x)

QuitIO :: *(IOState *s) -> *IOState *s
QuitIO io = { io & devices = [] }

4 a The outside view of the Event I/O system. 4 b The inside view of the Event I/O system.

The arguments of a record can be selected by an extended form of pattern-matching and by the field
names of the record. Consider for instance the IOState record type in figure 4 b. Suppose io is an ex-
pression of type IOState . On a pattern-match position the expression io={events=es} matches the vari-
able es with the field events of io . On the right-hand-side of a function the expression io.devices se-
lects the devices field of io , while io.events selects the events field of io . The arguments of a record

are updated in the following way: the expression {io & events=es} is a record equal to io but the field
events is replaced by the expression es .

We conclude this section with a small example that illustrates what an interactive Clean program
looks like (figure 5). It is a very simple drawing program. The program state is a list of all drawn
points. The program consists of two abstract devices: a menu device and a window device. There are
three abstract event handlers: quit, track, and update. The abstract event handler quit, which is invoked
when the menu item named Quit has been selected, simply terminates the program by applying QuitIO
to its IOState component. The abstract event handler track , which is invoked for all mouse actions in
its window, erases a point in the window and removes it from its program state (with the function
delete) whenever the mouse is down and the option modifier key is pressed. It draws a point in the
window and adds it to its program state whenever the mouse is down. The abstract event handler up-
date, which is invoked whenever part of the window needs to be redrawn, redraws every drawn point.

:: DrawState = State [Point]

Start :: *World -> *World
Start world
= StartIO ioSystem initialProgramState world

where ioSystem = [MenuSystem [PullDownMenu FileId “File” Able
[MenuItem QuitId “Quit” (Key ‘q’) Able quit]],

 WindowSystem [FixedWindow 1 (0,0) “Picture” ((0,0),(200,100)) update
[Mouse Able track , Cursor CrossCursor]]]

initialProgramState = []

quit :: *DrawState -> *DrawState
quit s={ iostate = io } = {s & iostate = QuitIO io}

update :: UpdateArea *DrawState -> (*DrawState, [*Picture -> *Picture])
update _ s={ pstate=drawnPoints } = (s, map DrawPoint drawnPoints)

track :: MouseState *DrawState -> *DrawState
track (_, ButtonUp, _) s = s
track (point, _, OptionOnly) s={ pstate=drawnPoints, iostate=io }
= { s & pstate = delete point drawnPoints, iostate = DrawInWindow 1 [ErasePoint point] io }
track (point, _, _) s={ pstate=drawnPoints, iostate=io }
= { s & pstate = [point | drawnPoints], iostate = DrawInWindow 1 [DrawPoint point] io }

Figure 5 A simple drawing program. The expression [x | xs] denotes a list with head item x and tail list xs.

3 The Interleaved Event I/O system

In this section we describe how the Event I/O system can be equipped to handle interactive processes
more flexible. The new system thus obtained is the Interleaved Event I/O system. New primitives are
introduced into the system for dynamic process creation (section 3.1), and inter-process communica-
tion by asynchronous message passing (section 3.2), and data sharing (section 3.3). We demonstrate
how these primitives can best be fit in with the abstract device and process state transition paradigms
of the Event I/O system. In order to gain programming experience the Interleaved Event I/O system
has been implemented. Each of the following subsections treats the consequences of these changes to
the programming practice and the internal definitions of the I/O system.

3.1 Dynamic process creation

The first extension is the dynamic creation of interactive processes . Every interactive process can
spawn interactive processes that will run interleaved with their father process. Every new interactive
process runs independently of its father process, i.e. termination of the father process has no conse-
quences for the child process, and vice versa.

The programmers view

The programmer creates interleaved interactive processes similarly to StartIO . The function NewIO ::
(IOSystem *(State ps)) ps *(IOState *s)→*IOState *s creates the new interactive process and takes care
that the new interactive process joins the evaluation of interactive processes. The type of NewIO is
very similar to the type of StartIO. Environments of type IOState exist inside interactive processes

only, so NewIO can be applied as part of an abstract event handler only. The contrary holds for Start-
IO : the world environment does not exist at evaluation of an interactive process, so it can be applied
only outside interactive processes. The type of NewIO expresses that the process state type State ps of
the child process is allowed to differ from the process state type s of the father process.

The system view

The implementation of the Clean I/O system changes in two major aspects. Firstly, the new I/O system
needs to be able to handle an arbitrary number of interactive processes. Secondly, the unique global
environments Files and Events need to be shared between all interactive processes. The changes are
presented as follows: (a) the system regarded from the point of view of an interactive process, (b) the
structure of the event loop, and (c) the definition of NewIO .

(a) Figure 6 gives the relevant types to an interactive process. In the interleaved system an interac-
tive process is still a process state transition system on the process state type State. Whenever the in-
teractive process is evaluated, its process state will consist of a program state, file system, and IOState
component. The IOState component is also supplied with a list of the other processes of type Process.
Because the unique global environments Files and Events are contained in the process state of this in-
teractive process, the other processes cannot also contain these environments. Therefore Process ps is
a polymorphic record type that contains only the local components of an interactive process. These lo-
cal components are the program state of type ps and the run-time states of the abstract devices .

The type Process E.ps is an existential type of which the type variable ps is existentially quantified .
The type [Process ps] enforces every element to have a program state of the same type, but different
interactive processes employ program states of different type. A type definition can hide a type vari-
able by prefixing the existential quantifier E. before the type variable. On the right-hand side of the
type definition the type variable still enforces type equality, but the scope of the type variable is lim-
ited to the right-hand side of the type. The special purpose type constructor Void can be used as a type
instance of existentially quantified type parameters. As a result, the type [Process Void] is a list of pro-
cesses that have program states of different types. For an account of existential types in the Clean type
system, see Plasmeijer and van Eekelen (1994), in preparation .

:: State ps = { pstate :: ps,
files :: *Files,
iostate :: *IOState *(State ps) }

:: IOState s = { devices :: [DeviceState s],
events :: *Events,
processes :: [Process Void] }

:: Process E.ps = { ppstate :: ps,
pdevices :: [DeviceState *(State ps)] }

Figure 6 The process administration types.

(b) The interleaved event loop (figure 7) is more complicated than the simple event loop of section 2
because it must apply every new event to every process in the process list, and it must (dis)connect ev-
ery local process component to the global environments. Therefore the interleaved event loop consists
of two loops. The outside loop retrieves a new event from the event stream environment while there
are processes to be evaluated. Given this event, the inside loop schedules these processes in round-
robin order to compute their new process states. The overall state of the interleaved event loop is rep-
resented by the record type GlobalState that consists of the unique global environments Files and
Events , and the current list of processes. The transformation of a process of type Process to a process
state of type State is given by the function connect. The function disconnect is the inverse of connect
(so disconnect•connect x = x). The process state transition function nextState given the event and the
process state determines which, if any, of the available abstract event handlers of the process should be
applied to the process state. The inside loop removes the process from the process list if the new pro-
cess state is a terminal value. As a result, the interleaved event loop terminates as soon as all interac-
tive processes have terminated.

The interleaved event loop is a deterministically interleaved state transition system. For each event
retrieved from the event stream environment, the interactive processes are scheduled in round-robin

order to compute the new value of their process state. The new value is given by one of its abstract
event handlers. Which abstract event handler of the process should be applied to the process state de-
pends on the actual value of the event. So the interleaving of interactive processes is deterministic.

:: GlobalState = { gFiles :: *Files,
gEvents :: *Events,
gprocesses :: [Process Void] }

StartIO :: (IOSystem *(State ps)) ps *World -> *World
StartIO ioSystem ps world
= CloseWorld (gsn.gFiles, gsn.gEvents)

where gsn = eventloop gs0
gs0 = { gFiles = fs, gEvents = es, gprocesses = [process] }
process = { ppstate = ps, pdevices = createDevices ioSystem }
(fs, es) = OpenWorld world

eventloop :: *GlobalState -> *GlobalState
eventloop gs
= loop emptyGState nextGState gs

where emptyGState gs = gs.gprocesses = []

nextGState gs={ gEvents=es }
= gs1
where (e, es1) = nextevent es

(_, gs1) = loop procsdone (nextproc e) (1, { gs & gEvents=es1 })

procsdone (i, gs) = i > length gs.gprocesses

nextproc e (i, { gFiles=fs, gEvents=es, gprocesses=procs })
= (length procs2-length procs+i+1, { gFiles=fs1, gEvents=es1, gprocesses=procs2 })
where procs2 = if (proc.devices=[]) procs1 [proc | procs1]

((proc, procs1),fs1,es1) = disconnect•nextState e•connect (remove i procs, fs, es)

Figure 7 The definition of the interleaved event loop.

(c) In this set-up the definition of NewIO can be straightforward: it maps the abstract device definitions
of the interactive process to concrete devices, creates the process record value, and inserts it into the
process list that is contained in its IOState argument, so that next time the event loop will schedule the
new interactive process for evaluation.

NewIO :: (IOSystem *(State ps)) ps *(IOState *s) -> *IOState *s
NewIO ioSystem ps io={ processes=procs } = { io & processes = [{ ppstate = ps, pdevices = createDevices ioSystem } | procs]}

3.2 Asynchronous message passing

In this step we add a polymorphic, type-safe , asynchronous message passing mechanism to the Inter-
leaved Event I/O system. Interactive processes can send messages to any other interactive process,
provided they have the identification of that process. For this purpose the I/O system generates a
unique identification for every interactive process. The content of a message can be any typeable ex-
pression. The type system is applied to enforce type-safe message passing: it is impossible for a cor-
rectly typed interactive process to send messages of the wrong type. In the I/O system, messages are
considered to be abstract events. Conform the Event I/O paradigm of abstract event handling by ab-
stract devices, message events are dealt with by a new abstract device, the receiver device .

The programmers view

Figure 8 presents the changes to the Interleaved Event I/O system that concern the programmer. There
are three important changes: (a) the abstract device type definitions have been extended with the ab-
stract receiver device, (b) at creation of a receiver a parameterized identification is returned, and (c)
the library functions have been extended with a type-safe message passing function.

:: ReceiverDef m s = Receiver SelectState (ReceiverFunction m s)
:: ReceiverFunction m s = m s -> s
:: IOId m

OpenReceiver :: (ReceiverDef m *s) *(IOState *s) -> (IOId m, *IOState *s)
CloseReceiver :: (IOId m) *(IOState *s) -> *IOState *s

Send :: (IOId m) m *(IOState *s) -> *IOState *s

Figure 8 The predefined abstract receiver device type definition and the new functions for the programmer.

(a) The algebraic type ReceiverDef that defines the abstract receiver device is very straightforward. A
receiver can be Able or Unable (the SelectState attribute). The abstract event handler that should be
evaluated in case a message event arrives for the receiver is the receiver function . The receiver func-
tion accepts messages of a given polymorphic type m.

(b) Interactive processes can open and close an arbitrary number of receivers dynamically with the
functions OpenReceiver and CloseReceiver. In order to identify the addressee of a message uniquely,
OpenReceiver generates a unique identification for each receiver. The identification of a receiver that
accepts messages of type m is a value of type IOId m. IOId is an abstract data type that is parameter-
ized with the message type of the receiver.

(c) Interactive processes send a message with the function Send which requires the identification
IOId m of the receiver and a message of the corresponding type m . Send inserts the pair of receiver
identification and message in the event stream environment contained in the IOState argument.

The system view

The major change to the Interleaved Event I/O system is the definition of the receiver device. The re-
ceiver device of an interactive process checks, when applied to a message event and the current pro-
cess state, whether the identification in the message event corresponds to one of its (able) receivers. If
this is the case then the response of the interactive process is defined by the application of the receiver
function f to the actual message m and the current process state s, so the response is f m s .

This message passing mechanism is type-safe. In order to send a message to a receiver that accepts
messages of type m , the corresponding identification is required. Receiver identifications are created
with OpenReceiver only and uniquely identify the receiver. The identification is parameterized with
the message type m of that receiver. So the message type m of a receiver identification equals the mes-
sage type m of the receiver function identified by the identification. The type system enforces type
equality between the message type of the process identification and the message being sent.

3.3 Data sharing

The idea of sharing the file system and event stream environments between interactive processes can
be generalized to sharing an arbitrary data structure between a group of interactive processes . Anal-
ogous to inter-process communication with file I/O on the file system environment, and message
passing on the event stream environment, interactive processes that share a data structure can commu-
nicate by writing and reading the shared data structure . For this reason this kind of inter-process
communication is called data sharing . Access to the shared data structure is atomic .

The programmers view

Every interactive process defines a public component of arbitrary type that can be used lateron as the
shared data structure (figure 9). So the process state of every interactive process consists of a local
component and a public component. The types of the functions StartIO and NewIO change in a non-es-
sential way. An interactive process can spawn a so called shared interactive process with the new
function ShareIO. Analogous to NewIO , the shared interactive process runs interleaved with all other
interactive processes. The difference is that the types of the public components of the process states of
both interactive processes must be equal. The public component will be shared during evaluation of
both processes. Every new shared interactive process that is spawned by any interactive process will
also share the same public component. The interactive processes that share the same public component
form a group of interactive processes . It should be observed that ShareIO does not define some initial
value of type p for the public component because this value already exists.

:: State l p = { localstate :: l,
publicstate :: p,
files :: *Files,
iostate :: *IOState *(State l p) }

StartIO :: (IOSystem *(State l p)) (l, p)
*World -> *World

NewIO :: (IOSystem *(State l p)) (l, p)
*(IOState s) -> *IOState s

ShareIO :: (IOSystem *(State l p)) l
*(IOState *(State l’ p)) -> *IOState *(State l’ p)

:: IOState s = { devices :: [DeviceState s],
events :: *Events,
myGroup :: [Process Void Void],
otherGroups:: [Group Void Void] }

:: GlobalState = { gFiles :: *Files,
gEvents :: *Events,
ggroups :: [Group Void Void] }

:: Group E.l E.p = { public :: p,
processes :: [Process l p] }

:: Process E.l E.p = { pstate :: l,
pdevices :: [DeviceState *(State l p)] }

Figure 9 The outside view. Figure 10 The inside view.

The system view

The extension of the Interleaved Event I/O system with data sharing complicates only the implementa-
tion of the interleaved event loop. The basic difference between the data sharing interleaved event loop
and the interleaved event loop as defined in section 3.1 is that the new event loop traverses a list of
lists of processes rather than one list of processes. We omit the definition of the event loop for reasons
of space and give the internal data types only (figure 10).

4 Example

In this section we present an example of how an interactive Graphical User Interface application can
be constructed with the primitives that have been discussed in the previous sections. The program
monitors the typing speed of a user for a period of one minute. During the typing session it shows the
key hit rate per second. Figure 11 gives a snapshot of the application running on a Macintosh system.
The program consists of two interactive processes: the typist process and the monitor process that
communicate by asynchronous message passing. Some minor functions and constants have been omit-
ted in the program code for reasons of brevity.

Figure 11 A snapshot of the typing monitor running.

The monitor process (figure 12 a) draws during a session in its window the progress of the user. The
monitor process shares no data, so its public process state type is Empty (:: Empty = Nil). The monitor
process is the initial interactive process created by the program. Its first action is to create the typist
process. The local process state is the record type Local . The field count holds the number of key hits
per second, counts holds the list of counts so far, and time holds the elapsed time of the session. The
monitor process is controlled by the messages of type MonitorMessage it receives from the typist pro-
cess. If it receives the StartSession message, it sets the local process state to its initial value, and en-
ables the timer. It disables the timer if it receives the EndSession message. For each KeyHit message
it increments count. Finally, on acceptence of the QuitMonitor message it quits the monitor process.
The timer event handler drawKeyHits, when enabled, is evaluated once every second. It appends count
to counts , sets count to zero, increments time , and draws the count value in the window.

:: MonitorMessage = StartSession | EndSession | KeyHit | QuitMonitor

:: Local = { count :: Int,
counts :: [Int],
time :: Int }

:: MonitorState = State Local Empty

Start :: *World -> *World
Start world
= StartIO ioSystem (initialLocal, Nil) initialIO world

where ioSystem = [WindowSystem [FixedWindow MonitorWindowId (0,0) "Monitor" MonitorDomain
updatemonitor [WindowNoGoAway]],

TimerSystem [Timer DrawHitsId Unable Second drawKeyHits],
initialIO = [openChannel]

initialLocal = { count=0, counts=[], time=0 }

openChannel :: *MonitorState -> *MonitorState
openChannel monitor={ iostate=io } = openTypist talkTo { monitor & iostate=io1 }

where (talkTo, io1) = OpenReceiver (Receiver Able receive) io

receive :: MonitorMessage *MonitorState -> *MonitorState
receive StartSession monitor={ iostate=io }
= DrawInWindowFrame MonitorWindowId updatemonitor monitor1

where monitor1 = { monitor & localstate=initialLocal, iostate=EnableTimer DrawHitsId io }
receive KeyHit monitor={ count=c } = { monitor & count=c+1 }
receive EndSession monitor={ iostate=io } = { monitor & iostate=DisableTimer DrawHitsId io }
receive QuitMonitor monitor={ iostate=io } = { monitor & iostate=QuitIO io }

drawKeyHits :: TimerState *MonitorState -> *MonitorState
drawKeyHits _ monitor={ localstate={ count=c, counts=cs, time=t }, iostate=io }
= {monitor & localstate={ count=0, counts=append c cs, time=t+1 }, iostate=DrawInWindow 1 [drawCount t c] io }

Figure 12 a The main code of the monitor process.

The typist process (figure 12 b) controls the user input (selection of the commands Run and Quit , and
keyboard handling by the, initially disabled, abstract event handler typeAndSendKeys). The initially
disabled timer is used as a one-minute stopwatch. When created by the monitor process the typist pro-
cess stores the IOId of the monitor process in the local process state component of type Local . Local
also contains the text lines the user has typed during a session. A session is started with Run. Run sets
the local process state to its initial value, enables keyboard handling of the window and enables the
timer, disables menu selection of itself, and sends the StartSession message to the monitor process. A
session terminates after one minute triggered by evaluation of the timer function endOfSession which
disables the keyboard handling of the window and disables the timer, enables selection of the Run
command, and sends the EndSession message to the monitor process. During a session, typeAnd-
SendKeys sends a KeyHit message to the monitor process for every key that has been pressed. Finally,
the Quit command sends the QuitMonitor message to the monitor process and terminates the typist
process.

:: Local = { lines :: [String],
talkTo :: IOId MonitorMessage }

:: TypeState = State Local Empty

openTypist :: (IOId MonitorMessage) *(State l p) -> *(State l p)
openTypist ioId state={ iostate=io }
= { state & iostate=NewIO ioSystem (initialLocal, Nil) initialIO io }

where ioSystem = [MenuSystem [PullDownMenu FileId "File" Able [
MenuItem RunId "Run" (Key 'r') Able run ,
MenuSeparator,
MenuItem QuitId "Quit" (Key 'q') Able quit]],

WindowSystem [FixedWindow TypeWindowId (0,0) "Type window" TypeDomain updatewindow
[WindowKeyboard Able typeAndSendKeys, WindowNoGoAway]],

TimerSystem [Timer StopwatchId Unable OneMinute endOfSession]]
initialLocal = { lines=[""], talkTo=ioId }
initialIO = []

run :: *TypeState -> *TypeState
run state={ localstate={ talkTo=monitor }, iostate=io }
= DrawInWindowFrame 1 updatewindow { state & { localstate & lines=[""] }, iostate=io1 }

where io1 = ChangeIOState [EnableKeyboard TypeWindowId,
EnableTimer StopwatchId,
DisableMenuItems [RunId],

Send monitor StartSession] io

quit :: *TypeState -> *TypeState
quit state={ localstate={ talkTo=monitor }, iostate=io } = { state & iostate=QuitIO (Send monitor QuitMonitor io) }

endOfSession :: TimerState *TypeState -> *TypeState
endOfSession _ state={ localstate={ talkTo=monitor }, iostate=io }
= { state & iostate=ChangeIOState [DisableKeyboard TypeWindowId,

DisableTimer StopwatchId,
EnableMenuItems [RunId],
Send monitor EndSession] io }

typeAndSendKeys :: KeyboardState *TypeState -> *TypeState
typeAndSendKeys (key, KeyDown, _) state={ localstate=local, iostate=io }
where local={ lines=text, talkTo=monitor }
= { state & localstate={ local & lines=text1 }, iostate=Send monitor KeyHit (DrawInWindow TypeWindowId drawText io) }

where (text1, drawText) = addCharToText key text
typeAndSendKeys _ state = state

Figure 12 b The main code of the typist process.

Finally, both processes can be restructured easily to communicate by data sharing rather than message
passing. Let count be the shared data structure. The typist process increments the shared count for ev-
ery key hit instead of sending the KeyHit message. The monitor process reads and sets the shared
count, and removes count from its local process state. The KeyHit message can also be removed.

5 Related work

The research described in this paper stems from research on functional I/O systems, and more specifi-
cally the incorporation of Graphical User I/O into a functional language. Early work in this area is the
work on dialogue combinators by Dwelly (1989). Recent work is the FUDGETS system by Carlsson
and Hallgren (1993). The issue of dynamic process creation has not been considered in the dialogue
combinator system, and the FUDGETS system dynamic process creation is very limited. Noble and
Runciman (1994) give a comparison between the FUDGETS system and the Clean Event I/O system.

The area of functional operating systems offers more closely related work with respect to dynamic
process creation and inter-process communication. Closely related work in this area is the Kent Ap-
plicative Operating System (KAOS) project by Turner (1990) which is a framework for a functional
operating system. The system is based on earlier work by Stoye (1984). Both systems allow dynamic
creation of functional processes. The inter-process communication is based on the sorting office con-
cept introduced by Stoye. Essentially, the sorting office implements a non-deterministic merge of all
messages outside the language. In the Clean (Interleaved) Event I/O scheme the event stream envi-
ronment is the infinite stream of all input-events ever in which message events can be inserted by in-
teractive processes in a functional way. No additional non-functional merge is required.

6 Conclusions

In this paper we have investigated how a single state transition system (the Event I/O system) can be
turned into an interleaved state transition system (the Interleaved Event I/O system) that is dynami-
cally composed of single state transition definitions (interactive processes). We have added two forms
of inter-process communication in this system, namely asynchronous message passing and data shar-
ing. Both forms of communication are type-safe and polymorphic. The construction is done entirely on
the functional level. The Interleaved Event I/O system can be regarded as an operational semantics of
dynamic functional processes. The inter-process communication gains by the fact that the system has
been defined in a functional framework. Both forms of communication can use higher-order functions
and arbitrarily complex data types straightforwardly.

We have gained some programming experience with the Interleaved Event I/O system. Some of the
programs we have written are simulations of parallel systems: a talk application, and some distributed
games. Another class of programs that can be suitably dealt with in this framework are process control
applications: we have written a program that controls the temperature of a water tank.

7 Current and future work

Current work involves aspects of the interleaved state transition system, such as the inclusion of exist-
ing (non-functional) applications in the framework, and how other forms of message passing such as
synchronous message passing, remote invocation, and remote procedure calling, can be defined in the
system. The suitability of the primitives still requires further investigation. The main topic of our fu-
ture work will be to use the Interleaved Event I/O system as a basis for a distributed Event I/O system.

Acknowledgements

The authors would like to thank Marko van Eekelen for the many discussions during this research, and
the useful comments on the content of the paper.

References

Achten, P.M., van Groningen J.H.G., and Plasmeijer, M.J.
1993. High Level Specifica tion of I/O in Functional
Languages. In Launchbury,J., Sansom,P. eds., Proceed-
ings Glasgow Workshop on Functional Programming,
Ayr,Scotland, 6-8 June 1992. Workshop Notes in Com-
puter Science. Springer-Verlag,Berlin,1993, pp 1-17.

Achten, P.M. and Plasmeijer, M.J. 1994. The Ins and Outs
of Clean I/O. To appear in the Journal of Functional
Programming.

Barendregt, H.P., Eekelen van, M.C.J.D., Glauwert, J.R.W.,
Kennaway, J.R., Plasmeijer, M.J., and Sleep, M.R.
1987. Term Graph Rewriting. In Bakker, J.W. de,
Nijman, A.J., and Treleaven, P.C. eds. Proceedings of
Parallel Archi tectures and Languages Europe, Eind-
hoven, The Nether lands, LNCS 259, Vol.II. Springer-
Verlag, Berlin, pp. 141-158.

Barendsen, E. and Smetsers, J.E.W. 1993. Conventional
and Uniqueness Typing in Graph Rewrite Systems. In
Shyamasundar, R.K. ed. Proceedings of the Thir teenth
Conference on the Foundations of Software Technology
and Theoretical Computer Science, 15–17 December
1993, Bombay, India. LNCS 761 . Springer-Verlag,
Berlin, pp. 41-51.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van,
Plasmeijer, M.J., and Barendregt, H.P. 1987. Clean: A
Language for Functional Graph Rewriting. In Kahn. G.
ed. Proceedings of the Third International Conference
on Functional Programming Languages and Computer
Archi tecture , Portland, Oregon, USA, LNCS 274 ,
Springer-Verlag, pp. 364-384.

Carlsson, M. and Hallgren, Th. 1993. FUDGETS - A Graphi -
cal User Inter face in a Lazy Functional Language. In
Proc. of Conference on Functional Programming Lan-
guages and Computer Architecture. Copenhagen,
Denmark, 9-11 June 1993. ACM Press, pp. 321-330.

Dwelly, A. 1989. Functions and Dynamic User In terfaces.
In Proceedings of Fourth International Conference on
Functional Programming Languages and Computer Ar-
chitectures, Imperial College, London, September 11-
13, 1989, pp. 371-381.

Groningen, J.H.G. van, Nöcker, E.G.J.M.H., and Smetsers,
J.E.W. 1991. Efficient Heap Management in the Con-
crete ABC Machine. In Glaser, Hartel eds, Proceedings
of Third International Workshop on Implementa tion of
Functional Languages on Parallel Architectures. Uni -
versity of Southampton, UK. Technical Report Series
CSTR 91-07.

Henderson, P. 1982. Purely Functional Operating Systems.
In Darlington, J., Henderson, P., Turner, D.A. eds.,
Functional programming and its applica tions, Cam-
bridge University Press, pp. 177-192.

Nöcker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D.
van, and Plasmeijer, M.J. 1991. Concurrent Clean. In
Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds, Proceed-
ings of Parallel Archi tectures and Languages Europe,
June, Eindhoven, The Nether lands. LNCS 5 0 6 ,
Springer-Verlag,pp. 202-219.

Noble, R., Runciman, C. 1994. Functional Languages and
Graphical User Interfaces - a review and a case study.
Department of Computer Science, University of York,
England. February 3, 1994.

Peyton Jones, S.L. and Wadler, Ph. 1993. Imperative Func-
tional Programming. In Proceedings of the Twentieth
Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, Charleston, South Car-
olina, January 10-13, 1993, pp. 71-84.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1993. Func-
tional Programming and Parallel Graph Rewriting .
Addison-Wesley Publishing Company 1993.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1994. Clean
1.0 Reference Manual. Technical Report, in prepara-
tion. University of Nijmegen, The Netherlands.

Smetsers, J.E.W., Nöcker, E.G.M.H, Groningen, J.H.G.
van, and Plasmeijer, M.J. 1991. Generat ing Efficient
Code for Lazy Functional Languages. In Hughes, J. ed,
Proceedings of Fifth International Conference on
Functional Programming Languages and Computer Ar-
chitecture Cambridge, MA, USA, LNCS 523 , Springer -
Verlag pp. 592-617.

Smetsers, J.E.W., Barendsen, E., Eekelen, M.C.J.D. van,
and Plasmeijer, M.J. 1993. Guaranteeing Safe Destruc-
tive Updates through a Type System with Uniqueness
Information for Graphs. In Proceedings Workshop
Graph Trans formations in Computer Science , Schloss
Dagstuhl, January 4-8, 1993. Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin.

Stoye, W.R. 1984. A new scheme for writing functional
operating systems. Technical Report 56 , Computer
Laboratory, Cambridge University, 1984.

Thompson, S. 1990. Interactive Functional Programs. A
Method and a Formal Semantics. In Turner, D.A. ed.,
Research topics in Functional Programming , Addison-
Wesley Publishing Company, pp. 249-285.

Turner, D.A. 1990. An Approach to Functional Operating
Systems. In Turner, D.A. ed., Research topics in Func-
tional Programming , Addison-Wesley Publishing
Company, pp. 199-217.

