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A recently developed nondestructive method, called Magnetic Adaptive Testing was applied for investigation of flake graphite 

cast iron samples having various metallic matrices and graphite structures. MAT is typical by its low required magnetization of 

samples, because it is based on measurement of families of minor magnetic hysteresis loops. The flat samples were magnetized by 

an attached yoke and sensitive descriptors of their magnetic/structural state were obtained from evaluation of the measured d ata. 

Ultrasonic velocity measurements were performed and results of the non-destructive magnetic tests were compared with these data. 

A very good correlation was found between the magnetic descriptors and u ltrasonic velocity. 
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1 INTRODUCTION 

 

 

 

Cast iron is one of the most frequently used industrial 

construction materials. Low cost of production, good ma-

chinability, and excellent possibilities of shaping the details 

by casting attract an intense interest of industry. The cast 

irons are generally many-component alloys of iron with large 

content of carbon. The cast iron structure is classified by its 

metallic matrix composition (ferrite, pearlite, carbides, etc.) 

and by morphology of its graphite inclusion. The mechanical 

properties are fundamentally dependent both on the matrix 

composition and on the graphite shape (flaky, spheroidal, 

vermicular, etc.), size and density [1]. One of the types of 

cast iron - the flake graphite cast iron - is frequently used for 

mechanical components in bearings, brake shoes, etc. be-

cause of its high wear resistance and damping capacity. The 

flake graphite cast iron is an ideal material for automobile 

brake disks since it has excellent damping properties and 

thermal conductivity just because of the flaky graphite. 

A nondestructive inspection of construction materials 

made of cast iron is highly desirable. Various non-destructive 

evaluation techniques have been examined so far, as eg alter-

nating current potential drop [2], laser acoustic wave [3], 

ultrasonic back-scattering [4], or eddy currents [5]. Graphite 

and other structures composing the cast iron matrices may be 

evaluated using electromagnetic properties such as conduc-

tivity and permeability [6]. Magnetic measurements are also 

frequently used for characterization of changes in structure of 

ferromagnetic materials, because magnetization processes are 

closely related to microstructure of the materials. This fact 

also makes magnetic measurements an obvious candidate for 

non-destructive testing, for detection and characterization of 

any defects in materials and manufactured products made of 

such materials [7]. One of the most frequently used magnetic 

measurements is the detection of B-H curve. Structural non-

magnetic properties of ferromagnetic materials have been 

non-destructively tested using traditional magnetic hysteresis 

measurement methods for a long time with fair success. A 

number of techniques have been suggested, developed and 

currently used in industry, see eg [8]. They are mostly based 

on detection of structural variations via the classical macro-

scopic parameters of hysteresis loops.  

An alternative, more sensitive and more experimental-

ly friendly approach to this topic was considered recently, 

based on magnetic minor loops measurement. The survey 

of this technique can be found in [9]. The method, called 

Magnetic Adaptive Testing (MAT) was presented, which 

introduced general magnetic descriptors to diverse varia-

tions in non-magnetic properties of ferromagnetic materi-

als, optimally adapted to the just investigated property and 

material. MAT was successfully applied for characteriza-

tion of material degradation in different specimens and it 

seems to be an effective tool eg for replacement of the 

destructive hardness and/or ductile-brittle transition tem-

perature measurements. 

In this work the direct correlation between MAT pa-

rameters and ultrasonic velocity in flake graphite cast iron 

is studied using samples with different graphite structures 

and matrices. Although ultrasonic velocity is not consid-

ered as the most important parameter of cast irons, it is a 

frequently measured quantity. The micro-structure of 

flake graphite cast iron is the most important parameter 

from point of view of cast iron properties. The correlation 

between graphite morphology and magnetic parameters 

has already been studied recently [10] based on the meas-

urements performed on three as cast samples with differ-

ent chemical compositions. It was also shown that ultra-

sonic velocity depends on the area fraction and length of 

graphite [6] on the same samples. 

The purpose of the present work is to study the direct 

correlation between ultrasonic velocity and MAT parame-

ters on three series of flake graphite cast iron samples, 

where apart from as cast samples two kinds of heat treat-

ments (annealing to obtain a ferrite based matrix and nor-
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malization to obtain a pearlite-based matrix) were also 

performed. 
 

2 SAMPLE PREPARATION 
 

 

Three flake graphite cast iron materials with chemical 

compositions listed in Table 1 were prepared. Their car-

bon equivalent (CE) values were defined by:  

)P%massSi%mass(
3

1
C%mass CE  

and were controlled to produce various graphite shapes and 

sizes. These metals were designated as CE4.7, CE4.1 and 

CE3.7 based on their targeted CE values. Pig iron (4.09 %C, 

0.89 %Si, 0.07 %Mn, 0.019 %P, 0.012 %S, 0.016 %Cr, 

0.003 %Ti), ferrosilicon (Fe-75 %Si), electrolytic iron and 

electrolytic manganese were used as raw materials and were  

 
Table 1. Chemical composition of the flake graphite cast iron sam-

ples (values in wt %) 
 

Sample 
Chemical composition 

C Si Mn P S Cr Ti 

CE4.7 3.77 2.78 0.78 0.025 0.015 0.029 0.015 

CE4.1 3.36 2.15 0.69 0.018 0.010 0.014 0.011 

CE3.7 3.13 1.66 0.72 0.017 0.020 0.038 0.010 

 
melted using a high frequency induction melting furnace at 

1743 K. Ferrosilicon (Fe-75 %Si) was also used as an inocu-

lant. The melts were poured into moulds made by the CO2 

gas process to produce columnar bars with length of 60 mm 

and diameter of 46 mm. Later each bar was cut into disks 

12 mm thick. The disks were subjected to two kinds of heat 

treatments: annealing to obtain a ferrite based matrix and 

normalization to obtain a pearlite-based matrix. The disks 

intended for the heat treatments were kept in a furnace at 

850oC for one hour and then either cooled in the furnace for 

the annealing or cooled in air for the normalization. We thus 

produced 3 as-cast, 3 annealed and 3 normalized flake graph-

ite cast iron materials with various matrices and graphite 

shapes as shown in Table 2. The Brinell hardness 

measuments indicated that the furnace-cooling and air-

cooling treatments were successful in producing the ferritic 

and pearlitic matrices, respectively. The concrete graphite 

shapes are shown in [10]. 

 
3 MAGNETIC ADAPTIVE TESTING 

 

MAT investigates a complex set of minor hysteresis 

loops (from a minimum amplitude of the magnetizing field, 

with increasing amplitude by regular steps) for each sample 

of the measured series. It follows from the theory of Preisach 

model of hysteresis [11], that such a set of experimental data 

contains complex information on hysteresis of the measured 

material. A specially designed Permeameter [12] with a 

magnetizing yoke was applied for measurement of families 

of minor loops of the magnetic circuit differential permeabil-

ity. The flat samples were magnetized by an attached yoke. 

Size of the yoke was chosen to fit geometry of the samples: it 

was a C-shaped laminated Fe-Si transformer core with cross-

section S = 10 × 5 mm2, total outside length 18 mm, and total 

outside height of the bow 22 mm. The magnetizing coil was 

wound on the bow of the yoke, with N = 200 turns and the 

pick-up coil was wound on one of the yoke legs with n = 75 

turns. The magnetizing coil gets a triangular waveform cur-

rent with step-wise increasing amplitudes and with a fixed 

slope magnitude in all the triangles. This produces a triangu-

lar time-variation of the effective field in the magnetizing 

circuit and a signal is induced in the pick-up coil. As long as 

the field sweeps linearly with time, the voltage signal in the 

pick-up coil is proportional to the differential permeability of 

the magnetic circuit. The Permeameter works under full con-

trol of a PC computer, which registers data-files for each 

measured family of the minor “permeability loops”.  

 
Table 2. Schedules of the heat treatment 

 

Base material Heat treatment Matrix 

CE4.7 as-cast mixed pearlite/ferrite 

CE4.7 850oC×1h, furnace-cooling  ferrite based 

CE4.7 850oC ×1h, air-cooling  pearlite-based 

CE4.1 as-cast mixed pearlite/ferrite 

CE4.1 
850oC ×1h, furnace-

cooling  

ferrite based 

CE4.1 850oC ×1h, air-cooling  pearlite-based 

CE3.7 as-cast mixed pearlite/ferrite 

CE3.7 
850oC ×1h, furnace-

cooling  

ferrite based 

CE3.7 850oC ×1h, air-cooling  pearlite-based 
 

 
The experimental raw data are processed by an evaluation 

program, which divides the originally continuous signal of 

each measured sample into a family of individual permeabil-

ity half-loops. The program filters experimental noise and 

interpolates the experimental data into a regular square grid 

of elements, ij   (hai,hbj), of a -matrix with a pre-selected 

field-step. The co-ordinates hai, hbj of the elements represent 

the actual magnetic field value, hai, on the actual minor loop 

with amplitude hbj. Each ij-element represents one “MAT-

descriptor” of the investigated material structure variation. 

The matrices are processed by another evaluation program, 

which divides values of their elements by corresponding el-

ement values of a chosen reference matrix (ie matrices stand-

ardization), and arranges each set of the mutually corre-

sponding elements ij of all the evaluated -matrices into a 

ij(x)-degradation function. Here x can be any independently 

measured parameter. In our case this is the conductivity, de-

termined independently in the samples, as shown above. For 

details of the whole MAT procedure see [9]. Measurements 

were carried out on half disc shape samples with thickness of 

12 mm and diameter of the discs 46 mm.  

The samples are magnetized during the measurement by a 

magnetizing yoke, which is placed on the flat surface of the 

sample. This experimental arrangement means an open mag-

netic circuit, because some magnetic flux is always scattered 

at the air gap between the yoke and the sample. The exact 

value of the magnetic field inside the sample is not 

known/measured in the used experimental arrangement. Be-

cause of this, instead of the magnetic field (given in A/m), 
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the value of the magnetizing current (given in mA) is used as 

hai and hbj when the ij  (hai, hbj) matrix elements are given. 

 

4 ULTRASONIC VELOCITY 
 

Both parallel surfaces of the disk specimen (12 mm thick) 

were polished using a milling attachment, and a 5 MHz 

broadband ultrasonic transducer was placed on one surface 

with coupling medium of machine oil. The ultrasonic veloci-

ty was evaluated by measuring the round-trip traveling time 

of the pulse between the two parallel surfaces using an oscil-

loscope. The longitudinal velocity was measured. The ultra-

sonic velocity of cast irons is discussed in [13]. According to 

this work the difference between longitudinal and transverse 

velocity (V_L and V_T) depends on the Poisson's ratio 

which is between 0.28 and 0.25 for two extremes of graphite 

shape. Therefore, V_L/V_T is almost the same and it does 

not make sense to measure the transverse velocity in addition 

to longitudinal velocity. 

 

3 RESULTS AND DISCUSSION 
 

 

The ultrasonic velocity of each our material was measured by 

the method described above. Fig. 1 shows its measured re-

sults for the as cast materials in relation to the graphite area 

fractions and the average length of the graphite flakes as they 

were evaluated using microphotograph binary images, see 

[10]. The ultrasonic velocity evidently depends on the area 

fraction and on the length of graphite. A model for the ultra-

sonic velocity of flake graphite cast iron was discussed in 

[14] based on the effective cross-section area fraction of the 

matrix, which is related to the total projected area of the 

graphite flakes in the ultrasound direction. Based on this 

model, the effective ultrasonic velocity in cast iron decreases 

with an increase of the amount of graphite and/or graphite 

length, because the main path of the sound leading through 

the metallic matrix “circumvents” volumes of the material 

filled up with the sound-damping graphite. This is in accord-

ance with the relations shown in Fig. 1.  
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Fig. 1.  Relationship between ultrasonic velocity and graphite pa-

rameters all measured on the as cast samples ( graphite length,  

graphite area fraction) 

 
The series of minor hysteresis loops were measured and 

MAT degradation functions of all the investigated samples 

were evaluated. MAT parameters were optimized for de-

scription of the studied dependences, ie of ultrasonic veloci-

ty. Optimization means that those ij-degradation functions 

were chosen from the big data pool, which were the most 

sensitive with respect to the change of the independent pa-

rameter, and at the same time they were highly repeatable, 

and in such a way the most reliable. 

The results for all samples are given in Fig. 2. Here each 

graph represents one type of the heat treatment (as-cast, air-

cooling, furnace-cooling) and the graphs show how MAT 

descriptors depend on the ultrasonic velocity if the same heat 

treatment is applied for CE4.7, CE4.1 and CE3.7 samples. In 

this case MAT descriptors 1/(ha,hb), with (ha = -675 mA, hb 

= 775 mA) coordinates were found as the best ones to de-

scribe the dependence of magnetic parameters as functions of 

ultrasonic velocity. In every case of Fig. 2 the MAT parame-

ters are numerically normalized by the corresponding value 

of the sample within the same series, which has the lowest 

ultrasonic velocity. 
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Fig. 2. The optimally chosen MAT descriptors for as cast, for air 

cooled and for furnace cooled samples 
 

It is seen that a linear correlation with low scatter of 

points exists between magnetic characteristics and ultrasonic 

velocity. Considering the as cast samples, the different chem-

ical compositions result in significantly different values of 

the same MAT descriptors. It means that by simultaneous 

measurement of ultrasonic velocity and of the MAT de-

scriptors of as cast samples the actual chemical composition 

of each of the as cast samples can be estimated. 

If air cooled (normalized, pearlite-based) and furnace 

cooled (annealed, ferrite-based) samples are considered, the 

value of ultrasonic velocity is rather close to each other for 

samples CE4.1 and CE3.7, (in the furnace cooled case in 

particular). However, some difference can be even better 

reflected in magnetic parameters. If proper magnetic parame-

ters are chosen, even in this case an acceptable correlation 

and mutual differences can be found between MAT de-

scriptors and ultrasonic velocity. This is illustrated in Fig. 3, 

where the optimally chosen magnetic parameters are given as 

functions of ultrasonic velocity separately for differently 

processed CE4.7, CE4.1 and CE3.7 materials. In this case 

MAT descriptors 1/ (ha,hb), with (ha=570 mA, hb=750 mA) 

coordinates were found as the best ones to describe the de-

pendence of magnetic parameters as functions of ultrasonic 

velocity. In this figure – for the better comparison – the 

MAT descriptors are not numerically normalized. 

The influence of heat treatment is reflected here very well 

on magnetic parameters. Note that in this figure different 

(ha,hb) MAT descriptors are given than in Fig. 2. This be-

havior shows also very well the multi-parametric character 

of Magnetic Adaptive Testing and its advantage: different 
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sets of magnetic descriptors correlate differently with the 

independent parameter, which can be frequently utilized with 

great benefit. 
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Fig. 3. The optimally chosen (ha,hb) MAT descriptors for sample 

CE4.7 (a), for sample CE4.1 (b) and for sample CE3.7 (c).  
 

 

4 CONCLUSIONS 
 

 

The method Magnetic Adaptive Testing, which is based 

on nondestructive, systematic measurement of minor mag-

netic hysteresis loops was applied for three flake graphite 

cast iron materials with different chemical compositions (ie 

different graphite morphology) and different structures of 

metallic matrices. MAT was shown to be a useful tool for 

finding correlation between the chosen nondestructively 

measured magnetic parameters and the ultrasonic velocity. 

Linear correlations with very small scatter of points were 

found between the optimally chosen MAT degradation func-

tions and ultrasonic velocity both if the same chemical com-

position with different heat treatment and also if the same 

heat treatment on different chemical compositions were con-

sidered. 
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