Phase-controlled dual-comb coherent anti-Stokes Raman spectroscopic imaging

Haoyun Wei^{1,*}, Kun Chen², Tao Wu¹ and Yan Li¹

- 1. Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA *email: <u>luckiwei@mail.tsinghua.edu.cn</u>

Jun. 19, 2018

Tsinghua university Group of Interferometry & Spectroscopy

Advantage of CARS imaging

- Intrinsic vibrational contrast, label-free imaging.
- Coherent signal accumulation, high-speed imaging.
- 3D sectioning capability.
- Near-infrared excitation, allowing deep penetration.

C L. Evans, et al. Annu. Rev. Anal. Chem. 2008 J. Pezacki, et al. Nat. Chem. Bio. 2011 C H Camp Jr, et al. Nat. Photonics. 2014

CARS tissue imaging of fresh mouse skin

https://bernstein.harvard.ed u/research/cars-why.htm

Multiplex/Broadband vs Narrowband CARS

 \mathcal{O}_p

- Narrowband CARS

 [©] High speed~6.4 μs
- ⊗ Narrowband

How to achieve broadband and high-speed CARS microscopy simultaneously?

ω

 \mathcal{O}_{pr}

 \mathcal{O}_{as}

Broadband CARS
 Broadband range
 Low speed~3.5 ms

Tsinghua university Group of Interferometry & Spectroscopy

Jr C. H. et al. Nature Photonics, 2014

Phase-controlled pulse for CARS excitation

Spectral focusing CARS

Spectral focusing CARS

From mechanical scanning to optical scanning

Mechanical motion

Dual-comb optical scanning

	Mechanical	Optical
Scanning speed	slow	fast
Scanning stability	low	high
Enable dynamics analysis	limited	yes

Comb2 *f*rep+δ*f*rep

Dual-comb asynchronous optical sampling

Principle of phase-controlled dual-comb CARS

а TL pulse Chirped pulse Dual-comb asynchronous optical sampling ->motionless configuration Θ Ω ->High speed scanning Frequency **Yb-dope fiber** Comb 1 f_r 100 MHz Delay time b **Yb-dope fiber** Comb 2 $f_r + \Delta f$ Pump comb 100 MHz-1kHz Phase-controlled dual-comb **Stokes** ->Same chirp comb -> Spectral focusing CARS excitation Meas. time С $\Omega_{1,2}$ Raman Shift Ω

Raman shift Ω anti-Stokes $d\boldsymbol{\omega}$ $d\tau$ τ_2 $\delta f_r/f_r^2 1/f_r$ b $\mathcal{O}_{\rm D} \mathcal{O}_{\rm S} \mathcal{O}_{\rm D} \mathcal{O}_{\rm as}$ Ω_{2} Tsinghua

Dual-comb CARS experimental system

- The amount of Chirp: 52000 fs² ٠
- Chirp parameter: 3.03×10^{-6} fs⁻² ٠
- Pump pulse: (43 fs) 4.01 ps
- Stokes pulse: (79 fs) 2.21 ps

F4

Dual-comb CARS experimental system

Dual-comb Source

Frequency standard source

Rubidium atomic clock

Comb 1: frep~100 MHz±100kHz center wavelength ~1050 nm pulse width ~65 fs

Comb 2: frep~100 MHz±100kHz center wavelength ~1060 nm pulse width ~43 fs

Generation of Stokes Beam

Tsinghua university Group of Interferometry & Spectroscopy

U

Dual-comb CARS experimental system

Dual-comb CARS microscopy

♦ High-speed broadband CARS microscopy

CARS 3D imaging for mixture of β -carotene and retinoic acid (RA)

- Imaging size: 100 $\mu m \times 100 \ \mu m \times 20 \ \mu m$
- Pixel size: 1 μ m × 1 μ m × 1 μ m
- Spectral span:1100-1700 cm⁻¹
- Spectral measurement time: 0.5 ms
- Spectral resolution: 12 cm⁻¹
- Pixel refresh rate: 1200 Hz
- Imaging speed: 8.3 s/frame

 β -carotene (*a*) 1520 cm⁻¹

Dual-comb CARS microscopy

٠

•

♦ High-speed broadband CARS microscopy

Tsinghua university Group of Interferometry & Spectroscopy

UNIVERSITY

Performance of spectral focusing dual-comb CARS microscopy

Tsinghua university Group of Interferometry & Spectroscopy

Performance of spectral focusing dual-comb CARS microscopy

Conclusion

The proposed dual-comb CARS technique enables high speed and broadband measurement

Advantages

- High-speed and Multiplex nature
- O Motionless and Synchronization-free
- © The SNR of CARS spectrum is not significantly decreased when increase refresh rate
- \bigcirc Refresh rate (δf_r) is proportional to the square of repetition frequency (f_r)
 - ——1GHz combs may achieve up to hundreds of kHz refresh rate

while the resolution and SNR remain the same in theory

Disadvantages

- \otimes Low duty cycle ~6×10⁻⁴
- 😕 Low pulse energy utilization

Acknowledgement

• Supported by the State Key Laboratory of Precision Measurement Technology & Instrument of Tsinghua University and the Tsinghua University Initiative Scientific Research Program.

Thanks for listening!

Tsinghua university Group of Interferometry & Spectroscopy