RO-VIBRATIONALLY AVERAGED STRUCTURE OF $^{2}\Pi$ NCS: RE-INTERPRETATION OF THE B_{0} VALUES

<u>TSUNEO HIRANO</u>, Department of Chemistry, Ochanomizu University, Tokyo, Japan; UMPEI NA-GASHIMA, Foundation for Computational Science, Kobe, Japan; PER JENSEN, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.

We have constructed *ab initio* 3D potential energy surfaces (PESs) for $\tilde{X}^{2}\Pi$ NCS in core-valence SDCI+Q/[aCVQZ(N,C,S)] calculations. The B_0 value predicted from these PESs deviates only 0.05% from the corresponding experimental values for NC³²S and NC³⁴S. Since we have quite accurate 3D PESs, we can determine both the equilibrium structure and the r_0 structure accurately: $r_e(N-C) = 1.1778$ Å, $r_e(C-S) = 1.6335$ Å, and $\angle_e(N-C-S) = 180^\circ$. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has $\langle r(N-C) \rangle_0 = 1.1836$ Å, $\langle r(C-S) \rangle_0 = 1.6356$ Å, and $\langle \angle (N-C-S) \rangle_0 = 172.5^\circ$. The 3D PESs show that the $\tilde{X}^2\Pi$ NCS has its potential energy minimum at a linear configuration, and hence it is a "linear molecule." Experimentally, B_0 values are reported for two isotopologues only.^{*a*} Using the expectation values given above as the initial guess, a bent r_0 structure having an $\langle \angle (N-C-S) \rangle_0$ of 172.2° is deduced from the experimentally reported B_0 values for NC³²S and NC³⁴S. It shows that the linear molecule NCS has a "bent" ro-vibrationally averaged structure, confirming our previous predictions:^{*b*} any linear molecule is observed as being bent on ro-vibrational average. See Ref. c^c for further discussion of this molecule.

 ${}^{2}\Pi$ NCS is a typical Renner molecule. The Renner spectroscopy of this molecule will be presented in a separate talk.^d

^aA. Maeda, H. Habara, T. Amano, Mol. Phys., 105, 477–495 (2007).

^bT. Hirano, U. Nagashima, J. Mol. Spectrosc., 314, 35–47 (2015); T. Hirano, U. Nagashima, P. Jensen, J. Mol. Spectrosc. 343, 54–61 (2018).

^cT. Hirano, U. Nagashima, P. Jensen, J. Mol. Spectrosc. (2018), https://doi.org/10.1016/j.jms.2017.12.011.

^dJ. Freund et al, "Computational spectroscopy of NCS in the Renner-degenerate Electronic state $\ddot{X}^2\Pi$."