MCTDH ROVIBRATIONAL STATES AND STATE-TO-STATE INELASTIC SCATTERING CALCULATIONS ON THE H₂O-H₂ SYSTEM

STEVE ALEXANDRE NDENGUE, RICHARD DAWES, Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA; YOHANN SCRIBANO, Laboratoire Univers et Particules, Universite de Montpellier, Montpellier, France; FABIEN GATTI, CNRS, Institut des Sciences Moleculaires d'Orsay, Orsay, France.

Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O -X (with X=He, H_2 , D_2 , Ar, ...) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. In this work we are following those studies and will present benchmark calculations of rovibrational states and resonances of the H_2O - H_2 cluster in the rigid rotor approximation using the MultiConfiguration Time Dependent Hartree (MCTDH) approach. We will also present the first state-to-state inelastic scattering results of the H_2O + H_2 process in the rigid rotor approximation using the MultiConfiguration for similar triatomic – linear molecule interactions which are usually computationally expensive using standard calculations methods.