EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF THE THRESHOLD PHOTOELECTRON SPECTRUM OF THE $\rm CH_2$ RADICAL

B. GANS, F. HOLZMEIER, <u>L. H. COUDERT</u>, Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud, Orsay, France; J.-C. LOISON, Institut des Sciences Moléculaires, Université de Bordeaux, Talence, France; G. A. GARCIA, L'Orme des Merisiers; Saint Aubin BP 48, Synchrotron SOLEIL, Gif sur Yvette, France; C. ALCARAZ, Laboratoire de Chimie Physique, Université Paris-Sud, Orsay, France.

The methylene cation CH_2^+ is spectroscopically poorly characterized as it is difficult to produce in large amounts. It is subject to the Renner-Teller effect giving rise to ground $\widetilde{X}^{+2}A_1$ and excited $\widetilde{A}^{+2}B_1$ electronic states. Photoelectron spectroscopy of the methylene radical CH_2 allows us to gain information about both CH_2 and its cation. The former is also theoretically challenging as it is a very non-rigid species characterized by a barrier to linearity of less than 2000 cm⁻¹ in its ground \widetilde{X}^3B_1 electronic state. The first photoelectron spectra of CH_2 were investigated using pulsed-field-ionization zerokinetic-energy spectroscopy.^{*a*} A rotationally resolved spectrum containing $\widetilde{X}^{+2}A_1 \leftarrow \widetilde{X}^3B_1$ transitions was recorded from 83600 to 84070 cm⁻¹ and analyzed in terms of CH_2^+ rotational constants.

The threshold photoelectron spectrum of CH₂ has been recorded from 9.8 to 12 eV (79040 to 96800 cm⁻¹) using a recently developed flow tube reactor^b and VUV synchrotron radiation. This new spectrum spans a larger energy range than the previous ones,^a but with less resolution. It displays narrow and broad features due respectively to the $\tilde{X}^{+2}A_1 \leftarrow \tilde{X}^3B_1$ and $\tilde{A}^{+2}B_1 \leftarrow \tilde{X}^3B_1$ ionizing transitions. Using new *ab initio* potential energy surfaces and available ones,^c the photoelectron spectrum is currently being computed using two models. The first one accounts for the large amplitude bending mode and the rotation only; the second one, also accounts for the stretching modes. The experimental and theoretical spectra will be discussed in the paper.

^aWillitsch et al., J. Chem. Phys. 117 (2002) 1939; and Willitsch & Merkt, ibid. 118 (2003) 2235

^bGarcia et al., J. Chem. Phys. **142** (2015) 164201

^c Jensen & Bunker, J. Chem. Phys. 89 (1988) 1327; and Jensen, Brumm, Kraemer & Bunker, J. Molec. Spectrsoc. 172 (1995) 194