SLOW PHOTOELECTRON VELOCITY-MAP IMAGING (SEVI) SPECTROSCOPY OF CRYO-COOLED ANIONS

MARISSA L. WEICHMAN, JILA, National Institute of Standards and Technology and Univ. of Colorado Department of Physics, University of Colorado, Boulder, CO, USA; JONGJIN B. KIM, JESSALYN A. DeVINE, DANIEL NEUMARK, Department of Chemistry, The University of California, Berkeley, CA, USA.

Slow photoelectron velocity-map imaging spectroscopy of cryogenically-cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of exotic neutral species. SEVI is a high-resolution variant of anion photoelectron imaging that yields spectra with energy resolution as high as 1 cm^{-1} . The preparation of cold anions eliminates hot bands and narrows rotational envelopes, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species.^{1,2}

Recently, cryo-SEVI has been applied as a spectroscopic probe of transition state dynamics on neutral reactive surfaces, through photodetachment of a bound anion similar in geometry to the desired transition state. In the benchmark $F + H_2$ reaction, we probe the transition state region through detachment of FH_2^- and directly observe new reactive resonances. Comparison to new theory allows for the assignment of resonances associated with quasi-bound states of the transition state and products.³ We also report spectra of the $F + CH_3OH$ hydrogen abstraction reaction through photodetachment of the CH_3OHF^- van der Waals cluster. We gain insight into the energetics and vibrational structure of transient complexes along the reaction coordinate of this complex polyatomic system.⁴

Finally, we report a new cryo-SEVI study of vinylidene (H₂CC), a high energy isomer of acetylene, which is accessed directly through detachment of H₂CC⁻. We find spectroscopic evidence that the isomerization of vinylidene to acetylene is highly state-specific, with excitation of the ν_6 in-plane rocking mode resulting in appreciable tunneling-facilitated mixing with highly vibrationally excited states of acetylene.⁵

¹Hock *et al. JCP* **137**, 244201 (2012); ²Weichman *et al. PNAS* **113**, 1698 (2016); ³Kim *et al. Science* **349**, 510 (2015); ⁴Weichman *et al. Nat. Chem.* **9**, 950 (2017); ⁵DeVine *et al. Science* **358**, 336 (2017)