Triple Region Roundtable P2 101 – Conducting a P2 Site Visit May 2, 2017 Laura Babcock and Karl DeWahl

Session Goals

- Review a general process for P2 site visits
 - Before, During and After

• Practice P2 observation skills

- Phosphorus reduction case example
 - Generating recommendations
 - Identifying the value proposition
- Water use reduction case example
 - Illustrate importance of mass balance
 - Getting the information you need

Site Visits – Before You Go

Focus of the assessment

- What are we looking at
- Why do they care

Assessment team

- Leadership positions
- Know the process

• Prepare, prepare, prepare

- Review relevant information
- Bring ideas and equipment
- Think about safety

Site Visits – While You Are There

• Short kick off meeting

- Introductions and goal review
- Changes or concerns
- Site tour and process flow
 - Observe operation with all senses
 - Ask questions, engage staff

• Data collection

- Who is collecting and how
- Will there be a second visit
- Wrap up meeting
 - Solicit staff feedback on process
 - Provide your observations and timeline
 - Establish a primary contact

Site Visits – Follow Up

• Analyze data

- Consult reference materials and case studies
- Justify with engineering calculations and cost estimates

• Write report

- Highlight key findings
- Develop value proposition

• Present opportunities

- Get feedback on results
- Gauge interest/ ability to implement
- Follow up with the site within one month of presenting results

Situation

- City of Rockford WWTP
- Anticipating decrease in P in next permit
- Cost \$86,000/yr to meet new limit
- Seeking influent reductions to avoid cost

- Ver-tec Labs Rockford, MN
- Manufacture industrial cleaners/degreasers
- Contract formulation and packaging
- Agreed to a site visit for P and BOD reductions

Observations

- Most of Ver-Tec products contain P.
- Liquid product blend tanks were washed between runs with wash discharged to sewer.
- Solid product blends had issues with caking on tank walls and mixing units. Cleaning between runs and discharge to sewer.
- Wash effluent is alkaline and needs to be neutralized prior to discharge to WWTP.

Exercise

- Form a work team 3-4 people
- What can you recommend to Ver-Tec to reduce P and BOD in their wastewater effluent?
- Why might they be motivated to do this?
- Feel free to ask questions as you develop recommendations
- Be prepared to present your solutions and business justifications to the group

Impact: Phosphorus Reduction • Actions

Goal – Reduce high BOD and P load in wastewater effluent

Rockford, Minnesota

- Reuse rinse from liquid product blending
- Change equipment to decrease cleaning requirements and reuse rinse
- Schedule production to decrease cleaning requirements
- Reformulate products

• Results

- 8,650 lb reduced P to city WWTP
- \$100,000 saved from raw material purchases and discharge fees

Assessment Skills Exercise Water Reduction

Karl DeWahl

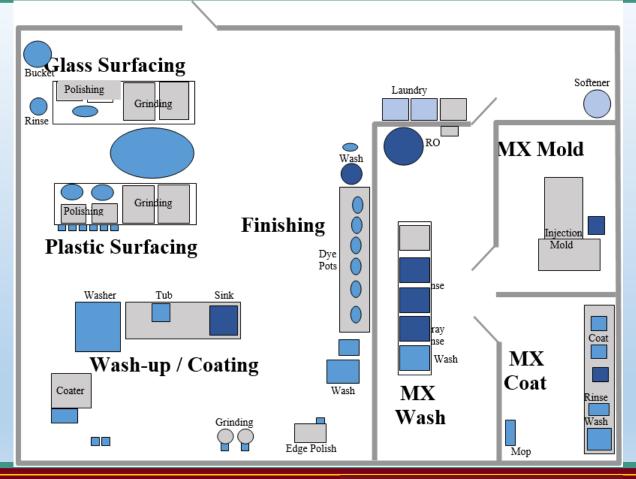
Permit Documentation

Optics R Us Wastewater discharge permit:

Water meter reading	1,350,000 gallons per year	
Domestic water usage	550,000 gpy*	(110 employees)
Industrial wastewater	800,000 gpy	

```
Annual water and sewer costs are $3800 per year.
SAC / WAC = $14,000 (one time)
SAC/WAC based on 500,000gpy increase from 3 years prior
```

Can you help?

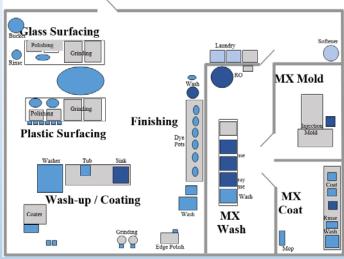


Reduction Methods: Permit Docs

- Effluent purification & recycle
- Toilet & sink improvements

Tour

University of Minnesota


Reduction Methods: Tour

- Purify & recycle; toilets; sinks
- Individual reuse
- Tank volume reduction
- Flow reduction
- •How much?

Talk to Operators / Experts

- Tank volume
- Change intervals
- Flow rates / duration
- Cleanliness need / specifications
- Changes over time
- Their reduction ideas

University of Minnesota

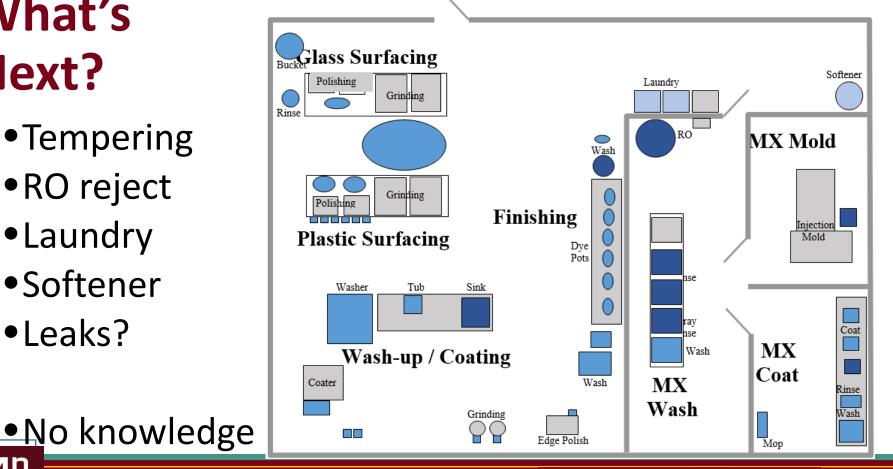
Talk to Operators / Experts – Mass Balance

MX

d Line	Plastic Surfacing - generating	dry		
	Plastic Surfacing - polish	11,000		
	Plastic Surfacing - rinse	3,000	14,000	
	Glass Surfacing - generating	500		
	Glass Surfacing - polish	1,500		Ν
	Glass Surfacing - rinse	1,500		
	Glass Surfacing - equip rinse	2 <i>,</i> 500		
	Glass Surfacing - floor wash	1,000	7000	
	Wash - lens rinse	9,000		
	Wash - spot cleaning	2,000		
	Wash - ultrasonic wash	15,000		
	Wash - coater	10,000		
	Wash - tool rinse	8,000	44,000	
	Shaping / Finishing - grinding	500		
	Shaping / Finishing - polish	500		
	Shaping / Finishing - wash	5 <i>,</i> 000		
	Shaping / Finishing - rinse	2,500		
	Shaping / Finishing - dye	2 <i>,</i> 500		
	Shaping / Finishing - rinse	2,000	13,000	78,000

Molding (tempering)			
Wash - wash tank	500		
Wash - spray rinse	40,000		
Wash - cascade rinse	feed spray	40,500	
Coat - dip tanks	12,500		
Coat - spray rinse	700		
Coat - ultrasonic tanks	100		
Coat - rinse tubs	3,000		
Coat - mop	1,000	17,300	57,800
			135,800

Reduction Methods: Process Experts


- Individual reuse
- Tank volume reduction
- Flow reduction
- Procedure change
- Improved controls
- •How much? 136,000gpy?

What's Next?

- Tempering
- RO reject
- •Laundry
- •Softener
- •Leaks?

Assessor Investigation

- Bucket test (RO, temper?, Laundry?, softener??)
- Calculate, estimate (temper, Laundry, softener)
- Find external expert / resource (RO, temper, Laundry, softener)
- •Test, trial, pilot

University of Minnesota

Assessor Investigation

Mass Balance			totals
MX	Molding (tempering)	150,000	
	Wash	40,500	
	Coat	17,300	207,800
Standard Line	Wash	44,000	
	Plastic Surfacing	14,000	
	Shaping / Finishing	13,000	
	Glass Surfacing	7000	78,000
Misc Uses	Laundry	370,000	
	RO Reject	120,000	
	Softener Regeneration	9500	499,500
			785,300

Reduction methods: Investigation

- Outsource laundry
- More efficient washer or RO
- Reuse RO reject
- Tempering control

University of Minnesota

Assessment Stages

- <u>Review permit</u> facility totals, totals history
- •<u>Tour</u> source ID, qualitative magnitude
- •<u>Ask process experts</u> quantitative, procedures, history, reduction ideas
- Investigation further details tests, manuals, vendors

Conclusions:

- Mass Balance have everything important?
- Get complete overview
- Have to ask
- You Generated the ideas
 - Investigation Generated Opportunities
 - Understanding the Process is Key

Generating Ideas is only the First Step

- Next steps
 - evaluate feasibility;
 - justification

