Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

Metadata, citation and similar papers at core.ac.uk

Statistical Model Checking of RANDAQ’s Resilience Against
Pre-computed Reveal Strategies

Musab A. Alturki
Runtime Verification Inc.
King Fahd University of Petroleum and Minerals
musab.alturki@runtimeverification.com

ABSTRACT

Decentralized (pseudo-)random number generation (RNG) is a core
process of many emerging distributed systems, including perhaps
most prominently, the upcoming Ethereum 2.0 (a.k.a. Serenity) pro-
tocol. To ensure security and proper operation, the randomness
beacon must be unpredictable and hard to manipulate. A com-
monly accepted implementation scheme for decentralized RNG
is a commit-reveal scheme, known as RANDAO, coupled with a
reward system that incentivizes successful participation. However,
this approach may still be susceptible to look-ahead attacks, in
which an attacker (controlling a certain subset of participants) may
attempt to pre-compute the outcomes of (possibly many) reveal
strategies, and thus may bias the generated random number to
his advantage. To formally evaluate resilience of RANDAO against
such attacks, we develop a probabilistic model in rewriting logic of
the RANDAO scheme (in the context of Serenity), and then apply
statistical model checking and quantitative verification algorithms
(using MAUDE and PVESTA) to analyze two different properties
that provide different measures of bias that the attacker could po-
tentially achieve using pre-computed strategies. We show through
this analysis that unless the attacker is already controlling a sizable
portion of validators and is aggressively attempting to maximize
the number of last compromised proposers in the proposers list,
the expected achievable bias is quite limited. The full specifica-
tion of the models developed in this work are available online at
https://github.com/runtimeverification/rdao-smc.

1 INTRODUCTION

Decentralized (pseudo-)random number generation (RNG) is a pro-
tocol for RNG in which a number of participants collaborate to
produce a random number. The participants, who do not necessar-
ily mutually trust each other, collectively provide a randomness
beacon that may be used by the participants themselves or made
available as an external service for other users. This RNG process is
a core process of many emerging distributed autonomous systems,
most prominently proof-of-stake (PoS) consensus protocols, which
include the upcoming Ethereum 2.0 (a.k.a. Serenity) protocol [7, 9].
Unlike traditional proof-of-work systems, in which the process of
solving cryptographic puzzles inherently provides a good source
of entropy that can effectively be used for RNG, PoS systems do
not have that and need to explicitly manage a similar process. In a
PoS system, the RNG process is essential for managing validators
and attestations in the protocol. Furthermore, in the context of the
Ethereum protocol, many decentralized applications (dapps) built
on top of the platform, which typically manage assets of potentially

Grigore Rosu
Runtime Verification, Inc.
University of Illinois at Urbana-Champaign
grosu@illinois.edu

very high financial value (such as online lotteries), rely fundamen-
tally on having this platform provide a secure randomness beacon
for their proper operation.

To ensure security of such distributed systems, the randomness
beacon must be unpredictable and hard to manipulate. A com-
monly accepted implementation scheme for decentralized RNG
is a commit-reveal scheme, known as RANDAO (due to Youcai
Qian [14]), in which participants first make commitments by shar-
ing hash values of seeds, and then, at a later stage, they reveal their
seeds, which can then be used for RNG. In a PoS protocol, and in
particular in Serenity [9], the scheme is used repeatedly in a se-
quence of rounds in such a way that the outcome of a round is used
as a seed for generating the random number of the following round.
Moreover, the scheme is usually coupled with a reward system that
incentivizes successful participation and discourages deviations
from the protocol. Several other distributed protocols have also
adopted this scheme primarily for its simplicity and flexibility.

However, this approach may still be susceptible to look-ahead
attacks, in which an attacker (controlling a certain subset of partici-
pants — or proposers in the context of a PoS) may choose to refrain
from revealing his seed if skipping results in randomness that is
more favorable to the attacker. In general, a powerful attacker may
attempt to pre-compute the outcomes of (possibly many) reveal
strategies, which are sequences of reveal-or-skip decisions, and
thus may anticipate the effects of his contribution to the process
and bias the generated random number to his advantage.

While this potential vulnerability is known and has been pointed
to in several works in the literature (e.g. [3, 5, 6]), the extent to which
it may be exploited by an attacker and how effective the attack could
be in an actual system, such as a PoS system like Serenity, have
not yet been thoroughly investigated, besides the exploitability
arguments made in [6] and [5], which were based on abstract ana-
lytical models. While the high-level analysis given there is useful
for gaining a foundational understanding of the vulnerability and
the potential of the attack, a lower-level formalization that captures
the interactions of the different components of the RANDAO pro-
cess and the environment could provide a more concrete model
providing a deeper understanding of the vulnerability and higher
confidence in how realizable the attack can be in an actual system.
Furthermore, if this formalization is executable, it immediately en-
ables quick prototyping and experimentation of different designs,
in addition to automating formal reasoning about their exploitabil-
ity properties, providing a formal tool for guiding the design of a
RANDAO scheme or implementation.

In this work, we develop a computational model of the RAN-
DAO scheme (in the context of Serenity) as a probabilisitic rewrite
theory [1, 10] in rewriting logic [11] to formally evaluate resilience

https://core.ac.uk/display/161954228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/runtimeverification/rdao-smc

of RANDAQO against pre-computed reveal strategies. The model
gives a formal, yet natural, description of (possibly different de-
signs of) the RNG process and the environment. Furthermore, the
model is both timed, capturing timing of events in the process, and
probabilistic, modeling randomized protocol behaviors (internal
non-determinism introduced by design) and environment uncer-
tainties (external non-determinism induced by, e.g., network delays
and failures and colluding behaviors). Being executable, the model
allows for generating random sample executions (Monte Carlo
simulations) of the protocol for observing behaviors. Moreover,
executability facilitates automated formal analysis of quantitative
properties, specified as real-valued formulas in QUATEX (Quantita-
tive Temporal Expressions Logic) [1], through efficient statistical
model checking and quantitative analysis algorithms using both
MAuUDE [8] (a high-performance rewriting system) and PVESTA [2]
(a statistical verification tool that interfaces with Maupg)!. Us-
ing the model, we analyze two properties that provide different
measures of bias that the attacker could potentially achieve using
pre-computed strategies: (1) the matching score, which is the ex-
pected number of proposers that the attacker controls within some
time limit, and (2) the last-word score, which is the length of the
longest tail of the proposers list that the attacker controls within
some time limit.

We show through this analysis that unless the attacker is already
controlling a sizable portion of validators and is aggressively at-
tempting to maximize the number of last compromised proposers
in the proposers list, or what we call the longest compromised tail
of the list, the expected achievable bias of randomness of the RAN-
DAO scheme is quite limited. Keeping in mind that when skipping
a reveal the attacker forfeits the block reward for his turn in the
block proposal process, even this limited bias comes at a cost to
the attacker, which may render the attack economically infeasible.
However, an aggressive attacker who can afford to make repeated
skips for very extended periods of time (e.g. in thousands of rounds),
or an attacker who already controls a fairly large percentage (e.g.
more than 30%) of participants in the network will have higher
chances of success. Therefore, in these cases, further measures
for strengthening RANDAO against this type of attack (e.g. using
verifiable delay functions or VDFs [3]) may be necessary.

The full specifications of the models developed in this work are

available online at https://github.com/runtimeverification/rdao-smc.

The repository includes amply documented specifications, instruc-
tions for installing the required tools, and scripts for running the
verification tasks described in this report.

The rest of the report is organized as follows. In Section 2, we
review some preliminaries on rewriting logic, MAUDE and PVESTA.
In Section 3, we introduce in some detail the RANDAO scheme.
This is followed in Section 4 by a detailed description of the rewrite
theory giving a model of RANDAO in rewriting logic. Section 5
describes the analysis properties and discusses the analysis results.
The report concludes with a summary and discussion of future
work in Section 6.

! The reason we chose MAUDE over K was because of MAUDE’s direct support for
random number generation and the availability of an interface to PVESTA, which are
facilities that are needed for our analysis but not yet available in K.

2 PRELIMINARIES

Rewriting Logic [12] is a general logical and semantic framework
in which systems can be formally specified and analyzed. A unit
of specification in Rewriting Logic is a rewrite theory R, which
formally describes a concurrent system including its static structure
and dynamic behavior. It is a tuple (2, E U A, R) consisting of: (1) a
membership equational logic (MEL) [13] signature X that declares
the kinds, sorts and operators to be used in the specification; (2) a
set E of 2-sentences, which are universally quantified Horn clauses
with atoms that are either equations (¢t = ¢”) or memberships (¢ : s);
(3) Aa set of equational axioms, such as commutativity, associativity
and/or identity axioms; and (4) a set R of rewrite rules specifying
the computational behavior of the system. A rewrite rule has the
following form:
(VX) r:t(X) — t'(X)if C(X)

where r is a label, and C is a conjunction of equational or rewrite
conditions. Operationally, if there exists a substitution 6 such that
0(t) matches a subterm s in the state of the system, and 0(C) is
satisfied, then s may rewrite to 6(¢"). While the MEL sub-theory
(2, E U A) specifies the user-defined syntax and equational axioms
defining the system’s state structure, a rewrite rule in R specifies
a parametric transition, where each instantiation of the rule’s vari-
ables that satisfies its conditions yields an actual transition, which
can happen concurrently with other non-overlapping transitions
(See [4] for a detailed account of generalized rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories with
probabilistic rules [1, 15]. Assuming X and 7/ are disjoint, a proba-
bilistic rewrite rule is of the following form:

VX, 7)) r: t(x¥) — t'(¥,7) if C(¥) with probability 7 := 7(¥)

A probabilistic rule introduces on its right-hand-side term new
variables 7/, the values of which depend on a probability distri-
bution function 7 parametrized by 8(¥), where is a matching
substitution satisfying the condition C. A canonical example is the
probabilistic rule specifying a battery-operated clock [8]:

clock(t, c) — if B then clock(t + 1, ¢ — ¢/1000.0)
else broken

with probability B := Bernoulli(c/1000.0)

The rule specifies how a clock transitions to its next state, which
is either a regular operational state clock(T, C), with T the current
time and C the current battery charge, or a broken state broken.
As the clock ticks, its battery charge decreases. Whether the clock
transitions to an operational or a broken state depends on the
outcome of a Bernoulli trial with success probability of C/1000.0
used by the new variable B. Since the probability of success in a
Bernoulli trial is proportional to the current battery charge, the
clock will have a higher chance of failing as time elapses and the
battery charge decreases. Probabilistic rewrite theories unify many
different probabilistic models and can express systems involving
both probabilistic and nondeterministic features. A more detailed
account of probabilistic rewrite theories can be found in [10, 15].
MAUDE [8] is a high-performance rewriting logic implementa-
tion. An equational theory (2, E U A) is specified in MAUDE as a
functional module delimited by fmod endfm keywords. A
functional module may consist of module inclusion statements

https://github.com/runtimeverification/rdao-smc

for importing other modules (e.g. protecting MODULEX), sort and
subsort declarations for defining type hierarchies (e.g. sort Nat
and subsort Nat < Int), operator declarations with the op key-
word, and unconditional and conditional equations (with eq and
ceq respectively) and memberships (mb and cmb). Operator dec-
larations specify the operator’s syntax (in mixfix notation), the
number and sorts of the arguments and the sort of its resulting
expression. Furthermore, equational attributes such as associativ-
ity and commutativity axioms may be specified in brackets after
declaring the input and output sorts. For example, the following
declares constructors for natural numbers (in Peano notation) and
the + operator, and then defines addition using two equations:

s/ eq s N:Nat + M:Nat

1| op zero : -> Nat [ctor].

)| op s_ : Nat -> Nat [ctor].

sl op _+_ : Nat Nat -> Nat [assoc comm]
eq zero + N:Nat = N:Nat .

s (N:Nat + M:Nat)

The constructor s_ is called the successor function and is used
heavily in specifications in MAUDE to specify patterns on natural
numbers (like the ones used in the definition of the plus operator
above). In addition to Peano numbers, MAUDE includes the standard
(decimal) representation of numbers for performance reasons.

A rewrite theory is specified as a system module delimited by
mod and endm keywords, which may additionally contain rewrite
rules declared with the rl keyword (crl for conditional rules). For
instance, in a specification of the Wolf-Sheep-Cabbage puzzle, in
which the state is represented by a set S (constructed by an asso-
ciative and commutative empty juxtaposition operator) of objects
E , and in which the two sides of the river are modeled by the (or-
dered) pair {S:S"}, a valid move may be modeled by the following
conditional rewrite rule:

1l crl [moveRight]

: {man ES : S'} => { S : man E S'}

if isSafe(S)

which states that the man may cross the river with an object E to
the right side only if it is safe to leave objects in S on their own on
the left side of the river (e.g. isSafe(wolf sheep) is false).

Furthermore, probabilistic rewrite theories, specified as system
modules in MAUDE [8], can be simulated by sampling from prob-
ability distributions. Using PVESTA [2], randomized simulations
generated in this fashion can be used to statistically model check
quantitative properties of the system. These properties are speci-
fied in a rich, quantitative temporal logic, QUATEX [1], in which
real-valued state and path functions are used instead of boolean
state and path predicates to quantitatively specify properties about
probabilistic models. QUATEX supports parameterized recursive
function declarations, a standard conditional construct, and a next
modal operator O, allowing for an expressive language for real-
valued temporal properties (Example QUATEX expressions appear
in Section 5). Given a QUATEX path expression and a MAUDE mod-
ule specifying a probabilistic rewrite theory, statistical quantitative
analysis is performed by estimating the expected value of the path
expression against computation paths obtained by Monte Carlo
simulations. More details can be found in [1]. For more on MAUDE,
the reader is referred to the MAUDE book [8].

3 THE RANDAO SCHEME

The RANDAO scheme [14] is a commit-reveal scheme consisting
of two stages: (1) the commit stage, in which a participant p; first
commits to a seed s; (by announcing the hash of the seed hg;,), and
then (2) the reveal stage, in which the participant p; reveals the
seed s;. The sequence of revealed seeds sy, s1, - - - , Sp—1 (assuming n
participants) are then used to compute a new seed s (e.g. by taking
the XOR of all s;), which is then used to generate a random number.

In the context of the Serenity protocol [9], the RANDAO scheme
proceeds in rounds corresponding to epochs in the protocol. At
the start of an epoch i, the random number r;_; generated in the
previous round (in epoch i — 1) is used for sampling from a large
set of validators participating in the protocol an ordered list of
block proposers po, p1, - - - pr—1, Where k is the cycle length of the
protocol (a fixed number of time slots constituting one epoch in the
protocol). Each proposer p; is assigned the time slot i of the current
round (epoch). During time slot i, the proposer p; is expected to
submit the pair (cp,, Sp;), with cp, a commitment on a seed to be
used for the next participation in the game (in some future round
when p; is selected again as a proposer), and s, the seed to which
pi had previously committed in the last participation in the game
(or when p; first joined the protocol’s validator set). The RANDAO
contract keeps track of successful reveals in the game, which are
those reveals that arrive in time and that pass the commitment
verification step. Towards the end of an epoch i, the RANDAO
contract combines the revealed seeds in this round by computing
their XOR s;, which is used as the seed for the next random number
ri+1 to be used in the next round i + 1. To discourage deviations
from the protocol and encourage proper participation, the RANDAO
contract penalizes proposers who did not successfully reveal (by
discounting their Ether deposits) and rewards those proposers who
have been able to successfully reveal their seeds (by distributing
dividends in Ether).

An important variation of this specification is for a validator v;
to commit (at the time of registration) to a hash onion of the form
H™(s;) = H(H(-- - (s;) - - -)) (m times), where m is the maximum
number of participations in the protocol. Each time v; is selected
to participate in the game (selected as a proposer), the validator v;
reveals a pre-image of the hash onion H m=k(s;), assuming v; has
already participated k < m times since registration.

In the analysis below, we chose to model the scheme with commit-
reveal pairs above (rather than hash onions) since its simpler and
does not require fixing a priori the number of participations of a
validator in the RANDAO process. The analysis results, however,
apply equally to the hash-onions-based variation of the scheme
since the use of hash onions does not affect an attacker’s ability to
pre-compute reveal strategies.

4 A REWRITING MODEL OF RANDAO

We use Rewriting Logic [12], and its probabilistic extensions [1, 10],
to build a generic and executable model of the RANDAO scheme.
The model captures at a high level of abstraction the essential struc-
tural and behavioral aspects of a RANDAO process. Furthermore,
using MAUDE (8], the model can be simulated to generate random
sample executions that can be used to statistically model-check
probabilistic properties of the protocol, including resilience against

look-ahead attacks using pre-computed reveal strategies. In this
section, we describe the model and its behaviors in some detail.

4.1 The Rewrite Theory R of RANDAO

We introduce a model of RANDAQO as a probabilistic rewrite theory
R = (R, ERUAR, RR) specified in MAUDE as a system module. The
full MAUDE specification is available online at https://github.com/
runtimeverification/rdao-smec. By utilizing different facilities pro-
vided by its underlying formalism, the model R is both probabilistic,
specifying randomized behaviors and environment uncertainties,
and real-time, capturing time clocks and message transmission
delays. Furthermore, the model is parametric to a number of param-
eters, such as the attack probability, the size of the validator set and
the network latency, among others (there are 11 parameters in total,
discussed in Section 4.3), to enable capturing different scenarios
and attack behaviors.

4.2 Model Infrastructure

We begin by describing fundamental data types and operations that
are used throughout the model. These components are specified by
the MEL sub-theory (Zg, Er U Ag) of R.

Seeds and hashes. We represent seeds as arbitrary positive
integers (of type NzNat for non-zero natural numbers). For compu-
tational efficiency, however, we limit the allowed values as seeds to
#MAX-SEED-VALUE, which is taken as the largest random value that
can be produced by MAUDE’s random operator?. The hash function
is abstractly represented by the hash (constructor) operator:

ilop h : Seed -> Hash [ctor frozen]

with Seed the sort of seed values, and Hash the sort of hashed
values. The operations of committing to a seed S and revealing a
committed seed h(S) are defined as expected:

1| op commit : Seed -> Hash
| op reveal : Hash -> Seed .

eq commit(S) = h(S)
eq reveal(h(S)) =S .

A basic operation in RANDAQO is computing the XOR of the current
seed maintained by the contract S and the recently revealed seed
S’ by a proposer, which is captured by the following operation:

Seed Seed -> [Seed]
S') = (S xor S') rem #MAX-SEED-VALUE .

1| op combineSeeds
| eq combineSeeds (S,

As explained above, the new seed is assumed not to exceed the
value of #MAX-SEED-VALUE (a large value) for execution efficiency,
which is enforced using the remainder rem operation.

Index lists and sets. As validators in the system will be identi-
fied by their indices (of sort Nat for natural numbers), the model
will need to manipulate lists of validators, which are naturally repre-
sented by lists of their indices. We therefore define the sort NatList
as a super-sort of Nat, so that a natural number is itself a (singleton)
list, that is constructed by an associative binary dot operator with
identity nilIL:

il op nillIL -> NatlList [ctor]

)l op _._ : NatlList NatList -> NatlList [ctor assoc id: nilIL]

2The potential inefficiency is due to MAUDE’s implementation of the random function
being based on the Mersenne Twister RNG (in which computing the random value
corresponding to S requires computing the previous value for S-1), which was not
designed to support arbitrary, user-supplied seeds.

Since seeds are also natural numbers, we note that a NatList term
can have different interpretations depending on the context. For
example, the term 748 . 42 . 908 can be interpreted as a list of
three validators identified by the indices 748, 42 and 908, or as a list
of three seed values. Throughout the report, we will assume that a
NatList term represents a list of validator indices, unless indicated
otherwise.

Furthermore, it will be convenient to manage collections of in-
dices as sets. For that we construct a set of indices (of the sort NatSet,
declared as a super-sort of Nat) using and associative, commutative
and idempotent comma operator with identity mtIS.

op mtIS : -> NatSet [ctor]

op _,_ : NatSet NatSet -> NatSet
[ctor assoc comm id: mtIS]

eq I , I =1.

In addition to the basic operations of length(IL) (returning the
length of an index list IL) and toNatSet(IL) (mapping an index list to
its corresponding index set), there are three foundational operations
that we define on the sort NatList (as validator lists). The operator
sampleIndexList(N,K,S,IL) specifies a function that computes
a new list of validators (as proposers) of length K with no repeated
validators, given a seed S and the size of the entire validator set N
as input parameters:

op sampleIndexList : Nat Nat Seed NatlList -> [NatList]
eq sampleIndexList(N, @, S, IL) = IL .
ceq sampleIndexList(N, s(K), S, IL)

= sampleIndexList(N, K, S, IL . M)

if M :=

computeUniqueIndex (N, (S * s(K) x s(s(K))) rem N, IL)

This definition uses an auxiliary operator computeUniqueIndex
that returns an index that does not appear in the given list of
already sampled indices:

op computeUniqueIndex Nat Nat NatList -> [Nat]

| eq computeUniqueIndex(N, M, IL . M . IL"')
= computeUniqueIndex (N, s(M) rem N, IL . M . IL")
eq computeUniqueIndex (N, M, IL) = M [owise]

If the computed index M already appears in the list IL, then the
next index s(M) is attempted and the check is recursively repeated.
Otherwise, the index M is returned. This enforces the requirement
that a proposer cannot appear repeated in the proposers list of a
given round.

We note that in an actual implementation of the system, the
seed S would be used as input to a pseudo-random number gen-
erator to sample the list of indices. This is not done here, as it
might result in an inefficient specification. Instead, we generate
our pseudo-random number using an arithmetic combination of
the seed S and the position in the list for which the number is
being generated. It is important to note that this approach is still
faithful to the original protocol since the seed S itself is gener-
ated pseudo-randomly (using the function random), and thus, the
resulting number is also pseudo-random. For example, the ex-
pression sampleIndexList(100,5,748692,nilIL) returns the or-
dered sample of size 5 from the set of indices {0, . . ., 99} computed
using the seed 748692, whichis 60 . 40 . 4 . 52 . 84.

The other two operators on NatList, namely countCompromised
and countCompromisedTail, specify functions that count the num-
ber of indices in a list that satisfy certain conditions. The expression

https://github.com/runtimeverification/rdao-smc
https://github.com/runtimeverification/rdao-smc

S

[

countCompromised(L1, L2) returns the number of indices in the
first list L1 that appear in the second list L2. Therefore, if L1 rep-
resents the list of proposers and L2 is a list of all compromised
validators, the expression gives the number of compromised pro-
posers in the current round, which is one important measure of the
success of an attack, as we will see later. This operation is defined us-
ing an auxiliary (tail-recursive) operator countCompromised*(L1,
L2, N), which uses matching (modulo associativity and identity)
to count matching indices and maintains that count in N:

1| op countCompromised

;| eq countCompromised*((IL1 . I .

NatList NatList -> [Nat]
IL2)
L2, 0)

eq countCompromised(ILT,
= countCompromised*(IL1,

NatList NatList Nat -> [Nat]
IL1'),(IL2 . I . IL2'), N)

IL1'),(IL2 . I . IL2'), s(N))
IL2, N) = N [owise]

op countCompromisedx :

= countCompromised*((IL1
eq countCompromisedx(IL1,

|

list, and (3) ctailtail, which is a compromised tail proposer other
than the head identified by the role ctailhead. For example, if we
assume that the validators indexed by 1, 3, 5 and 7 are the only
compromised validators, then, in the following proposers list>:

1.2 .3 .4.5.3.7

the longest compromised tail is the sub-list 5 . 3 . 7, and thus

we have:

e Validator 1 is in an isolated position

o Validator 3 appears in two positions. While the first is isolated,
the second position is a ctailtail position.

e Validator 5’s position is ctailhead.

e Validator 7’s position is ctailtail.

This classification of compromised validator positions is defined
by the sort CPosition:

For the second operator, the expression countCompromisedTail(L1,'

L2) returns the number of indices comprising the longest tail of
L1 that appear in L2. When L1 is the list of proposers and L2 is
the list of attacker-controlled validators, the function computes the
length of the longest compromised tail of L1. In its definition, this
operator similarly uses another auxiliary (tail-recursive) operator
countCompromisedTail*(L1, L2, N), which again uses match-
ing (modulo associativity and identity) to count matching indices
and maintains that count in N:

5| op countCompromisedTailx* :

: NatList NatList -> [Nat]
IL2)
IL2, o)

op countCompromisedTail
eq countCompromisedTail (IL1,
= countCompromisedTail*(IL1,

NatList NatList Nat -> [Nat]

;| eq countCompromisedTail*((IL1 I), (IL2 . I . IL2"), N)
= countCompromisedTail*(IL1, (IL2 . I . IL2'), s(N))
s| eq countCompromisedTail*(IL1, IL2, N) = N [owise]

In addition to the operators above, we further define a selector
operation computeScoreFunction(N, L1, L2) which returns the
number of compromised proposers given by countCompromised(L1
L2) if Nis 0, or the length of the longest compromised tail given by
countCompromisedTail(L1, L2) ifNis 1.

1| op computeScoreFunction

: Nat NatlList NatList -> [Nat]

eq computeScoreFunction(@, IL, IL')
= countCompromised (IL, IL")

eq computeScoreFunction(1, IL, IL')
= countCompromisedTail (IL, IL")

This selection operation will be useful for modularly defining the
function for which the attacker is trying to optimize.

Validator roles. A validator participating in the system is either
an honest validator that is following the protocol or a compromised
validator that is controlled by the attacker (which may not neces-
sarily follow the protocol). When selected as a proposer, a compro-
mised validator may behave differently from other compromised
validators depending on its position in the proposers list. To dis-
tinguish these possible behaviors, we identify three possible roles
of a compromised validator selected as a proposer: (1) isolated,
which is a compromised proposer that does not belong to a com-
promised tail of the proposers list (recall that a compromised tail
of a list L is a suffix of L consisting entirely of compromised val-
idators), (2) ctailhead, which is the compromised proposer that
is positioned at the head of the longest compromised tail of the

5| op

sort CPosition
ops isolated ctailtail : -> CPosition [ctor]
ctailhead NatList -> CPosition [ctor]

Note that the position classifier ctailhead takes as argument a
list of naturals, which in this case represents the list of seeds of
the compromised tail of the proposers list, which the ctailhead
compromised validator will need to be able to pre-compute a reveal
strategy. In the example above, validator 5 will have to maintain
the private seeds of validators 3 and 7 (which is possible as they
are all attacker controlled) in addition to its own seed (the process
of pre-computing strategies is explained further below).

A compromised role (of sort CRole) is a slot-indexed compro-
mised role position:

op [_:_] : Nat CPosition -> CRole [ctor]. ‘

A set of roles (of sort CRoleSet, of which CRole is a sub-sort) is
constructed by an associative and commutative comma operator
with identity mtCRS. For instance, in the example above, this con-
struction assigns the following compromised roles (assuming slot
numbering begins with 1):

isolated]

isolated] [6

e Validator 1 is assigned the role [1
e Validator 3 is assigned the set of roles [3 :
¢ ctailtaill.
e Validator 5’s role is [5 ctailhead(S5
where S; is the seed of validator i.
e Validator 7’s positionis [7 : ctailtaill].
Validator records. Details of a validator that are needed for the
proper specification of the protocol are maintained in a validator
record, which is a quintuple consisting of: (1) its identifier v(I)
with I the validator’s unique index, (2) its current-round seed S, (3)
the hash of the current-round seed h(S), (4) its next-round seed S’,
and (5) its current balance X in Ether?. A validator record (of sort
VRecord) is constructed using the operator:

S3 . SO,

ActorName Seed Hash Seed Int
-> VRecord [ctor]

3We allow repeated proposers in this particular example only to illustrate how these
functions operate. In the specification of our model of the RANDAO process, a validator
may not appear more than once in any sampled list of proposers (see the description
of sampleIndexList above).

4We use the data type Int for Ether amounts, giving us a coarse representation that
allows only whole amounts, which is enough for our purposes here.

Lists of validator records (of sort VRecordList) are constructed
using an associative semi-colon operator with identity ni1VHL.

Additionally, we define another type of validator record that is
specific to compromised validators selected as proposers in a round
of the protocol. This compromised validator (proposer) record (of
the sort CVRecord) identifies the role of the validator as a compro-
mised proposer in the current proposer list:

1lop <_,_> : ActorName Role -> CVRecord [ctor] .

For instance, in the example above, exactly one compromised valida-
tor record will be created for each of the compromised validators
1, 3, 5 and 7, defining the role (or roles) of that validator in the
current round (e.g. validator 3 will have the record < v(3), [3 :
isolated] [6 : ctailtail] > created).

Reveal strategies. Generally, a reveal strategy is a list of deci-
sions to reveal a seed (propose a block) or skip revealing a seed
(refrain from proposing a block) that will have to be made by an
attacker controlling a compromised tail of the proposers list (i.e.
compromised validators with roles ctailhead and ctailtail). A
reveal strategy fully defines the seed that would result from follow-
ing that strategy (since it is applied by the compromised tail) and
hence the list of proposers for the next round of the protocol. In our
model, we define a reveal strategy (of sort Strategy) compactly as
apair [G : S], where G is the index (a natural number) identifying
the strategy and S is its resulting seed. The value G encodes instruc-
tions for validators in the compromised tail to either reveal or skip
their turns in a round of the game. The encoding uses the binary
representation of natural numbers (scanned from right to left, with
1 meaning to reveal and 0 meaning to skip) to precisely define the
strategy. For example, the strategy indexed by 6 (which in binary is
110) states that the first validator will skip (the 0 in 110) and the
following two validators will reveal (the two 1’s in 110). Note that
the binary string is read in reverse (the head of the validator list
corresponds to the least significant binary digit). This encoding
provides a compact and efficiently computable representation of
strategies (which is also easily readable). We note that, using this
representation:

e The remainder when dividing G by 2 (G rem 2) gives the
current strategy action (or equivalently, an odd G implies to
reveal while an even G implies to skip).

o The quotient when dividing G by 2 (G quo 2) yields the rest
of the strategy to be executed by the remaining validators in
the compromised tail.

For example. assuming (again) the proposerslist 1 . 2 . 3 . 4 .
5 . 3 . 7 from above (with the compromised tail being 5 . 3 .
7), the strategy [6 : S] encodes the fact that if validator 5 skips
(at slot 5) and validators 3 and 7 reveal (at slots 6 and 7 respectively),
the resulting seed will be S. Alternatively, the strategy [3 : S’]
means that if validators 5 and 3 reveal while validator 7 skips, the
resulting seed would be S’ (recall that the binary representation of
3, which is 011, is read in reverse).

Finally, since an attacker may pre-compute a set of strategies to
decide the best attack given the current circumstances, we define
the sort StrategySet (a super-sort of Strategy) representing a
(non-empty) set of strategies using an associative and commutative

#SIM-TIME-LIMIT
#MAX-SEED-VALUE
#CYCLE-LENGTH
#INIT-VLIST-SIZE
#DYNAMIC-VLIST?
#VARRIVAL-DELAY
#DEPOSIT-SIZE
#ATTACK-PROB
#SCORE-FUNCTION
#TRANSMISSION-DELAY
#MSG-DROP-PROB

Simulation time limit

Maximum seed value

Number of time slots in one round
Initial size of the validator set
Dynamic validator set Boolean flag
New validator arrival delay
Validator deposit size

Probability of attack

Score function identifier

Message transmission delay
Probability of message drops

Figure 1: Model parameters

empty juxtaposition operator. For example the term [6 : S] [3 :
S’ 1 represents the set of strategies described above.

4.3 Model Parameters

To support the analysis of different attack scenarios and counter-
measures, the model is designed to be parametric to a number of
variables that can be adjusted as needed for the analysis task at
hand. These parameters are syntactically distinguished from other
variables in the model by the leading ‘4’ symbol and by being fully
capitalized. Figure 1 summarizes the parameters supported by the
model, described below.

Simulation parameters. The logical time limit on a simulation
(giving a sample run of the protocol) can be specified using the
parameter #SIM-TIME-LIMIT in logical time units (or time slots,
since one time slot corresponds exactly to one logical time unit in
the model). Moreover, in a simulation, the space of possible seed
values is bounded by #MAX-SEED-VALUE, for efficiency reasons as
explained before.

Protocol parameters. The number of time slots in a round (or
cycle) of the protocol, which is also the number of proposers in
the list of proposers in any round, is specified by the parameter
#CYCLE-LENGTH. Since a time slot corresponds to one logical time
unit, this parameter also specifies the length in time units of a
round in the protocol. Furthermore, the initial size of the entire
validator set (maintained as a list of validator records), which is
the set from which #CYCLE-LENGTH proposers are sampled at the
beginning of a round, is given by #INIT-VLIST-SIZE. The size
can be specified as an absolute value or, more typically, as a mul-
tiple of the size of the proposers list #CYCLE-LENGTH (e.g. 100 *
#CYCLE-LENGTH). Note that if the validator list is dynamic (specified
by the Boolean flag #DYNAMIC-VLIST?), the actual size of the valida-
tor list during protocol execution may be higher or lower than this
initial value. Furthermore, in the case of a dynamic validator set,
new validators may join the system with an arrival delay given by
#VARRIVAL-DELAY. Finally, the deposit amount in Ether needed to
join the validator set is specified by the parameter #DEPOSIT-SIZE.

Attack model. A validator represents one unit of validation in
the protocol (so all validators have the same weight). However, the
attacker may control more than one validator and thus may have
more than one unit of share in the network. The attacker’s share
is, on average, equal to the fraction given by the attack probability

#ATTACK-PROB. The attacker may use all compromised validators
selected as proposers to pre-compute possible reveal strategies
and choose the most favorable one. In other words, compromised
validators may collude and share their secrets (seeds) to find the
best next move to make. While computing the best reveal strat-
egy, the attacker has two options. The attacker may attempt to
maximize: (1) the number of compromised validators in the pro-
posers list (given by countCompromised above), or (2) the length
of the longest compromised tail of the proposers list (given by
countCompromisedTail). Which function to optimize for is deter-
mined by the parameter #SCORE-FUNCTION (which can be 0 for the
former and 1 for the latter).

Network model. The reliability of the underlying communica-
tion network is determined by two parameters. The parameter
#TRANSMISSION-DELAY captures one-way message transmission
delays on reveal messages (block proposals), which are typically
uniformly sampled from a reasonable range that represents the
actual network latency. The other parameter, #MSG-DROP-PROB, is
a Boolean flag indicating whether a scheduled message is to be
dropped modeling a potentially lossy communication channel. Mes-
sage drops in a realistic communication medium can be modeled
by Bernoulli trials with a (drop) probability #MSG-DROP-PROB.

4.4 Protocol State Structure

The structure of the model, also specified by the MEL sub-theory
(g, ER UAR) of R, is based on a representation of actors in rewrit-
ing logic, which builds on its underlying object-based modeling
facilities. In this model, the state of the protocol is a configuration
consisting of a multiset of actor objects and messages in transit. Ob-
jects communicate asynchronously by message passing. An object
is a term of the form <name: O | A >, with O the actor object’s
unique name (of the sort ActorName) and A its set of attributes,
constructed by an associative and commutative comma operator
, (with mt as its identity element). Each attribute is a name-value
pair of the form attr : value. A message destined for object O
with payload C is represented by a term of the form 0 <- C, where
the payload C is a term of the sort Content. To properly model the
dynamics of the protocol and enable sound statistical model check-
ing analysis, the configuration also includes other components, as
we explain in this section.

4.4.1 Objects. There are four objects in our the model: (1) the
blockchain object, (2) the RANDAO contract object, (3) the attacker
object and (4) the validator generator object. These are described
next.

The blockchain object. This object, identified by the actor name
operator bc, models very abstractly the public data maintained in a
blockchain. It has the following form:

1| <name: bc | vapproved: VHL, vapproved-size: N,
vpending: VHL', vpending-size: N',
seed: S >

More specifically, the object maintains a list of validator records of
all approved and participating validators in the system® in an at-
tribute vapproved (whose value is of the sort VRecordList), with
its current length in the vapproved-size attribute (of the sort
Nat). As new validators arrive and request to join the system, the
blockchain object accumulates these incoming requests as a grow-
ing list of validator records in its attribute vpending, along with
its current size in the attribute vpending-size. Finally, this object
maintains the seed value that was last computed by the previous
step of the game in its seed attribute.

The RANDAO object. This object, identified by the operator r,
models a RANDAO contract managing the RANDAO process. It
maintains a status attribute, indicating its current state of process-
ing, and a balance attribute, keeping track of the total contract
balance. Moreover, the object manages the proposers list for the
current round of the game using the attributes prop-ilist, alist of
indices identifying the proposers, and precords, a list of proposer
records of the form [v(I), B] with B a Boolean flag indicating
whether the proposer v(I) has successfully revealed. Additionally,
the size of the proposers (which must be equal to #CYCLE-LENGTH)
list is stored in prop-size. Finally, the object also keeps track of
the next time slot (in the current round) to be processed in the
attribute pnext. The RANDAO object has the following form:

status: U, balance: N,
prop-size: M, prop-ilist: IL,

<name: r | precords: PL,

pnext: I >

The attacker object. The attacker, modeled by the attacker object
identified by the operator a, is a virtual entity that controls a portion
of the validator set in the system. The full list of the compromised
validator indices is maintained by the attacker object in the attribute
vecomp-ilist. This list is always a sublist of the active validators
maintained by the blockchain object above. Its length is maintained
in the attribute vcomp-size. Since in every round of the game,
a portion of validators selected as proposers (maintained by the
RANDAO object above) may be compromised, the attacker object
creates compromised validator records for all such validators to
assign them roles for the round and maintains these records in
its attribute vcomp. If any one of these compromised validators
is assigned the role ctailhead (the validator is at the head of the
longest compromised tail of the proposers list), the computed reveal
strategy (whenever it becomes ready during the current round) is
recorded in the attribute strategy. In summary, the attacker object
has the following form:

<name: a | vcomp: vcomp-ilist: IL, vcomp-size: N,

strategy:

CVL,
G >

The validator generator object. This object, identified by the op-
erator g, models the arrival of new validators when a dynamic
validator set is assumed by spawning new validator records. To
be able to do that, four values for the next validator record to be

5 Although the blockchain object is supposed to contain only publicly available data,
we chose to loosely model the blockchain to contain validator records that may also
include private information (namely validator seeds) for simplicity and efficiency. A
more faithful model would include two types of records: public records containing only
publicly accessible data and belonging to the blockchain object, and private records
containing private data stored off-chain. Nevertheless, such a design can quickly
become unnecessarily complex and has thus been avoided.

generated are maintained: (1) the validator’s index (which is also
the current size of the validator set) in the attribute vcount, (2) its
first seed in next-seed, (3) whether it is a compromised validator
in next-comp, and (4) the RANDAO contract object identifier with
which the new validator will have to communicate in contract.
The structure of the validator generator object is shown below:

contract: next-seed:

B >

i| <name: g | vcount: N,

next-comp:

RID, s,

4.4.2 The Scheduler. In addition to objects and messages, the state
(configuration) includes a scheduler, which is responsible for manag-
ing time and the scheduling of message delivery. The scheduler is a
term of the form T | L, with T the current global clock value of the
configuration and L a time-ordered list (of sort ScheduleList) of
scheduled messages, where each such message (of sort ScheduleElem)
is of the form [T,M], representing a message M scheduled for pro-
cessing at time T. As time advances, scheduled messages in L are
delivered (in time-order) to their target objects, and newly produced
messages by objects are appropriately scheduled into L.

The scheduler is a fundamental component as it serves several
purposes. Firstly, it provides a simple mechanism for avoiding un-
quantified non-determinism, which is a necessary requirement for
the soundness of statistical analysis. The scheduler ensures that,
in any configuration, there are no two messages that are ready to
be consumed at the same time. Secondly, the scheduler enables a
simple and elegant solution for managing the global time of the
protocol and the effects of time lapse on the configuration. Finally,
the scheduler enables more efficient simulation and analysis by
allowing us to specify the granularity of a Monte Carlo simulation
of the model (see [1] for further details).

As mentioned before, a message is a term of the form 0 <- C,
where O is the target actor object identifier and C the contents of
the message. There are five message payload constructors in total:

1| op
| op
3| op

reveal : ActorName Seed Hash -> Content
nextSlot : Nat -> Content
nextRound : -> Content
op doReveal : Nat Nat -> Content
op spawn -> Content

4.4.3 Simulation Controller. In addition to objects and the sched-
uler, we use one additional component, a term that is constructed
by the following operator:

op limit : Bool Float -> Config [ctor]

The term 1imit(B, F) serves as a control device that allows us
to enforce the length of a simulation run (the macro step cap-
tured by tick used by PVESTA) specified by the model parameter
#SIM-TIME-LIMIT. Any rewrite in the system will require that the
Boolean flag B is true. This Boolean flag is updated with each rewrite
in the system to always reflect the fact that global time of the sys-
tem has not yet reached the limit and that execution may continue
and more rewrites can still be made. Once execution exceeds the
simulation time limit #SIM-TIME-LIMIT, the flag is reset to false,
and no rewrite can be made, ending the simulation.

4.5 Protocol Transitions

Now that we have described the model’s infrastructure and the
protocol’s state structures, we describe the protocol’s state transi-
tions modeled using the (possibly conditional and/or probabilistic)
rewrite rules Rg of the rewrite theory R = (2g, ER UAR, Rr). The
rules specify the actions of the RANDAO contract and the behav-
iors of both honest and compromised validators. The specification
of the rules are also supported by additional equationally defined
operations, which we describe along with the rules below.

4.5.1 RANDAO Actions. There are distinct transitions capturing
the behavior of the RANDAO contract object: (1) advancing the
time slot, (2) advancing the round, and (3) processing a validator’s
reveal.

Advancing the time slot. This transition specifies the mechanism
with which the RANDAO contract object checks if a successful
reveal was made by the proposer assigned for the current time
slot, which is a check that is performed at the end of the time
window allocated for that slot, and then advances the time slot
counter. This mechanism is specified by the following rule labeled
RAdvanceSlot:

The message reveal (A, S, H) is a reveal message by the actor
identified by A revealing the seed S and making a commitment to the
next-round seed using the hash value H. The messages nextSlot (K)
and nextRound are self-addressed messages sent by the RANDAO
contract object to schedule advancing the process to the next time
slot (given by K) and the next round, respectively. A doReveal(N,
K) message assigns the slot K to the target object. The value N, which
is either 0 or 1, indicates whether the reveal is an honest validator
reveal or a compromised validator reveal (it is internally used by the
model to simplify the specification). Finally, the validator generator
object uses self-addressed spawn messages to simulate arrival of a
new validator into the system.

It is important to note that the model uses dense time (repre-
sented by real numbers) to model physical timing of events. As
mentioned before, a time slot in the protocol corresponds to exactly
one full logical time unit in the model. Therefore, as logical time
begins at the value zero, boundaries of time slots correspond to
non-negative-integer-valued instants of time (the first time slot
begins at time 0 and ends at time 1.0, and so on).

)| <name:

rl [RAdvanceSlot]

| 1imit (true, D)
<name: BID | vapproved-size: N, vpending-size: N',
seed: S, AS >
5] <name: RID | status: ready, precords: ([VID , B] ; CL),
prop-ilist: IL, pnext: K, AS' >
{ TG | SL } (RID <- nextSlot(L))

=>

1limit (TG <= #SIM-TIME-LIMIT *x D,

BID | vapproved-size: N,
seed: S, AS >

D)

vpending-size: N',

)| if L > #CYCLE-LENGTH then

<name: RID | status: processing,
precords: ([VID , B 1 ; CL),
prop-ilist:
sampleIndexList(N + N', #CYCLE-LENGTH, S,
pnext: 1, AS' >
{ TG | SL } (RID <- nextRound)
else
if L == K then
<name: RID | status: ready,
precords: ([VID , B] ; CL),
prop-ilist: IL, pnext: K, AS' >
else
<name: RID | status: ready,
precords: (CL ; [VID , false 1),

niliL),

31

prop-ilist: IL, pnext: s(K), AS' >

fi
mytick(insert({ TG | SL 1},
[floor(TG) + 1.0,

(RID <- nextSlot(s(L))), 01))

fi

When the current time slot (numbered L) is about to end, the mes-
sage nextSlot(L) becomes ready for the RANDAO object to con-
sume, which initiates the process of advancing the state of the
protocol to the next slot. There are three cases that need to be
considered depending on the value of L:

(1) L > #CYCLE-LENGTH, meaning that the message’s time slot
number exceeds the number of slots in a round (recall that
slot numbering begins at 1), and thus, the protocol has al-
ready processed the end of the #CYCLE-LENGTH proposers
for the current round, and progressing to the next slot would
require advancing the the current round of the game first.
Therefore, The RANDAO contract object changes its status
to processing and samples a new list of proposers for the
next round using the seed S that was computed in the cur-
rent round. We note that when sampling the new list, the
object uses a possibly expanded set of validators that have
requested to join the system while the round was ongoing.
Moreover, the object resets the time slot count back to 1
and emits a self-addressed, zero-delay nextRound message
to continue its preparation for the following round of the
game.

L == K, where K is the next-slot number stored in the RAN-
DAO object, which means that the slot number K was already
advanced by successfully processing a reveal some time ear-
lier during this slot’s time window. In this case, the state is
not changed and a nextSlot(s(L)) message is scheduled
as normal to repeat this process for the next time slot.
Otherwise, the slot number K stored in the object has not
been advanced before and, thus, either a reveal for the cur-
rent time slot L was attempted and failed or that a reveal was
never received. In both cases, the RANDAO object records
that as a failure in the proposers record list, advances the
slot number K and schedules a nextSlot(s(L)) message in
preparation for the next time slot.

@

®)

These cases are specified by the nested conditional structure shown
in the rule.

Advancing the game round. At the end of the last time slot of
a round, as identified by the rule RAdvanceSlot above, the RAN-
DAO object continues its end-of-round processing and prepares
to advance the state of the protocol to the next round using the
following rule labeled RAdvanceRound:

rl [RAdvanceRound]

| 1imit (true, D)

3| <name: BID | vapproved: VHL, vapproved-size: N,
vpending: VHL', vpending-size: N', AS >
<name: AID | vcomp: CVL, vcomp-ilist: IL', AS' >
| <name: RID | status: processing, balance: 7J,
success-rounds: I, precords: CL,
prop-ilist: IL, prop-size: M, pnext: K,
AS'' >
{ TG | SL } (RID <- nextRound)
=>
)| 1imit (TG <= #SIM-TIME-LIMIT * D, D)
3| <name: BID | vapproved: (updateRewards(VHL, CL) ; VHL"),

vapproved-size: (N + N'),

vpending: nilVHL, vpending-size: @, AS >
<name: AID | vcomp: setNewCVRoles(makeCVL(IL, IL"),
IL, (VHL ; VHL'")),
vcomp-ilist: IL', AS' >
<name: RID | status: ready, balance: 7J,
success-rounds: s(I),
precords: makePropRecords (IL),
prop-ilist: IL, prop-size: M, pnext: 1, AS"'
mytick(insertList(insert({ TG | SL 3},
[floor(TG) + 1.0, (RID <- nextSlot(2)), 0l1),
createDoReveals (TG, RID, @, IL, IL')))

This rule consumes a nextRound message. Having already sampled
a list of indices IL of proposers for the next round (using the ex-
panded set of validators that includes validators that have joined
in the last round), the RANDAO object takes the following steps in
this transition:

(1) The pending validator records list VHL’ is appended to the
approved records list VHL and the list sizes are updated (N +
N’ for the expanded approved list and @ for the now empty
pending list), in preparation for the participation of the ex-
panded validator set in the next round .

The validator records VHL are updated to reward those pro-
posers from the previous round who have successfully rev-
eled their seeds. The update is accomplished using the ex-
pression updateRewards(VHL, CL). which uses the reveal
statuses stored in CL to distribute reveal profits to the de-
serving proposers®:

: VRecordlList PRecordList
-> [VRecordList]

op updateRewards

;| eq updateRewards(VHL, nilPL) = VHL .
1| eq updateRewards(VHL ; < v(I), S, H, S', X > ; VHL',
5 [v(I) , B1; CL)

= updateRewards(VHL ; < v(I), S, H, S',

(if B then X + 2 else X fi) > ;

5 VHL',
9 cL
(3) Given the freshly sampled list of proposer indices IL, the

attacker object creates a new list of compromised valida-
tor records assigning potentially new roles to the compro-
mised validators in IL using two operators: makeCVL and
setNewCVRoles. The operator makeCVL creates a set of com-
promised validator records (the set is proper with no repeated
elements even if a validator appears more than once in IL):

NatList NatList -> [CVRecordList]
IL') = makeCVLx(toNatSet(IL), IL')

1| op makeCVL :
2| eq makeCVL (IL,

op makeCVL* : NatSet NatList -> [CVRecordList]

eq makeCVLx(mtIS, IL') = nilCVL .
eq makeCVL*((I , IS), (IL1 . I IL1'))
= makeCVL*(IS, (IL1 . I IL1')) ; < v(I),mtCRS >
s| eq makeCVL*((I , IS), IL")
9 = makeCVL*(IS, IL') [owise]

This is achieved by mapping IL into its corresponding set (us-
ing toNatSet) and then using an auxiliary operator makeCVL*
that creates empty records for its elements. The resulting
set of records are then fed into setNewCVRoles along with
the list IL and the (general) validator records VHL to define
their roles. The expression setNewCVRoles(CVL, IL, VHL)
sets for each validator record in CVL a role depending on
The current reward of 2 Ether is arbitrary, since rewards are currently not used in

the analysis. A future version of the model could specify more precisely these rewards
as implemented in the protocol.

-

©

its position in IL. The definition uses an auxiliary operator
setNewCVRoles*:

op setNewCVRoles CVRecordList NatList

VRecordList -> [CVRecordList]
eq setNewCVRoles(CVL, IL, VHL)
= setNewCVRolesx*(
CVL, IL, VHL, #CYCLE-LENGTH, true, nilIL)

This auxiliary operator uses three additional arguments: the
length of the proposers list, a Boolean flag that indicates
whether we are currently at a compromised tail of the list,
and a list of all seeds of validators in the compromised tail
(if any). The operator works as follows. Initially, in the first
call to the function (before beginning to scan the list IL),
we assume that we are in a compromised tail (and hence
the value true) with an empty list of seeds. The function
then recursively scans the list IL from right to left. We will
continue to be in a compromised tail provided that an honest
validator has not yet been seen. In this case, the function
assigns the roles ctailtail to validators in the list while
accumulating their seeds in the seed list argument. Once the
head of the tail is reached (which is identified by having an
honest validator next in line in the list), the function assigns
the role ctailhead to the current validator and finishes the
accumulation of the seeds. As soon as an honest validator is
encountered in IL, the Boolean argument is reset to false
so that any compromised validator seen in the remaining
prefix of the list is assigned the role isolated. This operator
is specified using the following equations:

op setNewCVRolesx*
CVRecordList NatList VRecordList
Nat Bool NatList -> [CVRecordList]
eq setNewCVRoles*(CVL, nilIL, VHL, N, B,
= CVL
eq setNewCVRoles*(
(CVL ; < v(I) ,
(IL . I), VHL,
= setNewCVRolesx*(
CVL ; < v(I),(CRS,[s(N)
IL, VHL, N, false, SDL)
ceq setNewCVRoles*(
CVL ; < v(I) , CRS > ; CVL',
(IL I), (VHL ; < v(D), S,
s(N), true, SDL)

SDL)

CRS > ;
s(N), false,

cVL'),
SDL)

isolated]) > ; CVL',

H, S', X > ; VHL")

if B then
setNewCVRoles *(
CVL ; < v(I),(CRS,[s(N)
IL, (VHL ; < v(I), S, H,
N, true, (S SDL))
else
setNewCVRoles *(
CVL ; < v(I),(CRS,[s(N)
s CVL',
(VHL ;
true, (S

ctailtaill) > ; CvL'
S', X > ; VHL'),

ctailhead (S SDL)Y 1)

L,
N,

< v(ID),
SDL))

S, H, S', X > ; VHL'),
fi

if B := compEnd?((CVL ;

eq setNewCVRoles=*(CVL,
= setNewCVRolesx(CVL,

[owise]

< v(I) ,
(IL D,
IL, VHL,

CRS > ; CVL"),
VHL, s(N), T?,
N, false, SDL)

L)
SbL)

Note that compEnd?(CVL, IL) is a Boolean operator that
returns true if and only if the end of the list IL is the index
of a compromised validator.

The RANDAO object sets its status back to ready and incre-
ments its round success counter. Furthermore, it creates a

10

new list of proposer records using makePropRecords (IL),
given the freshly sampled list of proposer indices IL.

-> [PRecordList]
nilPL

op makePropRecords NatList
eq makePropRecords(nilIL) =
eq makePropRecords (I IL)

= [v(I) , false] ; makePropRecords(IL)

The reveal status is initialized to false in all proposer records.
A new message nextSlot(2) (self-addressed to the RAN-
DAO object) is scheduled for delivery in the next time slot
to initiate the process of advancing time slots in this round.
In addition, a new list of doReveal messages assigning time
slots to the sampled validators is created and inserted into
the scheduler, using the operator createDoReveals:

op createDoReveals Float ActorName Nat NatList

NatList -> [ScheduleList]

;| eq createDoReveals (TG, RID, N, nilIL, IL')
4 = nil
s| eq createDoReveals (TG, RID, N, I . IL,
6 It . I L")

= [TG + float(N) + #TRANSMISSION-DELAY,
8 v(I) <- doReveal(l, s(N)),
9 #MSG-DROP-PROB] ;
10 createDoReveals (TG, RID, s(N), IL,
11 ILT . I IL1')
12| eq createDoReveals (TG, RID, N, I IL, IL")

13 = [TG + float(N) + #TRANSMISSION-DELAY,

14 v(I) <- doReveal(@, s(N)),
15 #MSG-DROP-PROB] ;
16 createDoReveals (TG, RID, s(N), IL, IL')

1 [owise]

A message of the form v(I) <- doReveal(K, N) assigns
the validator v(I) the time slot N. If v(I) is compromised,
K will have the value 1. Otherwise, K is 07.

Processing a reveal. The following rule fires when the RANDAO
object receives a reveal message from a proposer containing the
proposer’s name VID, revealed seed S’’ and a new seed commit-
ment H’:

rl [RProcessReveall]

limit(true, D)
<name: BID | seed: RS, vapproved:
(VHL ; < VID, S, H, S', X > ; VHL') , AS >
<name: RID | status: ready, precords: ([VvID , B 1 ; CL),
pnext: J, AS' >
{ TG | SL } (RID <- reveal(VID, S'', H'))
=>
1limit (TG <= #SIM-TIME-LIMIT * D, D)
if (H == h(S'')) then
<name: BID | seed: combineSeeds(RS, S), vapproved:
(VHL ; < VID, S, H', S', X > ; VHL'), AS >
<name: RID | status: ready,
precords: (CL ; [VID , true 1),
pnext: s(J), AS' >
else
<name: BID | seed: RS, vapproved:
(VHL ; < VID, S, H, S', X > ; VHL'), AS >
<name: RID | status: ready,
precords: (CL ; [VID , false 1),
pnext: J, AS' >
fi
mytick({ TG | SL })

There are two cases:

"Encoding the type of the validator here as an argument in the message is just for
convenience, as it allows for simpler definitions of the validator reveal rules.

v W

)

(1) The reveal is successful in that the hash of the revealed seed
matches the stored hash. In this case, (1) the new seed is
computed (using combineSeeds, which XORs the currently
stored seed with the revealed seed), (2) the fact that the
reveal was successful is recorded in the proposers record,
and (3) the time slot counter is incremented (indicating that
the reveal for this time slot was successfully made).

The reveal is not successful (the revealed seed does not match
the public commitment), in which case the failure is simply
recorded in the proposers record list.

@

In both cases, no new messages are scheduled.

4.5.2 Validator Behavior. The primary action of a validator selected
as a proposer is to submit a reveal-commit pair at the appropriate
time slot. This process of submission, however, may differ across
different validators depending on whether the validator is compro-
mised, and, if so, its assigned compromised role for that particular
time slot. Therefore, we distinguish four different reveal cases: hon-
est validators, compromised isolated validators, compromised
ctailhead validators, and compromised ctailtail validators.

Honest validators. This rule models the behavior expected from
an honest validator.

rl [VHonestReveall]

limit(true, D)
<name: BID |
vapproved: (VHL ; < VID, S, H, S', X > ; VHL'), AS' >
{ TG | SL } (VID <- doReveal(0, K))
=>
limit (TG <= #SIM-TIME-LIMIT x D, D)
<name: BID |
vapproved: (VHL ; < VID, S', H,
sampleUniWithInt (#MAX-SEED-VALUE), X > ; VHL'),
AS' >

mytick(insert({ TG | SL 3},
[TG + #TRANSMISSION-DELAY,
(r <- reveal(VID, S, h(S'))),
#MSG-DROP-PROB]))

The validator consumes the doReveal message and schedules a
reveal message back to the RANDAO actor object having its name

VID, the revealed seed S, and the hash of the next-round seed h(S”).

In preparation for a future round, the validator updates its record
so that its current-round seed is now S’ and that its next-round
seed is a newly generated seed randomly sampled from the space
of possible seed values.

Compromised validators (isolated). The following (conditional)
rule models the behavior of a compromised validator with the role
isolated (a validator that does not belong to a compromised tail
of the proposers list).

crl [VCompReveall]

limit(true, D)
<name: BID |
vapproved: (VHL ; < VID, S, H, S', X > ; VHL"),
vapproved-size: N, seed: RS, AS >
5| <name: AID |
vcomp: (CVL ; < VID, ([K isolated], CRS) > ; CVL"),
vcomp-ilist: IL, AS' >
{ TG | SL } (VID <- doReveal(1l, K))
=>
limit (TG <= #SIM-TIME-LIMIT * D, D)
if B then
<name: BID |
vapproved: (VHL ; < VID, S', H,

sampleUniWithInt (#MAX-SEED-VALUE), X > ; VHL'),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp: (CVL ; < VID, ([K isolated], CRS) > ; CVL")|
vcomp-ilist: IL, AS' >
mytick(insert({ TG | SL 3},
[TG + #TRANSMISSION-DELAY,
(r <- reveal(VID, S, h(S'))),
#MSG-DROP-PROB]))
else
<name: BID |
vapproved: (VHL ; < VID, S, H, S', X > ; VHL"),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp: (CVL ; < VID, ([K isolated], CRS) > ; CVL')|
vcomp-ilist: IL, AS' >
mytick({ TG | SL })
fi
if B :=
computeScore(combineSeeds (RS,S), N, #CYCLE-LENGTH, IL)
>= computeScore (RS, N, #CYCLE-LENGTH, IL)

The validator consumes the doReveal message and computes two
scores: the score of revealing the seed, and the score of skipping the
reveal. A score is computed by a scoring function determined by the
model parameter #SCORE-FUNCTION using the operator computeScore,
given a seed, the total size of validators, the proposers list, and
its length. As described before, there are two scoring functions:
countCompromised and countCompromisedTail. The validator makes
a best-effort move by comparing the scores of revealing and skip-
ping, given these parameters. If revealing results in a better score or
the same score as skipping, the validator reveals the seed by sched-
uling a reveal message as above, and updates its record to contain
the current seed and a future, freshly generated seed. Otherwise,
if skipping provides a (strictly) better score, the validator remains
silent (does not schedule a reveal message) and the state remains
unchanged.

Compromised validators (ctailhead). This conditional rule mod-
els the behavior of a compromised validator with role ctailhead
(a compromised validator that is at the head of the compromised
tail). Such a validator will not only possibly reveal a seed, but also
attempt to pre-compute a highest-score reveal strategy for other
validators in the compromised tail.

crl [VCompReveal2]
limit(true, D)
<name: BID |
vapproved:
vapproved-size:
<name: AID |
vcomp :
(CVL ; < VID, ([K ctailhead(SDL)1],
strategy: G, vcomp-ilist: IL, AS' >
{ TG | SL } (VID <- doReveal (1, K))
=> 1imit (TG <= #SIM-TIME-LIMIT * D,
if B then
<name: BID |
vapproved: (VHL ; < VID, S', H,
sampleUniWithInt (#MAX-SEED-VALUE),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp :
(CVL ; < VID,

(VHL
N,

< VID,
seed:

S, H
RS,

,S', X > ; VHL'"),
AS >

CRS) > ; CvL '),

D)

X > ; VHL')

(LK ctailhead(SDL)], CVL'
strategy: (G' quo 2), vcomp-ilist: IL,
mytick(insert({ TG | SL 3},
[TG + #TRANSMISSION-DELAY,
(r <- reveal(VID, S, h(S'))),
#MSG-DROP-PROB]))

CRS) >
AS' >

else

<name: BID |

JWAN

vapproved: (VHL ; < VID, S, H, S', X > ; VHL"),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp :
(CVL ; < VID, ([K : ctailhead(SDL)], CRS) > ; CVL'
strategy: (G' quo 2), vcomp-ilist: IL, AS' >
mytick({ TG | SL })
fi
if STS := createStratSet(s(#CYCLE-LENGTH - K), RS, SDL)
G' := findMaxScoreStrat(STS, N, #CYCLE-LENGTH, IL)
/\ B. = (G' rem 2) == 1

The validator consumes the doReveal message and then performs
the following steps:

(1) It first enumerates all possible attack strategies relative to
its position in the proposers list, given the current RANDAO
seed and the seeds of the compromised validators in the
compromised tail SDL. This set is given the name STS in the
rule above. The operator createStratSet creates a non-
empty strategy set (a set of pairs of the form [G : S], withG
the strategy encoding as a natural number and S its resulting
seed):

Nat Seed NatList
-> [StrategySet]
eq createStratSet(s(K), RS, S)

= [0 RS] [1 combineSeeds (RS, S)]
ceq createStratSet(s(s(K)), RS, (SDL
6 = STS augmentl1(STS, S, s(K))
if STS := createStratSet(s(K),

op createStratSet

S)

RS, SDL)
StrategySet Seed Nat -> [StrategySet]
RS1, S, K)
combineSeeds (RS,
RS] STS, S, K)
combineSeeds (RS,
S, K)

op augment]
eq augmentl1 ([G :
=[2 K+ G :
eq augmentl1 ([G :
=[2 *K+ G :

augment1 (STS,

$H1

$H1]

For a compromised tail of length only 1 (so the ctailhead
validator is the only validator in the compromised tail), the
operator generates two strategies with values: 0 (skip) and 1
(reveal). For a length k > 1, the strategy set STS@ for the first
k — 1 validators is recursively computed. This set encodes the
reveal strategies for all validators in which the kth validator
chooses to skip. Therefore, we augment elements in the set
STSO with the kth validator reveal option (add a 1 to the
left of the most significant digit in a strategy G by taking
2 * K + G)to get anew set STS1. The union of these two sets
STS@ and STS1 gives the set of all possible strategies for the
compromised tail of length k. Clearly, the size of the strategy
set grows exponentially in the length of the compromised
tail, a fact that can also be seen from the equations defining
createStratSet.

The validator then computes the scores of all the enumerated
strategies in STS and finds a strategy with the highest score,
using the operator findMaxScoreStrat:

@

1| op findMaxScoreStrat StrategySet Nat Nat NatList
) -> [Nat]
3| eq findMaxScoreStrat([G : S1, N, M, IL)
4 = G .
5| eq findMaxScoreStrat([G : S] STS, N, M, IL)
6 = findMaxScoreStrat*(STS, G,
computeScore(S, N, M, IL),
8 N, M, IL)

If there is only one strategy, then the encoding of that strat-
egy is returned as the result, since it will trivially be the

S © o

12

one with the highest score. Otherwise, an auxiliary operator
findMaxScoreStrat tail-recursively computes scores and
returns the strategy with the highest score:

1| op findMaxScoreStrat* : StrategySet Nat Nat Nat Nat
2 NatList -> [Nat]

3| eq findMaxScoreStrat*([G : S], G', C', N, M, IL)

4 = if computeScore(S, N, M, IL) > C'

5 then G else G' fi .

6| ceq findMaxScoreStrat*([G : S] STS, G', C', N, M, IL
71= if C > C' then

8 findMaxScoreStrat=(STS, G, C, N, M, IL)

9 else

10 findMaxScoreStratx(STS, G', C', N, M, IL)

11 fi

12 if C := computeScore(S, N, M, IL)

The operator maintains in its arguments the remaining part
of the strategy set STS to be processed (the first argument),
the current highest-score strategy G’ (the second argument)
and its score value C’ (the third argument), in addition to
other arguments needed for computing scores (the size of
the validator set, the length of the proposers list and the list
of compromised validators). It effectively goes through the
strategies in STS one-by-one, computing the score of a strat-
egy and comparing that score with the current highest score
C’. Only if that score is (strictly) larger than C’, the current
highest-score strategy is updated along with its score. Scores
are computed using the computeScore operator described
before.

Finally, using the highest-score strategy G’ computed in the
previous step, the validator extracts its own reveal instruc-
tion from G’ (by taking G’ rem 2). If the result is 1, the
validator emits a reveal message and updates the state of
its record. Otherwise, the validator remains silent and main-
tains its original state. In both cases, however, the validator
prepares the attack strategy in the attacker object for the
next validator in the compromised tail by using G’ quo 2
(recall how strategies are encoded - see Section 4.2).

Compromised validators (ctailtail). This rule models the be-
havior of a compromised validator with role ctailtail (a compro-
mised validator that belongs to the compromised tail but is not the
head of the tail). This validator simply follows the strategy that was
previously pre-computed by the ctailhead validator of the list.

2| limit (true,
;| <name:

)] <name :

{76 |

crl [VCompReveal3]
D)
BID |
vapproved:
vapproved-size:
AID |
vcomp: (CVL ; < VID, ([K : ctailtaill],
strategy: G, vcomp-ilist: IL, AS' >
SL } (VID <- doReveal (1, K))
=> 1imit (TG <= #SIM-TIME-LIMIT * D,
if B then
<name: BID |
vapproved: (VHL ; < VID, S', H,
sampleUniWithInt (#MAX-SEED-VALUE),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp: (CVL ; < VID, ([K
strategy: (G quo 2), vcomp-ilist:
mytick(insert({ TG | SL 3},
[TG + #TRANSMISSION-DELAY,
(r <- reveal(VID, S, h(S'))),
#MSG-DROP-PROB]))

H, S', X > ;
AS >

(VHL ;
N,

< VID,
seed:

S,
RS,

VHL'),
CRS) > ; CVL'),

D)

X > ; VHL'),

ctailtaill, cvL'

IL,

CRS) > ;
AS' >

else
<name: BID |
vapproved: (VHL ; < VID, S, H, S', X > ; VHL"),
vapproved-size: N, seed: RS, AS >
<name: AID |
vcomp: (CVL ; < VID, ([K : ctailtaill], CRS) > ; CVL'
strategy: (G quo 2), vcomp-ilist: IL, AS' >
mytick({ TG | SL })
fi
| if B := (G rem 2) == 1

The validator consumes the doReveal message and then checks
whether it should reveal or not according to the pre-computed
strategy maintained in the attacker object G. If G rem 2 is 1, the
validator reveals (schedules a reveal message as described above).
Otherwise, if the value is 0, the validator remains silent. Other
updates to the state are similar to the previous rule.

New validator arrival. This rule models the arrival of a fresh
validator (a validator whose identifier has not been seed before)
into the system. The arrival of a validator is signaled by a spawn
message being ready for processing:

| limit (true,

| fi

rl [VArrive]

D)
;| <name: BID | vpending: VHL, vpending-size: M, AS >
<name: AID | vcomp-ilist: IL, vcomp-size: M', AS' >
5/ <name: VGID |
vcount: N, contract: RID,
next-seed: S, next-comp: B, AS'' >
{ TG | SL } (g <- spawn)
=>
1imit (TG <= #SIM-TIME-LIMIT * D, D)
<name: BID |
vpending: (VHL ; < v(N), S, h(S),

sampleUniWithInt (#MAX-SEED-VALUE),
(- #DEPOSIT-SIZE) >),

vpending-size: s(M), AS >
if B then
<name: AID | vcomp-ilist: (IL N,
vcomp-size: s(M'), AS' >
else
<name: AID | vcomp-ilist: IL,
vcomp-size: M', AS' >
<name: VGID |
vcount: s(N), contract: RID,
next-seed: sampleUniWithInt (#MAX-SEED-VALUE),

next-comp: sampleBerWithP (#ATTACK-PROB), AS'' >

mytick(insert({ TG | SL 3},
[TG + #VARRIVAL -DELAY,

(VGID <- spawn) , 1))

Upon receiving the spawn message, the validator generator object
creates a new validator record and appends it to the pending list of
validators, and increments the size of pending validator list. If the
validator is compromised (as sampled by the generator object in its
next-comp attribute), the list of compromised validator indices is
also augmented with its index, and the list’s size is incremented. In
any case, the generator updates its state by preparing the index, seed
and the compromised state of the next fresh validator to be gener-
ated, and schedules another spawn message delayed by the validator
arrival delay given by the model parameter #VARRIVAL-DELAY.

4.6 Bootstrapping Protocol Executions

To be able to simulate and analyze protocol executions, we need
to define an initial state of the protocol from which further tran-
sitions can be made. The initial state is modeled by an initial

13

configuration that is parameterized by the various model param-
eters, including #INIT-VLIST-SIZE for the size of initial valida-
tor list, #CYCLE-LENGTH for the number of proposers in a round,
#ATTACK-PROB for the probability of a validator being compromised,
and so on. Therefore, the initial configuration cannot just be built up
with constant functions (or values), but will need to be dynamically
constructed to represent a typical state in the protocol (assuming
no active attacks).

To facilitate this construction, we first define a few object initial-
izers. The first is the blockchain object initializer shown below:

op initBlockchain Nat -> [Object]

| eq initBlockchain(N) =

<name: bc |
seed: sampleUniWithInt (#MAX-SEED-VALUE),
vpending: nilVHL,
vpending-size: 0,
vapproved: makeVL(N),
vapproved-size: N > .

The initializer creates a blockchain object with an initial random
seed sampled uniformly from the set of positive values bounded
above by #MAX-SEED-VALUE. While the list of pending validators is
initially empty (its length is 0), the list of records for the approved
validators is not. We define an operator makeVL(N) that creates N
partially initilized validator records for validators indexed from 0
toN - 1.

| eq makeVL (@) =

Nat -> [VRecordList]
nilVHL

op makeVL

eq makeVL (s(N))
= makeVL(N) ;
< v(N), sampleUniWithInt (#MAX-SEED-VALUE),
sampleUniWithInt (#MAX-SEED-VALUE) ,
(- #DEPOSIT-SIZE) > .

h(o),

A record will have random seeds for the current round and the
next round uniformly sampled as above. A validator begins with a
negative profit (a loss) representing the amount of deposit initially
put into the contract for participation in the protocol. We finally
note the record is not yet fully initialized as the hash is not properly
set. The initialization of records will be completed at a later stage
(discussed below) when the random values of the seeds are available.

The second initializer is for the RANDAO object. The initializing
expression initRandao(M,N,K) creates a partially complete RAN-
DAO object with a ready status, proposers list size of M, an initial
balance equal to the total deposits of all validators N * K, and with
the next-slot number being 1.

»| eq initRandao (M,

op initRandao Nat Nat Nat -> [Object]

N, K) =

<name: r |
status:
balance:
success-rounds:
precords: nilPL,
prop-size: M,
prop-ilist: nilIL,
pnext: 1 > .

ready,
(N * K),
9,

The object is still only partially initialized, as the full lists of proposer
indices and proposer records are still pending. Again, these will be
set when the sampling of the proposers list is performed at a later
initialization phase described below.

The third initializer is that of the attacker object shown below:

op initAttacker Nat -> [Object]

eq initAttacker(N) =
<name: a |
vcomp: nilCVL,
vcomp-ilist:
sampleInitCompromised (N,
vcomp-size: 0,
strategy: 0 >

#ATTACK-PROB, nilIL),

The initializer begins the process of sampling a subset of indices
from the entire space of validators (of size N), given the attack
probability specified by the model parameter #ATTACK-PROB. The
compromised validator record list and its size will be initialized at
a later stage once the sampled list of indices are computed.

The fourth, and last, object initializer is that of the validator
generator object.

Nat ActorName
RID) =

op initVGen
eq initVGen(N,
<name: g |
vcount: N,
contract:
next-seed:
next-comp:

-> [Object]

RID,
sampleUniWithInt (#MAX-SEED-VALUE),
sampleBerWithP (#ATTACK-PROB) >

This is a simple initializer that sets the generator’s next-validator

index to N and the stored RANDAO contract object name to RID.

The initializer also prepares the seed and the attack status of the
next validator.

Using these initializers, the initial state of the protocol can be
constructed using the following rule:

rl initState =>
initSystem(
initProposers(
initBlockchain (#INIT-VLIST-SIZE)
initAttacker (#INIT-VLIST-SIZE)
initRandao (#CYCLE-LENGTH,
#INIT-VLIST-SIZE,
#DEPOSIT-SIZE),
#INIT-VLIST-SIZE,
#CYCLE -LENGTH) ,
#INIT-VLIST-SIZE)

The rule uses two additional operators initProposersand initSystem :

to fill in the gaps left by the object initializers above and finalize the
initialization process. The first operator, initProposers, samples
the list of proposers in the RANDAO object (given the randomly
generated seed in the blockchain object) and prepares their records,
in two steps:

op initProposers
eq initProposers(

Config Nat Nat -> [Config]

<name: bc | seed: S, AS >
<name: r | prop-ilist: nilIL, AS' > VC, N, M)
= initProposers(
<name: bc | seed: S, AS >
<name: r | prop-ilist:
sampleIndexList(N, M, S, nilIL), AS' > VC, N,
eq initProposers(
<name: bc | vapproved: VHL, AS >
<name: r | prop-ilist:
(I IL), precords: nilPL, AS' >
<name: a |
vcomp: nilCVL,
vcomp-ilist: IL',
vcomp-size: @, AS'' > VC, N, M)
= <name: bc | vapproved: VHL, AS >
<name: r | prop-ilist: (I IL),
precords: makePropRecords (I IL), AS' >
<name: a |
vcomp: setNewCVRoles(makeCVL ((I IL), I1L'),

(I . IL), VHL),

11

14

vcomp-ilist:
vcomp-size:

L,

length(IL'), AS'' > VC

First, using the seed S, a list of size M of proposer indices is sampled

from N indices using the expression sampleIndexList(N,M,S,nilIL).

Once this list IL is fully generated, the second step (in the second
equation above) is to use IL to create the appropriate proposer
records using makePropRecords in the RANDAO object. Further-
more, we use the list IL to complete the initialization of the attacker
object by creating the appropriate compromised validator records
with setNewCVRoles and storing its size.

At this stage, almost all objects are properly initialized except
for the hash values stored in the general validator records of the
blockchain object. The operator initSystem goes through the val-
idator records one-by-one setting their hash values.

op initSystem
eq initSystem(
<name: bc |
vapproved:
AS >
VvC, s(I))
= initSystem(
<name: bc |
vapproved:
AS >
Ve,

Config Nat -> [Config]

(VHL ; < v(I), S, h(@), S', X > ; VHL'),

(VHL ; < v(I), S, h(S), S', X > ; VHL"),

D]

The operator sets the hash value of a record to h(S), where S is the
current-round seed of that record. Once all records are updated, the
operator finishes by emitting the final objects in the configuration
along with the appropriately initialized control components 1imit
and round.

eq initSystem(
<name: r | prop-ilist: IL, prop-size: M, AS >
<name: a | vcomp-ilist: IL', AS' >
Ve, 0)
= limit(false, 0.0)
<name: r | prop-ilist: IL, prop-size: M, AS >
<name: a | vcomp-ilist: IL', AS' >
VC
if #DYNAMIC-VLIST? then
initVGen (#INIT-VLIST-SIZE, r)
mytick(insertList({ 0.0 |
createInitDoReveals(IL, M, IL') 3},
[1.0, r <- nextSlot(2), #MSG-DROP-PROB] ;

[#VARRIVAL -DELAY, g <- spawn, 0]))
else
mytick(insert({0.0 |

[1.0, r <- nextSlot(2),

createInitDoReveals (IL, IL")}Y,

#MSG-DROP-PROB1))

M,

fi

The operator also schedules a list of doReveal messages assigning
time slots to proposers to kick-start execution of the first round of
the protocol. We note that a validator generator object is included
in the configuration only if dynamic validator sets are assumed (as
indicated by #DYNAMIC-VLIST?).

4.7 A Minimized Model R™" of RANDAO

The specification of the RANDAO model given by R is suitable for
analyzing instances of the system that are quite small in size (in
terms of the total number of validators), or large system instances
but only for a limited number of simulation steps (time slots in the
protocol). This is because the specification is too verbose to support
efficiently analyzing long execution traces of large instances. More
specifically, each validator has its own record in the configuration,

which means that the size of a configuration term increases linearly
with the number of validators assumed. As the size of a configu-
ration term increases, matching modulo associativity and identity
(on the list of validator records), which is relied on heavily in the
specification, can become computationally expensive and slow. Fur-
thermore, a validator record includes two randomly generated seeds
(the current-round and next-round seeds) that are generated for ev-
ery validator, regardless if a validator is ever selected as a proposer
in an execution of the protocol.

While maintaining validator records and generating seeds are
essential components for modeling the two phases of the RANDAO
process, we introduce a more abstract (minimal) model R™" of
RANDAQO that is much more efficiently executable for the purposes
of statistical model checking analysis of the system. The main
difference is the assumption made in R™" that a reveal that reaches
the RANDAO object on time always passes the commit (hash) check,
and thus there is no need to explicitly verify that the revealed seed
matches its commit. The only ways in which a reveal failure could
occur are: (1) the reveal reaches the RANDAO object too late, or (2)
the reveal was actually skipped.

With this assumption, validator records are no longer needed
since there is no need to maintain seeds and hashes of validators.
Instead, seeds are only generated on demand: when an honest val-
idator needs to reveal a seed or when a compromised validator is
selected as a proposer, resulting in a much more efficiently exe-
cutable specification. Moreover, the total count of validators alone
specifies what participating validators we have in the system. This
simplifies significantly the structure of a configuration, especially
for large instances of the system. The configuration term size no
longer grows linearly with the instance size. Furthermore, validator
balances and profits are not fully meaningful with this assumption
and can thus be removed. Moreover, the assumption eliminates the
need for proposer records, which were needed before to reward
successful reveals. It also eliminates the need to generate compro-
mised validator records for all compromised validators in the initial
state of the protocol. In fact, in R™" we maintain compromised
validator records only for compromised proposers of the current
round of the game, whose number is bounded above by the number
of proposers in a round (given by #CYCLE-LENGTH).

Although R™" is more abstract and more efficient, the more
detailed model given R naturally allows for a deeper look into
the working of the protocol and for a wider set of analyses to be
performed (e.g. analyzing guessing attacks and profitability). Nev-
ertheless, as we intend to analyze biasing randomness through
pre-computed strategies in this work, the abstract version of the
model R™" enables us to do just that more efficiently. In our exper-
imentation, R™" can be 10 to 20 times faster than R in generating
sample runs.

The full specification in MAUDE of R™" is available online at
https://github.com/runtimeverification/rdao-smc.

5 STATISTICAL VERIFICATION

We use the model R™" (or equivalently R) to formally and quanti-
tatively evaluate how much an attacker can bias randomness of the
RANDAO process assuming various attacker models and protocol
parameters. This is achieved by analyzing two properties:

15

(1) The number of attacker-controlled validators selected as
proposers in a round of the RANDAO process, denoted MS
(for the matching score).

(2) The number of attacker-controlled validators forming a tail
of the proposers list selected in a round of the RANDAO
process (the length of the longest compromised tail in the
proposers list), denoted LWS (for the last-word score).

To get a quantitative measure of the potential bias achievable
by an attacker, we calculate (manually) baseline values for each
property (assuming no attacks) and then compare them with the
results obtained mechanically through statistical model checking.
This process is explained further below for each property.

5.1 Matching Score (MS)

We first compute a baseline value for MS. This value represents
the expected number of attacker-controlled validators selected as
proposers in a round of the RANDAO process assuming the attacker
is not pre-computing reveal strategies (or, in other words, the at-
tacker is following the protocol). If the probability of a validator
being compromised is p, and that the cycle length (length of the
proposers list) is k, then the random variable X of the number of
attacker-controlled validators in a proposers list is a binomial ran-
dom variable with success probability p in k repeated trials (we
assume a large enough validator set compared to k so that the prob-
ability of picking an attacker-controlled validator does not change).
Therefore, the expected value of X is:

EX[X]=kp (1)

For example, assuming p = 0.2, the expected number of attacker-
controlled proposers in a list of length k = 10 is 2.0 (assuming the
attacker is following the protocol).

However, as the attacker will try to pre-compute different reveal
strategies and select the one that is most favorable, the attacker
may be able to have more attacker-controlled proposers selected
compared with the baseline values given by Equation (1). To for-
mally evaluate this potential bias, we first express the property MS
as the following temporal formula in QUATEX:

ms(t) = if time() > t then countCompromised()
else O ms(t) fi
eval E[ms(to)]

@)

The parameter ¢ is the time limit (an upper bound on the number
of time slots) beyond which protocol execution is halted. In R, the
limit (given by the actual parameter ty) is set to be equal to the
value given by the model parameter #SIM-TIME-LIMIT. ms(t) is
a recursively defined path expression that uses two state func-
tions: (1) time(), which evaluates to the time value of the cur-
rent state of the protocol (given by the scheduler object), and (2)
countCompromised(), which evaluates to the number of compro-
mised proposers in the current state of the RANDAO object. There-
fore, given an execution path, the path expression ms(t) evaluates
to countCompromised() in the current state if the protocol run is
complete (reached the time limit); otherwise, it returns the result
of evaluating itself in the next state, denoted by the next-state tem-
poral operator O. The number of compromised proposers that an
attacker achieves (on average) within the time limit specified can be

https://github.com/runtimeverification/rdao-smc

approximated by estimating the expected value of the formula over
random runs of the protocol, denoted by the query eval E[ms(t)].
We note that, although it simply returns a count, the state func-
tion countCompromised() is real-valued so that the expected value
of the random variable represented by the formula ms(t) can be
computed.

We have used our model given by R™" to statistically model
check the MS formula above under various settings and assumptions
using the statistical model checking tool PVESTA. In the analysis
presented below, we assume a 95% confidence interval with size
at most 0.02. We also assume no message drops and random (but
still predictable) message transmission delays in the range [0.0, 0.1]
time units (so reveals, if made, are guaranteed to arrive on time).

We first analyze the attack strategy in which the attacker at-
tempts maximize the number of attacker-controlled proposers (re-
gardless of where they appear in the list), i.e. the attacker is trying to
optimize for the function countCompromised. The analysis results
are plotted in the charts of Figure 2. We use the notation a X b to
denote the fact that the length of the proposers list (CYCLE-LENGTH)
is a and that there are a total of a X b participating validators in
the configuration, and thus INIT-VLIST-SIZE is taken as b times
CYCLE-LENGTH (recall that we are assuming a fixed validator set).
The dashed lines in the charts represent the base values (with no
active attack) computed using Equation (1) for different attack
probabilities p, while the plotted data points are the estimates com-
puted by the model assuming an attacker attempting to maximize
countCompromised.

As the charts show, the attacker can reliably but minimally bias
randomness with this strategy. This, however, assumes that the
attacker is able to afford all the skips that will have to be made in the
process, since only after about 80 rounds or so, the attacker is able to
gain an advantage of about 20% (over the baseline). Nevertheless, an
attacker that already controls a significant portion of the validators
can capitalize on that to speed up his gains, as can be seen from the
p = 0.3 attacker at around 100 rounds, compared with the weaker
attackers. Furthermore, by comparing the charts in Figure 2, we
note that results obtained for different proportions of proposers to
validators are generally similar.

What if the attacker changes his strategy so that instead of opti-
mizing for the total number of compromised proposers, the attacker
attempts now to maximize the length of the longest compromised
tail? Will this result in better control of the list as specified by the
MS property? To analyze this situation, we set our score function to
countCompromisedTail, and repeat the analysis. The results are
shown in Figure 3. As the charts show, the results are generally less
favorable for the attacker. The obtained gains over the baselines
are lower (sometimes close to zero) and less reliable (they fluctuate
quite heavily). Furthermore, even for large numbers of rounds, the
gains do not show a strong increasing trend. Although a strong
attacker may still make some gains, the charts clearly show that
from the point of maximizing control on the proposers list, this is
not a good strategy for the attacker to follow.

5.2 Last-Word Score (LWS)

As for MS, we compute a baseline value for LWS. This value rep-
resents the expected length of the longest attacker-controlled tail

16

4 T —
| Ea= 0.1
35 A~ =TT ——a=02 |4
——a=0.3
@
R Lt R U -
&
o
a
S
& 2.5 1
L‘i %77+7%\\e/$“—+—7’w/
R e Tt -l
E
3
4
= 151 B
£
2 - B—
S = I 5—8—&8—+=&
B -|
0.5 B
I I I I
200 400 600 800 1,000
Time Slots
(a) MS (SF0, 10x500)
4 T T T
—H-a=0.1
BT — =02 [
50— ——a= =
"/ —+—a=0.3
L Y PSR |
I3
2
o
& 2.5 B
ke o
5 L e
2 e =
E
3
Z
= 151 n
U
2
I = e = U = o AN S A
4
0.5 B
| | | |
200 400 600 800 1,000
Time Slots

(b) MS (SF0, 10x1000)

Figure 2: The expected number of attacker-controlled pro-
posers in the proposers list against execution time in time
slots, assuming the attacker is attempting to maximize the
number of compromised proposers (#SCORE-FUNCTION is 0).
The dashed lines represent the base values (with no active
attack) computed using Equation (1). The shaded areas vi-
sualize the expected bias achievable by the attacker for the
three different attack probabilities plotted. We assume a pro-
posers list of size 10, and a validator set of size (a) 10x500 and
(b) 10 x 1000.

of the proposers list in a round of the RANDAO process assum-
ing the attacker is not pre-computing reveal strategies. This value is
computed as follows.

Let a be the event of picking an attacker-controlled validator,
which has probability p, and b the event of picking an honest valida-
tor b, having probability (1 — p). Let the cycle length (length of the
proposers list) be k. A compromised tail in the proposers list cor-
responds to either a sequence of events a of length j < k followed
immediately by exactly one occurrence of event b, or a sequence
of events a of length exactly k (the whole list is controlled by the
attacker). Therefore, letting X be a random variable corresponding

3.5 ——a =02 |+

2.5 n

Expected Number of Proposers

1.5 -
L SRS S -
0.5 B
1 1 1 1
200 400 600 800 1,000
Time Slots
(a) MS (SF1, 10x500)
4 T T T
—=F-a=0.1
3.5} ——a=02 ||
i e S
B 3 -
g
=]
2
o
& 2.5 B
&
=}
Y e e e et . K S-SR A Suppn
£
=3
Z
= 151 n
2
i
T S e EE T T =
m
0.5 B
| | | |
200 400 600 800 1,000
Time Slots

(b) MS (SF1, 10x1000)

Figure 3: The expected number of attacker-controlled pro-
posers in the proposers list against execution time in time
slots, assuming the attacker is attempting to maximize the
length of the compromised tail (#SCORE-FUNCTION is 1). The
dashed lines represent the base values (with no active attack)
computed using Equation (1). The shaded areas visualize the
expected bias achievable by the attacker for the three differ-
ent attack probabilities plotted. We assume a proposers list
of size 10, and a validator set of size (a) 10x500 and (b) 10x1000.

to the length of the longest compromised tail, we have:

i1 ;
Pr[X:i]:{p.(p) i<k
Pt i=k
Therefore, the expected value of X is
k-1)
EX[X]= Y i-p'1-p)+k-p* 3)
i=0

(Note that the distribution of X is almost geometric with success
probability 1 — p). For example, assuming p = 0.2, the expected
number of proposers in the longest attacker-controlled tail of a list

17

of length k = 10 is approximately 0.25 (assuming the attacker is
following the protocol).

However, when the attacker pre-computes strategies, the expec-
tation will likely be different. As for the MS property above, to
evaluate this potential bias, we similarly specify the property LWS
using the following formula:

Iws(t) = if time() > t then countCompromisedTail()
else O hws(t) fi
eval Elws(to)]

©

The formula has a similar structure to that of the MS property in
(2), except that the state function countCompromisedTail() is used,
which counts the number of proposers in the longest compromised
tail in the proposers list of the current state of the RANDAO object.
As before, estimating the expectation expression E[lws(ty)] gives an
approximation of the expected length of the longest compromised
tail that an attacker can achieve within the specified time limit. We
use our model to statistically model check this formula using the
same verification parameters used for the property MS above (a 95%
confidence interval with size at most 0.02 and a perfectly reliable
communication network).

In our analysis of the LWS property, we consider (again) the
two possible attack strategies: (1) maximizing the number of com-
promised proposers (countCompromised) and (2) maximizing the
length of the compromised tail (countCompromisedTail). The re-
sults of the former are plotted in the charts of Figure 4, while the
analysis results of the latter are shown in Figure 5.

The charts in Figure 4 make it clear that this strategy is only
somewhat effective in mounting an attack. The gains are small
at all attack levels, and do not seem to grow as the number of
rounds increases. For example, a 0.2 attacker is only able to achieve
a compromised tail of length around 0.4 (on average), which is only
0.15 proposers beyond the baseline 0.25, even at large numbers of
rounds. The gains are higher though for larger attack probabilities,
but only marginally.

The second strategy is only slightly better. As Figure 5 shows,
maximizing the length of the compromised tail can result in a steady
and reliable effect on the proposers list. As the attack probability
increases, the bias achieved can be greater within shorter periods
of time. For example, at around 60 rounds, the bias achieved by a
0.1 attacker is negligible, while a 0.2 attacker is expected to achieve
20% gains over the baseline (at around 0.32 compared with 0.25),
and a 0.3 attacker achieves 60% gains (at around 0.7 compared
with 0.43). Nevertheless, even at high attack rates, the charts do
not show strong increasing trends, suggesting that any gains more
significant than those would require applying reveal strategies for
very extended periods of time.

6 CONCLUSION

We presented an executable formalization of the commit-reveal
RANDAO scheme for decentralized random number generation in
distributed systems, as a probabilistic rewrite theory in rewriting
logic. The theory gives an expressive and executable formal model
of the scheme that captures timing of events, probabilistic transi-
tions, environment uncertainties and attacker behaviors. Through
its specification in MAUDE, we used the model to analyze resilience

—=F-a=0.1
——a=0.2

—+—a =03

1.5 B

Expected Number of Proposers

IR
e —— " -
"
0.5+ |
e
e T |
58— —8—F —s—F&—
[e T R
I I I I
200 400 600 800 1,000
Time Slots
(a) LWS (SF0, 10x500)
2 T T T
—=F-a=0.1
——a=0.2
—+—a =03
&
g 1.5 -
=]
2
2
(=%
S
=}
g
-1 1+ -
5
]
Z
T
£ e
o B s
B oosErT]
= B —mm oy — == =,
———— T
e ____
e g = ey = g g . e R o]
I I I I
200 400 600 800 1,000
Time Slots

(b) LWS (SF0, 10x1000)

Figure 4: The expected number of attacker-controlled pro-
posers in the proposers list against execution time in time
slots, assuming the attacker is attempting to maximize the
number of compromised proposers (#SCORE-FUNCTION is 0).
The dashed lines represent the base values (with no active
attack) computed using Equation (3). The shaded areas vi-
sualize the expected bias achievable by the attacker for the
three different attack probabilities plotted. We assume a pro-
posers list of size 10, and a validator set of size (a) 10x500 and
(b) 10 x 1000.

of RANDAO against pre-computed reveal strategies by defining
two quantitative measures of achievable bias: the matching score
(MS) and the last-word score (LWS), specified as temporal prop-
erties in QuaTEx and analyzed using statistical model checking
and quantitative analysis with PVESTA. The analysis described two
attack strategies for each property and compared their effectiveness
under various assumptions and attack levels.

This work is still preliminary in that the model enables further
kinds of analyses that have not yet been attempted given the time al-
located for it. Further analysis could consider scenarios with higher
attack probabilities, larger proposer lists and longer execution peri-
ods. Moreover, examining how dynamic validator sets, unreliable

18

—=—a=0.1
——a =02

——a=0.3

Expected Number of Proposers
T
Il

0.5 n

200 400 600 800 1,000
Time Slots
(a) LWS (SF1, 10x500)
2 T T T

—=-a=0.1
——a =02
—+—a=0.3

§ 1.5 -

o

9

2

=%

I

=}

g 1

2 L B

E

E}

Z

E 1 e ek

2

B 0 bbbt

——o———— o
1 = ST — S A S
I I I I
200 400 600 800 1,000
Time Slots

(b) LWS (SF1, 10x1000)

Figure 5: The expected number of attacker-controlled pro-
posers in the proposers list against execution time in time
slots, assuming the attacker is attempting to maximize the
length of the compromised tail (#SCORE-FUNCTION is 1). The
dashed lines represent the base values (with no active attack)
computed using Equation (3). The shaded areas visualize the
expected bias achievable by the attacker for the three differ-
ent attack probabilities plotted. We assume a proposers list
of size 10, and a validator set of size (a) 10x500 and (b) 10x1000.

communication media and extended network latency might affect
these attack strategies is all enabled by the model and is interest-
ing to investigate. Furthermore, the analysis presented does not
explicitly quantify the costs to the attacker, which can be an im-
portant economic defense against mounting these reveal strategies.
An extension of the model could keep track of the number of skips,
or specify a limit on these skips, so that the success of an attack
strategy can be made relative to the cost of executing it. Finally, a
holistic approach to analyzing quantitative properties of Serenity
looking into availability and attack resilience properties makes for
an interesting longer-term research direction.

ACKNOWLEDGMENTS

We thank Danny Ryan and Justin Drake from the Ethereum Foun-
dation for their very helpful comments.

REFERENCES

[1] Gul Agha, José Meseguer, and Koushik Sen. 2006. PMaude: Rewrite-based Speci-
fication Language for Probabilistic Object Systems. Electronic Notes in Theoretical
Computer Science 153, 2 (2006), 213-239.
Musab A. Alturki and José Meseguer. 2011. PVeStA: A Parallel Statistical Model
Checking and Quantitative Analysis Tool. In Algebra and Coalgebra in Computer
Science, Andrea Corradini, Bartek Klin, and Corina Cirstea (Eds.). Lecture Notes
in Computer Science, Vol. 6859. Springer Berlin / Heidelberg, 386-392.
[3] D.Boneh, J. Bonneau, B. Biinz, and B. Fisch. 2018. Verifiable Delay Functions. In
In proceedings of Crypto 2018. 757-788.

[4] Roberto Bruni and José Meseguer. 2006. Semantic foundations for generalized
rewrite theories. Theor. Comput. Sci. 360, 1-3 (2006), 386-414.

[5] Vitalik Buterin. 2018. RANDAO beacon exploitability analysis, round 2. https:
//ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980

[6] Vitalik Buterin. 2018. RNG exploitability analysis assuming
pure RANDAO-based main chain. https://ethresear.ch/t/
rng-exploitability-analysis-assuming- pure-randao-based-main-chain/1825

[7] Vitalik Buterin. 2018. Validator Ordering and Randomness in PoS. https:

//vitalik.ca/files/randomness.html

[8] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-

Oliet, José Meseguer, and Carolyn Talcott. 2007. All About Maude - A High-

Performance Logical Framework. Lecture Notes in Computer Science, Vol. 4350.

Springer-Verlag, Secaucus, NJ, USA.

Ethereum Foundation. 2018. Ethereum 2.0 spec—Casper and sharding. https:

//github.com/ethereum/eth2.0-specs/blob/master/specs/beacon-chain.md

[10] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. 2003. A Rewriting
Based Model for Probabilistic Distributed Object Systems.. In Proc. of FMOODS
'03 (Lecture Notes in Computer Science), Vol. 2884. Springer, 32-46.

[11] José Meseguer. 1990. Rewriting as a Unified Model of Concurrency. In Proceedings
of the Concur’90 Conference, Amsterdam, August 1990 (Lecture Notes in Computer
Science), Vol. 458. Springer, 384-400.

[12] José Meseguer. 1992. Conditional rewriting logic as a unified model of con-
currency. Theor. Comput. Sci. 96, 1 (1992), 73-155. https://doi.org/10.1016/
0304-3975(92)90182-F

[13] José Meseguer. 1998. Membership algebra as a logical framework for equational
specification. In Proc. WADT 97 (Lecture Notes in Computer Science), F. Parisi-
Presicce (Ed.), Vol. 1376. Springer, 18-61.

[14] Youcai Qian. 2018. RANDAO: A DAO working as RNG of Ethereum. https:

//github.com/randao/randao/

Koushik Sen, Nirman Kumar, Jose Meseguer, and Gul Agha. 2003. Probabilistic

Rewrite Theories: Unifying Models, Logics and Tools. Technical Report UITUCDCS-

R-2003-2347. University of Illinois at Urbana Champaign.

[2

=

[9

=

[15

19

https://ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980
https://ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980
https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-randao-based-main-chain/1825
https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-randao-based-main-chain/1825
https://vitalik.ca/files/randomness.html
https://vitalik.ca/files/randomness.html
https://github.com/ethereum/eth2.0-specs/blob/master/specs/beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/beacon-chain.md
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://github.com/randao/randao/
https://github.com/randao/randao/

	Abstract
	1 Introduction
	2 Preliminaries
	3 The RANDAO Scheme
	4 A Rewriting Model of RANDAO
	4.1 The Rewrite Theory R of RANDAO
	4.2 Model Infrastructure
	4.3 Model Parameters
	4.4 Protocol State Structure
	4.5 Protocol Transitions
	4.6 Bootstrapping Protocol Executions
	4.7 A Minimized Model Rmin of RANDAO

	5 Statistical Verification
	5.1 Matching Score (MS)
	5.2 Last-Word Score (LWS)

	6 Conclusion
	Acknowledgments
	References

