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Definitions of Terms
Part I

semi minor axis of spheroid

semi major axis of spheroid

wavelength of incident field

m = = a measure of size of particle

A

}, h 93 » prolate spheroidal coordinates

e:

my

o)

eccentricity of ellipse
Sme(y\) = angular spheroidal functions
pP” = Legendse polynomials

me

m2 . ..
cf" = expansion coefficients

=y(m) . ) ]
ng = radial spheroidal functions

] = spherical Bessel functions
ﬂ’lfh

= electric field vector

= magnetic field vector

back scattering cross section

= geometric back scattering cross section



Part II

= semi minor axis of spheroid

= semi major axis of spheroid

= Poynting vector

= 2XC = measure of size of spheroid
= wavelength of the radiation

= back scattering cross section

9,08, s am, m, s m s 4, + m, » = direction no's of incident

field and body coordinates
= body coordinates
‘1 y 2 y

= electric field

magnetic field

angle of polarization of scattered field in body coordinates

angle of polarization of incident field in body coordinates

dielectric constant of scatterer
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PART 1

ABSTRACT

Studies were made of the scattering from non-spherical targets

by making exact determination of the nose-on radar back scattering cross
sections of conducting prolate spheroids of various sizes and shapes. The
scattering coefficients and several complex prolate spheroidal functions
appearing in the analysis have been computed. Numerical data, which are
of importance in other similar studies of radar scattering, acoustic and
ballastic scattering and antenna radiation problems involving prolates of
dimensions below the resonance region, are reported.

Curves are given for the back scattered cross sections as a function
of non-dimensional size and shape parameters for prolate spheroids. The
results are compared with the Rayleigh-Gans first order approximation and
Stevenson's third order approximation and the range of applicability of these
approximations is evaluated.

The results indicate a substantial decrease in the radar echo as the
shape of the equivolumetric targets vary from spherical to thin prolate
spheroidal shapes. For a prolate of axis ratio b/a = 0.8 and (X= 0.8, the
ratio (Jprolate / (Fsphere is about 1/2 and decreases to a value of approx-
imately 1/200 for a prolate spheroid of axis ratio b/a = 0. 2, X= 0. 8.

Rayleigh-Gans first order approximation is not adequate for the
size range X)0.3. However, Stevenson's third order solution yields results
nearly identical with the exact values in the size range X { 1.0.



INTRODUCTION

Development of Problem

In 1950, the Illinois State Water Survey initiated an investigation
to determine the utility of radar for the quantitative measurement of rain-
fall over watersheds. Early in this investigation it became apparent that
available data were insufficient to accurately determine the effects on ra-
dar-rainfall estimates, which arise from variations in the size and dis-
tribution of raindrops between and within storms. Because available tech-
niques for the determination of storm drop size distribution were inadequate
for the existing needs, a raindrop camera was designed and constructed.
Development was completed in 1953 and routine observations made during
1953-54.

As raindrop data were collected, it became apparent that the
majority of large drops within storms are non-spherical. Since these
large drops contribute greatly to the reflectivity and attenuation from rain,
a need was created for theoretical data to more accurately compute the re-
flectivity from storms.

Existing Solutions to Problem

Exact solutions of the problem of scattering of electromagnetic
waves by non-spherical particles have been obtained only in a few cases.
Contributions to this problem were made by Hertzfeld' and Moglich? , who
attacked the problem by methods of exact analysis. However, their so-
lutions are formal ones and a great deal of work is required to reduce them
to calculable forms. Schultz ° obtained an exact solution for the spherical
case of a conducting prolate with nose-on incidence. Even for this case the
calculations are quite involved and tedious. Siegel, Gere, Marx and Sleator®
have made a radar scattering study from this solution for a thin prolate
(axis ratio 10;1).

Gans® and Rayleigh® obtained first-order solutions for the problem
on the assumption that the characteristic dimensions of the scatterers are
very small compared to the wavelength of the incidence radiation. This
limitation of size 1is a serious one, and the results, while reasonable and
useful, are of uncertain accuracy in detail. More recently, Stevenson ’
has extended these solutions to third-order terms. With the exception of
the range of validity of this higher order approximation, his solution is
quite general.



Scope of Investigation

To meet the existing need for more theoretical information, an
investigation was undertaken to study the scattering of electromagnetic
waves by non-spherical objects. This report covers the first part of
this investigation, in which an evaluation was made of the range of
applicability of the first-order Gans theory (presently in use) and the
more recent third-order solution of Stevenson's against an exact so-
lution for conducting prolates.

The second part of this report covers the development
of formulas for back scattering and attenuation cross-sections for oblate
and prolate raindrops, using Stevenson's field solutions. The results
of this development are being used to make practical evaluations for rain-
drops at 3-cm wavelength in the size range, X = 0.1 to X~= 0.9, from rain-
drop camera storm samples.



THEORY

Solutions of the scaler wave equation are required in several
tields, including electromagnetic wave theory and elasticity theory.
The desired solutions for the vector wave equation can be constructed **
from solutions of the scaler wave equation of the form:

VZW + KKy =o0 (M)

The partial differential equation can be solved by the method of
separation of variables using a coordinate system appropriate to the geom-
etry of the problem.

Prolate Spheroidal Coordinates

The boundary value problems involving prolates may be treated
in Prolate Spheroidal coordinates E /. ¢ .

In this system the coordinate surfaces are two families of ortho-
genal surfaces of revolution. The surfaces of constant  are a family of
confocal prolate spheroids, and the surfaces of constant n are a family of
confocal hyperboloids of revolution (See Figure 1).

With the z-axis as the axis of revolution and ¢ the azimuthal angle
measured about this axis, the equations of transformation from this system
to Cartesian coordinates become:

2,/ 8" -0 (=) - cos @

v =42 Jlgt -0 (v -p? L sin ¢ @)
z = d/2 E’?

where d is the interfocal distance FF' and E ] and (p vary in the range
1£ Ecm; -1 £ £ +1and0é¢ L 2T

If 'a' is the semi-major axis, 'b' is the semi-minor axis and 'e' is
the eccentricity of the generating ellipse, equation (2), along with the defin-
ition of eccentricity, yields:



FIG.

The radial distance from any point (x, y, z) in space to the origin is

1 - PROLATE SPHEROIDAL COORDINATES

r = (x2 + y2 +22) 1/2 1/2 a (EZ +k)2 -1) 1/2

The relations between the unit vectors,

Spheroidal coordinated are as follows:

i, =i, (P.

i, =i, (Q.

ig = iy (-
and .

i, =i, (P.

iy = iy (P.

i; = iy (Q)
where

P=-nE? -

Q=¢§g(1

Basic Definitions

Parameters

cos@) + iy (P. sin@) + i, (Q)
cos¢) + i, (Q. sin¢) - i, (P)

sin¢) + iy ( cos¢)

cos@) + ip (Q. cos @) - ig (sin @)
sin¢) + '1‘5 (Q. sm¢) +ig (cos¢)
-if (P).

1) 1/2 (iz _))2 y - 1/2

_5? )1/2 (g2 .p? )~ 1/2

C>(X . To present the results in a general form,

is convenient to represent the characteristic dimensions of the prolate

i's,in cartesian and Prolate

(3)

(4)
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(semi-interfocal distance d or semi-major-axis a) by the non-dimen-
sional parameters:

c =k d/2 = WA (5)

A =k a

2Ma/ (6)

where k is the wave number 2M/A and A is the wavelength of the
incident radiation.

Back-Scattering Cross Section. The back-scattering cross-
section is defined as the ratio of the power radiated by an isotropic source,
which is radiating with the same intensity as the particle does in the back-
ward direction, to the incident energy density.

Geometrical Cross Section. To present the results in non-dimen-
sional form, the back-scattering cross-section defined above is divided
by a geometrical cross-section g - obtained by the method of geomet-
rical optics. Qg is defined as:

% = T R'R, (M)
where R; and R, are the principal radii of curvature at the point of re-
flection. For the case of a prolate with nose-on incidence, R; = R, =
b%*/a, and

4,2
O; = M . v /a, (8)

Scaler Wave Equation

The scaler Hemoltz's equation (Eq. 1) in prolate spheroidal co-
ordinates E » o ¢ becomes:

Bl 0038] @] ®

+ S—

(17 ‘: )ﬁ2+c(7 EF)yw=0
where ¢ = kd/2, k = 2’17'/7\ and A is the wavelength. Equation (9)
can be separated into three second order, linear, ordinary differential
equations if we assume a solution of the form

W = Rcg) - S(y) . P(d) (10)



The substitution of equation (10) into (9) yields:

d¥y . m*y¥Y =0 (1)

Qq
)
'N
<
m
+
r—
D
3
|
(9]
S
{
Q
N
:_.
w
"

n dn (12)
d 2)d’?+[A ‘szz‘j’LJR=o
a:f(é-' dé ml -1 (13)

where m, A, are the separation constants with m restricted to integral
values to insure single values.

Solutions of Scaler Wave Equation

In order to obtain the solution of the wave equation, it is convenient
to study the individual solutions of Equations (11), (12), and (13). The com-
plete solution of the wave equation can then be formed by Equation (10).

The solution of Equation (I1) is A sin m¢ + B cos m¢
where m is restricted to integral values and A and B are constants.

Angular Functions and their Integrals. Equation (12) may be satis-
fied by an expansion in terms of associated Legendre polynomials P,"+m",
The expansion for the angular functions of the first kind, which are regular

in the range -1 & r) &£ 1, according to Morse 0 s

(1 ® 7 m
s)l(q)zz dn’ P"™ (1) (14)

ml n=0,1 . .
where d are the expansion coefficients. Their numerical values for m =

j, 1 = 3-j, with j taking values 0, 1, 2 and 3, have been tabulated in refer-
ence (9). The primes on the summation sign denote that the summation is
to be taken over even values of n if 1 is even, and over odd values of n if 1
is odd. The associated Legendre functions are tabulated in reference (11).

For the special case " - 1, Equation (14) reduces to:

’ (n
Sc(,'z)m = i d>t . Sm (1) =Ofor m>1 03

The angular functions corresponding to a given value of ¢ are orthogenal in
the interval (-1, 1). The orthogonality relation is:

o o for mzk (16)

mi _ .d
II _?f mt (7) Skl('» 7 = Nni for m =k



@ s 2
_ (zm+n)l 2 ( dml)
where m o nl (2m+2n+l)

The numerical values of the normalizing factors N, for m = O,
1=0,1, 2andc =.1, .2, .4, .6 and 0. 8 are given in Table XVI.

Other important integrals involving the angular spheroidal functions
and their derivatives are:
(1) (¢)]

I ,,(,_,,,25 ) Sty I /'7502(»7)SOL(,7) .dn

( [}
I f(/ 7)S ) . S (f))dr; : I ](,-,7)’ S/;;;) ()(:7) dn (1)
/'ﬂfff) Sz(m S,L(tyl dsy

where the primes on the angular functions denote the differentiation with
respect to n. The values of these integrals, evaluated by Schultz 3 in terms
of the expansion coefficients d;nl , are given in Appendix A,

Radial Functions. Egquation (13) is satisfied by an expansion in
spheroidal Bessel functions with coefficients involving the tabulated expan-
sion coefficients, dml. These expressions, given by Stratton, Morse, Chu
and Hunter ? are: n

R(I}(cE} (£2 )”’/2 Z mZ (szn}/ j (Czé)
mt Em d mi (2m+n)’ A (18)
where J (;E) ch m},,.:’), is the spherical Bessel function of the first
kind. The cyhndrlcal Bessel functions of half order, J., ; , + 1/2 (¢ E),
are tabulated in reference (12).

A second solution is obtained simply by replacing jm +n (cE) with
the spherical Bessel function of the second kind, n, . 5, ( c&g ). The ex-
pansion obtained is, however, slowly convergent when m is large or when

& is equal to or nearly equal to one. An alternate expansion in terms of
Legendre polynomials of the first and second kind, given by Stratton et al,
is more suitable to use. This expansion is given as follows:

9

-2m-—/
“me
-Zm 2 Q (é') (19)
R <c,&) GE.m1) 2 d" [5 ”ga )]Qn:;:.:,,j.,, [ I

where for 1 even

m i+2m m+ |
G(C,m,l ) = 2 ¢ ) r‘ ) ml ] (20)
r(42) r(m-3) d id (=)




and, for 1 odd 9

—gc™ 2 7 [+22m +2)
sem sl rm- S gmen)!
(it m-9/2 (gmm
2 m 30
n=b
ml
The values of dy  are listed in reference (9). for negative values of n.
v
The derivatives of the radial functions are given by the express-
ion-
(1) ; /2 w ¢
M m R e.F) (I-52) o Ml [
le(c,f)= g’l(:f + —— 6 d m+n)! J(C’E)
& (6% 1) L 4™ emen)! n!
2 [ n —p_ =0 (22)
n=0,l '
where
4
Jmm ) = m+n) @Em+2n -H) m+n )4,,,,,, (23)
The primes on the radial functions R( )1 denote the derivatives
with respect to & or —=2m-|
-2m-2 1 m?
Al - E d P
so R ( ,E) G(c,m, l)- { dn -n-m(ftE)J (24)
mi d NNz-00
- idn [ em.. c&)]
n=-2Mm+| dE men
oF-2m

The radiar functions of the first, second and fourth kind and their
derivatives for m = 0, 1, 1= 0, 1, 2 are computed for 16 combinations of
& andc; & =1.1, 1.1546, 1.2, 1.3, andc =0.1, 0.2, 0.4, 0.6 and 0.8.
The numerical results are presented in tables I - VIIL

By analogy of Hankel functions, prolate spheroidal functions of
the third and fourth kind may be formed as:

(1) . {2)

Ro(e.8) = Rmp (8) + { Ry (c,8) (25)
. {2)

RY &) = RW (eE) - § Rm €c.2) 26

The asymptotic formulas for these functions for cE— @O are:

() / 6. ; Rm(cZ)x sin O
Rm (¢) = gz €05 Omi » Nm{%€)=¢ mi (21)

n
§ 0]
(3) i . (4) -
Rm (6&) 3;2 e Omi 5 Rmi (C,E)“"Zig e ™



10

where Gml = (CC - .m—tz-i-uﬁ') (28)

The asymptotic behavior of the derivatives of these functions may be ob-
tained by differenting the above equation

a’ )
e

(2)'
RMZ(C’é) o C—I . COS 6”’2 . (30)

Solutions of Vector Wave equation

From the solutions of the scaler equation, solutions of the vector
equation®'?

VxVxF - V(V.F) - KF=0 o

can be obtained by using the formula

- [ - = =
c . = ; = - X or =1 X F
F=Vys B=Vxdy; R=p VxR " =0 VX
where a is a constant unit vector. Any pair of these vector solutions forms
a complete set of orthogonal functions

SCATTERING CROSS-SECTIONS

Using the prolate spheroidal function theory, Schultz 3 has obtained
an exact solution of scattering of electromagnetic waves by a conducting
prolate for the case when the radar beam strikes the prolate nose-on. The
orientation of the incident beam with respect to the coordinates of the pro-
late spheroid is shown in figure 2.

Note: Numerical values of the derivatives of the spherical Bessel Functions,
7

17 = d (jm) , are reported in Table XV.
dé

m



DIRECTION OF BEAM

H

FIG. 2

- ORIENTATION OF THE SCATTERER AND THE INCIDENT FIELD IN BODY

COORDINATES

11
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The general expression for the scattering cross-section, 0'()7, ¢)’
from Schultz's solution 5 % is given as follows:

() ()
3-('7; ) Z d S (')) sin ¢+ 2—;& ']SOl('y) i /._SL(?) Cos¢33)

where (X ﬂ are obtained* from the solutions of the simultaneous
equatmns,

Z(a C.. +Blz D,_Z) :BLL (34a)

i( (xm + ﬁu WLL ) ZULZ (34b)

and the coefficients Cp;, Di;, B1i, Uy, Vii and Wy, are functions
off , radial functions, their derivatives and boundary integrals of
angular functions, etc. These coefficients are defined in appendix B,
and their numerical values are given in tables X - XIII.

Radar Back-Scattering Cross Sections

For radar back-scattering cross-section, that is the scatter-
ing in the direction opposite to incident beam (# = 1), the expression

for 0 (Eq. 33) reduces to: 2
2 D 7 ()
= T . l 35
O =47a ) L, Syf!) (35)
or =0
2
0/0;= 4 (b/a)°* Z Qa, s u )
G (36)
1=0
The corresponding expressions, based on Rayleigh - Gans h
(5, 6)
Law and Stevenson's solution 7, are as follows:
Rayleigh - Gans; 2 | 2 4
(&) [ |
=\ &
0706~ '3 15t pam) o7

where,

e 1 122 ]

* The numerical values of these coefficients are reported in Table XIV,
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2 4
Stevenson: O‘/O'G = 4 - Ax + B (38)

- 2 174 . - 3p2 T = __AI:SZ
where, A—l/a.b (KI-KZ),B-I/ab (LI-NZ--L2 .|.AN1) o2

and K}, K,, L., N etc., are functions of the semi-principal axes of
the scatterer; the electrical properties of the scattering medium; and,
the direction cosines which define the orientation of the incident field
with respect to the coordinates of the scatterer, etc. The expressions
for these functions are involved and are discussed in Part II'

Only the numerical values of these coefficients* and the final results of
this theory will be presented here.

Ballastic Scattering Cross-section

In ballastics for the case when the transmitter is on the major
axis of the prolate and the receiver is on the ray with angles 8, @&
(7 = cos @), the cross section can be computed from the equations (33)
and (34).

Acoustic Scattering Cross-section

For the case of an acoustic plane wave obliquely incident on a
prolate, the expression for the scattered wave (or acoustic pressure),
satisfying the Neuman boundary condition, is:

i ('
R, (¢, (1)
s [ Ny, m m &) g (39)

where @ defines the angle between the direction of propagation of the
incident wave, parallel to the x-z plane, and the positive z-axis (see
figure 3), w is the incident wave and €,=2, €, =1 form > 0,
For the scattered field at large distances from the scatterer, the asym-
ptotic relation (Eq. 2'6) may be used for &nl (c &)

*See Table XVII
" Appendix D
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DIRECTION OF THE
INCIDENT WAVE

FIG. 3 - DIRECTION OF INCIDENCE OF PLANE
ACOUSTIC WAVE IN THE BODY
COORDINATES (Parallel to x-z Plane)

For the special case @ = o (Sohultz case), Equation (39) reduces to a
much simpler form given by
(1) ¢

'-WZZ Z( o OZ, :?:f)('c,&) S ('7)R°Z(’E)

Since according to F_.qua.tlon (15), S' 1(1) =0 for m 2 1,
m

(40)

The corresponding expression for the back-scattering cross section
2
. o0 Rm: ‘o
a = CI&' E Aoz —M S (’) where Ao], N, Z:c_' (41)
4”0 ° Z=° R (C, o)

or in terms of tabulated coefficients B01 . C()l 2
. oo (
O‘ | * ()
4ra* cZ, Z (Boy/ Co, o) Sall) (42)
° =0

» *
where Bg; » Cot are the complex conjugates of Byy; , C
respectively.

1s:

The numerical values oon\l’,Lfor l1=0,land 2 andc = .1, .2
.4, .6 and . 8 have been computed. These are reported in table XVI.
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RESULTS AND CONCLUSIONS

The values of the radar back-scattering cross section, @ |,
computed from three different theories (Eqs. 36, 37 and 38) are pre-
sented in Figures 4,5 and 6 as a function of the non-dimensional par-
ameter (X. These figures correspond to three different shapes of Pro-
lates (axis ratios b/a). Figure 7 represents a similar graph for pro-
lates of axis ratio b/a = 0.1, obtained by Siegel et al*

In Figure 8, the ratio of OTapprox. (obtained from Rayleigh-Gans
or Stevenson's solution) to (Jexact (Schultz's exact solution) is plotted
against the non-dimensional parameter X. The effect of the shape of
the prolate spheroidal target on the radar echo is shown in Figure 9.
The values of the back-scattering cross sections for the spheres which
are used in Figure 9 correspond to those for equivolumetric spheres,
and the curves are extrapolated to the axis ratio b/a = 0.2 with the aid
of the data of reference (4).

The results indicate a substantial decrease in the values of the
radar back-scattering cross sections as the shape of the equivolumetric
scatterers vary from spherical to thin prolate spheroidal shapes. For
prolate of axis ratio b/a = 0.8 and X= 0.8, the ratio (Fsphere / (J pro-
late is about 1/2 and decreases to a value of approximately 1/200 for pro-
late spheroid of axis ratio b/a = 0.2 and X= . 8.

Figures 4 to 7 suggest that the Rayleigh-Gans first order solution
is not adequate in the size range &> 0.3. However, Stevenson's third
order solution yields results nearly identical with the exact values in the
size range (X1.0.
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Part II

ABSTRACT

Several formulas for back-scattering and attenuation cross-
sections are derived from Stevenson's field solutions. Detailed nu-
merical evaluations of the scattering coefficients are made for various
shapes of oblate and prolate water drops for radars of 3-cm and 10-
cm wave length. Similar evaluation is made for conducting spheroids.
Studies are extended to examine the depolarization from such drops.
Various charts relating the scattering cross-section to the dimensions
of the scatterer are presented in non-dimensional plots.

INTRODUCTION

Statement of Problem

As noted in Part 1 of this report, collection of data with a
raindrop camera'® during 1953-54 showed that the majority of large
raindrops within storms are non-spherical. It is apparent that the
electrical reflections from such non-spherical drops contribute sub-
stantially to the total radar reflectivity from a storm. To correlate
quantitative data collected with the raindrop camera with the correspond-
ing radar reception from a storm, a need was established for theoretical
computations of the reflectivity for the various camera samples.

Scope of Investigation

The primary purpose of this study was to provide formulas
for radar back-scattering cross-sections and forward scattering for
raindrops at centimeter wave length. It was, however, believed that
these formulas should be based on a more accurate theory than Gans'
dipole approximation presently used in meteorological analysis.

In Part I, a detailed appraisal was made of the available
solutions, for the scattering of electromagnetic waves by non-spherical
particles, which are practical to evaluate. The results of this study
indicated that a solution reported by Stevenson , which is essentially an
extension of Gans' solution, predicts values of radar back-scattering
cross-sections nearly identical to the exact values calculated from
Schultz's theory® for the case of conducting prolates. The Gans theory
for the same case was inadequate for drop size parameter o( > 0. 3.
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In the work, reported herein, the aforementioned formulas are
derived for non-spherical raindrops from Stevenson's field solutions.
The scattering coefficients are computed for several shapes of prolates
and oblates ranging from extremely elongated prolates (rods) to extremely
flat oblates (plates) and for the horizontal and vertical polarization of
radar at 3-cm and 10-cm wave length. The study is extended to an
examination of the depolarization effects from such drops.

THEORY

Since most radar applications are based on the transmission
of short pulses of electromagnetic energy and echo pulses from a distant
target, it is desirable to express the signal power returned as a function
of radar values, characteristic parameters of the scatterer, and the
distance between the scatterer and the receiver.

In the determination of such an echo, consider an isolated
antenna radiating linearly polarized waves in the direction of maximum
transmission. Since a distant target subtends sufficiently small angles
measured from the energy source, the incident wave front is nearly plane.
The problem of calculating the return echo is thus reduced to the problem
of scattering of electromagnetic waves in the wave zone by a target of a
given shape.

Radar Equation and Back-Scattering Cross-Section

If P, is the total power transmitted by an isotropic antenna,
then the power density, Si, (Radiated power per unit cross-sectional area)
of the transmitted wave at a distance, R, is

S R
i~ 4 mR?

The Power density of a directional radar can be represented by introducing
a non-dimensional gain factor* (or antenna pattern factor), G, such that

R.G
41 R?

(1)

(2)

-<

S

*  Gain factor G is the ratio of the power radiated by the directional antenna
to the power radiated by an isotropic antenna having a total output, Pt.
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The power scattered, Py , from the incident radiation by an isotropic
scatterer can be written as

P = 5; ) Qs B

S

and the corresponding power density, S;, is

|
S: = S,. . Qs'a"—R, (3)b

where Qg is the total scattering cross-section.
Since the scattering from raindrops is not isotropic and since the interest

is in the back-scattered intensity, another non-dimensional gain factor,
g, is employed for the backward direction of the scattered field such that

Qs-9=o- (4)

and

(5)

o
R LA
S¢ = 5 41 R?

where Sgis the scattered power density in the direction opposite to the
incident direction at a distance, R.

The symbol, g, is now termed as the radar back-scattering cross-
section, and represents the ability of the scattering object to reradiate
power in the direction of the radar set. Therefore, it may be defined
as the total power scattered by an isotropic source with intensity equal
to the backward direction intensity of the original scatterer, divided by
the incident energy density. Equation (5) may be rerranged as

R
2 S
g = 4TR 3 (6)

l

The power received by the radar from a single scatterer is
2
Pp= Ss - A, = sh(2AG o
r s 4T

2
where A, is the receiving cross-section of the antenna (A, = _>L.G_ ).

4

Substitution of Eqs. 2 and 5 in Eq. 7 yields
2 2
p = P .G .\ o

3 4 ®)
r (47 ) -R
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Geometry and Parameters of Scatterers

Ellipsoid. The geometrical shape next to a sphere, in the order of
analytical complexity, is the ellipsoid whose surface is defined by the

equation 2 2
2
e L e - ?
a? b c

where a, b and c are the semi-principal axes of the triaxial ellipsoid.
If two semi axes are equal (say a = b) the ellipsoid of revolution (or
spheroid) is obtained. The axis of symmetry of this body is termed
the figure axis. In the case under study (a = b), the semi axis, c ,
represents the figure axis. The equation of the spheroid becomes

‘ Xz+ yz) Zz (10)
2 + -E-z' = |
b

With the z-axis as the axis of symmetry (or c as the figure axis) the
equation describes the surface of a prolate spheroid if c> a = b and an
oblate spheroid if ¢ <a =b (see Fig. 11). In the x-z or y-z plane, the
equation represents an ellipse generating oblate or prolate surfaces.

Shape Parameter. The shape of prolate or oblate spheroid may be
represented by the ratio of their semi-axes. .This ratio for prolate is
chosen to be, b/c, and for oblate, c¢/b.

Parameter & . To obtain the results in general terms it is con-
venient to represent the size of the particles by normalizing it with
respect to the wave length. The parameter & is the same as defined
by Eq. 6 of PartI. This parameter may, however, be more generally
defined as = »  where L. now represents any appropriate dimension
of the prolate or oblate spheroid. For prolates the choice L = 2c¢ is made,
while for oblates the choice is L = 2b.

Electrical Properties of the Scatterer

Dielectric Constant and Magnetic Permeability. The scattered field
intensity is influenced by the electrical properties (dielectric constant €
and magnetic permeability &) of the scattering medium. If the scatterer
is a perfect conductor, the dielectric constant is € = m&—=o00 since the
magnetic permeability is 4 = 0.

For water drops the dielectric constant is complex and depends
on the incident wave length, A, and the temperature. The value of
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(e )1/2 = m for water at 18°C, reported bv, Saxton'’, is 8. 18-i 1. 16
for a 3-cm wave, and for a 10-cm wave, ( € )=l 2 m =28.90-0.69 i.
The magnetic permeability, u, for this case is approximately unity.

Geometrical cross-section

It is customary to represent the radar cross-section in a non-
dimensional form by normalizing it with an approximate geometric cross-
section, O > based on geometric optics. This is defined by Eq. 7
of Part I and is evaluated for a prolate spheroid at z-incidence (Eq. 8,
Part I).

For y-incidence of the beam shown in Figure 11 (broad side
incidence)

q, —qb/c (1)

for both prolates and oblates.

Incidence of the Beam

The orientation of the radar beam, for an arbitrary incidence
with respect to the body coordinates (x, y, z) of the scatterer, may be
defined by a set of nine direction cosines according to the scheme:

4 y 2
#lt m n
(12)
£l m, n,
H lz mz n2 _
where 1, m, n are the direction cosines of the poynting vector n; l;, my,
n; define the direction of the electric field vector, E; and 12, m2, n2
refer to the magnetic field vector, H.
Z-Incidence. This refers here to the nose-on incidence. The direction

of propagation of the beam is along the z-axis, with the electric field, E,
parallel to the y-azis and the magnetic field, H, parallel to the x-axis.
For this incidence

n=l'=mz"' (13)
and all other direction cosines become zero. The only electric field which
exists in the wave zone is the y-component.
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Y-Incidence. This refers here to the case when the direction
of propagation of the incident beam is along the y-axis of the body
coordinates of the scatterer. Two different polarizations of the incident
beam are considered.

A. Horizontal Polarization. This refers to the case
when the electric vector is parallel to the x-axis and the magnetic vector
is parallel to the z-axis (see Figure 11). The non-zero direction cosines
for this case are, therefore

m = l' = nz

(14)

B. Vertical Polarization. For this case the beam is
rotated 90 degrees anticlockwise from the horizontal position, such
that the electric vector is parallel to the z-axis and the magnetic vector
is parallel to the negative x-axis (see Figure 11). Consequently the non-
zero direction cosines are

S

m = -, = N, (15)

Stevenson's Field Solutions

The radar back-scattering cross-sections are obtained from the
wave zone scattered electric and magnetic vector fields. These fields
are the solutions of the vector wave equation representing the combined
Maxwell's equations, and satisfying a set of boundary conditions at the
surface of the scatterer and at large distances from it.

An alternate method, assuming quasi-static field conditions at
the scatterer, was employed by Gans’ and extended by Stevenson' to solve
the problem of the scattering of electromatic waves by ellipsoidal particles.
It was shown by Stevenson that a formal solution can be obtained as a power
series in of , each term of the series requiring only the solution of a
standard problem in potential theory, instead of the general system of
Maxwell's equation. The series can be carried out to as many terms as
desired, although the calculation of successive terms becomes more
involved.

For an electromagnetic plane wave of amplitude, E,, incident on
a dielectric ellipsoid (dielectric constantg and permeability ), Stevenson
obtained the scattered field solution which may be written as
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(16)

9P _ 9P ikR
Eg =‘7He=(sin9 o¢p 9o )'EI;'e

where R, © and ¢ are the coordinates of a field point measured from
the body coordinates x, y and z; 7 is the intrisic impedence( ” = //f“;_
for free space); and the quantities P and P are functions of surface °

(17)

harmonies, S{™), which may be defined as:
@ s—1 j )
s (-1) (s-j~1) o
P=§ k E Yo .S (1)
101 +1
s=2 i=1

s- i -j-

_ . L o(-n S (s-i-1)

= . 2 : 1

P Z Z ICi+1) ] (19
§=2 I:'

For a three-term series, the expansion for P reduces to

oo K (KA + K BeK o) +k*[(Li&sLBa L)

!

+ (Mudz"' Mz/sz"' M, 52)*' (N.X/S"'Nzxa +N3d/5)]
_:?,612 K|d+ K., 3 + K ¥ )-( aaoi2+ b2ﬁ2+ c° ?Sz )] (20)

A similar expression is obtained for P by replacing the coefficients

’
of @, /3 and ¥ of the above equation with the corresponding scattering
coefficients refering to the magnetic field and indicated by bars. Thus

2 —_

ﬁ' = k ( Kl A+ ----- ) +k4(Eld+)__3%(R.l(X'+) (21)

7/
Here (X , /3 and K are the direction cosines of the radius vector in body

coordinates, The scattering coefficients Kj, Lj, Kj’ Lj’ Nj’ ﬁj etc. with
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j = 1, 2 and 3 are functions fo semi-axes (a, b, c); refractive indices;
nine direction cosines 1, m, n, l;, m;, n; etc., and certain integrals.
The defining expressions for these scattering coefficients are given in
Appendix D. The special values of the integrals and other functions
involved in these expressions are summarized in Appendix E.

BACK SCATTERING, FORWARD SCATTERING AND DEPOLARIZATION

General Formulas for Back-Scattering Cross Section.

The definition for O is

o= AT R S ©)
s’
t
The numerator on the right hand term of this equation represents the

radial backward component of the poynting vector of the scattered wave
integrated over a large** spherical surface of radius R.

The expression for SR in terms of the field components is

Ss ‘%e ( E H ¢ e - (22)

and the corresponding value for S;* for the incident beam is

2
sY = =L E, (23)
i 27
Substituting Eqs. 16 and 17 in Eq. 22, and introducing the resulting

expression for S,* in Eq. 6, the general formula obtained for 0" is
obtained as

- - %
_an[ (2P . L 2P). QE+_'_DP>
O-=

96 " sine ¢/, |26 " sin 0909
+(_:a _a_ﬁ . ap_ab‘)“
Sin © ¢ ae Slnea¢ 06 \O=Tr

Case of Conducting Scatterer, Z-Incidenee.

For this case, the spherical coordinates are set up as shown in
Figure 10. The z-axis is taken as the polar axis and the plane ¢ =0

** Radius of the sphere extends in the wave zone.

Note: the symbol "*" on the fields E and H and on the brackets of Eqs. 22
and 24 indicates complex conjugate.

(24)
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’
as the x-z plane, so that the direction cosines (X, ﬂ ,and ¥ of a
field point (x, y, z) in terms of spherical angular coordinates @ and

¢ are

o = sine.cosbd; g8 = sin®-sind ; x = cos®

(25)

FIG. 10 - BODY COORDINATES

The values of these direction cosines and their derivatives with respect
to e and ¢ evaluated for the back scattered case (© =M ) are

/

=0 B=o0 ; ¥ = -1
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P . ' - g ,
g_ = _cos(b s s’i_'ne = -Sin ¢ ;
__é = — Sin ; —_— = .
¢ Si cos¢d ; (26)

|

—

in

0
o

0

L

o @
SxgBSIR.

()
@
-

w0

The calculations for the quantities appearing in Eq. 24 are
involved but straight-forward. The steps are described briefly as
follows: Differentiating P and P (Eqs. 20 and 21) with respect to &
and ¢ and substituting the values of X', /3 and X and their derivatives
from Eq. 26 the desired values of the terms appearing in Eq. 24 are

obtained.

Substituting the values of these terms in Eq. 24 and rearranging
the terms in powers of ©{ = k,L, the final formula for  can be written

in the non-dimensional form#* as follows:

for prolates

2
. 2 4 > = 2
0/0,~ Oppt = 4 {1 8@ +B| + [AsBoc|®)

and for oblates

2
OZ"&Q: _ 4_0_ ,A0(2+-%250(4I+IZ°(2+Q§(1|2 (28)

|
¢
'y

where A__(K R") . B = | [Ll_Nz_Lz.'.h—j' ] _Abz

H (csbz) 3062 29
and ry _'_.( K ) P D J - | ~N - A bz
A%pc B = (c3 bz)['- N +L, =N, éﬁ&z'

The values for the scattering coefficients K;, K,, L;, L,, etc. are to be
evaluated from their general expressions given in Appendix B. For this

particular case
llzmzznzl, 1.—_12=m=m1=n1=n2:0 (30)

and € — o0 , &4 = 1.0. The resulting values ** of the scattering

* The final expression is independent of <}9 , as expected. The trignometric
terms either cancel out or combine to form unity.
**The quantities P and I appearing in the following expressions are defined

in Appendix B.
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coefficients are:

_ 2
K = 31,
K - 2 b’c
2 - i =YJ
3 P72n-2)

2
be - & (89) 3 o - 1] b 3 Lo

[, 2
Lo N

Fee =15 16 <:2 ) ( rar) i * P 4,7)

X [ (% (Ixc) - & (I, - PFc )] (31)

N _ (b/E-1) [ 2m L (I+ p_P,)
b*c? 45 P-4mr) ~ 30 I, Fc ~4m
N L (1/15)
LG 45 ( / ,) - 2-(FFIL,.) @c"’-ﬂ) ’

and L2=N,=E,=N3=O
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These formulas are valid for both horizontal and vertical polarization
of the incident beam, but the values of the scattering coefficients® K,
K3, L, etc. are different.

For the case of horizontal polarization, 1j = m = n; (see Eq. 14)
and the scattering coefficients for the dielectric spheroids (oblate, prolate

drops) are:

k'_ Kk =2 [_21m(€e-1) ] ,
TEe 3 Lam+(e-npPd

5L, ﬁﬁ (4:r+(e -NF’ {‘E-” (2_%/;?%4_}3"( 2 (é Ztiz

+ E£(_8B2)l ,j_2n i
0-9) | + (7385 { € [le-281.c)
(31a)

+ € b2 L _] + (b§g+l) +4-F1n( )[z(e -1)

x (5 -) (+5) £ + (ez—ze) (% -I)]} ;

’/ ' 2
5L 3 = oz (I+€)

* The primes on the coefficients K;, Kj;, L;, etc., refer to their non-
dimensional form as defined in the above expressions.



Scattering Cross Sections for Non-Spherical Drops, Y-Incidence.

For the case of the radar beam (parallel to y-axis) striking
vertically falling drops, the direction cosines of the field point x, vy,
z in terms of spherical angular coordinates @ and ¢ (see Figure 11)
are

a = sin 8-€c0S ¢ B3=C0s 6 ¥=sino-sin ¢ (32)

The values of these direction cosines and their derivatives evaluated
at B=4r are

’ oda ! i
- o B _ A -
/3 1 5T 0 sino o = © (33)
¥= 0 2% _ -sin 4 dy _
56 ¢ sine 3¢ = cos ¢

Differentiating the expressions for P and P with respect .o © and o .
making the evaluation with the aid of Eq. 32, substituting the resulting
values in Eq. 24, and rearranging the terms in power of &K =k L
results in formulas for back-scattering cross-section, g, as follows:

For prolate spheroids ( L =2c »&= 27Tc /A)

SN
()‘/o-6 O _4b |cx(’< Ka)+or°[(L-N-L+ )( K)gz“

b/c
(34)
’ 2
,a/K+K3).,.aEL N +L N,) - “"*Ka)b ]l
30 c2
2mhb
and for oblate spheroids ( L = 2b , o= x )
o _._Q'__4c IO((Kt 3)+0([(LN L +R)S
/06 mb/c b (35)
ke W
=7 K + K
- (K Ks)“ 'dz(K,+K3)+(X [(L N, +L )gz '3‘0—'3‘ “
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(A)\‘E (B)

FIG. 11 - ORIENTATION OF THE FALLING DROPS AND THE RADAR BEAM IN BODY
COORDINATES (Drops are a. Prolates, b. oblates. Radar Beam A. Hori-
zontal Polarization B. Vertical Polarization)

Qe
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’5N1 — (€E-1) ( 21 ) (2 2
M- b2 c3 3 4 +(€-1)P; bic—1) + (41T+(G-I)P’)

x[e(,_bicz) +(%(bgz_,).(l+§)%}

/ 2
BN, 15N3 — b5 [ (E——I)
b e €-1)
2 2-(3r)
(36)

and
— Vi
Kl = K3 =0

/ 4
L3=N'=L'=N3 =O

For the case of vertical polarization, using the conditions of
Eq. 15, the expressions for the scattering coefficients for prolate and
oblate water drops become as follows:

| ‘
Ki =0 K;ELEK, = 2/3 (€-1) g(e)szc



where

J

5(€) [o+(e-npPsam]

n -

O
[l

<
QU
N~
(9] IUN
hﬁ
Njm
S
+
%o
S—
]
e
+
N —
Ul
D
=
™
2
0

€ (€-2) (5 1 ( b2_‘)
x[ <52 (%) si]+5 6@ (¢ (e )_,
% | 3P’
G(e) = {[(e-l)(l+ %) 3] (-2—,-7-—2)]+2}
2
6-5% K
5L.=PL3  — F(€) {(E-I) [ 3 +€ 2 ]}
2 2
' c P _4c
+2'<':2:' 62} (37)
' ISN b2
ISN,=—DZ3' = G(€) (E - /Cz>
!
Ns = O
and
rot / / ! 1
K|=K3=O Ll =N3 = L3 =

37
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Expressions for the Scattered Electric Fields Esx and EEZ

The expressions for these field components can be obtained
easily by using the transformation of co-ordinate relations

Esx= -E, cos ¢ - E, sin @

Esz= -Eg sin ¢ + Ey cos ¢
Evaluating Eg and Eg of Eqs. 16 and 17 as before and substituting the
resulting values in the above equations, the following equations are
obtained

(38)

: 2
ik 3 - +«N - b(k-K)l 39
7 Hs, = K2 (K,-R)+ k[l Ny L#No- 20K K)]

4 - = =
kz(R|+K3)+ k[L;"N,“' L,"‘Ns"?ba(K,*Ks)] (40)

Es,== 7 st

Thus, for horizontal polarization all scattering coefficients involved in
Eq. 40 in view of Eq. 36, are zero, i.e., Eg_ = 0. Thus, only the x-
component of the electric fleld is scattered baczk and has the same polar-
ization as the incident field. Also, for vertical polarization, according
to Eqs. 39 and 37, Es = 0 and only the vertical component of the electric
field is scattered back with the same polarization as the incident field.
However, this is not true when the orientation of the electric field is
intermediate between the two polarizations, (see Figures 21 and 22).

Extension of the Formulas to Obliquely Falling Drops

The formulas for the scattering cross-sections derived earlier
can be easily extended to the case of obliquely falling drops, if the tilt
of the drop is in the plane normal to the direction of propagation of the
incident beam. In this case, consider the polarization of the incident
beam (Electric field E) at an angle ¢ , (representing the tilt of the drop)
which is intermediate between the horizontal and vertical polarization.

Resolving the incident electric field, E;, into components along
the x, z axes, the following relation is obtained

tan ¢ = Ej //E )
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The radar back scattering cross-section, 0, for this case from Eq. 6
18

2
O = 477R2 E = Ez" * E‘O’EZ- (42)
2 .
E, E'X + EZ

This may be written in a more appropriate form by combining Eqs. 41
and 42

2 Es, 2
o = 47TR( Sx cos ¢ + Es?z sin ¢) (43)
E'x Iz
or according to the definition of
2 2
g = 0‘x cos § + 0‘2 sin ¢ (44)

where Oy represents the back-scattering cross-section for the case
of horizontal polarization andggfor vertical polarization.

Depolarization

The angle of polarization, £&, of the scattered field with
respect to the body coordinates may be written as

-~

E
No= tan Sz

Esx

(45)

-1 0.
2z .tan @
or n = tah 75
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since

ESX :ATI RZE,'X . JO‘X = .,’47TR20_X . Ei cos ¢
2
Es, =JanR E;, - [0 =anR 0, - E sin®

(46)

and

Thus, if the incident electric field is polarized at an angle, ¢ , the
scattered field will be polarized at an angle, 42 .

Scattered Field Incident Field

FIG. 12 - SCATTERED FIELD, INCIDENT FIELD

Forward-Scattering Cross-Section Qg

The scattering cross-section, Qg, according to the definition of
Eq. 3 is
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=-.Ps/3i )

where P is the total power scattered by the scatterer and represents
the radial poynting vector* integrated over a sphere of large distance,
R, 1. e.

man

> Y 2 H . .
R=3 o f (Ee”cn" EgH) R Sin €90 90w
o

Calculations of this integral, for the case of Stevenson's solution, are
involved. Only the steps are described and final results are presented
here.

Differentiating P and P with respect to 8 and ¢ , and sub-
stituting these differentials in Eqs. 16 and 17 provides the required field
components appearing in the integral. By carrying out the integration and
rearranging the terms it can be shown that

3
Qs"(?)g [(szji-k‘Lj)+(k2Kj+k4Lj)]
J=1 (49)

3
* 2| 0 e By )+ B (0 )

where P; and q; are constants of integration and m takes values in cyclic
order with j.
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RESULTS, CONCLUSIONS AND RECOMMENDATIONS

From the formulas derived in the text, values of the scattering
coefficients K, K, L;, L etc. of Eqs. 36 and 37 were computed for
both prolate and oblate raindrops for a 3-cm wave for horizontal and
vertical polarization, and for a 10-cm wave for horizontal polarization.
The data are presented in Tables XVIII to XXIII inclusive. The shapes
of the drops denoted by the appropriate values of the axis ratios (b/c
for prolates and c/b for oblates) is represented by the first column of
these tables.

Using these tables the radar back-scattering cross-sections
were computed for non-spherical raindrops for the above mentioned
cases. The results are summarized in Figures 13 to 18. These
figures show the variation of the ratio /0% with e ,with the shape of
the drops (axis ratio) as a parameter. The charts for oblates, however,
differ slightly in that the ordinate is multiplied by (c¢/b)’ to present
a wider spread between the curves of different oblates (c/b values).

Calculations were also made for the radar back-scattering
cross-sections for oblates and prolates at Z-incidence. The results
are presented in Figures 19 and 20.

Figures 21 and 22 show the depolarization angle of the back-
scattered field measured from the horizontal incident field as a function
of the orientation of the drops. The angle ¢’ is measured from the
vertical axis to the major axis of the drop. Figures 23 and 24 show the
back-scattering cross-section of a tilted drop, normalized with respect
to the back scattering cross-section of the untilted drop ( ¢' = 0), as a
function of the tilt angle (]5’

In making the practical evaluation in Part I and Part II it was
the conclusion of the authors that an exact solution,based on spheroidal
function theory for dielectric spheroids, would be limited in its application
to raindrop analysis, considering the choice of variables required in
such an analysis and the labor that would be involved in the numerical
evaluation. Stevenson's solution in this respect is less tedious to
calculate and allows arbitrary choice of the drop orientation and incident
field conditions, the drop shape (even includes a triaxial ellipsoid
a # b # c), and the electric properties of the scattering medium.
Since this solution is in the form of a power series, an extension of the
present formulas and numerical results, based on a three-term solution,
can easily be made. It may, however, be emphasized again that the
check of the accuracy of this theory has been made only indirectly;
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that is, only for the case of conducting prolate spheroids since

there is no exact solution available at present for dielectric spheroids.
Therefore, the results are based on the assumption that the behavior

of the dielectric spheroids (like in the case of spheres)* is not radically-
different from those of conducting spheroids. It would be desirable in future
to: (1) check this theory directly against an exact solution for dielectric
spheroids, if and when such a solution is developed, and (2) if necessary,
extend the present results to more terms of the series.

* See discussion of reference 16, page 613.
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FIG.

45

NN
AN

(B8)x 070,

.001

NN\
AN NEE-N

0001

14 -

(o] 2 3 4 5 6 7 8 910 15
2Tb
T="
RADAR BACK-SCATTERING CROSS-SECTIONS FOR FALLING OBLATE

DROPS AT 3 CM WITH HORIZONTAL POLARIZATION



46

0/0,

1 ' 2 3 4 5 6 1T B39I0 5

2m
oc= 5

FIG 15 - RADAR BACK-SCATTERING CROSS-SECTIONS FOR FALLING PROLATE
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Mathematical Definitions

APPENDIX A

L1
The values of the integrals I, of equation (17) evaluated by Schultz3' 4
in terms of tabulated prolate spheroidal coefficients are:

I:J=Nol, for L=1

=0 for L#l

Lo _ 3 NETIN R el u . L
Iz 2 L1+ [g/Un,l Znes 0N dnsrt r;:Zo' p=Zm'/('“—»" jiL.N dn dp

where Adjj=0 for i+j odd & equal fo one for i +] even.
. &/ na | o0 oL o oL
i 37 Ay [ o+ o o
u o/ n+ oL oL a oL
)
I, =Zn=,; M [(n+3)d.g1'd% —(n-l)d_nZ:L-dnTﬂ]

a0
15 = 2(n+1)(n+3) n dl-g— - d%ﬂ (n+4)d% dzﬂ
n=020ven

2 2 J oL n oL
t_ (n+1) . . n- )
I = 2Uup {Z(2n+l)(2n+3) l_-("+2) dp-dy +n°d _-d,,
n=0

© oL 2
- dn nn- ¢ L(n+1)" L, U
zn:':-'/uls" (2n+1) [ 2n-1 “Ono + 2n+3 dr +nd“]

_i ﬁ/uhn A, dp dp’

n=0 pP=0

The numerical values of these integrals have been computed for ¢ = . 1,
.2, .4, .6, and . 8 for all combinations of the values of 1 =0, 1,
2and L =0, 1, 2. The data are reported in table IX.



59
APPENDIX B

The general expressions for the scattering coefficients appearing in
simultaneous equations (34a) and (34b) are as follows:

-nt

Bui= (c—‘é-) Ao *( e""- n" Ry &) 1"

cu= €50 R ce ) 1T

Du= R (e.2)-I5

U= (&) Aafle> ) Ra'te,e) 13" &Rolce )1
Vim (£51) Rof(c8 )15 & Ronte,t )T

ez -EE- D Rile.e I HE) Ry (c)-Te"

21" = /dOL
Ao=5g—-° n
Noy Loy

These coefficients have been computed for different combinations of
1=0 1, 2and L =0, 1, 2 and for each combination of& = 1.1, 1.2, 1.3
and ¢ = .1, .2, .4, .6 and .8. The numerical data are reported in
tables X - XIII.
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APPENDIX C

The scattering coefficients doz’ /j;l appearing in the infinite
system of simultaneous equations (Eqs. 34a, 34b) decrease very rapidly’
with increasing mode € as long as € is greater than the characteristic
dimension times the wave number ( ®& = Ka ), In the range of & below
the resonance region, it is sufficient to truncate the equations series after
four or five terms*. The determinantal solution of dm, ﬁl for three terms

of the series are given as follows:

Boo O Do By Do D Coo Dho Do
aooxc;= B,, C, D,| (X xu= |u, W, W) AxGc= |o B, D,
o1 1 o2
U Vi W, U, Wo W, Vio U W
Cy By Dy Ci By Dg Coo ©  Bog
A xu= |y Uy, W [Fxu-= v, U, W, B:;c-: O Cp By
03 11 12
VZI UZI ‘NZO VZI UZI WZZ \,IO VIZ U
Ct Dio By Coo © Dy, Cn Do Di2
/%x H= |V, Wy Ug G= |0 C,_, D, H= |V, Wy, Wy,
V2l WZO UZI VIO \rlZ WH VZI Vzo W22
and U=Up+ Up

The numerical values of the scattering coefficient(xoz for 1= 0,

1 and 2 are presented in table IX.

* Since in the present computations ¢x is less than one, the scattering
coefficients corresponding to 7 » 3 were neglected. This termiriation
affected the values of (@ in the sixth significant figure after the decimal.
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APPENDIX D

The general expressions for the scattering coefficients involved
in Eqs. 20 and 21 are as follows:

D,

K, =& (e—n freal

4 2 2y — (2P BmE+2n2)
5L, = ft {(c—-n l,[s‘(edz—b—o‘) (o d ]

+e( mn-Cnm° )} + (€)1 {(e—n fie-2)1

+ €a Iq —-g—cq] + efu (B - C) /(abc)}+f,<e;-gw)
~ M E4+E 7 2) —mn, b°—nm,c

x{(Ib Ic)[z(b+c)(mn +nm) n, 2C ]

—€u (b°=&) (mn’ +nm" )/ labc) } + fier gw)l

X{(I,,—Ic) [0k (u)+ en (Eu-2) (6 —cz)/(abc)J}

D,

- 2 €
I5M, = -g—él— &G—I)(Iab nn' +I,nm' —2 Ibcll) +ach(ﬂf

D3

X (2021‘[, "‘bz mm — C2 nn,)]

15 N = ——é- (1) f,(u) (BB=F) 1, + g(€) [(e/2)( b°+C)
x (mn +nm) — BEmm —cn m] + filwag (€)

xl, [€4 ( 5—C) 7 (abe) —(m—1) k (€)] D4



62

The expressions for the undefined functions and integrals involved

in Eqs. D; to D4 are as follows:

. -1
. _ du
f, (6)=( (€-0) I, +a—2ﬁ) ; da ‘o (@%tu) Rlu)

R(u) = [(02+U) +(B+u) +(c2+u)] % ;

@
et d - du
I = y R(uu) Lo l(agru)R(u)
Iob = Jw du
) (P+u)(PP+u)R(u)

-1
g (u)= [(u-l)(b2+Cz)Ibc *a_%ﬁ]

4€ (€-)

2
Q = (€-]) (Iqb Ibc+ IbcIca +IOOI0b) abc

(J 4 _E%_ J/) + 4£2
X pad 7y a2bPE(X a2b?)
a
du 2 ,2

J of [R(U}]3 (Iab Toc )/(c™=b)

’ _ ® u du 2
J = j — = I -CJ eflc.

p [R(U)]3 ab

2 2 2 2 2 2,2 2 2 2 2
Z a=a +b+c Zab2=ob+bc+ca

ki(€)= bIy—cI, —(€/2) (b +¢) (I,~I,)
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and the remaining scattering coefficients K,, Kj3, L,, L3 etc. of
Eqs. 20 and 21 are obtained by cyclic permutations of a, b, c;
1: m, n,; 11: mi, N ; 12, mp;, np

_ __The scattering coefficients referring to magnetic field K, Lj,
Mj and N; (j = 1, 2, 3) are obtained from the corresponding K;, Ljefc.
by making the following substitution

11, mj, nl —ti 12; mz2, nz

1,, mp, np—» -l],-ml, -0} ; € = A

APPENDIX E

Special values of the functions shape factors and integrals involved
in the expressions for the scattering coefficients described in Appendix D
and in the text are as follows:

—_'. P, . = '._P — —_ /
I, =3 3 i L= e oy Prdm-2P

2,2 -
’ T b/c Ite I - oro
where P —262- [' -_— —E—e;— ,oge —'—--—-e—_ for prolates

’ . ~ 2 2 r o .
and P - %’5_ [bT/C Sln' e _ b/C] for oblates;
also
e = 30 " (P- 2
be b*c om & 3)

_ | | +e
I-=¢5 loge-,_—e (for prolates) ;

|
I = Sin e
c J_b;cz_—l ( ) (for oblates) :
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Various relations connecting the integrals are

IO + Ib +Ic - 240bc)

021c # b1, + Pl = 1

Ieb=(Ie-1, )/(bz— )

and

I
N

adbc
3021 + b1 2
ao ab +C 1y =31,
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.99953
199915
.99875

.99638
.99556
.99480
.99320

98561
97944
.97288

.96808
.95350
.93990

.94435
.92070
.89530

TABLE 1

RADIAL SPHEROIDAL FUNCTIONS

(1)
Rp(cE)

.036615
.039916
.043317

.073087
.076624
.079630
.086234

.144720
.157290
.169790

.213700
.231160
.248110

.278260
.299310
.318970

(1)
Rpz(c¥)

(3)5864*
(3)7394
(3)9185

(2)2339
(2)2660
(2)2920
(2)3612

(2)9275
011740
.014373

.020744
.026080
.031700

.036660
.045690
.065240

(2)
Roole &)

-15.1860
-11.9450
-10.1290

- 7.5446
- 6.5256
- 5.9110
-4.9920

- 3.6810
- 2.8280
- 2.3470

- 2.3400
- 1.7520
- 1.4110

- 1.6360
- 1.1660
- .8840

(2)
Ro1{cé&)

-203.0500
-132.2400
-97.7920

- 51.2740
- 39.7550
- 33.5270
-24.8900

- 13.3140
- 8.8240
- 6.6380

- 6.2643
- 4.2222
- 3.2260

- 3.7640
- 2.5822
- 1.9947

(2)
Ro2(c.€)

-7.9210xI0°
-4.2870xI0°
-2,7610x10°

-993.0827
-671.8480
-538.2389
-347.1258

-125.8000
- 68.5000
- 44.4000

- 37.9900
- 20.9230
- 13.7200

- 16.5250
- 9.2340
- 6.1600

Numbers in parenthesis refer to the number of zeros between the decimal point and the first
Thus . (3)5864 = . 0005864.

significant figure.
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TABLE II

RADIAL SPHEROIDAL FUNCTIONS

(4)
Roole€)

. 99953+i15. 1860
.99915+i11.9450

. 99875+i110. 1290

.99638+i 7.5446
.99556+i6.5256
.99480+i5.9110

.99320+14.9920

.98561+i3.6810
.97944+1i2.8280
.97288+12.3470

.96808+i2.3400
.95350+i1.7520

.93990+1 1.4110

.94435+i 1.6360

.92070+i1.1660
.89530+i0.8840

(4)
Rgi(e.#)

. 036615+i205. 0500

.039916+i132.2400

. 043317+ 97. 7920

.073087+i 51.2740
.076624+i39.7550
.079630+i33.5270
.086234+i24.8900

.144720+i13.3140
.157290+i8.8240
.169790+16.6380

,213700+i6.2643
.231160+i14.2222
.248110+i3.2260

.278260+i3.7640
299319+i2.5822

. 318970+i1.9947

(4)
Rp2(e,&)

. (3)5864+i7. 9210x10°
. (3)7394+i4.2870x10°
.(3)9185+i2. 7610x10°

. (2)2339+1993.0827
.(2)2660+i671. 8480
. (2)2920+i538. 2389
. (2)3612+i347. 1258

(2)9275+i125.8000
011740+i68.5000
014373+i44.4000

.020744+i37.9900
.026080+i20.9230
.031700+i13.7200

.036660+i16.5250

.045690+i9.2340
.0565240+i6.1600
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TABLE III

DERIVATIVES OF RADIAL SPHEROIDAL FUNCTIONS

(1) 7
00 (¢®

.003664

.003993
.004315

.014588
.015240

.015943
.017266

.058140

.063200
.068210

.129490

.140026
.150280

.226560

.243740
.259770

(1) /
Roy (c.8)

.033225
.033198
.033178

.065806
.065733
.065620
.065405

.125650
.124370
.121500

.177150
.172440
.167310

.213450
.202530
.190660

(1)
Roz (c2)
.001263
.001596
.001731

.005840
.006118
.006354
.006875

.023110
.024970
.026920

.050580
.055640
.059690

. 086910
.092847
.098170

@) -

Roo (c.e)

47 .
22.
14.

24.
15.
11.

7.

12.
.9920
.9000

INN

w o

7110
8040
5600

0070
1530
5184
3829

3010

.5080
.2240
. 7930

. 7307
.4386
.3339

@)

Rot (<.¥)

1.1160x10

459.
260.

277.
163.
113.

64.

70.
29.
le.

31.
13.

00
00

3110
3070
7713
2501

6200
1000
5100

9460
2960

.5590

.5440
L7734
.5110

(2) 7
Roz (ce)
4
6.1620x10"
2.1529x10*

1.0738x10*

7.7103x10°
4.1639x10°

2.6954x10°

1.3451x10

968.2189
339.0446
169.5008

289.0000
101.4230
50.8400

123.1200
43.5700
21.8800

L9
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DERIVATIVES OF RADIAL SPHEROIDAL FUNCTIONS

(4) /
Roo(c,£)

.003664-147.7110
.003993-122.8040
.004315-114.5600

.014588-124.0070
.015240-115.1530
.015943-111.5184
-.017266-17.3829

058140-112.3010
.063200-15.9920

.068210-13.9000

.129490-18.5080
.140026-14.2240
.150280-12.7930

.226560-16.7307
.243740-13.4386
.259770-12.3339

TABLE IV

(4) 7
ROl(c,g)

. 033225-11. T160x10°
.033198-1459.0000
.033178-1260.0000

.065806-1277.3110

.065733-1163.3070

.065620-1113.7713
.065405-164.2501

.125650-170.6200
.124370-129.1000

.121500-116.5100

.177150-131.9460
.172440-113.2960
.167310-17.5590

.213450-118.5440
. 202530-17.7734
.190660-14.5110

(4) 7
Ro2(c.8)

.001263-16. 1620x10*
.001596-12. 1529x10*
.001731-11.0738x10*

.005840-17. 7103x10°
.006118-14. I639x10°
.006354-12. 6954x%10°

.006875-11. 3451x10°

.023110-1968.2189
.024970-1339.0446

.026920-1169.5008

.050580-1289.0000
.055640-1101.4230
.059690-150.8400

.086910-1123.1200

. 092847-1 43.5700

.098170-121.8800

89
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0.6

0.8
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el e

(1)

RoleE)

.01526
.02207
.02769

.03050
.03837
.04409
.05519

.06070
.08753
.10920

.90966
.12968
.16090

.11905
.16968
.20933

TABLE V

RADIAL SPHEROIDAL FUNCTIONS

(1)
Ri(cE)

. (3) 3660
. (3) 5297
. (3)7223
.001344
.001773
.002104
.002867

.005326
.008400
.01138

.01188
.01868
.02516

.02088
.03224
.04397

(1)
RIZ(CIE)

. (5) 4400
. (5) 7800
. (4) 1180

.001103
.001660
.002492

.002210
.003895
.006910

(2)
Rl o(caE)

=25
-15
-10

-64.
-53.
-38.
=-27.

-16.
-10.

=7.

4.900
5.330
8.300

0938
9700
3466
3350

3700
0949
08100

.48800
. 70600
.41400

.38700
.80000
.07700

(2)

Rjj(eE)

-3136.50
-1587.70
-999, 900

-393.482
-256.770
-199.291
-124.760

-50.180

25
16

14.
7.
4.

w

.543
.070

860
670
860

.490
.386
.188

(2)

RIZ(C:E)

-1
-8
-4

-1
-8
-5
-2

=773.
-331.
-182.

-154.
66.
36.

.9605x10°
. 3643x10°
. 5867x10°

.2292x10*
.374x10°

.2511x10°
. 8839x10°

50.
-21.
12.

880
680
660

530
576
836

600
950
181

69



RADIAL

(4)
RIO(C’E)

.01526+1255.000
.02207+1155.300
.02769+1108.300

.03050+164.090

.03837+153.970
.04410+i38.347
.05519+i27.335

.06070+i16.370
.08750+110.094
.1092+17.081000

.09066+17.49000
.12968+14.71000
.16090+13.41400

.11905+14.38700
.16970+12.80000
.20930+i2.07700

TABLE VI

SPHEROIDAL FUNCTIONS

(4)
Rjile.g)

. (3)336+i3. 137x10°
. (3)530+il. 588x10°
(3)722+i1.000x10°

.001344+1393.50
.001773+i256.77

. 002100+1 199. 30
. 002867+1 125. 000

.005330+i50.180
.008400+i25.540

.01138+i16. 070

. 01188+i14. 860
.01868+i7.670
.02516+i4.860

. 02090+16.4900
.03220+i3.3860
.04400+12.1880

(4)
Riolee)

.(5)440+i1.9605x10°
. (5)780+i8. 3643x10°
. (4)118+i4.5867x10°

. (4)352+i1.2292x10*
. (4)496+i8.374x10°

.(4)625+i5. 251 1x10°
. (4)942+i2.8839x10°

. (3)281+i773.88
(3)498+i331.68
. (3)748+1182.66

.001103+i1154.53
.00166+166.5760
.002492+136.836

.002210+150.600
.003895+121.950
. 006910+i12. 781

0L



0.1

0.2

0.4

0.6

0.8

TABLE VII

DERIVATIVES OF RADIAL SPHEROIDAL FUNCTIONS

(1) 7

Rio(e.g)

.07990
.06016
.05210

.15950
.13260
.11980
.10339

.31580
.23440
.20030

.46749
.34240
.28960

.60680
.43660
.35860

(1) «
Rii(ce)

.001980
.001880
.001970

.008250
.007664
.007495
.007587

.032660
.029680
.029850

.063340
.068220
.086570

.126240
.111930
.112100

(3

. (3
(3
(

(1) »
Ri2(c.s)

. (4) 2930
. (4) 3650
. (4)4290

2612
2790

)
)
) 2904
)

. (3)3411

.001648
.002310
.002697

.007630
.007570
.008120

.015220
.017960
.021750

(2) »
Rio(c¢)

1.7793x10°
613.080
320.163

443.267
298.300
152.696
79.7370

111.048
38.1930
19.9800

49.1000
16.9700
8.94600

27.8690
9.60900
5.11300

(2) »
Rit(es)

2.7952x10
.6300x10°
.080x10

DS 00

3.497x10°
1.700x10°
1.0804x10°
511.217

439.800
136.010
64.4600

130.899
40.5800
19.2740

55.7630
17.3290
8.25000

() »
RlZ(qe)

2.14667x10’
5.769x10°

2.43167x10°

1.34316x10°
6.8481x10
3.61087x10"
1.5225x10"

8.4326x10°
2.2701x10°
958.640

1.6760x10°
452.000
191.400

545.400
147.615
62.6880

1L
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el el

(4)
R10(cz)

.0799-11.779x10°
.06016-1613.000

.0521-1320.000

.1595-1443.300
.1326-1298.300
.1198-1152.700
.1034-179.740

.3158-1111.05
.2344-138.193
.2003-119.980

.4675-149.100
.3424-116.970
.2896-18.9460

.6068-127.869
.4366-19.6090
.3586-15.1130

TABLE VIII

DERIVATIVES OF
RADIAL SPHEROIDAL FUNCTIONS

(4)
Ri1(c&)

.00148-12.7952x10"
.00188-1. 6300x10°
.00197-14.080x10°

.00825-13.498x10°
.007664-11.700x10°
.0075-11.0804x10°

.00759-1511.22

.03266-1439.80
.02970-H36.00
.02990-164.460

.06334-1130.90
.06822-140.580
.08657-119.270

.12620-155.760
.11190-117.330
.1121-18.25000

L

(4)
R12(c,8)

. (4)293-12. 14667x10’
. (4)365-15. 7691x10°
. (4)430-12. 43167x10°

(3)2612-11. 34316x10°
. (3)2790-16.8481x10"
. (3)2904-13.61087x10"

(3)3411-11.5225x10*
.00165-18.4326x10°
.00231-12.2701x10°
.002697-1958.64

.00763-i1. 676x10°
.00757-1452.000
.00812-1191.400

.01522-1545.400
.01796-1147.615
.02175-162.6880



QO o DN O o BN

o o BN

00

1.9978
1.9911
1.9652
.9234
.8684

I%l

.26657
.26661
.26649
.26618
.26612

180

. 66649
.66421
.65813
. 647755
. 63455

o

1}t

. 66590
.66346
. 65408
. 63879
61777

121

1.3322
1.3280
1.3137
1.2899
1.2582

122

-1.9994
-1.9979
-1.9914
-1.9806
-1.9671

NUMERICAL
INTEGRALS
2 01
1% 173
.40024 -1.9979 —-.
.40080 -1.9888 —-.
.40339 -1.9542 -.
.40762 -1.8976 -.
.41360 -1.8279 -.
IiO IiZ
-.(3)889 . 79985 -.
-.003538 .79943 -.
-.013925 .80166 -.
-.030550 .80352 -.
-.052380 .80721 —-.
11 0
I 1)
.3995 .26669
.3980 .26688
.3937 .26774
.3857 .26970
.3758 .27103

TABLE IX

VALUES

°

6664
6634
6538
6377
6178

17!

2665
2662
2662
2655
2654

22

.74268
. 7452
. 7403
.7370
.713283

OF

12
L

.9987
. 9954
.9784
.9447
.9152

0

.3326
.3302
.3214
.3056
.2900

with n

with n

OF ANGULAR SPHEROIDA FUNCTIONS

21
15

-.8002
-.8006
-.8026
-.8058

.8095

192

. (3)302
.(2)121
. (2)489
.010940
.018410

01

.6656
. 6624
. 6499
. 6297
.6029

3l

. 7994
. 7997
. 7905
L7745
. 7519

10

.6656
. 6624
. 6499
.6297
.6029

120

.2665
.2659
.2636
.2591
.2531

132

.2666
.2666
.2665
.2662
.2661

122

.6858
-.6868
-.6898
. 6950
.7018

€l
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TABLE X

DETERMINANTAL COEFFICIENTS

Boo Bu B Coo 11 Co

-0. 030491 -0.27650 -0. 010531 -0. 00335-143.672 0.01019-1342. 37 0. (3)2310-113330
-0. 044071 -0.36660 -0. 017661 -0. 00529-130.226 0.01474-1203.80 0. (3)4240-15716

-0. 055051 -0.42340 -0. 022131 -0. 00686-124. 163 0.01847-1144. 55 0. (3)5750-13570

-0. 060381 -0.27314 -0. 024361 -0.01331-121. 907 0. 02001-184. 317 0.001073-11416. 3
-0. 087541 -0.36130 -0. 035161 -0. 02106-115. 220 0. 02887-150. 070 0.001688-1716. 69
-0. 109591 -0.41627 -0. 043981 -0. 02857-112.212 0. 03604-135.410 0.002289-1447. 84
-0. 117951 -0.25764 -0. 048191 -0.05236-111. 077 0. 03785-121.27 0.004270-1179. 00
-0. 17011 -0.33830 -0. 06 0601 -0. 08233-17. 8109 0. 05425-112. 69 0.006690-191. 000
-0.212231 -0.38208 -0. 086091 -0. 1132-16. 36600 0. 06634-19. 015 0.009016-157. 000
-0. 169401 -0.23735 -0. 070851 -0. 11406-17.4960 0.05212-19. 397 0. 009450-154. 000
-0.243051 -0.30648 -0. 110911 -0. 17850-15. 3858 0. 07340-15. 661 0. 015040-127.420
-0. 301401 -0.34375 -0. 128151 -0.23990-14.4590 0. 08920-14. 030 0.020210-117.210
-0.212331 -.20854 -0. 091871 -0. 19403-15. 7634 . 06043-15.2770 0.016460-123. 340
-0. 303031 -.26251 -0. 130201 -0.30210-14. 2620 . 08301-13. 2020 0.025460-111. 953
-0. 373301 -.28565 -0.159111 -0.40320-13.6223 . 09786-12. 3265 0.033730-17. 5180



0.

1

0.2

0.4

0.6

0.

8

DOI

0.(3)6713+i6268
0.001059+i31730
0.001443+i19980

0.002673+1782.6
0.004176+1396.4
0.005702+1248.6

0.010416+198.06
0.016420+149.91
0.022240+i31.40

0.022540+i28.20
.035450+i14. 56
0.047740+19.220

(e}

0.038200+i11.86
0.058860+16. 189
0.080430+14.000

TABLE XI

DETERMINANTAL COEFFICIENTS

DIO

0.01017+i170.0
0.01471+1103. 5
0.01845+172.18

0.02023+i142.52
0.02926+125.44
0.03660+i18. 13

0.03970+i110. 70
0.05721+16. 600
0.07139+i4.630

0.05781+i4.776
.08270+13.004
0.12600+i2.177

(e}

0.07360+i2.710
0. 10484+1l. 730
0.12930+11.283

D21

0.(3)269+12510
0.(3)424+i1271
0.(3)578+18000

0.00108+131500
0.00168+i159560
.00230+1100. 100

0.00428+140.274
0.00674+i20.498
0.00914+i12.898

0.00957+il 1. 97
0.01505+16.180
0.02027+i13.916

0.01692+15.254
0.02607+i12. 741
0.03560+il. 771

D12

0.(5)88+i3.9185x10°¢
0.(4)1559+il. 6718x10°
0.(4)2358+i0. 9194x10°

0. (4)7024+i0. 02453x10°
.(3)1247+il. 0478x10*
. (3)1881+i0. 5754x10*

S O

0.(3)5559+il. 531
. (3)9852+i656
0.(2)148+i3610

(e}

0.00214+i30100
0.003228+i11290
0.004862+i71.6

0.00423+196.91
0.00747+i42. 04
0.01321+i124.48

UOI

-1.5899
-1.8386
-2.0830

-1.5821
-1.8270
-2.0645

-1.5489
-1.7783
-1.9998

-1.4949
-1.7013
-1.8924

-1.4219
-1.5991
-1.7547

SL
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TABLE XII

DETERMINANTAL COEFFICIENTS

UlO ! U12 U21 VOI VIO VIZ V21

-0. 0351941 0.2421 0.0583+1143. 31 -0. 00149-16.684 0. (3)476+13,520 -0. 008876-1122
-0. 056001 0.2219 0. 0735+176. 970 -0. 00224-16. 691 0. (3)897+il, 598 -0. 008867-196. 13

-0. 073001 0.2057 0. 09026+149, 90 -0. 00312-16. 699  0.00127+1896 -0.008910-181. 71
-0. 080941 0.2419 0. 1160+136. 00 - 0.00591-13. 366 0. 00239+i441.60  -0. 01773-130. 54
-0. 110671 0.2219 0. 1461+120.27 -0. 00887-13. 378 0. 00355+1200. 14  -0.01774-124. 06
-0. 144251 0.2042 0. 1785+i113.60 -0.01246-13.392 0. 00502+i113. 31  -0. 01792.120.43
-0.158991 0.2415 0.2263+19.603 -0. 02302.11. 735 0. 00947+156. 70 -0.03535717.850
-0.218501 0.2235 0.2834+15. 590 -0. 03444-11. 761 0. 01422+126. 16 -0. 03568-16. 231
-0.282651 0.2107 0.3444+13.931 -0. 04820-11. 791  0.0200+115.093 -0. 03641-15. 334
-0.232421 0.2401 0.3267+14. 664 -0. 04965-11.216 0. 02116+117. 43 -0. 05252-13. 679
-0. 317971 0.2242 0.4056+12.854 -0. 07375-11. 235 0. 03167+18.296 -0. 05346-12. 902
-0.408421 0.2126 0.4888+12. 125 -0. 10260-11. 270  0.04410+15.227 -0. 05490-12. 502
-0.29951 0.2391 0.4121+12.861 -0. 08310-10. 947  0.03740+17.794 -. 06927-12. 135
-0.404751 0.2265 0. 5056+i1l. 846 -0. 12270-11. 015 0. 05512+13.843 -. 07159-1l. 732
-0. 515001 0.2191 0. 6011+il. 386 -0. 16900-11. 056 0. 07600+12. 187 -0.7509-11.516


02302.il
-0.7509-il.5l6

0.1

0.2

0.4

0.6

0.8

(a1

—
W N =

— — —_— — —

W R =

—_ =
W N =

Woo

0.05834-i1l, 117
0.07358-1581.65
0.09030-1400.46

0.11623-1277.74
0.14636-1145.38
0.17903-199.460

0.22867-168.969
0.28480-135.790
0.34550-124. 618

0.33460-130.090
0.41170-115.616
0.49480-110.768

0,42920-116.847
0.51990-18.6890
0.60950-16.0228

DETERMINANTAL COEFFICIENTS

Wll

0.(3)85-i10,690
0.001214-i5, 071
0.001943-i3, 187

0.003562-11,335
0.005316-1634.4
0.007486-1399.0

0.01397-1166. 00
0.02088-178.920
0.02925-149.730

0.02683-148.50
0.04684-123.06
0.0805-114.540

0.0514-120.020
0.0753-19.5300
0. 105-16.02000

TABLE XIII

W22

0.(4)117-i6. 753963x10°
0.(4)239-i2. 737731x10°
0.(4)391-il. 516644x10°

0.(3)102-i41,886.9
0.(3)1898-i17, 143.0
0.(3)310-i9,505.00

0.(3)787-12,670.0
0.001507-il, 083.7
0.00247-i602.00

0.003047-1535.0
0.0050-1217.5
0.00762-1121.0

0.00463-1176.01
0.01196-171.86
0.0207-139.70

Wo,

~0.(5)403-il, 793, 186
~0. (4)1034-il, 108, 052
~0. (4)196-i760,978

~0.(4)324-ill, 166
~0. (4)833-i6,926
-0.(3)1564-i14767

~0.(3)25645-1686.0

-0. (3)666-1429.4
20.00125-i297.0

-0.00104-1120.0
-0.00225-183.54
-0.00424-155.6

-0.00214-140.56
-0.00536-126.44

00.0117-119.63

Wi

-0.00886+1270.2
-0.00886+1157. 5
-0.00886+1116.2

-0.01765+167.26
-0.01754+159.20
-0.0175+128.98

-0.03452+U6.77
-0.0337+19,81
-0.0327+17.264

-0.04989+17.337
-0.04749+14.342
-0.0450+13.263

-0.0626+14.101
-0.0580+12.440
-0.051+il. 865

LL



significant figure.

SCATTERING COEFFICIENTS

Re (V)

(2)1133%
(2)4843
(1)1883
(1)4001
(1)6691

(2)2450
(2)9635
(1)3675
(1)7763
(0)1419

(2)3757
(1)1472
(1)5530
. (0)1141
(0)1759

1m((,)

(6)1014
(5)3420
(3)1018
(3)6766
(2)2221

(6)5834
(4)1480
(3)4219
(2)2690
(2)9847

(5)1174
(4)3724
.(2)1020
(2)6150
(1)1801

Thus . (2)1133 = . 001133.

TABLE XIV

Re((f))

-.(6)1935
-.(5)6224
-.(4)5129
-.(2)1383
-.(2)5321

-. (5)1068
~.(4)4332
-.(2)1074
-.(2)7755
-.(1)3026

-.(5)3055
-.(4)9788
-.(2)3018
-.(1)2339
~.(1)8032

o ((y,)

- (2)1620
-.(2)6530
- (1)2509
-.(1)5408
~.(1)8841

-.(2)3652
~(1)1714
-.(1)5697
. (0)1225
. (0)2062

(2)5915
(1)2361
~(1)9121
- (0)1980
-.(0)3140

(REAL AND IMMAGINARY PARTS)

Re ((¥},)

. (5)1360
(4)3019
(3)4771
(2)2338
(2)7225

.(5)5092
(4)8199
(2)1194
(2)6762
. (1)1937

(4)1025
. (3)1613
(2)2518
(1)1256
. (1)3670

I ( ()

(10)1900
.(8)2953
(6)3155
.(5)3705
(4)1566

(9)3210
(1115
(5)1127
. (5)5861
. (3)1067

(9)2917
(7)2998
(5)2 042
(4)1328
'.(3)5219

The numbers within the parentheses denote the number of zeros between the decimal point and the first

8L
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TABLE XIV A

DENOMINATOR DETERMINANTS G, H
(REAL AND IMMAGINARY PARTYS)

£ -1.1
Re (G) Im (G) Re (H) Im (H)

0.1 5.7232(5) * 6.3958 (9) -3.4958 (8) 2.9285(12)
0.2 2.9706 (4) 4.2105(7) -1.0594 (6) 1.1143(9)
0.4 1.8004 (3) 3.3402 (5) -8.6227 (3) 4.4125( 6)
0.6 3.3424(2) 1.9920 (4) -4.2051 (3) 1. 6853 ( 5)
0.8 8.8926 (1) 2.7191 (3) -9.9284 (2) 1.7275( 4)
& -1.2

0.1 2.2292(5) 9.3609(8) -1.1703(8) 4.0047 (11)
0.2 1.1341 (4) 7.3941 (6) -3.9035 (5) 1.5630(8)
0.4 6.8297 (2) 5.9905 (4) -1.1093 (4) 5.9830( 5)
0.6 1.2358(2) 3.6236(3) -1.4115(3) 2.2937( 4)
0.8 3.4907 (1) 5.1604 (2) -3.3295(2) 2. 3414 ( 3)
&=1.3

0.1 9.5443 (4) 3.0538(8) -5.9198(7) 1.1478(11)
0.2 6.1140(3) 2.4215(3) -1.8059(5) 4.3801(7)
0.4 3.6592(2) 2.0014 (4) -5.5793(3) 1.7185( 5)
0.6 6.3943 (1) 1.2260 (3) -7.2291 (2) 6.5517( 3)
0.8 1.7900 (1) 1.8206 (2) -1.6989(2) 6.9386( 2)

*

The number within the parentheses at the end denote the powers of

ten by which the whole number is to be multiplied.

= 572320.

Thus 5. 7232(5)



TABLE XV

DERIVATIVES OF BESSEL FUNCTIONS

1.1

1.2

1.3

00 N BN —

!

14

_I
J3

14

1 -.00366 +.033212 +.001463 +,(4)345 +.(6)5631
22 -.014594 +.06570 +.005826 +.(3)276 +.(5)8978
.44 -.05752 +.12565 +.022911 +.(2)2167 +.(3)1422
66 12636 +.17452 +.049584  +.(2)7158  +.(3)7056
.88 -.2168 +.20758 +.08374 +.01645 +.(2)2174
12 S(2)399  +.033186  +.001596  +.(4)411  +.(6)7289
24 0159 +.065514  +.00634 +.(3)326  +. (4)1166
48 06252 +.12437 +.02476 +.(2)2575  +.(3)1840
72 13668 +.16986 +.05455 1.(2)8466  +.(3)9102
.96 -.23320 +.196850 +.08944 +.019320  +.(2)37904
13 00433 +.033165  +.0017307  +.(4)4843  +.(6)9333
26 01722 +.0653 +.00686 1.(3)384  +.(4)14844
52 067480  +.12268 +.02668 1(2)3017  +.(3)2334
.78 -.14670 +.164778 +.058524 +.(2)98466 +.(2)11508
.104 -.24848 +.18522 +.09454 +.02182 +.(2)35136



TABLE XVI

NUMERICAL VALUES OF N,,; and A, form = 0; 1=0, 1 and 2

1.9978

1.9911

1.9652

1.9234

1.8684

Noi
1

.66590

.66347

.65408

.63879

61777

40024

.40080

40339

40762

41360

.99944

99770

199100

.97989

.96288

Am
1

3.0004i
3.0024i
3. 009li
3.0201i

3.036li

2

-5.0005

-4.9950

-4.9768

-4.9477

-4.9062

18



b/a

.1000
4167
.5528

.6390

SCATTERING COEFFICIENTS OF STEVENSON'S THEORY (Eq

K
1/bza

.6804
1767
.8261

.8591

Rz/bza

-.6533
-.5839
-.5588

-.5446

TABLE XVII

L
1/a3 b2

-.1528

-.0916

-.0354

+.0129

N
z/aabz

.0890
.0886
.0873

.0870

I42/3.3 bz

.2490
2197
.2108

.2052

38)

.0227
.0259
.0275

.0286

1.3338

1.3601

1.3848

1.4036

Z8

.5792

4861

4174

.3602



b/c

.95
.90
.85
.80
.75
.70
.60
.40
.20
.10

/o

.95
.90
.85
.75
.70
.60
.40
.20
.10

’
RE(KI)

(0)9418
(0)9257
.(0)9082
.(0)8828
[(0)8710
.(0)8528
[(0)8172
(0)7465
(06874
1(0)6500

/
Re(Kl)

.(0)9830
.1003(1)
.1030(1)
.1087(1)
1124(1)
J1212(1)
1541(1)
.2419(1)
.3990(1)

TABLE XVIII

REAL AND IMAGINARY PARTS OF THE SCATTERING COEFFICIENTS FOR
PROLATE DROPS AT 3 cm (Horizontal Polarization)

7
Im(K))

-.(1)1750
-.(1)1690
-.(1)1630
-.(1)1560
-.(1)1500
-.(1)1430
-.(1)1320
-(1)1100
-.(2)9300
-.(2)5000

/
Re(L1)

.(0)6895
(0)6217
(0)5569
.(0)4961
.(0)4401
(0)3777
(0)2965
(0)1587
(1)7350

Im(L1)

-.(1)3610
-.(1)3090
-.(1)2740
-.(1)2440
-.(1)2120
-.(1)1830
~.(1)1380
-.(2)7400
-.(2)4100

s
Re(L3)

.1929(1)
1730(1)
1544(1)
1366(1)
.1205(1)
.1044(1)
(0)7690
(0)3410
(1)8520
(1)2130

TABLE XIX

iy
Im(L3)

-.(0)9050
-.(0)8120
-.(0)7250
-.(0)6400
-.(0)5650
-.(0)4900
-.(0)3610
-.(0)1600
-.(1)4000
-.(1)1000

/
Re(N3)

(1)9257
(1)7950
(1)6994
(1)6098
(1)5185
(1)4545
(1)3250
(1)1380
(2)3300

Im(N3)

-.(2)1520
-.(2)1230
-.(2)1080
-.(2)1074
-.(3)7900
-.(3)6700
-.(3)4700
-.(3)1900
-.(4)4300

REAL AND IMAGINARY PARTS OF THE SCATTERING COEFFICIENTS FOR
OBLATE DROPS AT 3 cm (Horizontal Polarization)

/
Im(K;)

~.(1)1890
-.(1)1990
-.(1)2090
-.(1)2320
-.(1)2470
-.(1)2860
-.(1)4630
-.(0)1180
-.(0)3160

4
Re(Ly)

.(0)8958
1(0)9261
1071(1)
1387(1)
1622(1)
.2303(1)
.5376(1)
.3038(2)
.1909(3)

/
Im(L])

-.(1)4870
-.(1)5840
-.(1)6290
-.(1)9430
-.(0)1032
-.(0)1737
-.(0)4914
-.4188(1)
-.4000(2)

Re(TL3)

2371(1)
.2633(1)
.2954(1)
.3793(1)
.4357(1)
.5933(1)
.1333(2)
.5337(2)
2135(3)

—
Im(L3)

S 1113(1)
-.1236(1)
-.1386(1)
-.1780(1)
-.2045(1)
-.2784(1)
-.6255(1)
-.2505(2)
-.1002(3)

Re(N3)

(1)8852
[(0)1021
(0)1215
(0)1581
(0)1856
.(0)2678
.(0)7308
.4445(1)

Im(N3)

-.(2)1310
-.(2)1660
-.(2)2060
-.(2)2740
-.(2)3320
-.(2)2678
-.(1)1680
-.(0)1564

Rdﬁ{)

(2)4780
(2)9010
(1)1204
(1)1673
A(1)1990
(1)2190
(1)2770
(1)3280
(1)3220

Rqﬁb

(2)3010
(2)6320
(1)1290
(1)2310
(1)3230
(1)6040
.(0)2373
.(0)7970

{
Im(N))

-.(4)9306
-.(4)4910
-.(4)6700
-.(4)8300
-.(4)8200
-.(3)3300
-.(3)1100
-.(3)5500
+.(4)6700

)
Im(N,)

(2)2270
(2)2920
(2)4800
(2)9640
(1)1280
(1)2170
(1)6100
(0)2074

€8



b/c

.80
.60
.20

b/c

.95
.90
.85
.80
.75
.70
.60
.50
.40
.30
.20
.10

Re(K:;)

1156(1)
.1497(1)
.4814(1)

/
Re(K3)

[(0)8160
.(0)6820
.(0)4370

Re(Kll)

.(0)9450
.(0)9290
.(0)9080
.(0)8920
.(0)8700
.(0)8540
(0)8170
.(0)7850
.(0)7480
(0)7170
.(0)6900
1(0)6640

REAL AND IMAGINARY PARTS

Im(K;)

-.(1)2570
-.(1)4480
-.(0)4630

TABLE XX

PROLATE DROPS AT 3 cm (Vertical Polarization)

Re(L)) Im(L) Re(L'3) Im(L3)

1766(1) -.(0)9180 5529(1)  -.2533(1)

1690(1) -.(0)8870 5055(1)  -.1961(1)

1941(1) -.1028(1) 2320(2)  -.7327(1)
TABLE XXI

Re(N3)

.0000(0)
.0000(0)
.0000(0)

OF THE SCATTERING COEFFICIENTS FOR

-
Im(N3)

.0000(0)
.0000(0)
.0000(0)

REAL AND IMAGINARY PARTS OF THE SCATTERING COEFFICIENTS FOR
OBLATE DROPS AT 3 cm (Vertical Polarization)

Im(K;)

-.(1)1290
-.(2)9000
-.(2)3890

REAL

Im(K)

-.(2)5820
-.(2)5440
-.(2)4760
-.(2)4890
-.(2)4210
-.(2)4340
-.(2)3790
-.(2)4060
-.(2)3510
-.(2)3260
-.(2)3320
-.(2)2850

! —/
Re(I)) Im(Ly) Re(L3)  Im(L})
.2539(1) -.1325(1) 8459(1)  -.4245(1)
3541(1) -.1852(1) 1220(2)  -.6256(1)
2556(2) -.1342(2) 6830(2)  -.3570(2)
TABLE XXII

Re(N3)

.0000(0)
.0000(0)
.0000(0)

Im(%3)

.0000(0)
.0000(0)
.0000(0)

AND IMAGINARY PARTS OF THE SCATTERING COEFFICIENTS FOR
PROLATE DROPS AT 10 c¢m (Horizontal Polarization)

) —

Re(L]) Im(L,) Re(Ls) 1m(L.3)

(0)7060  -.(2)8550  .2400(1)  -.(0)3700
(006330 -.(2)6450  .2153(1)  -.(0)3320
(0)5660  -.(2)5860  .1922(1)  -.(0)2960
(0)5050  -.(2)5220  .1698(1)  -.(0)2620
(0)4450  -.(2)3720  .1499(1)  -.(0)2310
(0)3950  -.(2)3640  .1300(1)  -.(0)2000
(0)3030  -.(2)2620  .(0)9570  -.(0)1470
(0)2270  -.(2)2020  .(0)6320  -.(1)9200
(0)1610  -.(3)9700  .(0)4250  -.(1)6550
(0)1140  -.(3)7030  .(0)2390  -.(1)3680
(1)7850  -.(3)4030  .(0)1060  -.(1)1630
(1)5540  _.(3)3420  .(1)2660  -.(2)4090

Re(N3)

(1)7490
(1)6380
(1)5610
[(1)4900
(1)4260
(1)3650
(1)2610
(11770
(1110
(2)6060
[(2)2650
(3)6540

Im(N3)

-.(3)3690
-.(3)2990
-.(3)2590
-.(3)2220
-.(3)1920
-.(3)1610
-.(3)1120
-.(4)7430
-.(4)4530
-.(4)2430
-.(4)1040
-.(5)2540

Re(N1)

(1)8250
(1)8280
(1)7290

Re(Nll)

-.(1)5130
-.(1)2620
-.(2)1380

Re(N{)

.(3)1800
(3)4500
(3)8700
(2)1310
(2)1890
(2)2500
(2)3930
(2)5380
(2)7060
(2)9410
(2)9920
(1)1079

[
Im(N])

-.(2)1060
-.(2)1000
-.(3)1710

Irn(Ni)

-.(3)2910
-.(3)2110
(3)3200

Im(N1)

(41771
(4)3350
(4)4480
(4)5690
(4)6360
(4)7290
(4)8540
(4)9550
(4)9480
(4)9400
(4)9520
(4)8790

¥8



c/b

.95
.90
.85
.80
.75
.70
.60
.50
.40
.30
.20
.10

Re(Kl)

.(0)9840
.1004(1)
.1030(1)
.1056(1)
.1072(1)
1135(1)
1215(1)
1337(1)
1528(1)
.1835(1)
.2427(1)
.4022(1)

TABLE XXIII

REAL AND IMAGINARY PARTS OF THE SCATTERING COEFFICIENTS FOR
OBLATE DROPS AT 10 ¢cm (Horizontal Polarization)

Im(Kj)

-.(2)5770
-.(2)5890
-.(2)6310
-.(2)6440
-.(2)7370
-.(2)7760
-.(2)8720
-.(1)1045
-.(1)1400
-.(1)2000
-.(1)3510
-.(1)9370

Re(L))

.(0)8640
(0)9620
.1084(1)
1233(1)
1508(1)
1651(1)
.2332(1)
.3530(1)
.6028(1)
1220(2)
.3397(2)
.2052(3)

Im(Ly)

-.(1)1620
-.(1)1060
-.(1)1080
-(1)1510
-.(1)3260
-.(1)2140
-.(1)3500
-.(1)5470
-.(0)1130
-.(0)2580
-.(0)9980
-.1136(2)

Re(L3)

.2950(1)
3277(1)
3676(1)
A4154(1)
.4720(1)
.5422(1)
.7383(1)
.1060(2)
.1658(2)
.2950(2)
.6642(2)
.2658(3)

Im(L3)

-.(0)4540
-.(0)5050
-.(0)5660
-.(0)6400
-.(0)7270
-.(0)8350
- 1137(1)
-.1634(1)
-.2555(1)
-.4544(1)
-.1023(2)
-.4094(2)

Re(N3)

(1)9160
.(0)1020
(0)1180
[(0)1360
(0)1580
(0)1860
.(0)2680
(0)4180
[(0)732

1532(1)
.4473(1)
.2924(2)

Im(N3)

-.(3)4510
-.(3)5040
-.(3)5960
-.(3)7020
-.(3)8340
-.(2)1010
-.(2)1540
-.(2)2600
-.(2)5130
-.(1)1260
-(1)4770
-.(0)5090

Re(N])

(2)1740
(2)3950
(2)6800
(1)1060
(1)1490
(1)2210
(1)4240
(1)8410
.(0)1800
.(0)4500
1540(1)
1164(2)

Im(N))

-.(4)2110
-.(4)4660
-.(4)8020
-.(3)1280
-.(3)2020
-.(3)2730
-.(3)5200
-.(3)7510
-.(2)2470
-.(2)6760
-.(1)2810
-.(0)3110

S8
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REPORTS OF INVESTIGATIONS
ISSUED BY THE STATE WATER SURVEY

Temperature and Turbidity of Some River Waters in Illinois. 1948*

Groundwater Resources in Winnebago County, With Specific Reference to Conditions at Rockford.

Radar and Rainfall. 1949*

The Silt Problem at Spring Lake, Macomb, Illinois. 1949*

Infiltration of Soils in the Peoria Area. 1949

Groundwater Resources in Champaign County. 1950

The Silting of Ridge Lake, Fox Ridge State Park, Charleston, Illinois. 1951*

The Silting of Lake Chautauqua, Havana, Illinois. 1951

The Silting of Carbondale Reservoir, Carbondale, Illinois. 1951*

The Silting of Lake Bracken, Galesburg, Illinois. 1951

Irrigation in Illinois. 1951%*

The Silting of West Frankfort Reservoir, West Frankfort, Illinois. 1951

Studies of Thunderstorm Rainfall with Dense Raingage Networks and Radar. 1952*
The Storm of July 8, 1951, in North Central Illinois. 1952

The Silting of Lake Calhoun, Galva, Illinois. 1952

The Silting of Lake Springfield, Springfield, Illinois. 1952

Preliminary Investigation of Groundwater Resources in the American Bottom. 1953
The Silting of Lake Carthage, Carthage, Illinois. 1953

Rainfall-Radar Studies of 1951. By G. E. Stout, J. C. Neill, and G. W. Farnsworth. 1953
Precipitation Measurements Study by John C. Kurtyka. 1953

Analysis of 1952 Radar and Raingage Data by J. C. Neill. 1953

1948

Study of an Illinois Tornado Using Radar, Synoptic Weather and Field Survey Data by F. A. Huff,

H. W. Hiser and S. G. Bigler. 1954
Bubbler System Instrumentation for Water Level Measurement by G. H. Nelson. 1955

The Storm of July 18-19, 1952 Rockford, Illinois, and Vicinity by Bernt O. Larson, Homer W. Hiser

and Warren S. Daniels. 1955

Selected Methods for Pumping Test Analysis. By Jack Bruin and H. E. Hudson, Jr. 1955
Groundwater Resources in Lee and Whiteside Counties. By Ross Hanson. 1955

The October 1954 Storm in Northern Illinois. By F. A. Huff, H. Hiser and G. E. Stout
*Qut of print

1955
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