Middle of the (by)line: Examining hyperauthorship networks in the Human Genome Project

Ly Dinh, Yi-Yun Cheng

School of Information Sciences, University of Illinois at Urbana-Champaign

INTRODUCTION

Large-scale scientific endeavors are on the rise:

- e.g. Human Genome Project (HGP), CERN Large Hadron Collider
- Number of authors associated with these research projects substantially increase as well

Co-authorship dynamics has evolved:

- BEFORE: multiple authors (2~6 authors per paper)
- NOW: 'mega-', 'hyper-' authors (80~200 authors)

Hyper-authored research:

- More of a convention in scientific domains such as biology, high energy physics, and medicine
- Requires large and complex coordination of tasks

Author-ordering tradition in genomics (e.g. chromosome sequencing tasks):

- Usually listed authors in three parts: first, middle, last
- Group 1 First authors: main contributors
- Group 2 Middle authors: data collections, annotation \rightarrow assumed to make smaller contributions
- Group 3 Last authors: senior researchers supervising the research

AIM

RQ: Investigate the **hyperauthorship** phenomenon of one major research publication from the **Wellcome Trust Sanger Institute** (biggest contributors to sequencing) human chromosomes)

Using co-authorship network analysis to:

- Examine the collaboration dynamics in HGP
- Extrapolate the three-parts structure of partial author
- byline (some authors are listed alphabetically, some not)

Table 1. Overview of network characteristics		
Measures	Whole network	Induced network
Number of nodes	1918	166
Number of edges	14,088	9,653
Density	0.008	0.705
Degree centralization	14.69	116
Betweenness centrality	2,213	21.63
Eigenvector centrality	0.055	0.557
Clustering	0.843	0.908
Average path length	3.538	1.425

hyperauthorship ; co-authorship networks; author byline

METHOD

The DNA sequence and biological annotation of human chromosome 1

S. G. Gregory ^{1,2} , K. F. Barlow ¹ , K. E. McLay ¹ , R. Kaul ³ , D. Swarbreck ¹ , A. Dunham ¹ , C. E. Scott ¹ , K. L. Howe ¹ ,
K. Woodfine ⁴ , C. C. A. Spencer ³ , M. C. Jones ¹ , C. Gillson ¹ , S. Searle ¹ , Y. Zhou ³ , F. Kokocinski ¹ , L. McDonald ¹ ,
R. Evans ¹ , K. Phillips ¹ , A. Atkinson ¹ , R. Cooper ¹ , C. Jones ¹ , R. E. Hall ¹ , T. D. Andrews ¹ , C. Lloyd ¹ , R. Ainscough ¹ ,
J. P. Almeida ¹ , K. D. Ambrose ¹ , F. Anderson ¹ , R. W. Andrew ¹ , R. I. S. Ashwell ¹ , K. Aubin ¹ , A. K. Babbage ¹ ,
C. L. Bagguley ¹ , J. Bailey ¹ , H. Beasley ¹ , G. Bethel ¹ , C. P. Bird ¹ , S. Bray-Allen ¹ , J. Y. Brown ¹ , A. J. Brown ¹ ,
D. Buckley ³ , J. Burton ¹ , J. Bye ¹ , C. Carder ¹ , J. C. Chapman ¹ , S. Y. Clark ¹ , G. Clarke ¹ , C. Clee ¹ , V. Cobley ¹ ,
R. E. Collier ¹ , N. Corby ¹ , G. J. Coville ¹ , J. Davies ¹ , R. Deadman ¹ , M. Dunn ¹ , M. Earthrowl ¹ , A. G. Ellington ¹ ,
H. Errington ¹ , A. Frankish ¹ , J. Frankland ¹ , L. French ¹ , P. Garner ¹ , J. Garnett ¹ , L. Gay ¹ , M. R. J. Ghori ¹ , R. Gibson ¹ ,
L. M. Gilby ¹ , W. Gillett ³ , R. J. Glithero ¹ , D. V. Grafham ¹ , C. Griffiths ¹ , S. Griffiths-Jones ¹ , R. Grocock ¹ ,
S. Hammond ¹ , E. S. I. Harrison ¹ , E. Hart ¹ , E. Haugen ³ , P. D. Heath ¹ , S. Holmes ¹ , K. Holt ¹ , P. J. Howden ¹ ,
A. R. Hunt ¹ , S. E. Hunt ¹ , G. Hunter ¹ , J. Isherwood ¹ , R. James ³ , C. Johnson ¹ , D. Johnson ¹ , A. Joy ¹ , M. Kay ¹ ,
J. K. Kershaw ¹ , M. Kibukawa ³ , A. M. Kimberley ¹ , A. King ¹ , A. J. Knights ¹ , H. Lad ¹ , G. Laird ¹ , S. Lawlor ¹ ,
D. A. Leongamornlert ¹ , D. M. Lloyd ¹ , J. Loveland ¹ , J. Lovell ¹ , M. J. Lush ⁶ , R. Lyne ¹ , S. Martin ¹ ,
M. Mashreghi-Mohammadi ¹ , L. Matthews ¹ , N. S. W. Matthews ¹ , S. McLaren ¹ , S. Milne ¹ , S. Mistry ¹ ,
M. J. F. Moore ¹ , T. Nickerson ¹ , C. N. O'Dell ¹ , K. Oliver ¹ , A. Palmeiri ³ , S. A. Palmer ¹ , A. Parker ¹ , D. Patel ¹ ,
A. V. Pearce ¹ , A. I. Peck ¹ , S. Pelan ¹ , K. Phelps ³ , B. J. Phillimore ¹ , R. Plumb ¹ , J. Rajan ¹ , C. Raymond ³ , G. Rouse ³ ,
C. Saenphimmachak ³ , H. K. Sehra ¹ , E. Sheridan ¹ , R. Shownkeen ¹ , S. Sims ¹ , C. D. Skuce ¹ , M. Smith ¹ , C. Steward ¹ ,
S. Subramanian ³ , N. Sycamore ¹ , A. Tracey ¹ , A. Tromans ¹ , Z. Van Helmond ¹ , M. Wall ¹ , J. M. Wallis ¹ , S. White ¹ ,
S. L. Whitehead ¹ , J. E. Wilkinson ¹ , D. L. Willey ¹ , H. Williams ¹ , L. Wilming ¹ , P. W. Wray ¹ , Z. Wu ³ , A. Coulson ¹ ,
M. Vaudin ¹ , J. E. Sulston ¹ , R. Durbin ¹ , T. Hubbard ¹ , R. Wooster ¹ , I. Dunham ¹ , N. P. Carter ¹ , G. McVean ⁴ ,
M. T. Ross ¹ , J. Harrow ¹ , M. V. Olson ³ , S. Beck ¹ , J. Rogers ¹ & D. R. Bentley ^{1,7}

Figure 1. Three-parts author structure of the chromosome 1 paper

Co-authorship network construction:

- Capture collaboration patterns among all the authors involved in the chromosome 1 study
- Undirected network: co-authorship is mutual between two researchers
- Node *i* (ego) represents each author; an edge a_{ii} between node *i* (ego) and *j* (alter) denotes that these two authors have worked on at least 5 papers together

RESULTS

Table 1 exhibits the network characteristics of both the whole network and the induced network The whole network:

- includes ego-alter relationships and alter-alter relationships (co-authors tied to the focal author are also tied to each other)
- Density is low (p=0.008) (mean degree of 14.69 edges per author); Clustering coefficient is high at (C=0.843); Average path length is low (ℓ = 3.538)

→ Middle authors (Group 2) score high in Betweenness and Eigenvector centralities

Whole- Degree centrality

Name	Group
1.Hubbard, Tim J. P.	3
2.Carter, Nigel P.	3
3.Burton, John L.	2

Whole- Betweenness centrality

Name	Group
1.Leongamornlert, Daniel A.	2
2.Hunt, Sarah E.	2
3.Lush, Michael J.	2

Whole- Eigenvector centrality

Group
2
2
2

Unit of analysis:

Tools used:

Data collection:

 Co-authorship data on articles published by the Sanger institute on the results of sequencing 8 chromosomes: 1, 6, 9, 10, 13, 20, 22, and X

• The 8 papers identified were published between the years of 1999 to 2006, and were all highly-cited within the field • Focus of this study: published work on **chromosome 1**, the largest human chromosome, thus requiring the most coordinated efforts to annotate and sequence

• Chromosome 1 paper (Gregory et al, 2006) • 166 authors: **24** are **first authors**, **127** are **middle authors**, and **15** are **last authors** (Figure 1)

Data on authors' affiliations, general demographics as well as the list of co-authors are obtained from the ISI Web of Science and Scopus

• R's *igraph* package: constructing the network matrix and calculating network measures • Gephi: visualizing the whole network and the induced subgraphs

The induced network:

subset of the whole network with specified egos and alters who are 166 authors in the chromosome 1 paper Density is much higher (ρ =.705) (mean degree of 116) edges per author); Clustering coefficient is very high at (C=0.908); Average path length is minimal (ℓ = 1.425) → Middle authors (Group 2) score high in Degree and Eigenvector centralities

HGP is a leading example of big science that requires collaborative efforts from hundreds to thousands of researchers who are from a wide range of disciplines

CREDIT WHERE CREDIT IS DUE

→ OUR VIEW: Providing a contribution list to describe whodunwhat in conjunction with the author byline is a necessary practice

Future work:

Group

Group

Group

ACKNOWLEDGEMENTS

The authors thank the Goggin fund and the Smith fund from U of I School of Information Sciences for the generous travel support. The authors also thank Dr. Jana Diesner and Dr. Bertram Ludäscher for their kind feedbacks.

CONTACTS

School of Information Sciences

The iSchool at Illinois

CONCLUSION

Determining where credit is due remains a conundrum in a hyper-authored setting

Middle authors hold essential positions within the collaboration network in the chromosome 1 research Misallocation of credits may result in misallocation of funding opportunities and academic positions

Examining in detail the collaboration dynamics among the first, middle, and last authors of ALL published works by a number of research centers affiliated with the HGP A post-hoc analysis reveals that the topology of this network exhibits more desired properties of a **small** world network, rather than a scale-free network as with most co-authorship networks (Barabasi & Albert, 1999). We will also examine this finding in further details.

REFERENCES

Birnholtz, J. P. (2006). What does it mean to be an author? The intersection of credit, contribution, and collaboration in science. Journal of the Association for Information Science and Technology, 57(13), 1758-1770.

Cronin, B. (2001). Hyperauthorship: A postmodern perversion or evidence of a structural shift in scholarly communication practices?. Journal of the Association for Information Science and Technology, 52(7), 558-569.

Gregory, S. G., Barlow, K. F., McLay, K. E., Kaul, R., Swarbreck, D., Dunham, A., ... & Jones, M. C. (2006). The DNA sequence and biological annotation of human chromosome 1. Nature, 441(7091), 315.

Ioannidis, J. P. (2008). Measuring co-authorship and networking-adjusted scientific impact. PLoS One, 3(7).

Mongeon, P., Smith, E., Joyal, B., & Larivière, V. (2017). The rise of the middle author: Investigating collaboration and division of labor in biomedical research using partial alphabetical authorship. *PloS one, 12*(9).

{dinh4, yiyunyc2}@illinois.edu

https://github.com/yiyunyc2/ASIST18

