
c© 2018 by Pratik Lahiri. All rights reserved.

EVOLUTION AS A DESIGN TOOL TO INFORM BIOMOLECULAR ENGINEERING

BY

PRATIK LAHIRI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Agricultural and Biological Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Associate Professor Kaustubh Bhalerao, Chair
Professor Gustavo Caetano-Anolles
Associate Professor Kris Lambert
Assistant Professor Diwakar Shukla

Abstract

Enzyme biotechnology is a critical component of technologies needed for increased sustainable ma-

terials processing. Along with the ability to rapidly synthesize proteins through fermentation, there

is a need to be able to alter enzyme functionality in specific ways to suit the desired application. For

instance, industrial enzymes with increased stability at higher temperatures or altered pH optima

can improve productivity in large-scale bioreactors through improved catalytic rates and lowered

costs due to cooling and reduced contamination. This research aims to provide the scientific com-

munity with a suite of design tools and methodologies for protein engineering experiments and

research. Specifically, these methods utilize a foundation of concepts from molecular evolution to

provide insight into the innovation process in molecular engineering.

Methods developed in this study aim to increase thermal stability of an enzyme by engineering

disulfide bonds and electrostatic salt bridges on the surface of the enzyme. Two methods to assist

disulfide engineering were developed- 1) A neural network model to predict disulfide bonds within

existing structures from mutual information and a continuous distributed representation of protein

sequence. 2) A methodology incorporating statistics on the structural information of disulfide bonds

in conjunction with evolutionary patterns to rank order specific design choices. A similar approach

was developed for engineering salt bridges. The methodology for developing geometric constraints

and utilizing evolutionary patterns to engineer salt bridges was validated with experiments on 1,4

-glucan branching enzymes by collaborators.

The neural network model achieves state of the art accuracy (80%) and in addition, the impact

of the protein sequence representation, mutual information and cysteine separation distance on

performance of the model were analysed. in a particular disulfide engineering experiment. The

ii

trained long short term memory (LSTM) neural network model also serves as a model of disul-

fide bond sequence motifs so as to develop an understanding of the constraints for disulfide bond

formation. The methodology using statistical constraints on disulfide bonds was prototyped as a

PyMOL script that identifies potential pairs of residues on the surface of an enzyme for modifi-

cation to disulfide-capable cysteine residues. This method suggests suggests 85% more stabilising

mutations out of 17% fewer suggestions according to evaluations by short Molecular Dynamics

simulations using FoldX.

iii

In loving memory of my dearest mother, and to my family for their love and support.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

List Of Abbreviations . x

Chapter 1 Introduction . 1

Chapter 2 Engineering Disulfide Bonds . 4
2.1 Introduction . 4
2.2 Material and Methods . 6

2.2.1 Dataset . 6
2.2.2 Statistical analysis of Geometric and Evolutionary Constraints 6
2.2.3 Molecular Dynamics Simulations . 6
2.2.4 Disulfide Engineering Protocol . 7

2.3 Results . 8
2.3.1 Distributions of Disulfide Bond Geometries 8
2.3.2 Disulfide cysteine substitution . 8
2.3.3 PyMol Plugin . 9

2.4 Discussion . 11

Chapter 3 Sequence Effects for Engineering Disulfide Bonds 15
3.1 Introduction . 15
3.2 Material and Methods . 18

3.2.1 Dataset . 18
3.2.2 Evolutionary stability of local sequence context 20
3.2.3 Features in LSTM . 20
3.2.4 Training the LSTM . 20

3.3 Results . 21
3.3.1 Sequence context of disulfide bonds . 21
3.3.2 Neural network results . 22

3.4 Discussion . 23

Chapter 4 Patterns of Salt Bridge Evolution for Rational Design of Ther-
mostable Enzymes . 24
4.1 Introduction . 24
4.2 Material and Methods . 26

4.2.1 Development of the salt bridge data set . 26

v

4.2.2 Secondary structure elements . 26
4.2.3 Evolutionary stability . 27
4.2.4 Regional evolutionary stability . 27

4.3 Results . 27
4.3.1 Distribution characteristics of salt bridges . 27
4.3.2 Substitutions at salt bridge positions . 30
4.3.3 Pairwise evolution of salt bridges . 33
4.3.4 Effects of salt bridge on local evolutionary stability 33
4.3.5 Relationship of evolutionary stability between parts of salt bridges 35
4.3.6 Rational design of salt bridges . 35

4.4 Discussion . 37

Appendix A Plugin Experimental Results . 40

Appendix B DbD2 Experimental Results . 46

Appendix C PyMol Plugin . 54

vi

List of Tables

2.1 Summary of Experimental Evaluation Data . 13
2.2 Summary of Results on Experimental Evaluation Data 14

3.1 Machine learning accuracy results . 23

4.1 The percentage of local salt bridges against total salt bridges 28
4.2 Percentage of salt bridges with both residues in the same secondary structure 30
4.3 The conservative analysis of possible salt bridges . 38

A.1 Results of MD Simulations on mutations suggested by Plugin 40

B.1 Results of MD Simulations on mutations suggested by DbD2 46

vii

List of Figures

2.1 An illustration of the distance and angles in a disulfide bond. 5
2.2 Distributions of various distances in a disulfide bond. a) Cα –Cα b) Cβ – Cβ c) Cβ

– S of the N-terminal Cys d) Cβ – S of the C-terminal Cys 8
2.3 Distributions of angles in a disulfide bond. a) φ of N-terminal Cys b) φ of C-terminal

Cys c) ψ of N-terminal Cys d) ψ of C-terminal Cys e) χ3. 9
2.4 Substitution scores for cysteine residues in disulfide bonds and BLOSUM62 substi-

tution scores . 10
2.5 Screenshots of the pymol plugin on 2CBA. Left: Identifying surface residues with

3.5 < Cβ-Cβ < 4.25Å, Right: Mutating a residue pair to Cys. 10
2.6 Suggested protocol for designing disulfide bridges . 11

3.1 A recurrent neural network and the unfolding in time of the computation involved
in its forward computation from Nature. 17

3.2 Skip-gram model for Word2Vec (https://www.tensorflow.org/tutorials/word2vec) 19
3.3 A bidirectional LSTM with 100 hidden units . 21
3.4 Fraction of ±3 residues flanking a disulfide bond in homologous sequences when the

disulfide bond is conserved, when it is substituted/deleted, deleted. 22

4.1 Distribution of salt bridges in primary structure. A: Glu based salt bridges, B: Asp
based salt bridges. 28

4.2 A: local Arg-Glu salt bridge, B: local Arg-Asp salt bridge, C: local Lys-Glu salt
bridge, D: local Lys-Asp salt bridge. The sequence differences, 1: (light blue), 2:
(orange), 3: (gray), 4: (yellow), 5: (dark blue), between two amino acids in protein
sequence. 29

4.3 Radar Chart of of secondary structure elements in local salt bridges at sequence
separation 1-5.A: Arg-Glu, B: Lys-Glu, C: Arg-Asp, D: Lys-Asp. 31

4.4 Frequency of substitutions at given positions of salt bridges. (A) Arg-Glu; (B) Arg-
Asp; (C) Lys-Glu; (D) Lys-Asp. The frequency of possible substitutions at, Arg
position (A-blue), Glu position (A-gray), in Arg-Glu salt bridge; the frequency of
possible substitutions at, Arg position (B-blue), Asp position (B-gray) in Arg-Asp
salt bridge; the frequency of possible substitutions at, Lys position (C-blue), Glu
position (C-gray), in Lys-Glu salt bridge; the frequency of possible substitutions at,
Lys position (D-blue), Asp position (D-gray), in Lys-Asp salt bridge. 32

viii

4.5 Effects of directed substitutions at salt bridges on evolutionary stability. The vertical
axis shows percentage of identical residues at divergent branches. The percentage
of identically negative residues (A-1), positive residues (B-1), of salt bridges against
total BLAST results when the other part of salt bridges is conservative; The per-
centage of identically negative residues (A-2), positive residues (B-2), of salt bridges
against total BLAST results when the other part of salt bridges evolve to other sim-
ilar residues; The percentage of identically negative residues (A-3), positive residues
(B-3), of salt bridges against total BLAST results when the other part of salt bridges
evolve to other neutral residues. 34

4.6 Regional evolutionary stability. (A) (�) Arg based salt bridges; (◦), Lys based
salt bridges, when one part of salt bridges was conservative. (4), Arg based salt
bridges; (∇), Lys based salt bridges, when one part of salt bridges was unconserva-
tive. (B)Other part of (�), Arg based salt bridges; (◦), Lys based salt bridge. 35

4.7 Relationship of ET scores between residues in salt bridges. 36

ix

List Of Abbreviations

BLAST Basic Local Alignment Search Tool

CSD Cysteine Separation Distance

CD-HIT Cluster Database at High Identity with Tolerance

CBOW Continuous Bag of Words

DbD2 Disulfide by Design 2

DSSP Define Secondary Structure of Proteins

ET Evolutionary Trace

GRU Gated Recurrent Unit

GBE 1,4-α Glucan Binding Enzyme

LSTM Long Short Term Memory

MD Molecular Dynamics

MI Mutual Information

PDB Protein Data Bank

RNN Recurrent Neural Network

x

Chapter 1

Introduction

Enzymes serve an important function in bioprocessing due to their high catalytic efficiency and

exquisite substrate specificity. Most enzymes are mesophilic in origin and are functional in a narrow

range of environmental conditions. However, there are a number of extreme environments in the

biosphere where specialized microorganisms can thrive. Through necessity, these extremophilic

(Hough and Danson 1999; Gomes and Steiner 2004) microorganisms produce enzymes capable

of functioning in unusual conditions. Using mesophilic enzymes directly at higher than optimal

temperatures have several drawbacks: They can irreversibly denature at higher temperatures and

lose functionality, or the increased temperature can affect their structure to result in lowered

selectivity and the production of undesirable byproducts (Demirjian, et al. 2001).

Enzymes from extremophiles perform the same functions as their mesophilic counterparts, albeit

in extreme conditions such as high salt concentrations, at pHs far away from neutral in highly

acidic or basic conditions, in non-aqueous media (Hough DW and Danson MJ 1999; Gomes J

and Steiner W 2004) and at very low or high temperatures (Demirjian, et al. 2001; Rothschild

and Mancinelli 2001). Extremophile enzymes allow bioprocesses to be conducted in environmental

conditions that are more suitable to industrial bioprocessing, and are less hospitable to contaminant

microorganisms. Their utility motivates the demand for enzymes that are functioning in abiotic

conditions (Vielle and Zeikus, 2001). Thermophiles constitute an important subset of extremophiles

and are of significant interest in the development of thermostable, industrially-relevant enzymes.

The availability of robust enzymes is always a critical bottleneck in the use of biocatalysts in

industrial processes. There are several examples of enzymes derived from extremophiles that have,

with or without further bioengineering, been of tremendous value in biotechnology. For instance-

1

• Thermostable DNA polymerases obtained from thermophilic organisms like Thermus aquati-

cus or Pyrococcus furiosus are the de facto standard used in DNA amplification, which has

widespread utility in industry, medicine and research.

• Similarly, the (+)--lactamase from the thermophilic archaeon Sulfolobus solfataricus MT4

is used in the production of anti-HIV compound, Abacavir (Taylor, et al. 1993). This

pharmacophore has further been stabilized by immobilization as a cross-linked, polymerized

enzyme (Hickey, et al. 2009).

• L-aminoacylase is used for synthesizing precursors for many pharmaceutical compounds of

interest. A thermophilic L-aminocyclase has been extracted from Thermococcus litoralis

(Toogood, et al. 2002).

• From the same archeon, a pyroglutamyl carboxyl peptidase which is applicable in industry

to cleave the pyroglutamyl group from blocked peptides, allowing them to be N-terminally

sequenced. This protease derives its stability, partially, from disulfide bonds between the

dimer subunit interfaces (Singleton, et al. 1999).

However, the search for thermophilic counterparts of mesophilic enzymes can be inefficient and

expensive, especially when some bioengineering approaches exist. Bioengineering can provide an

alternative route to modifying existing enzymes to make them more thermostable. Introducing

disulfide bonds to cross-link the surface of an enzyme (Tatu, et al. 1990), or to use nanotechnol-

ogy to produce cross-linked enzyme aggregates (CLEAs) (Sheldon, 2011), or to use salt bridges

to increase the stability through ionic interactions (Lee, et al. 2014), or making the protein back-

bone more rigid, are some of the strategies that can increase thermostability while maintaining

functionality.

Within the toolbox of biotechnology, there exist techniques such as directed evolution, site-

directed mutagenesis, gene shuffling and immobilization (Bull, et al. 2000; Iyer and Anantha-

narasyn, 2008; Kaul and Asano, 2011) that can result in thermostable variants of already-available

enzymes. Extensive research has shown that thermal adaptation is determined by hydrophobicity,

number of disulfide bonds, electrostatic interactions, rigidity, and packing density (Delboni, et al.

2

1995; Chang, et al. 1999; Rosato, et al. 2002; Xiao and Honig 1999; Brian and Dominy, 2004;

Jaenicke, 2000; Reetz, et al. 2006). Of these adaptations, one strategy employed by thermophiles

to increase stability of proteins is to increase its G, its change in Gibbs Free Energy required to

denature an enzyme with temperature (Razvi and Scholtz, 2006). This increase can be achieved at

the protein structural level through salt bridges, hydrogen bonds, disulfide bonds or hydrophobic

interactions. Disulfide bonds and salt bridges can be introduced via point mutations and their

ability to stabilize the structure is influenced by their geometric conformation. Additionally, there

are considerable experimental data where they have been used to create thermostable variants of

proteins. This data suggests that an increase in melting temperature, Tm of up to around 23 can

be achieved (Dombrowski, et al. 2014; Lee, et al. 2014). However, many designed disulfide bonds

result in a decreased melting temperature of the protein as well (Dombrowski, et al. 2014), and

there is little by way of theory to understand why such approaches sometimes fail.

3

Chapter 2

Engineering Disulfide Bonds

2.1 Introduction

Disulfide bonds have been linked to increase in chemical stability, reduction in misfolding, resis-

tance to enzymatic activity. Disulfide bonds have a bond energy of 251 KJ/mol and are among

the strongest contacts in proteins and contribute to protein recognition, catalytic process and sta-

bility (Gngora-Bentez, et al. 2014). Disulfide bonds appear to have statistical properties such as

geometric and sequence biases, as well as patterns of evolutionary stability. The structure and

sequence biases have previously been used to create machine learning based computational meth-

ods for rational design of interactions. Hitherto these methods have been overly restrictive and

predict many false negatives (Dani, et al. 2003). In addition to statistical properties, the design of

disulfide bonds use mechanistic molecular dynamics (MD) simulations. Recent work on MD sim-

ulations shows that regions that unfold early are the most effective targets for improving protein

stability (Dombrowski, et al. 2014). Disulfide by Design (DbD2) (Craig and Dombrowski, 2013;

Dombrowski, 2003), MODIP (Dani, et al. 2003; Sowdhamini, et al. 1989) mainly rely on the idea

of geometric constraints on disulfide bonds (Thornton, 1981; Petersen, et al. 1999) and B factor to

determine regions of high mobility/flexibility.

These methods and early experiments in engineering disulfides revealed three heuristics for ra-

tional design of disulfide bonds- 1) Mutations in flexible regions of proteins or regions with medium

to high mobility make stabilizing disulfide bonds. 2) Stabilizing mutations are more likely to be

near the surface of the protein. 3) Large loop lengths (¿25 residues) provide more stability. Experi-

mentally, however, these heuristics are also associated with reports of false positives (Dombrowski,

et al. 2014; Dani, et al. 2013; Pellequer, et al. 2006) as high as 50%. This failure rate could

4

Figure 2.1: An illustration of the distance and angles in a disulfide bond.

be attributed to the restrictive nature of geometric models for engineering disulfide. On the other

hand, there have been numerous reports of engineered disulfides with geometric parameters that

fall outside the narrow range imposed by current methods.

The objective of this study was to develop additional design rules that incorporate geometric

constraints and evolutionary patterns in the engineering of disulfide bonds and to codify these

analyses in the form of a computer-aided design tool.

Based on a statistical analysis, DbD2 uses fixed bond length constraints, Cβ – Sγ and Sγ – Sγ

bond lengths of 1.81 Åand 2.04 Å, respectively. It also constrains Cβ – Sγ – Sγ bond angle to

104.15◦. It also uses an energy function based on the χ1, χ3 torsion angles. This method does

not completely incorporate the statistical distributions and evolutionary patterns of substitutions.

Further, the methodology constraints to maintain the Cβ – Cβ distance of the original residues in

the protein structure, thereby allowing no relaxation to it. We propose that introducing cysteines

in the structure and then evaluating the Cβ – Cβ distance is a less stringent yet more realistic set

of constraints that trades off structural rigidity for thermal stability. A similar statistical analysis

5

was performed in this study on a larger, updated set of proteins and developed a protocol that

uses the bond length and torsion angles distribution in addition to substitution scores to generate

a probabilistic score for potential disulfide bond mutations. Short Molecular Dynamics (MD)

simulations were then performed using the FoldX package (Schymkowitz, et al. 2005) to identify

stabilising mutations from the set of potential mutations identified by geometrical parameters.

2.2 Material and Methods

2.2.1 Dataset

All PDB structures with at least one disulfide bond were downloaded (November, 2017) from

the RCSB protein data bank and culled to less than 90% sequence similarity using the CD-HIT

webserver (Ying, et al. 2010). This dataset had 14407 disulfide bonds. For all PDB files in

the dataset, evolutionary trace analysis results were downloaded (November, 2017) from the ET

webserver (http://lichtargelab.org/software/ETserver). To evaluate the results, an experimental

evaluation dataset of stabilizing, destabilizing and neutral mutations in 11 PDB structures- 2CBA,

1SNO, 2LZM, 1XNB, 1RNB, 9RAT, 1MNP, 3GLY, 1CHH, 2CI2, 4TNC reported in [15] was was

selected to used to assess the performance of the developed protocol. Mutations that involve an

existing cysteine in this dataset were ignored. The 11 structures result in a total of 23 mutations-

7 destabilizing, 2 neutral and 14 stabilizing as shown in Table 2.1.

2.2.2 Statistical analysis of Geometric and Evolutionary Constraints

On the dataset of all disulfide containing PDB structures, distributions of bond length, torsion

angles(χ1,χ2,χ3) and backbone angles(φ,ψ) were computed. Disulfide cysteine substitution fre-

quencies, i.e BLOSUM like substitution scores for disulfide cysteines were calculated using the

multiple sequence alignments generated by the Evolutionary Trace server.

2.2.3 Molecular Dynamics Simulations

All PDB structures from the experimental dataset were repaired using the FoldX RepairPDB com-

mand with default parameters. MD simulations to categorize mutations as stabilizing, destabilizing

6

or neutral were carried out using the FoldX BuildModel command on repaired PDB structure files

with recommended mutations from our protocol as well as DbD2. Since all mutations were to

cysteine, which has 3 rotamers, each mutation was repeated 3 times so that the simulation could

test multiple rotamers and report the average change in G as well as the standard deviation to

identify convergence problems with the simulations. A mutation was considered stabilising if it has

a ∆∆G < -0.5 kcal/mol, neutral if it has a -0.5 kcal/mol < ∆∆G < 0.5 kcal/mol and destabilising

if ∆∆G > 0.5 kcal/mol. These cutoffs were chosen because FoldX has an error of 0.5 kcal/mol. We

only report whether a mutation was stabilising or destabilising since the ∆∆G values reported by

FoldX do not correlate well with experimental results but, have been proven to be able to predict

if a mutation is stabilising or destabilising (Potapov, et al. 2009).

2.2.4 Disulfide Engineering Protocol

First, PDB structure files were repaired using FoldX using the procedure described above. Using

the geometric distributions and substitution frequencies of cysteine residues to other amino acids, a

PyMol plugin was developed. This plugin, examines at all possible pairs of residues on the surface

of a protein. A surface residue was defined as a residue with greater than 0.5 Å2 exposed area.

From all pairs of surface residues, pairs which had Cγ – Cγ distances greater than 3.5 Å and less

than 4.25 Å were identified. For each of these candidates, the plugin introduces cysteines using

the pymol mutagenesis wizard and calculates the probability that it could assume one of the three

cysteine rotamers using the pymol mutagenesis wizard. For each rotamer, it also calculates the

probability scores for Cγ – Cγ distance and χ3 torsion angle. If a mutation has at least one rotamer

with both these probabilities >0, it is considered a potential mutation. Additionally, substitution

scores for all potential mutations are also reported by adding the scores of the two residues in

the mutation. All potential mutations are evaluated using Foldx MD simulations as either being

stabilising, neutral or destabilising.

7

Figure 2.2: Distributions of various distances in a disulfide bond. a) Cα –Cα b) Cβ – Cβ c) Cβ –
S of the N-terminal Cys d) Cβ – S of the C-terminal Cys

2.3 Results

2.3.1 Distributions of Disulfide Bond Geometries

The plots of the distances and angles are able to recapitulate previously reported data. Fig. 2.2

shows the distributions of Cα – Cα, Cβ – Cβ and Cβ – S distances in disulfide bonds. A large

majority of Cβ – Cβ distance are between the 3.5 – 4.25 Årange. This range serves as a good cutoff

for filtering pairs of residues to be evaluated for mutations into disulfide bonds. Fig. 2.3 shows the

distributions of the backbone dihedral angles as well as the torsion angles. The χ3 torsion angles

show two peaks while the dihedral angles show three peaks corresponding to the three rotamers of

cysteine.

2.3.2 Disulfide cysteine substitution

The substitution scores for the cysteine residues in the disulfide bonds show notable differences from

the BLOSUM62 scores for cysteine residues (Fig. 2.4). Most often (50% of the time) cysteine

residues are deleted. The top 3 residues that a disulfide cysteine is substituted to are Serine,

8

Figure 2.3: Distributions of angles in a disulfide bond. a) φ of N-terminal Cys b) φ of C-terminal
Cys c) ψ of N-terminal Cys d) ψ of C-terminal Cys e) χ3.

Alanine and Glycine. Tryptophan, Proline and Phenylalanine are the least likely substitutions.

These patterns suggest that disulfide cysteines are likely to be substituted by amino acids with side

chains of similar shape and size as cysteine- minimizing steric hindrance with atoms of spatially

neighbouring residues. Thus, a disulfide engineering tool should eliminate geometrically feasible

but sterically unfeasible sites and this, in turn, could increase the overall stability of the protein.

2.3.3 PyMol Plugin

The PyMol plugin developed provides an animation as it identifies potential mutations. Screenshots

of the interface have been produced in Fig 2.5. Table 2.2 summarizes the results of the evaluation

of our protocol and DbD2 based on the results of Foldx simulations and reported experimental

results. Our method predicts twice the number of stabilising mutations as compared to DbD2 and

includes all their stabilising mutations. Based on these results the suggested protocol for designing

disulfide bridges has been presented as a flowchart in Fig. 2.6. Further, detailed results can be

found in Appendix A and B.

9

Figure 2.4: Substitution scores for cysteine residues in disulfide bonds and BLOSUM62
substitution scores

Figure 2.5: Screenshots of the pymol plugin on 2CBA. Left: Identifying surface residues with 3.5
< Cβ-Cβ < 4.25Å, Right: Mutating a residue pair to Cys.

10

Figure 2.6: Suggested protocol for designing disulfide bridges

2.4 Discussion

In this study we developed a method of analyzing an existing protein structure and recommending

mutations to cysteinse that result in thermostabilizing disulfide bonds. The recommendations are

based on geometric constraints of disulfide bonds using distributions of disulfide bond geometry

from PDB structures. However, instead of strictly adhering to these distributions, we designed

reasonable cutoffs as filters based on these distributions. We compared the performance of our

method to Disulfide by Design 2 (DbD2) based on known mutations in an experimental dataset.

Both methods perform poorly in identifying disulfide mutations that have been experimentally

proven to be stabilising. Since any method based on geometrical constraints cannot capture the

flexibility in a protein chain, our methods impose overly restrictive constraints. This is evidenced

by the fact that both methods do not suggest any mutations that have been experimentally proven

to be destabilising. Combined with the very few reported experimental results, a low rate of

predicting experimentally stabilising mutations is expected. Earlier methods have evaluated their

methods by predicting existing disulfide bonds. Since >85% of disulfide bonds in PDB structures

have perfect geometry (Dani, et al. 2003), it is likely that disulfide bonds are a dominant factor

11

in reshaping the rest of the protein in its presence. In order to determine if a suggested mutation

produces a stabilizing change in protein conformation, FoldX was used on the results of both DbD2

and this method as a relatively realistic comparison method. The method proposed here is able to

suggest 85% more number of stabilising disulfide mutations according to MD simulations by Foldx

compared to DbD2 and includes all the stabilising mutations suggested by DbD2. Since both the

methods suggest approximately the same number of mutations, our method is much more accurate

by this method of evaluation. Nonetheless, more extensive testing of these methods is required on

a larger dataset. An analysis of the reasons for the poor performance in predicting experimentally

verified stabilising mutations could inform future efforts. However, since experimental data is

scarce, we must be careful not to base the entire method on experimental data.Such an method

will not generalise well to unseen data. In our method, we believe that the cutoffs for C-C distances

and identifying surface residues may be relaxed even further.

12

Table 2.1: Summary of Experimental Evaluation Data

PDB ID Mutations S/D/Nα

2CBA

Ala38–Ala258
Ser29–Ser197
Leu60–Ser173

D
D
S

1SNO

Asp77–Asn118
Gly79–Asn118
Gln80Lys116

D
S
S

2LZM

Thr21–Thr142
Ser90–Gln122
Ser90–Gln122

Asp127–Arg154

S
S
D
D

1XNB
Val98–Ala152

Ser100–Asn148
S
S

1RNB

Ala43–Ser80
Thr70–Ser92
Ser85–His102

S
D
S

9RAT
Ser24–Ser87
Ala4–Val118

N
S

1MNP Ala48–Ala63 N

3GLY
Asn20–Ala27
Thr72–Ala471

S
N

1CHH Val20–Thr102 D

2CI2 Thr22–Val82 S

4TNC Met48–Met82 S

a: S-Stabilizing, N-Neutral, D-Destabilizing

13

Table 2.2: Summary of Results on Experimental Evaluation Data

PDB ID No. of
stabilizingα

mutations in
this protocol/-
Total

No. of
stabilizingα

mutations by
DbD2/Total

TPβ/Total
in this
study

TPβ/Total
in DbD2

2CBA 4/24 0/29 0/1 0/1
1SNO 1/15 1/19 0/2 0/2
2LZM 0/16 0/15 0/2 0/2
1XNB 0/23 0/23 0/2 0/2
1RNB 1/9 0/12 0/2 0/2
9RAT 1/8 1/14 0/1 0/1
1MNP 4/43 3/54 0/1 0/0
3GLY 1/38 1/60 1/1 1/1
1CHH 0/8 0/0 0/0 0/0
2CI2 0/2 0/3 0/1 0/1

4TNC 1/8 1/5 0/1 0/1

α: Stabilising according to Foldx MD simulations.
β : TP- number of stabilising mutations predicted that have been experimentally reported.

14

Chapter 3

Sequence Effects for Engineering
Disulfide Bonds

3.1 Introduction

Models based on stereochemical criteria are unable to fully encapsulate the flexibility of protein

structure formation since they focus on the geometry of the the two cysteine amino acids in the

disulfide bond. Using sequence we can learn longer range interactions. In fact, there are very fast

and accurate methods that can predict bonding state of cysteines from sequence information alone

(Fariselli and Casadio, 2001; Chen, et al. 2004; Savojardo, et al. 2013). These methods reveal that

when analyzing multiple sequence alignments of query sequences positions that disulfide cysteines

show a clear pattern of coevolution (Gbel, et al. 1994). This observation has been utilized to

create multiple scores for quantifying co-evolution and use them to predict residues in contact in

proteins to the extent of creating contact maps of proteins from the sequence alone (Jones, et al.

2012; Savojardo, et al. 2013). We propose that combining structure, sequence and evolution based

features will lead to a more robust disulfide engineering algorithm.

As earlier mentioned, disulfide bonds, formed between two cysteine amino acids are generally

long-range bonds in protein structures and constrain the conformational space of a protein struc-

ture. It is also well known that there exist general short range regularities in the primary structure

of proteins (Vonderviszt, et al. 1986). Presumably, the neighboring residues have strong and prob-

ably deterministic influence to the chemical property of cysteine in forming disulfide bond (Muskal,

et al. 1990). So, there has been considerable research in solving a problem closely related to disul-

fide engineering- predicting disulfide bonding pattern and methods developed so far focus on the

local sequence context. Machine learning algorithms such as support vector machine (SVM) (Chen,

et al. 2006), kernel method (Vincent, et al. 2008), correlated mutation analysis (Rubenstein and

15

Fiser, 2008; Raimondi, et al. 2015) and support vector regression (SVR) (Savojardo, et al. 2011;

Savojardo, et al. 2013; Song, et al. 2007); and novel features such as protein subcellular localization

(Savojardo, et al. 2011) correlated mutations (Savojardo, et al. 2013) and context-based features

(Yaseen and Li, 2013) have also been applied. There are two issues with all these methods-

1) They do not scale to large datasets.

2) To circumvent this bottleneck, these methods train and test on reduced datasets where sequence

similarity between protein chains is <35%.

However, we found that the local sequence context (which is the only sequence input to these

methods) for such a dataset has sequence similarity as high as 80%. So, the sequence similarity

restriction in these methods is meaningless.

However, approaches to the disulfide bonding pattern problem can be adapted to engineering

disulfide bond. Instead of predicting bonding patterns, algorithms that are trained on predicting

whether two cysteines are bonded using sequence and evolution based features, will expand the

narrow constraints learned by purely geometric and structural methods.

To solve the issues raised above, we implemented a long short term memory (LSTM) neural

network which scales well with large datasets. An LSTM would also able to learn sequence context

based features, much like the simple context free and context sensitive languages it has been

proven to be able to learn (Gers and Schmidhuber, 2001). An LSTM is a type of a recurrent

neural network (RNN). Recurrent neural networks are designed to process sequential information

like humans do while reading text. Hence, the most common applications of RNNs are in natural

language processing. An RNN is made of the same recurring unit unfolded over the sequence of

inputs (as show in Fig. 3.1).

The equations governing an RNN are-

st = f(Uxt +Wst−1)

ot = softmax(V st)

Where,

16

Figure 3.1: A recurrent neural network and the unfolding in time of the computation involved in
its forward computation from Nature.

• st is the hidden state at time t.

• xt is the input at time step t.

• ot is the output at time step t.

The hidden state, st captures the memory of the previous input and the weights U,V,W are

shared across all steps (each value in the input sequence). Theoretically, RNNs should be able

to store information from arbitarilly long sequences. In practice, they are able to handle only

short sequences because of vanishing gradients due to multiplication of many small numbers while

calculating the gradient. To solve this an LSTM introduces a gating mechanism. It uses input,

output and forget gates to selectively remember pertinent information at every step and output

information relevant to the next state. The equations describing an LSTM are-

i = σ(xtU
i + st−1W

i)

f = σ(xtU
f + st−1W

f)

o = σ(xtU
o + st−1W

o)

g = tanh(xtU
g + st−1W

g)

17

ct = ct−1 ◦ f + g ◦ i

st = tanh(ct) ◦ o

Here ◦ refers to elementwise multiplication. i,f,o are the input, forget and output gates respec-

tively. The weights U,V,W from Fig. 3.1 have 4 sub-parts corresponding to the input, forget,

output gates and the ”candidate” hidden state.

As discussed in the introduction, the success of the various approaches significantly depends on

the the features used. This can also be thought of as a data representation problem. In natural

language processing, an arbitrary encoding scheme provides no useful information to the system

regarding the relationships that may exist between the individual symbols. Hence, for example, the

model cannot leverage anything it has learned about the word cat to help understand dog. Word2Vec

is the current state of the art method to generate word embeddings from a text corpus(Mikolov,

et al. 2013). There are two methods of generating this embedding- the Continuous Bag-of-Words

model (CBOW) and the Skip-Gram model. CBOW predicts target words from source context

words, while the skip-gram predicts source context-words from the target words. CBOW has the

disadvantage that it treats the whole context as one observation and so it smooths over some of the

information in the corpus. However, skip-gram treats each context-target pair as a new observation.

This can be advantageous when we have a large dataset for training. An extension to word2vec

for proteins has been proposed (Asgari and Mofrad, 2015). This embedding encodes amino acid

3 grams in a 100d vector space and has been trained on the set of all protein sequences in the

SWISS-PROT database. These features capture biophysical characteristics of amino acid 3-grams.

Hence, they can be used to learn the local structural characteristics of disulfide bonds to be able

to better predict connectivity.

3.2 Material and Methods

3.2.1 Dataset

All PDB structures with at least one disulfide bond were downloaded from the RCSB protein data

bank and culled to less than 90% sequence similarity using the CD-HIT webserver (Ying, et al.

18

Figure 3.2: Skip-gram model for Word2Vec
(https://www.tensorflow.org/tutorials/word2vec)

19

2010). This dataset had 14407 disulfide bonds. For all PDB files in the dataset, evolutionary trace

analysis results were downloaded from the ET webserver

(http://lichtargelab.org/software/ETserver). The multiple sequence alignments generated

by the server as part of the evolutionary trace analysis were used for all evolutionary analyses. The

ProtVec (Asgari and Mofrad, 2015) word embeddings were downloaded from harvard dataverse

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JMFHTN.

3.2.2 Evolutionary stability of local sequence context

Here we define local sequence context as the ±3 residues in the primary sequence around the

disulfide cysteines. This yields 12 positions in the primary sequence for each disulfide bond. For

all protein chains in our dataset, their multiple sequence alignments from section 3.2.1 above, were

used to calculate the sequence similarity of the local sequence context at the aligned positions of

homologous sequences.

3.2.3 Features in LSTM

To represent amino acid sequences as input vectors to the LSTM/GRU model, the ProtVec repre-

sentation was used. The 6 residues upstream and downstream of each cysteine in a cysteine pair

were split into 3-grams using a sliding window to generate a vector of length 22. Since disulfide

bonds have been well documented to have a covariance pattern, we used MIp (Dunn, et al. 2008)

which is the best measure of covariation that compensates for random noise and phylogeny to iden-

tify truly coevolving positions. Previous methods have used cysteine-separation-distance (CSD) as

a feature to predict disulfide bonds and a statistical analysis of disulfide bonds does reveal partic-

ular sequence separation preferences in disulfide bonds(Tsai, et al. 2005) and following the results

of that paper, in our model we also used the logarithm of the cysteine separation distance.

3.2.4 Training the LSTM

LSTM and GRU(Gated Recurrent Unit) networks in unidirectional and bidirectional configurations

with a varying number of hidden units (50,100,150), dropout, recurrent dropout and regularisation

were trained. As positive examples, sequence context, mutual information and cysteine separation

20

Figure 3.3: A bidirectional LSTM with 100 hidden units

distance of all 14407 disulfide bonds were used. To create the negative examples, from all chains

with greater than equal to 2 disulfide bonds, sequence context, mutual information and cysteine

separation distance of 14407 mismatched pairs were used. Here a mismatched pair consists of

cysteines from two different disulfide bonds in the protein chain.

3.3 Results

3.3.1 Sequence context of disulfide bonds

In this study, patterns of evolution of the local sequence context of disulfide bonds were examined

for insights into the evolutionary basis of the different sequence motifs of disulfide and non-disulfide

cysteines. In Fig. 3.4 we observe that if a disulfide is substituted by another amino acid or deleted,

the local sequence context conservation shifts to < 50% conservation, while in the case where a

disulfide is deleted, a drastic shift to < 10% conservation is observed. From this we can surmise

that while there are subtle changes in the local sequence context due to substitutions, a deletion

leads to drastic changes.

21

Figure 3.4: Fraction of ±3 residues flanking a disulfide bond in homologous sequences when the
disulfide bond is conserved, when it is substituted/deleted, deleted.

3.3.2 Neural network results

The results of machine learning experiments are summarized in Table 3.1. The results report

the mean accuracy after 5-fold cross validation. Comparing the results of the model without the

ProtVec representation and its corresponding model with ProtVec (Unidirectional + MI), a 10%

increase in accuracy is observed. This justifies the use of ProtVec as well as provides a method

to incorporate the physicochemical properties of amino acid triplets into the model. The ProtVec

representation provides larger accuracy gain than mutual information (MI) and cysteine separation

distance (CSD) and so is a more important feature determining disulfide bond formation. The order

of importance from our results is ProtVec > MI > CSD. All the best performing models for each

configuration+feature type had 150 hidden units (the largest size tested). Since LSTM models are

able to learn longer sequences than GRU, they consistently outperform GRUs. Finally, the mean

accuracies are similar to the state of the art accuracies previously reported for disulfide bonding

pattern prediction problem.

22

Table 3.1: Machine learning accuracy results

Configuration+Features LSTM
(hidden
units)

GRU
(hidden
units)

Unidirectional+WithoutProtVec+MI 64.19%(150) 64.62%(150)
Unidirectiontal+MI 76.05%(150) 75.29%(150)
Unidirectional+CSD 74.7%(150) 72.91%(150)

Unidirectional+MI+CSD 78.94%(150) 76.97%(150)
Bidirectional+CSD 75.84%(150) 74.67%(150)

Bidirectional+MI+CSD 79.68%(150) 78.31%(150)

3.4 Discussion

This study serves as a first attempt to deeply examine the nature and extent of sequence effects

in disulfide bonds. Based on the data and results presented here, the following conclusions and

avenues for further studies can be drawn-

• Long range sequence interactions determine disulfide bonding (LSTM vs GRU performance

Table 3.1). Further extending the local sequence context in training models should be ex-

plored. Since, LSTMs and GRUs treat the input as sequential input, this would not require

a larger number of parameters to be learned.

• Since the best performing models had the largest number of hidden units tested (150 Table

3.1) and the sequence context for substituted disulfide bonds show minor decrease in sequence

similarity (Fig. 3.2), likely, a lot of complex sequence motifs exist for disulfide bond formation.

• A physicochemical representation of protein sequences is vastly more important than mutual

information and cysteine separation distance. While mutual information serves as a proxy

for contact among residues, cysteine separation distance is important because longer loops

created by disulfide bonds lead to increased stability. However, these are at best, indirect

clues. Further efforts should focus on creating better representations of protein sequences.

23

Chapter 4

Patterns of Salt Bridge Evolution for
Rational Design of Thermostable
Enzymes
1

4.1 Introduction

Electrostatic interactions between oppositely charged amino acids- the anionic carboxyl group of

glutamate (E) or aspartate (D) and the cationic ammonium group of arginine (R) or lysine (K) at

a distance of < 4Å are called salt bridges (Musafia, et al. 1995; Donald, et al. 2011). Salt bridges

are commonly found in proteins, and contribute to their structural and functional conformation.

They also contribute to catalysis, stability, protein degradation and recognition (Takahashi 1996;

Xu, et al. 1997; Elcock and McCammon 1998; Albeck, et al. 2000; Kumar and Nussinov 2002a,

Nussinov and Kumar 2002b; Bosshard, et al. 2004). However, the contribution of salt bridges to

stability of proteins remains unresolved (Elcock and McCammon 1998; Donald, et al. 2011). Salt

bridges (electrostatic interactions) can be easily formed, however, the contribution of salt bridges

to stability of proteins varies (Nussinov and Kumar 2000; Gribenko and Makhatadze 2007). Several

of these reports have shown an unfavorable effect of salt bridges on stability, whereas others have

demonstrated favorable contributions. Consequently, the rational design of salt bridges is still

challenging because of lacking of comprehensive understanding of their contribution to stability of

proteins.

Previous studies showed that biological properties of proteins depend on cumulatively cooperative

interactions of amino acids (Gribenko and Makhatadze 2007). Multiple studies have explored

the geometric conformational constraints of salt bridges, sequence separation, secondary structure

1This chapter has been adapted from- Evolutionary Stability of Salt Bridges Hints its Contribution to Stability
of Protein. Xiaofeng Ban, Pratik Lahiri, Abhishek S. Dhoble, Zhengbiao Gu, Caiming Li, Li Cheng, Yan Hong,
Zhaofeng Li, Bhalerao Kaustubh. Xiaofeng Ban contributed the experimental results on GBE reported here.

24

distribution and flexibility (Nussinov and Kumar 2002a; Nussinov and Kumar 2002b; Donald, et

al. 2011). These results have been incorporated into empirical rules for design of salt bridges (Lee

et al. 2014). However, none of the studies or methods have included homology and phylogeny. We

believe that incorporating evolutionary information will enable us to identify salt bridges that are

important for stability.

A commonly used measurement of importance of an amino acid within a protein chain is its con-

servation. In addition to conservation of a position in a multiple sequence alignment of homologous

sequences, another method of measuring conservation is the evolutionary trace (ET) algorithm

(Mihalek, et al. 2006; Lua, et al. 2016). The ET is a phylogenetic approach that serves as an

indicator for the evolutionary pressure on an amino acid and reliably measures the conservation

of amino acid residues in proteins (Lua and Lichtarge 2010; Amin, et al. 2013; Lua, et al. 2016;

Mihalek, et al. 2004). It is a powerful tool that has been shown to identify residues crucial to

protein stability as well as active sites. It is based on the principle that amino acid mutations

occurring at positions that are closer to the root of the phylogenetic tree correspond to functional

changes, while variations closer to the leaf nodes of the tree correspond to negligible functional

changes. (Ng and Henikoff 2001; Madabushi, et al. 2004; Ward, et al. 2009; Katsonis, et al. 2014).

This evolutionary trace method enables us to explore the contribution of salt bridges to proteins

from an evolutionary perspective. Here we study the conservation of the salt bridge itself as well as

the conservation of the local sequence context and its influence on protein stability. Additionally,

from an engineering perspective we ask,

1) Is it possible to identify the importance of any particular salt bridge? and

2) Can we engineer salt bridges to predictively alter the biological properties of a protein?

Based on our analysis, we hypothesize that salt bridges influence the evolutionary stability of

their neighborhood. Specifically, alterations at one residue in a salt bridge are correlated with

variations in the other residue and also affect the evolutionary stability of local sequence around

the salt bridge. As a corollary, we expect that salt bridges would increase the evolutionary stability

of the neighborhood when at least one half of a salt bridge is conserved, which is beneficial for

25

the stability of whole proteins. To validate the hypothesis, we present experimental results of

engineering salt bridges in existing structure to positively affect the thermostability of an enzyme.

4.2 Material and Methods

4.2.1 Development of the salt bridge data set

In order to establish a database of salt bridges, the protein database was selected with resolution

no less than 3.0Å and an R-factor of no more than 0.25 (Kumar and Nussinov 2002b; Donald, et al.

2011). For each protein, a set of homologous sequences was retrieved from the NCBI Entrez non-

redundant protein sequence database with the E-value < 0.05 (Maglott, et al. 2011). In addition,

if two sequences shared more than 99.5% sequence identity, one was arbitrarily selected.

Salt bridges were defined as an interaction between two oppositely charged groups, such that the

distance of heavy atom in each pair is the less than 4.0Å . Here, Arg (R) or Lys (K) provide the

positively charged cationic ammonium (RNH3+) while, Asp (D) or Glu (E) provide the negatively

charged anionic carboxylate (RCOO−). His (H) has an ambiguous protonation state at pH 7.0, and

so we excluded it from our dataset. Thus, we considered, Arg-Glu, Arg-Asp, Lys-Glu and Lys-Asp

salt bridges for the creation of the database. Local salt bridges were defined as salt bridges where

the sequence separation between the oppositely charged residues was less than or equal to five

(Donald, et al. 2011).

4.2.2 Secondary structure elements

We used secondary structure elements as defined by DSSP, which is a program to assign secondary

structures to segments of protein sequences based on the sequence information alone (Kabsch and

Sander 1983). The DSSP program defines eight categories for secondary structures: H = -helix;

B = residue in isolated -bridge; E = extended strand, participates in ladder; G = 3-helix (310

helix); I = 5 helix (-helix); T = hydrogen bonded turn; S = bend and R = coil or other random

coil (Kabsch and Sander 1983; Sarakatsannis and Duan 2005; Gvritishvili, et al. 2008).

26

4.2.3 Evolutionary stability

The evolutionary stability analysis for our dataset was performed by identifying the substitutions

at salt bridge positions in homologous sequences for all protein chains. Homologous sequences were

obtained from BLAST Tool in NCBI database-

https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi. The sequence alignments were carried out by ClustalW2

(gap open penalty 10, gap extension penalty 0.05)(Li 2003; Margelevicius and Venclovas 2005). The

frequency of substitutions for all amino acids for each type of salt bridge (Arg-Glu, Arg-Asp, Lys-

Glu, Lys-Asp) was calculated.

4.2.4 Regional evolutionary stability

Regional evolutionary stability was calculated by counting the frequency at which the three residues

upstream and downstream of salt bridge residues in the primary sequence were conserved in the

multiple sequence alignments of homologous sequences.

4.3 Results

4.3.1 Distribution characteristics of salt bridges

Our databases of salt bridges successfully recaptures the previously reported distribution patterns

and characteristics of sequence separation, secondary structure preferences, C-C and N-O distances.

Here we present results for sequence separation and secondary structure preferences for all salt

bridges as well as local salt bridges.

The sequence separation between the two halves of the salt bridges were calculated and are

illustrated in Fig. 4.1(A,B). The results show that there is a sharp concentration in the distribution

27

Figure 4.1: Distribution of salt bridges in primary structure. A: Glu based salt bridges, B: Asp
based salt bridges.

Table 4.1: The percentage of local salt bridges against total salt bridges

Sequence separation Arg-Glu Arg-Asp Lys-Glu Lys-Asp

<=5 30.23 33.11 37.34 37.61

of sequence separation at a short sequence separation, showing a strong propensity for local salt

salt bridges. The frequency of these local salt bridges, whose sequence separation <5, among all

salt bridges is presented in Table 4.1. We can see that approximately one third of all salt bridges

were local salt bridges. On further examination, we see that even at a small sequence separation,

the distribution of salt bridges have particular biases. As seen in Fig. 4.2(A-D), the maximum

frequency of local Arg-Glu salt bridge was at a separation of five residues, while a majority of local

Arg-Asp salt bridges occur at a sequence separation of three or four residues. In both types of Lys

based salt bridges, most of local salt bridges are found at a sequence separation of four.

A survey of the secondary structure elements of salt bridges, which has been used for the rational

design of salt bridges, was investigated in this study and has been presented in Table 4.2. The

results demonstrate that the residues in salt bridges tended to appear at same secondary structures.

Since local salt bridges consist of residues very near each other, their secondary structure statistics

can be interpreted in the context of sequence separation. The results of this analysis are presented

in Fig. 4.3. The results show that local salt bridges dominantly appeared at sequence separation

of three, four and five in helix structure. It is evident that the content of secondary structures in

28

Figure 4.2: A: local Arg-Glu salt bridge, B: local Arg-Asp salt bridge, C: local Lys-Glu salt
bridge, D: local Lys-Asp salt bridge. The sequence differences, 1: (light blue), 2: (orange), 3:
(gray), 4: (yellow), 5: (dark blue), between two amino acids in protein sequence.

29

Table 4.2: Percentage of salt bridges with both residues in the same secondary structure

Both residues
in same sec-
ondary struc-
tures

Arg-Glu Arg-Asp Lys-Glu Lys-Asp

<=5 44.0 30.6 35.20 24.1

Lys based salt bridges is distinct from Arg based salt bridges. However, the two residues in Lys

based salt bridges still tend to occur in same types of secondary structures. Our results also show

that Arg and Lys tend to locate in helix structure in local salt bridges, in which Glu tended to

locate in helix or coil structures. However, Asp had not shown any preference toward either helix

or coil structures.

This survey of distribution characteristics of sequence separation, secondary structure prefer-

ences, and previously reported geometrical constraints for C-C and N-O distances of salt bridges

lead us in the direction of design local salt bridges.

4.3.2 Substitutions at salt bridge positions

In this analysis, we divided salt bridges into two groups based on the identity of the positive

residue: Arg based salt bridge, and Lys based salt bridges. In Fig. 4.4 we present plots of the

rates of substitutions of salt bridges with other residues in homologous sequences. The blue chart

shows the percentage of substitutions to other amino acids occurring at the positions of positively

charged residue in salt bridges, while the grey chart presents the rates of possible substitutions

at the positions of negatively charged residue in the same type of salt bridges. As shown in Fig.

4.4, the amino acids are most frequently conserved, indicating significant evolutionary pressure to

conserve these interactions. One exception is the Lys-Glu salt bridge in which the Glu is substituted

to Asp at a small, but significant frequency (10%).

30

Figure 4.3: Radar Chart of of secondary structure elements in local salt bridges at sequence
separation 1-5.A: Arg-Glu, B: Lys-Glu, C: Arg-Asp, D: Lys-Asp.

31

Figure 4.4: Frequency of substitutions at given positions of salt bridges. (A) Arg-Glu; (B)
Arg-Asp; (C) Lys-Glu; (D) Lys-Asp. The frequency of possible substitutions at, Arg position
(A-blue), Glu position (A-gray), in Arg-Glu salt bridge; the frequency of possible substitutions at,
Arg position (B-blue), Asp position (B-gray) in Arg-Asp salt bridge; the frequency of possible
substitutions at, Lys position (C-blue), Glu position (C-gray), in Lys-Glu salt bridge; the
frequency of possible substitutions at, Lys position (D-blue), Asp position (D-gray), in Lys-Asp
salt bridge.

32

4.3.3 Pairwise evolution of salt bridges

We next analyzed the pairwise substitutions of salt bridges when one of the positions is conserved.

We categorized the substitutions at the second position into three categories-

1) conserved

2) substitution to a charged amino acid of the same polarity

3) substituted to a neutrally charged residue.

The results of this analysis are presented in Fig. 4.5. We see that there is significant evolutionary

pressure to conserve a salt bridge (category 1, 2). However, 20% of homologs fall in the category 3,

implying that the loss of a charged residue at one of the salt bridge positions does not always lead

to loss of the corresponding oppositely charged residue. This indicates that charged amino acids

are interchangeable to some extent in salt bridges and there is some flexibility in the design of salt

bridges. Earlier reports examining the energy of salt bridges through mutation studies have shown

that flipping the salt bridge, substituting one charged residue with another of the same polarity can

change the energy/thermostability of the bond (Makhatadze et al. 2003; Lee et al. 2014). Thus,

salt bridges could part be a mechanism to make fine adjustments to thermostability of proteins.

4.3.4 Effects of salt bridge on local evolutionary stability

Considering that there is a significant co-evolution in salt bridge interactions, we investigated the

conservation of residues in the local sequence context of salt bridge positions. Since around one-

third of all salt bridges are at a small sequence separation (Table 4.1), we restricted the inquiry

to 3 residues upstream and downstream of the each of the residues constituting the bridge. Fig.

4.6, summarizes the results of this analysis. We see that even when at least one of the salt bridge

residues is conserved, the local sequence around the conserved residue as well as the local sequence

around the other salt bridge residue are 70% conserved each, while this score drops to 40% when

that residue in the salt bridge is not conserved. We can infer that there is correlation between

salt bridge conservation and local sequence conservation. Previous results have already shown

important differences in the preferred conformation for different types of salt bridges (Donald, et

al. 2011). Hence the results in Fig. 4.6 indicate the existence of sequence motifs that contextualize

different types of salt bridges.

33

Figure 4.5: Effects of directed substitutions at salt bridges on evolutionary stability. The vertical
axis shows percentage of identical residues at divergent branches. The percentage of identically
negative residues (A-1), positive residues (B-1), of salt bridges against total BLAST results when
the other part of salt bridges is conservative; The percentage of identically negative residues
(A-2), positive residues (B-2), of salt bridges against total BLAST results when the other part of
salt bridges evolve to other similar residues; The percentage of identically negative residues (A-3),
positive residues (B-3), of salt bridges against total BLAST results when the other part of salt
bridges evolve to other neutral residues.

34

Figure 4.6: Regional evolutionary stability. (A) (�) Arg based salt bridges; (◦), Lys based salt
bridges, when one part of salt bridges was conservative. (4), Arg based salt bridges; (∇), Lys
based salt bridges, when one part of salt bridges was unconservative. (B)Other part of (�), Arg
based salt bridges; (◦), Lys based salt bridge.

4.3.5 Relationship of evolutionary stability between parts of salt bridges

We further investigated the effect of the presence of salt bridges on their local sequence context

via the ET scores which not only measures the frequency of variations, but, also how close these

variations occur to the root of the phylogenetic tree. In our study, the results showed that strong

correlations of ET scores were observed between local sequence contexts of the positive parts and

negative parts of salt bridges (Fig. 4.7). These results show show evidence for the coordinated

evolution of the local sequence context around salt bridge residues and hints that alternation of

one residue in the salt bridge context may result in variations in the other corresponding part of

salt bridges.

4.3.6 Rational design of salt bridges

Salt bridges are capable of increasing the evolutionary stability of proteins around their local

sequence context, suggesting that the electrostatic interactions improve the contribution of amino

acids around salt bridges to the stability of proteins. Additionally, local sequence context around

one residue of salt bridges could affect the other part of salt bridge in terms of evolutionary

35

Figure 4.7: Relationship of ET scores between residues in salt bridges.

36

stability. According to the analysis of evolutionary characteristics of salt bridges, salt bridges that

may significantly improve stability are likely to have conserved local sequence contexts, or at least

one of the residues of the salt bridges does. The local sequence context has a direct effect on the

conformation of salt bridge residues. Thus, a conserved local sequence context indicates the need

for precise geometry- either for stability or function. Incorporating such evolutionary information

is likely vital for rational design of salt bridges.

Based on above analysis, salt bridges should be designed following the two rules. First, in

accordance with geometrical distribution of salt bridges, the distance between the C-C carbons

should be < 15 Å ; Second, both the positions should have the same secondary structure; Third,

the local sequence context around at least one part of salt bridges should be conserved > 70%.

These design heuristics were tested experimentally by a collaborator. To experimentally validate

this procedure, the 1,4–α–glucan branching enzyme (GBE; EC 2.4.1.18) from G. thermoglucosidans

STB02 (GenBank accession no. KJ660983) was used. GBE is a glycoside-transferase belonging

to glycosyl hydrolase family 13 which reacts with α–(1,4) and/or α–(1,6) glucosidic linkages and

subsequently synthesizes α–1,6-glucosidic bonds. Based on the structure of G. thermoglucosidans

STB02 GBE, 8 mutants at 5 positions of GBE were constructed by directed-site mutagenesis. The

characteristics of evolution and structural information of mutant GBE were listed in Table 4.4. Our

collaborators report, that all mutants except at the one at I266, which did not have a conserved

local sequence context improved thermostability.

4.4 Discussion

The aim of this research is to take advantage of evolutionary information to help select potential

sites for mutation to charged residues such that the newly formed salt bridges will have significantly

positive effects on stability of proteins.

Our study shows that charged amino acids appear more frequently than neutral amino acids at

salt bridge positions along the phylogenetic tree, suggesting that salt bridges are more conserved

37

Table 4.3: The conservative analysis of possible salt bridges

Secondary
Structure

Res
1α

Local
Sequence
Contextβ

Res
2α

Cons/Non-
Cons

Cα dist
(Å)γ

α–helix
H224
Q231

nc
nc

R170
D227

c
c

6.8
6.2

β–sheet
V37
I571

c
c

K32
R569

nc
c

4.3
5.7

Random
coil

I266 nc R269 nc 8.0

α: Residues of salt bridges.
β : nc, non-conservative; c, conservatives > 70%.
γ : Distance between residue 1 and residue 2.

than non-electrostatic interactions. Since natural selection is supposed to eliminate redundant

parts of structures in the process of biological evolution (Shionyu-Mitsuyama, et al. 2005), the

importance of salt bridges raises another question: how do salt bridges affect the evolutionary

stability of proteins?

The strong correlation of ET scores between two parts of salt bridges demonstrates that the

conservation of residues in salt bridges are tightly correlated (Fig. 4.7). Therefore, the influences

of salt bridges on evolutionary stability of corresponding amino acid regions was carried out by

counting the ratio of identical residues within a sequence separation of 3 from salt bridge residues

against all possible substitutions at these positions along the phylogenetic tree. The results reveal

that salt bridges are able to increase the evolutionary stability of related amino acid regions. Con-

trastingly, breakdown of these electrostatic interactions results in decline of regional evolutionary

stability. The results hint that the formation of salt bridges not only offers additional electrostatic

bonds but also contributes to the stability of the regions around them.

Based on survey of bioinformatics and evolutionary stability of salt bridges, 8 mutations, H244D,

H244E, Q231R, Q231K, V37E, V37D, I571D and I266E, were constructed according to structural

38

information of G. thermoglucosidans STB02 GBE by our collaborators. Except for I266E, the

rest of 7 mutations, which consist of at least one residue with a conserved local sequence context,

prolong half-time of GBE compared with that of wild type GBE.

However, several factors are related with thermostability of proteins, which cannot be summa-

rized in one rule. The investigation of evolutionary stability of salt bridges also offers us a new way

of understanding the contribution of salt bridges. In addition, the evolutionary survey provides

us a new approach to rationally design of salt bridges with significant contribution to stability of

proteins.

39

Appendix A

Plugin Experimental Results

Table A.1: Results of MD Simulations on mutations suggested by Plugin

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

2CBA

AA153C;SA219C
SA99C;VA242C
AA54C;AA77C
GA81C;GA82C

SA105C;YA114C
TA169C;GA233C
AA77C;LA90C

AA116C;LA148C
SA56C;FA179C

SA105C;EA117C
LA57C;RA58C
TA55C;DA71C
DA34C;TA37C

KA170C;GA233C
GA63C;KA170C
HA17C;AA23C

YA114C;FA147C
YA128C;KA133C
KA154C;LA157C
NA232C;EA236C
QA28C;QA249C
FA147C;PA215C
PA186C;EA214C
HA96C;WA245C

TA169C;GA233C
DA34C;TA37C

* ———Continued On Next Page——— *

40

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

1SNO

AA69C;AA94C
RA105C;SA128C
RA35C;RA87C
IA18C;TA22C
AA17C;KA63C
HA46C;GA50C
TA13C;MA26C
DA77C;NA118C
NA119C;EA122C
HA46C;KA49C
KA9C;EA73C
EA43C;HA46C
KA78C;PA117C
MA98C;EA101C
PA42C;EA52C A43C;HA46C

2LZM

SA38C;AA41C
SA36C;AA41C
TA34C;SA36C
GA28C;AA63C

TA151C;AA160C
RA148C;AA160C
DA20C;GA23C
KA83C;AA112C
TA59C;DA61C
KA19C;GA23C;

MA120C;AA129C
SA136C;WA138C
DA20C;YA24C

RA125C;EA128C
IA58C;EA62C
DA20C;EA22C None

* ———Continued On Next Page——— *

41

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

1XNB

GA62C;SA176C
GA64C;GA173C
GA23C;GA24C
GA13C;GA14C
GA12C;GA13C

GA102C;GA103C
AA55C;TA138C
VA98C;AA152C
TA33C;GA34C

SA100C;NA148C;
RA112C;AA115C

IA15C;SA31C
GA92C;YA108C
YA65C;TA67C

VA57C;NA181C
TA10C;FA36C

RA73C;NA163C
DA83C;RA136C
PA60C;GA86C
NA17C;NA29C

WA71C;AA165C;
WA58C;TA138C
YA108C;WA129C None

1RNB

GA52C;AA74C
GA52C;GA53C
GA9C;DA12C
AA46C;KA49C
LA20C;YA24C
KA66C;RA69C

DA101C;QA104C
IA25C;EA29C
IA4C;PA21C GA9C;GA53C

9RAT

TA87C;AA96C
AA4C;VA118C
AA20C;YA25C
SA50C;DA53C

KA104C;SA123C
HA48C;SA80C

DA83C;TA100C
AA109C;HA119C TA87C;AA96C;

* ———Continued On Next Page——— *

42

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

SA168C;SA268C
SA52C;AA59C

AA252C;SA318C
AA50C;AA136C
AA1C;AA12C

GA60C;AA136C
GA209C;AA223C
GA119C;AA299C
GA61C;GA62C
GA60C;GA61C

GA159C;GA160C
VA73C;AA135C
TA193C;TA196C
SA101C;NA131C
AA103C;RA129C
AA111C;LA123C
SA52C;QA55C

NA260C;AA304C
SA232C;HA340C
NA88C;GA355C
AA79C;IA141C
EA39C;SA86C

SA232C;MA346C
IA51C;GA62C

1MNP

DA84C;AA357C
SA115C;PA296C
FA70C;AA135C
AA120C;FA197C
QA55C;AA59C

LA126C;LA286C
DA64C;TA133C

GA220C;QA240C
QA145C;GA220C
FA306C;TA329C
PA144C;GA220C
GA211C;PA227C
PA121C;RA270C
LA226C;EA236C
LA207C;PA225C
FA155C;FA161C
NA218C;EA221C
EA261C;FA264C
PA189C;PA194C

SA168C;SA268C
AA1C;AA12C

LA226C;EA236C
NA218C;EA221C

* ———Continued On Next Page——— *

43

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

SA164C;GA456C
GA383C;SA386C
GA339C;SA365C
TA290C;SA405C
VA37C;SA56C
GA23C;AA32C
GA23C;AA24C

AA300C;GA383C
GA96C;GA103C
GA101C;GA103C
SA99C;YA458C
TA72C;AA471C
AA32C;VA111C
TA53C;GA127C
TA173C;GA183C
LA319C;AA421C
DA176C;SA185C
NA93C;AA115C

3GLY

SA95C;EA106C
SA399C;EA409C
EA400C;SA411C
YA329C;RA428C
SA284C;PA307C
DA403C;GA407C
DA309C;GA314C
NA427C;VA432C
FA351C;AA358C
KA61C;AA134C
DA126C;TA188C
GA35C;HA80C

DA245C;YA306C
PA272C;VA346C
PA258C;VA433C
WA212C;AA454C
YA232C;EA280C
WA52C;DA55C

EA198C;WA437C
WA28C;PA41C TA72C;AA471C

* ———Continued On Next Page——— *

44

PDB ID Plugin Potential

Mutations

Stable Plugin

Mutations

1CHH

CA17C;VA28C
SA40C;VA57C
AA51C;GA77C
GA83C;GA84C
GA23C;GA24C
IA75C;TA78C
NA70C;KA73C
KA5C;DA93C None

2CI2
RI62C;RI65C
KI43C;AI46C None

4TNC

GA34C;GA35C
GA33C;GA34C

SA141C;MA157C
DA36C;TA72C

FA112C;RA148C
DA36C;DA74C

EA159C;QA162C
PA53C;EA57C DA36C;TA72C

45

Appendix B

DbD2 Experimental Results

Table B.1: Results of MD Simulations on mutations suggested by DbD2

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

2CBA

HA17C;AA23C;
QA28C;QA249C;
PA30C;EA106C;
SA48C;GA81C;
AA54C;AA77C
SA56C;FA179C
LA57C;RA58C
IA59C;FA176C

GA63C;KA170C
AA77C;LA90C
YA88C;HA122C
HA96C;WA245C
WA97C;AA116C
GA98C;QA103C
SA99C;VA242C
SA105C;EA117C
AA116C;LA148C
WA123C;AA134C
YA128C;KA133C
YA128C;AA134C
AA134C;GA140C
GA145C;VA211C
FA147C;PA215C
GA151C;SA217C
AA153C;SA219C
KA154C;LA157C
PA186C;EA214C
LA229C;MA241C
NA232C;EA236C None

* ———Continued On Next Page——— *

46

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

1SNO

KA9C;EA73C
IA15C;KA24C
AA17C;KA63C
IA18C;TA22C
RA35C;RA87C
VA39C;AA109C
TA41C;AA58C
PA42C;EA52C
EA43C;HA46C
HA46C;KA49C
EA52C;GA55C
AA58C;LA108C
AA69C;AA94C
KA78C;PA117C
MA98C;EA101C
LA103C;AA109C
GA107C;AA132C
GA107C;NA138C
NA119C;EA122C GA63C;KA170C;

2LZM

DA20C;YA24C
YA25C;AA42C
GA28C;AA63C
LA33C;EA45C
TA34C;SA36C
SA36C;AA41C
SA38C;AA41C
IA58C;EA62C
NA81C;LA84C

KA83C;AA112C
MA120C;AA129C
AA130C;RA154C
SA136C;WA138C
RA148C;AA160C
TA151C;AA160C None

* ———Continued On Next Page——— *

47

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

1XNB

TA10C;FA36C
GA14C;NA32C
GA21C;NA25C
GA24C;VA184C
GA39C;VA168C
SA46C;RA49C

AA55C;TA138C
VA57C;NA181C
LA66C;SA84C
LA68C;VA81C

YA69C;AA170C
GA70C;QA167C
WA71C;AA165C
RA73C;NA163C
DA83C;RA136C
GA92C;YA108C
GA92C;TA110C
KA95C;IA107C
VA98C;AA152C
SA100C;NA148C
YA105C;SA130C
RA112C;AA115C
WA153C;MA158C None

1RNB

IA4C;GA9C
IA4C;PA21C

LA20C;YA24C
YA24C;GA52C
IA25C;EA29C

AA30C;WA35C
GA34C;VA45C
AA46C;KA49C
FA56C;WA71C
KA66C;RA69C
IA76C;DA86C

DA101C;QA104C None

* ———Continued On Next Page——— *

48

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

9RAT

AA20C;YA25C
AA20C;TA82C
CA26C;CA84C
CA26C;TA99C
CA40C;CA95C
HA48C;SA80C
SA50C;DA53C

CA58C;CA110C
CA65C;QA69C
CA65C;CA72C
CA84C;YA97C
TA87C;AA96C

KA104C;SA123C
VA108C;PA117C TA87C;AA96C

* ———Continued On Next Page——— *

49

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

AA1C;AA12C
CA3C;CA15C

CA14C;CA289C
CA33C;CA117C
EA35C;GA350C
AA37C;AA113C
EA39C;SA86C
LA43C;SA86C
AA48C;AA63C
AA50C;GA60C
AA50C;AA136C
IA51C;GA62C
SA52C;QA55C
SA52C;AA59C
QA55C;AA59C
GA61C;DA64C
DA64C;TA133C
GA65C;AA103C
PA71C;PA356C
VA73C;AA135C
AA79C;IA141C
DA84C;AA357C
VA87C;AA357C
SA101C;NA131C
AA103C;RA129C
AA111C;LA123C
CA117C;AA120C
CA117C;FA197C
GA119C;FA197C
GA119C;AA299C
PA121C;RA270C
LA126C;LA286C
FA155C;FA161C
SA168C;SA268C
SA168C;AA272C

* ———Continued On Next Page——— *

50

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

1MNP

DA182C;GA214C
IA185C;GA214C
AA188C;MA237C
PA189C;PA194C
DA191C;QA200C
DA191C;VA201C
DA191C;VA201C
TA193C;TA196C
LA207C;PA225C
GA211C;PA227C
PA213C;GA235C
NA218C;EA221C
LA226C;EA236C
SA232C;MA346C
AA252C;SA318C
CA253C;CA319C
NA260C;AA304C
EA261C;FA264C
FA306C;TA329C
CA341C;CA348C

AA1C;AA12C
NA218C;EA221C
LA226C;EA236C

* ———Continued On Next Page——— *

51

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

VA13C;GA396C
AA14C;YA419C
GA23C;IA36C
WA28C;PA41C
AA32C;VA111C
VA37C;SA56C
SA40C;YA48C
WA52C;DA55C
KA61C;AA134C
VA64C;GA137C
LA66C;DA71C
TA72C;AA471C
NA93C;AA115C
SA95C;EA106C
GA96C;SA100C
SA99C;YA458C

GA121C;YA175C
PA128C;DA162C
AA129C;AA195C
GA139C;VA155C
LA142C;AA151C
LA163C;GA199C
AA167C;WA212C
DA176C;SA185C
AA190C;GA251C
HA193C;IA220C
LA196C;AA217C
EA198C;WA437C
SA200C;CA213C
AA203C;CA210C
CA210C;CA213C
WA212C;AA454C
CA222C;CA449C
YA232C;EA280C
IA233C;TA248C
DA245C;YA306C
DA257C;AA260C
DA257C;EA439C
PA258C;VA433C
CA262C;CA270C
PA269C;DA330C
CA270C;AA331C
PA272C;VA346C
LA275C;SA347C
SA284C;PA307C

* ———Continued On Next Page——— *

52

PDB ID DbD2 Potential

Mutations

Stable DbD2

Mutations

3GLY

TA290C;SA405C
LA295C;EA299C
AA302C;PA316C
DA309C;GA314C
WA317C;CA320C
LA319C;AA421C
AA325C;FA384C
LA328C;AA381C
YA329C;RA428C
FA351C;AA358C
HA391C;GA407C
LA398C;SA418C
SA399C;EA409C
EA400C;SA411C
NA427C;VA432C TA72C;AA471C;

1CHH
DbD2 does not

accept the PDB file None

2CI2

WI24C;LI27C
KI43C;AI46C
RI62C;RI65C None

4TNC

DA36C;TA72C
QA51C;QA85C
PA53C;EA57C

FA112C;RA148C
EA159C;QA162C DA36C;TA72C;

53

Appendix C

PyMol Plugin

#

-- Pymol script to analyze arbitrary protein for potential ssbonds

#

from pymol import cmd, stored

import os.path

import subprocess as sp

from scipy.spatial.distance import cdist

import re

import numpy as np

import time

def getPDBFile(pdb):

’’’

DESCRIPTION

This function looks to see if given PDB is already on disk.

It will load the file in Pymol from disk, alternatively

it will download it from RCSB.

It will also remove hets and display the molecule as a cartoon

PARAMS

54

string pdbid

OUTPUT

Produces a selection object containing all the amino acid residues.

Reinitializes and creates OUTPUT on PyMol graphic device.

’’’

cmd.reinitialize()

file = ’./%s.pdb’ % pdb

if os.path.exists(file):

cmd.load(file)

else:

cmd.fetch(pdb)

cmd.remove(’het’)

cmd.hide(representation = "lines", selection = "all")

cmd.show(representation = "cartoon", selection = "all")

cmd.cartoon(’loop’, ’all’)

cmd.select(’residues’, ’(byres name ca)’)

def findSurfaceResidues(objSel="(all)", cutoff=2.5,

doShow=False, verbose=False):

"""

findSurfaceResidues

finds those residues on the surface of a protein

that have at least ’cutoff’ exposed A**2 surface area.

55

PARAMS

objSel (string)

the object or selection in which to find

exposed residues

DEFAULT: (all)

cutoff (float)

your cutoff of what is exposed or not.

DEFAULT: 2.5 Ang**2

asSel (boolean)

make a selection out of the residues found

RETURNS

(list: (chain, resv))

A Python list of residue numbers corresponding

to those residues w/more exposure than the cutoff.

Code taken from FindSurfaceResidues example on PymolWiki

"""

tmpObj="__tmp"

cmd.create(tmpObj, objSel + " and polymer");

if verbose!=False:

print "WARNING: I’m setting dot_solvent. \

You may not care for this."

cmd.set("dot_solvent");

cmd.get_area(selection=tmpObj, load_b=1)

56

threshold on what one considers an "exposed" atom (in A**2):

cmd.remove(tmpObj + " and b < " + str(cutoff))

stored.tmp_dict = {}

cmd.iterate(tmpObj, "stored.tmp_dict[(chain,resv)]=1")

exposed = stored.tmp_dict.keys()

exposed.sort()

selName = "exposed_atoms"

if verbose!=False:

print "Exposed residues are selected in: " + selName

cmd.select(selName, objSel + " in " + tmpObj)

selNameRes = "surface_resi"

cmd.select(selNameRes, "byres " + selName)

if doShow!=False:

cmd.show_as("spheres", objSel + " and poly")

cmd.color("white", objSel)

cmd.color("red", selName)

cmd.select(’disulfides’, ’byres (cys/sg and bound_to cys/sg)’)

cmd.select(’residues’, ’(byres name ca & surface_resi)

and !disulfides’)

cmd.select(’carbons’, ’(residues and name cb) or

(gly/ca and residues)’)

57

cmd.show(’sticks’, ’(disulfides and cys/ca+cb+sg)’)

cmd.show(’spheres’, ’(disulfides and cys/ca+cb+sg)’)

cmd.set ("sphere_scale", 0.25, selection=’(disulfides

and cys/ca+cb+sg)’)

cmd.delete(tmpObj)

cmd.delete(’exposed_atoms’)

cmd.delete(’surface_residues’)

def getDistanceMatrix():

’’’

DESCRIPTION

This function obtains the distance matrix of every beta carbon

to every other beta carbon in the list. It does not care about

whether this is a single or multichain protein.

Note: For glycine

PARAMS

a selection object from pymol consisting of beta carbons.

OUTPUT

numpy matrix containing distance between beta carbons (falls back

to alpha carbon distance for GLY)

’’’

58

stored.betaCarbons = []

cmd.iterate_state(1, pymol.selector.process(’carbons’),

"stored.betaCarbons.append([x,y,z])")

Y = cdist(stored.betaCarbons, stored.betaCarbons)

return(Y)

def getProbability(table, index):

’’’

DESCRIPTION

This function takes a index-value table and finds the

highest value smaller than the given index.

For this value it returns the corresponding probability

PARAMS

array table containing a list of two-tuples.

float index

OUTPUT

float probability

’’’

smallers = [y for (x,y) in table if x<= index]

try:

59

return smallers[-1]

except:

return 0.0

def getCandidateResidues(Y):

’’’

DESCRIPTION

Produces a list of candidate residues available for

modification to CYS, along with an evolutionary score

computed from a statistical distribution

PARAMS

distance matrix

OUTPUT

list of tuples containing ranked candidates

’’’

escore = { ’ALA’: 0.42982450,

’ARG’: 0.02808730,

’ASN’: -0.30177649,

’ASP’: -0.45340845,

’CYS’: 3.15118885,

’GLN’: -0.59681526,

’GLU’: -0.76325665,

’GLY’: 0.36711727,

’HIS’: -0.65986515,

60

’ILE’: -0.37885249,

’LEU’: -0.08448341,

’LYS’: -0.57031967,

’MET’: -0.77845348,

’PHE’: -0.52710314,

’PRO’: -0.86851000,

’SER’: 0.78266876,

’THR’: 0.25801733,

’TRP’: -1.15163219,

’TYR’: -0.07394938,

’VAL’: 0.21469455,

’.’: 1.97682717}

stored.names = []

stored.resnum = []

stored.reschain = []

print stored.tmp_dict

cmd.iterate(’carbons’, ’stored.names.append(resn)’)

cmd.iterate(’carbons’, ’stored.resnum.append(resi)’)

cmd.iterate(’carbons’, ’stored.reschain.append(chain)’)

scores = []

for i in range(0, len(Y)):

for j in range(i+1, len(Y)):

dist = Y[i][j]

if dist < 4.25 and dist > 3.5:

61

id1 = cmd.identify(’carbons’, 0)[i]

id2 = cmd.identify(’carbons’, 0)[j]

score = escore[stored.names[i]] +

escore[stored.names[j]]

scores.append((score, (stored.names[i],

stored.resnum[i], stored.reschain[i],

stored.names[j], stored.resnum[j],

stored.reschain[j])))

cmd.select(’cys1’, ’byres id ’ + str(id1))

cmd.show(’sticks’, ’cys1 and ! name c+n’)

cmd.label(’cys1 and name ca’, ’"%s-%s" % (resn, resi)’)

cmd.select(’cys2’, ’byres id ’ + str(id2))

cmd.show(’sticks’, ’cys2 and ! name c+n’)

cmd.label(’cys2 and name ca’, ’"%s-%s" % (resn, resi)’)

scores.sort(reverse=True)

cmd.delete(’cys1’)

cmd.delete(’cys2’)

return(scores)

62

def highlightCandidates():

’’’

DESCRIPTION

Highlight all possible pairs of residues that might be

candidates for disulfide bonds.

Currently will highlight everything within a fixed

distance that have positive E-scores.

’’’

cmd.show(’spheres’, ’residues’)

cmd.set ("sphere_scale", 0.25, selection=’residues’)

cmd.color(’yellow’, ’residues’)

cmd.color(’red’, ’carbons’)

def mutate(selection,mutframe):

’’’

DESCRIPTION

Function adapted from rotkit.py

PARAMS

string selection

int mutframe

OUTPUT

rotamer probability

63

’’’

cmd.wizard("mutagenesis")

cmd.do("refresh_wizard")

cmd.get_wizard().set_mode("CYS")

cmd.get_wizard().do_select(’(’+selection+’)’)

cmd.frame(mutframe)

title = cmd.get_title(’mutation’, 1)

print title

prob_rot = None

if title:

prob_rot = float(title[:-1])/100.0

cmd.get_wizard().apply()

cmd.set_wizard()

return prob_rot

def evaluateForFit(potentials):

’’’

DESCRIPTION

This function takes a list of residue pairs, mutates each one to

one of the three rotamers of CYS, and evaluates these modifications

for potential SSBond features.

PARAMS

A list of potentials of the form

(escore, (cys1, cys1num, cys2, cys2num))

64

’’’

with open(’./bondlength.csv’, ’rb’) as tmp:

lines = tmp.readlines()

lines = [line.strip().split(’,’) for line in lines]

length_table = [(float(line[0]), float(line[1])) for line in lines]

with open(’./chi3density.csv’, ’rb’) as tmp:

lines = tmp.readlines()

lines = [line.strip().split(’,’) for line in lines]

angle_table = [(float(line[0]) * 57.2958, float(line[1]))

for line in lines]

57.2958 = 180 / pi

all_candidates = []

for pair in potentials:

score, (cys1, cysnum1, cys1chain,

cys2, cysnum2, cys2chain) = pair

cmd.select("Cys1", ’resi ’ + str(cysnum1))

cmd.select("Cys2", ’resi ’ + str(cysnum2))

#cys1chain = cmd.get_chains("Cys1")[0]

#cys2chain = cmd.get_chains("Cys2")[0]

candidates = {’Residues’ : ’ %s: %s (%s) -- %s:

%s (%s) ’ % (cys1chain, cys1, cysnum1,

cys2chain, cys2, cysnum2)}

candidates[’ETscore’] = score

65

print cys1chain, cys1, cysnum1, cys2chain, cys2, cysnum2

cmd.select("Cys1", ’resi ’ + str(cysnum1))

cmd.select("Cys2", ’resi ’ + str(cysnum2))

cmd.select(’Pair’, ’Cys1 or Cys2’)

cmd.center(’Pair’)

cmd.orient(’Pair’)

cmd.zoom(’Pair’, buffer = 3.0)

cmd.refresh()

for i in range(0,3):

cmd.select("Cys1", ’resi ’ + str(cysnum1) +

’ and chain ’+cys1chain)

prob_cys1 = mutate(’(Cys1)’, i+1)

cmd.refresh()

for j in range(0,3):

print i,j

cmd.select("Cys2", ’resi ’ + str(cysnum2) +

’ and chain ’+cys2chain)

prob_cys2 = mutate(’(Cys2)’, j+1)

cmd.refresh()

if prob_cys1==None or prob_cys2==None:

continue

cmd.select("Cys1", ’resi ’ + str(cysnum1) +

’ and chain ’+cys1chain)

cmd.select("Cys2", ’resi ’ + str(cysnum2) +

66

’ and chain ’+cys2chain)

dst = cmd.distance(’dst’, ’Cys1 and name sg’,

’Cys2 and name sg’)

dst_prob = getProbability(length_table, dst)

cmd.select(’cys1cb’, ’Cys1 and resn cys and name cb’)

cmd.select(’cys1sg’, ’Cys1 and resn cys and name sg’)

cmd.select(’cys2sg’, ’Cys2 and resn cys and name sg’)

cmd.select(’cys2cb’, ’Cys2 and resn cys and name cb’)

angle = cmd.get_dihedral(’cys1cb’, ’cys1sg’,

’cys2sg’,’cys2cb’)

angle_prob = getProbability(angle_table, angle)

record = {’RotamerPair’ : (i+1, j+1),

’Length’:dst,

’Dihedral’:angle,

’RotamerProb’: prob_cys1*prob_cys2,

#’StructuralLikelihood’:(dst_prob,

angle_prob)}

’StructuralLikelihood’: \

np.log(angle_prob) + np.log(dst_prob)}

key = ’Pair’ + str(i+1) + str(j+1)

candidates[key] = record

cmd.hide(’dashes’, ’dst’)

67

cmd.hide(’labels’, ’dst’)

if len(candidates.keys())>1:

all_candidates.append(candidates)

return(all_candidates)

def getDisulfideCandidates(pdb):

’’’

DESCRIPTION

Wrapper function to analyze and score different candidate

disulfide bonds.

’’’

amino_acids = {’CYS’: ’C’, ’ASP’: ’D’, ’SER’: ’S’,

’GLN’: ’Q’, ’LYS’: ’K’, ’ILE’: ’I’,

’PRO’: ’P’, ’THR’: ’T’, ’PHE’: ’F’,

’ASN’: ’N’, ’GLY’: ’G’, ’HIS’: ’H’,

’LEU’: ’L’, ’ARG’: ’R’, ’TRP’: ’W’,

’ALA’: ’A’, ’VAL’:’V’, ’GLU’: ’E’,

’TYR’: ’Y’, ’MET’: ’M’}

getPDBFile(pdb)

findSurfaceResidues(cutoff=0.5)

carbons_dist = getDistanceMatrix()

potentials = getCandidateResidues(carbons_dist)

68

results = evaluateForFit(potentials)

mutations=[]

for candidate in results:

(cys1chain, cys1, cys1num, cys2chain, cys2, cys2num) =\

re.findall(r’(\S+): (\S+) \((\S+)\) -- (\S+):

(\S+) \((\S+)\) ’, candidate[’Residues’])[0]

mutation=amino_acids[cys1] + cys1chain + cys1num + \

amino_acids[’CYS’] + ’;’ + amino_acids[cys2]\

+ cys2chain + cys2num

+ amino_acids[’CYS’] + ’;\n’

mutations.append(mutation)

print ’\n\n=====’+candidate[’Residues’]+’=====’

print ’Evolutionary Trace score: ’ + str(candidate[’ETscore’])

print ’Pair, Rotamer Probability, Structural Likelihood,\

Bond Length, Dihedral’

for k,v in candidate.iteritems():

if k[0:4] == "Pair":

print ’%s, %.3f, %s, %.3f, %.3f’ % \

(str(v[’RotamerPair’]), v[’RotamerProb’],

v[’StructuralLikelihood’], v[’Length’],

v[’Dihedral’])

run_foldx(mutations,pdb)

69

def run_foldx(mutations,pdb):

print mutations

f=open("./foldx_runs/individual_list_"+pdb,"w")

for mutation in mutations:

f.write(mutation)

f.close()

f=open("./foldx_runs/config_"+pdb,"w")

f.write("command=BuildModel\n")

f.write("pdb="+pdb+".pdb\n")

f.write("mutant-file=./foldx_runs/individual_list_"+pdb+"\n")

f.write("numberOfRuns=3\n")

f.write("output-dir=./foldx_runs\n")

f.close()

sp.call(["./foldx","-f","./foldx_runs/config_"+pdb])

import __main__

__main__.pymol_argv = [’pymol’, ’-xiqc’] # Quiet and no GUI

import sys, time, os

import pymol

os.environ[’PYMOL_DATA’]=’/usr/share/pymol/data’

os.environ[’CHEMPY_DATA’]=’/usr/share/pymol/data/chempy’

stdout = sys.stdout

stderr = sys.stderr

In /usr/lib/python2.7/dist-packages/chempy/fragments/__init__.py

change path = chempy.path + ’fragments/’ to

path = ’/usr/share/pymol/data/chempy/fragments/’

pymol.finish_launching()

70

##

Read User Input

spath = os.path.abspath(sys.argv[1])

sname = spath.split(’/’)[-1].split(’.’)[0]

Load Structures

getDisulfideCandidates(sname)

Get out!

pymol.cmd.quit()

71

