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Abstract

This dissertation presents three new methodologies for analyzing randomized controlled trials using the re-

searcher controlled randomization mechanism as the basis for inference. The first method extends inference

for the “attributable effect”, the total of the difference of outcomes if the treatment group had instead been

assigned to the control condition, to count and continuous data using a fast approximation algorithm. Al-

ternative approaches are limited to binary data, require asymptotic approximations, or are computationally

expensive. A refinement of the method to allow for including additional information is also included. The

second method extends randomization inference to the study of network formation. Previous approaches

either required strong parametric assumptions or only allowed for pre-treatment networks to be used. This

approach develops several test statistics that can be used to test against common network formation models,

based purely on the randomization of treatment. The final method improves inference in cluster randomized

trials, where collections of individuals are assigned to treatment conditions simultaneously. Under the ap-

pealing assumption that larger clusters will have larger outcomes, on average, the method provides efficient,

unbiased estimation of average treatment effects requiring minimal additional assumptions. All three of these

methods demonstrate the relevance of randomized controlled trials to key areas of science and statistical

development as well as the advantages of carefully crafting study design to fit the problem of interest. Data

examples include a large scale field experiment involving health insurance, a gene-wide association study

involving high dimensional outcomes, and a policy relevant study of parental social capital and student

achievement in schools.
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Preface

Planned experiments have a long history within the field of statistics. Researchers appreciate the clarity of

experiments, particularly in addressing causal questions. Many funding and regulatory agencies expressly

require, or at least strongly favor, randomized controlled trials when possible in order to avoid the pitfalls of

unmeasured confounding and self selection. Modern businesses scrupulously test new marketing and delivery

mechanisms through randomized trials in order to determine how best to respond and serve clients. As new

forms of data are generated, new questions asked, and the size and scope of inference increases, so too must

randomized trials evolve. Statisticians have a role to play in this evolution of experiments by facilitating

new analyzes and research designs. R. A. Fisher famously observed, “To consult the statistician after an

experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps

say what the experiment died of.” More positively, statisticians can encourage researchers to be bold in

their experimentation: gather new types of data, analyze data on a larger scale, ask new questions.

Fisher also maintained that randomization is the “reasoned basis” for inference. While models are often

convenient approximations, the best method of analyzing data appeals not to opaque assumptions but to

the known distribution of the treatment mechanism, controlled by the researcher. So called “randomization

inference” has seen a rebirth in recent years due to increased attention to randomized experiments from

many sources. This dissertation is composed of three developments in randomization inference in ways that

make use of new types of data or address opportunities to improve randomization inference. The common

thread linking these methods is that they take randomization as a primary basis for statistical inference: the

known distribution of the randomly allocated treatment regime leads to stochastic implications for the data.

In fact, the data themselves may be taken to be fixed, conditional on treatment. That we see some data and

not others is a product of the treatment allocation, not a data generating process outside the control of the

researcher. Consequently, these methods require fewer assumptions than competing approaches and focus

attention on the importance of study design.

The first chapter considers a new method that expands a particular mode of randomization inference,

“attributable effects,” to new types of data. Previous methods for attributable effects are largely limited to

vii



binary data or ordinal data, computationally burdensome, which limits application to small studies, or based

on large sample approximations that may fail to hold when data exhibit highly non-normal distributions.

This method expands the scope of inference for attributable effects in two ways. First, it casts the problem of

testing an attributable effect in the language of optimization problems and shows the problem can be solved

quickly using an approximation that appears to perform well in practice. Second, as the optimization is by

construction a “worst case” bound, it shows how additional information can be included in the optimization

process to improve inference if it seems like the data do not support the worst case scenario. In simulations

and with real data, it is shown that the method performs particularly well for data that exhibit high skew

or many zeros. Such data are frequently a problem for standard methods. The computational efficiency of

the approach is also a large advantage when it is used to analyze a field experiment on health insurance with

tens of thousands of participants.

The second chapter also expands randomization inference to a new type of data: networks. Graph

formation models have existed since the seminal Erdös-Renyi model, but these often make strong parametric

assumptions that are not well matched to the randomized allocation of treatment. Often these models do not

include covariates for the nodes in the graph, such as a treatment assignment label, and condition outcomes

for a single dyad on the rest of the graph, creating a de facto mediation analysis. While there has been work

to extend randomization inference to allow incorporating existing networks, there has not been any work to

consider using randomization inference to understand network formation. This approach considers perhaps

the simplest model of network formation, that the network is entirely fixed with respect to the random

treatment assignment, and develops several test statistics that are sensitive to certain types of deviations

from this hypothesis, such as treatment induces clustering or makes treated nodes more or less central to the

network. Through a close relationship between randomization tests simple randomization mechanisms and

permutation tests, these methods can also be used to test hypotheses that a network is invariant to relabeling

nodes in a network. Several existing permutation tests exist that create networks from high dimensional

data, and the proposed method can be useful for a randomized trial with an extremely high-dimensional

outcome, which is demonstrated using a gene-wide association study. While networks that are the result of

randomized trials are not yet commonly studied, this methodology opens up new possibilities for researchers

interested in testing how networks change in a causal way.

The final chapter in this dissertation takes a different approach than the previous two chapters by con-

sidering a common research design that has been under served: analyzing clustered randomized trials when

the outcome of interest is at the unit rather than cluster level. Cluster randomized trials are frequently

employed when treatment cannot easily or ethically be applied to individuals on a case-by-case basis. Com-
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mon examples of clustering include students within classrooms, patients within clinics, and precincts within

cities. When treatments cannot be meted out to individuals, for example it may not be impossible to teach

different curricula to students in a single classroom, the level of the randomization and the level of the

analysis can differ. Dating back 40 years or more, scholars have raised caution about analyzing cluster ran-

domized trials as if they were in fact randomized at the individual level. Less has been offered, however, on

methods to analyze individual outcomes without resorting to assumptions on functional forms and paramet-

ric distributions. Using a novel estimator, this chapter develops unbiased estimation of average treatment

effects under a simple assumption that makes intuitive sense for cluster randomized trials: larger clusters

will have larger outcomes than smaller clusters. This estimator also exhibits smaller variance than other

unbiased methods, which is an important consideration when cluster randomized trials may have relatively

few clusters compared to the number of subjects within the clusters. As an added benefit to this approach,

it seamlessly handles the case of analyzing within subgroups defined at the individual level, traditionally a

more difficult task for methods that require subgroups to be defined at the cluster level.

While the three chapters constituting the dissertation take on different types of data, different research

designs, and different targets of inference, the common thread uniting them is a consistent commitment to

using randomization to the fullest extent possible. As hinted at in the final chapter, however, models are

useful tools that can provide useful insight to improve randomization inference. Careful incorporation of

model assisted approaches is the natural next step for many of the methods proposed in this dissertation.

Additional modeling constraints may further focus the attributable effects optimization problem to plausible

outcomes, extending the current method of using a confidence interval for a certain variance quantity to

other parameters. In the networks chapter, it was found that certain statistics were most powerful against

different alternative hypotheses. Designing test statistics for specific alternative hypothesis of interest is

a natural next step. The cluster randomized trial approach was able to use a simple model to find an

unbiased estimator of the average treatment effect; no doubt other models would lead to other estimators,

and providing an algorithm for deriving such estimators would be a valuable contribution. Looking further

than the scope of these methods, this dissertation shows that randomized trials can remain relevant to key

issues of modern statistics such as networks, high dimensional data, optimization problems, and asymptotic

theory. Likewise, cutting edge science can be well served by carefully crafting randomized trials to fit the

scientific question.
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Chapter 1

Attributable effects for count and
continuous data

1.1 Introduction

In 2008, the state of Oregon engaged in a lottery in which low income residents were selected to be allowed to

apply for state funded Medicaid health insurance. Supporters of expanded state sponsored healthcare argue

that offering medical insurance shifts incentives to use expensive emergency room care to less expensive

scheduled clinical care. To address this argument, Finkelstein et al. (2012) contacted a subset of those

assigned to both the health insurance arm and those who were not selected in the lottery to ascertain the

amount spent on out of pocket medical costs. The 11, 450 households in the control condition reported a

total of $4.71 million spent on medical care in the previous six months (Finkelstein et al., 2012). On average,

this translates to $411.68 per control household, but this averaging obscures the fact that 49% of the control

subjects reported spending zero dollars on out of pocket costs. For nearly half of the control subjects, the

average is not very informative about the amount spent on medical care.

Instead of asking about average effects, it may be more useful to ask what portion of the costs can be

attributed to the control subjects not being permitted to apply for Oregon’s Medicaid program. Rosenbaum

(2001) calls this quantity “the effect attributable to treatment.” Many of the approaches for estimating and

testing hypotheses about attributable effects have been focused on binary outcomes (Rosenbaum, 2001).

Rosenbaum (2002a) extends his previous work to matched pair designs. Rigdon and Hudgens (2015) allow

for attributable effects to both the treatment group and control group in order to get confidence intervals

for the average treatment effect. Li and Ding (2016) improve the efficiency of these results. Fogarty et al.

(2017) focus on the particular difficulties in observational studies that attempt to emulate randomized trials

and propose numerical solutions that provide tests of effects on binary outcomes along with sensitivity

analyses. Choi (2017) also provides optimization based techniques for solving attributable effects for binary

This chapter contains joint work with Professor Yuguo Chen and is currently under review for publishing.
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data and includes methods for improving inference when information is available about interactions between

subjects. Some progress has also been made on ordinal outcomes using well defined sequences of alternative

hypotheses (Lu et al., 2015), bounds (Lu et al., 2016), or introducing nuisance parameters or latent variables

(Volfovsky et al., 2015). Ding and Miratrix (2017) show how physical randomization, binary outcomes, and

monotonicity combine to generate a multiple hypergeometric likelihood, which can be used for inference for

both the attributable effect and the average treatment effect.

There are two notable exceptions to the focus on binary data. Hansen and Bowers (2009) present a

survey sampling based approach for estimating attributable effects. While this approach expands the scope

of data to include count and continuous outcomes, the method requires large sample approximations to hold.

Feng et al. (2014) provide an exact test for continuous outcomes based on a complex optimization problem.

The approach is based on the Mann-Whitney-Wilcoxon sum of ranks test statistic, which degrades in the

presence of ties in the values of Yi. For both methods, large numbers of zeros in the outcomes are difficult

to handle.

In this chapter, we present a method that can be thought of as a hybrid between the existing exact tests

for attributable effects and the survey sampling based estimation approach. We use a normal approximation

as part of an optimization routine, but test the resulting hypothesis using exact methods. The method is

computationally efficient, and simulations show that it performs well when the data contain large portions

of zero values.

The rest of the chapter is organized as follows. Section 1.2 introduces the proposed method, along

with notation and assumptions. Section 1.3 evaluates the accuracy of the key approximation and the

statistical properties of the method through a variety of simulations. Section 1.4 returns to the Oregon Health

Insurance Program experiment previously introduced to analyze several outcomes. Section 1.5 concludes with

a discussion.

1.2 Methodology

1.2.1 Setting and notation

Consider N units in a study where n units are randomly assigned to the treatment condition and the

remaining m = N − n units are assigned to the control condition, writing Zi = 1 for treatment and Zi = 0

for control. For all subjects, we hypothesize potential outcomes to the different treatment conditions yi(1)

when Zi = 1 and yi(0) when Zi = 0 (Neyman, 1923; Holland, 1986). The observed outcome Yi is random in

that it depends on Zi: Yi = yi(Zi). Throughout, we shall use boldfaced symbols as vectors, so Y = y(Z)
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defines the outcomes after treatment (Y1, . . . , YN )′ = (y1(Z1), . . . , yN (ZN ))′. Implicit in this definition is an

assumption that assignment to the treatment or control condition for unit i does not change the outcome of

any unit j, often labeled as the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980).

Define the vector of individual effects τ = y(1) − y(0). Since we only observe Y = y(Z), τ is not

identified. A sharp null hypothesis H0 : τ = τ0 states the values of y(1−Z) and implies τ0. After removing

the hypothesized treatment effect from the treated units, ỹ = y(Z)−τ0·Z, the resulting data are independent

of treatment assignment and a randomization test can be applied using a suitable test statistic (Fisher, 1935;

Rosenbaum, 2002a, 2010). Examples of such tests include Fisher’s exact test, the Wilcoxon-Mann-Whitney

rank test, and many others. After selecting a test statistic T (Z, ỹ), its distribution under the hypothesis

H0 : y(0) = ỹ is given by enumerating all possible ways of selecting n out of N units (Fisher, 1935). The

p-value of the hypothesis is the proportion of randomizations that lead to a larger test statistic value than

the observed value. Indexing all J =
(
N
n

)
possible treatment assignments as z(j), write the p-value as

p = P (T (Z, ỹ) ≥ T (z, ỹ)) = J−1
J∑
j=1

I(T (z(j), ỹ) ≥ T (z, ỹ)),

where z is the realized treatment assignment in the experiment and I(·) is the indicator function. One of

the primary advantages of the Fisherian approach is that it does not rely on large sample approximations or

distribution assumptions. The trade-off is that it requires hypothesizing the subject level treatment effects

τi.

As an alternative to specifying the entire τ0 vector, consider the attributable effect

A = Z ′τ . (1.1)

Observe that a hypothesis of the form H0 : A = A0 is a composite hypothesis as it contains any τ0 for

which Z ′τ0 = A0. Theoretically, A0 could be tested using a randomization test if one could find the τ0 with

the maximum p-value among the set {τ0 : Z ′τ0 = A0}, as the p-value of the true τ must be less than the

maximum. For count data, enumerating all possible τ0 is computationally intractable in most circumstances.

For continuous data, such an enumeration is not even possible.

1.2.2 Approximating the largest p-value

Most of the previous approaches to attributable effects relied on “distribution free methods,” in which the

distribution of the test statistic did not depend the values of the outcomes themselves (Maritz, 1981). In these
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situations, the problem of finding the largest p-value is equivalent to finding the smallest test statistic value

that results from an adjustment τ0, as any adjustment τ0 will result in the same null distribution. In this

chapter, we take the opposite approach: the test statistic remains fixed while we search for a distribution

that places the most mass above the test statistic value. While we have wide latitude selecting the test

statistic T , a natural choice is the deviation of the treatment group’s mean from the overall mean:

T (Z,y) =
1

n

N∑
i=1

Ziyi −
1

N

N∑
i=1

yi. (1.2)

This statistic has been widely studied in both the randomization and permutation literature as an analog

of the parametric t-test (Lehmann and Romano, 2005, Chapter 5). For the present purposes, the primary

advantages of this test statistic are the close alignment with the definition of the attributable effect and a

convenient normal approximation.

Usefully, the value of the test statistic (1.2) evaluated at z, the observed assignment vector, remains

fixed under any possible τ0 that is compatible with A0. For observed treatment z, observed data y, and

null hypothesis τ0 = (τ0,1, τ0,2, . . . , τ0,N )T such that z′τ0 = A0, define the adjusted data ỹ = y− τ0 · z. The

value of test statistic when applied to the adjusted data only depends on τ0 through A0:

T (z, ỹ) =
1

n

N∑
i=1

zi(yi − ziτ0,i)−
1

N

N∑
i=1

(yi − ziτ0,i) = T (z,y)− (m/n)

N
A0.

Therefore any hypothesis compatible with A0 generates the same value of T .

While the observed test statistic remains unchanged, the distribution of T (Z, ỹ) depends on the particular

τ0,i values. Since ỹ is a fixed quantity under the null that A = A0, T (Z, ỹ) can be thought of as a

sample average of n items drawn from a finite population of size N , centered on the true population mean

µ0 = N−1
(∑N

i=1 yi −A0

)
. The mean and variance of T (Z, ỹ) follow from standard finite population

sampling results (Cochran, 1999, Theorems 2.1, 2.2):

E (T (Z, ỹ)) =
1

n

N∑
i=1

E (Zi) ỹi − µ0 = 0,

Var (T (Z, ỹ)) =
m/n

N(N − 1)

[
N∑
i=1

zi (τ0,i − yi + µ0)
2

+

N∑
i=1

(1− zi) (yi − µ0)
2

]
.

While the portion of the sum that depends on the control units is a constant, the portion depending on the

treated units is a function of the exact τ0,i values, even though
∑N
i=1 Ziτ0,i = A0 is fixed.

Under fairly mild conditions, T is approximately normally distributed in large samples (Hájek (1961);

4



(Lehmann, 1975, p. 353)). Consider a set of finite populations indexed by ν. For each population of

Nν subjects, nν are assigned to treatment and mν are assigned to control. For each population, the null

hypothesis τ0,ν holds so adjusted values ỹν,i are fixed. The statistic Sν = Tν/Var (Tν)
1/2

converges in

distribution to N(0, 1) when Nν , nν ,mν →∞ and

max(ỹν,i − µν)2∑Nν
i=1(ỹν,i − µν)2

max
( n
m
,
m

n

)
→ 0 as ν →∞,

where µν = 1
N ỹν,i. The first term requires that no individual ỹ be so large as to dominate the variance,

while the second implies that neither the treated nor control group size become negligible, which seems

particularly natural in the context of a series of increasingly larger experiments.

Let c =
∑N
i=1(1 − zi) (yi − µ0)

2
be the control subjects’ contribution to the variance of T . Under the

regularity conditions above, squaring T leads to a scaled χ2 distribution:

[T (Z, ỹ)]
2 ∼ m/n

N(N − 1)

[
N∑
i=1

zi (τ0,i − yi + µ0)
2

+ c

]
χ2

1.

Recall that for any fixed value of A0, the value of T 2 will be the same regardless of the particular values τ0,i.

Therefore the vector of adjustments τ0 that corresponds to the largest possible p-value consistent with A0

can be found by maximizing the quantity
∑N
i=1 zi(τ0,i − yi + µ0)2. In order to find the τ0 that maximizes

T , we make one of two possible assumptions for all i:

Assumption 1.1. 0 ≤ yi(0) ≤ yi(1),

or

Assumption 1.2. 0 ≤ yi(1) ≤ yi(0).

For the purpose of exposition, we focus on the case when Assumption 1.1 holds, but applying the methods

when Assumption 1.2 holds simply requires substituting W = 1−Z for Z throughout.

Without loss of generality, we suppose that the first n units are the treated units (i.e., zi = 1 for

i = 1, . . . , n and zi = 0 for i = n + 1, . . . , N). Under Assumption 1.1, the following optimization problem
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finds the τ0 with the largest p-value:

(P ) maximize: g(τ0) =

n∑
i=1

(τ0,i − yi + µ0)
2
,

subject to:

n∑
i=1

τ0,i = A0,

0 ≤ τ0,i ≤ yi.

This optimization problem comes from the class of “quadratic convex maximization” problems (Floudas

and Visweswaran, 1995). While maximizing a convex function over a convex set is generally an NP-hard

problem, effectively equivalent to enumerating all possible vertices of the constraint space, the particular

form of this problem allows for an efficient solution.

Theorem 1.1. Let all yi ≥ 0. Sort the yi such that,

y1 ≥ y2 ≥ · · · ≥ yn.

An optimal solution to P is given by:

τ0,i =


0, i < s,

A0 −
∑n
i=s+1 yi, i = s,

yi, i > s,

where s is the largest integer such that
∑n
i=s yi > A0.

A proof of Theorem 1.1 is given in the supplementary materials. As this solution can be implemented

using a simple sort of the n treated units, followed by a linear pass through the data, so the complexity of

the algorithm is O(n log n) using typical sorting routines. While Theorem 1.1 does not assume the data re

either real values or integer values, the solution also applies to integer constrained Y .

Corollary 1.1. When A0 is an integer and all yi are integers, the solution to the integer constrained version

of P is also given by Theorem 1.1.

A proof is given in the supplemental materials.

It is important to note exactly what optimality guarantees Theorem 1.1 provides. Ultimately, we are

seeking the τ0 vector of adjustments that leads to the maximum p-value over all compatible τ0 that sum to

A0. Theorem 1.1, however, finds the τ0 vector that generates a null distribution for T with the maximum
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variance. WhenN is large, this distribution will be roughly normal, so the correspondence between maximum

variance and maximum p-value will be close. For small samples, or when the normality approximation fails

for other reasons such as high skew, this approximation may fail to find the the adjustment with the maximum

p-value, despite having the largest variance. In Section 1.3.1, we investigate the fidelity of the approximation

through a series of numerical studies and find it performs quite well, even in small or long tailed data.

1.2.3 Improving inference with estimated variance

The solution found by Theorem 1.1 sets τ0,i = 0 for s − 1 of the treated units and τ0,i = yi for n − s of

the units, with a final “pivot” observation having a value that ensures the sum of treatment effects is A0.

Likewise, the adjusted data ỹ1, . . . ỹn created after subtracting the treatment effects is composed of at least

n− s zeros. While this allocation of treatment effects is certainly the solution to the optimization problem

as phrased, it may not be plausible for the reason that these data look very different than the observed

responses of the control group. Unless we observe that the control group is also composed of many zeros

and other values similar to the observed treated group, the solution τ0 seems implausible as the true set of

individual treatment effects, even if it is the case that A = A0.

To make this intuition more formal, we focus on limiting the acceptable τ0 to those that are compat-

ible with reasonable estimates of the variance of all subjects’ responses to the control condition: σ2
0 =

N−1
∑N
i=1(yi(0) − ȳ(0))2. Observe that for the control units yi(0) is observed, while for the treated units,

the hypothesis τ = τ0 allows recovering the control potential outcome for subjects that were treated. If we

knew the true value of σ2
0 , we could limit the search of possible τ0 vectors to those that were compatible

with the equation σ2
0 = N−1

∑N
i=1(yi − ziτ0,i − µ0)2. As we do not know σ2

0 , we find a reasonable upper

bound and account for the uncertainty from using the bound rather than the true value.

Specifically, we adopt the approach of Berger and Boos (1994) to test hypotheses for τ0 over a confidence

interval for σ2
0 . If an α-level hypothesis test of A0 or a 1 − α confidence interval for A is desired, we first

construct a 1 − γ upper confidence bound σ̄2
0 and then test the individual hypotheses for A0 at the α − γ

level, conditional on σ̄2
0 . As the probability of σ2

0 > σ̄2
0 is less than γ, an α−γ level test of A0 or a 1− (α−γ)

confidence interval will have size no greater than α and coverage no less than 1− α, respectively.

For the finite sampling context, O’Neill (2014) provides an upper confidence bound for the finite popu-

lation variance of yi(0) based on simple random samples as

(
m− 1

N − 1
+

n

N − 1

1

Fγ,d1,d2

)
s2

0,
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where s2
0 is the sample variance for the control units and Fγ,d1,d2 is the γ quantile of an F distribution with

the degrees of freedom calculated as

d1 =
2m

κ− (m− 3)/(m− 1)
, d2 =

2n

2 + (κ− 3)(1− 2/N + 1/(Nm))
.

O’Neill (2014) motivates these calculations from a model in which the finite population is drawn from a

super-population where κ is the fourth central moment. In the interest of simplicity, we take κ = 3, as

would be the case if the superpopulation were normal, and the degrees of freedom calculations simplify to

d1 = m− 1 and d2 = n. This parameter could also be estimated from the control responses.

As we noted in Section 1.2.2, the variance of the test statistic T depends on the finite population variance:

Var (T ) = m/n
N−1σ

2
0 (Cochran, 1999, Theorem 2.2). When σ̄2

0 is an upper bound for σ2
0 and the variance implied

by τ0 is less than this bound, then it is both an optimal solution and compatible with the bound. We can

then proceed to testing it at the α level. Alternatively, if the variance implied by τ0 exceeds the bound,

we need to find a solution that is compatible. In this case, any solution with a compatible variance such

that
∑n
i=1 τi = A0 is equally valid, so we employ the survey sampling based approach to approximate the

confidence interval that would be found for any such solution. In large samples, when the distribution of

the test statistic is approximately normal, the set of A0 that are not rejected at the α− γ level is

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi ± z1−(α−γ)/2

√
N
n

m
σ̄2

0 , (1.3)

where z1−(α−γ)/2 is the 1− (α+γ)/2 quantile of the standard normal distribution (additional details on this

interval are given in supplementary materials). If A0 is within this set, we can accept it at the overall α level,

having accounted for the possible Type I error from using the upper bound σ̄2
0 . This procedure can be seen

as somewhere between the maximum variance method proposed in this chapter and the survey sampling

approaches to estimating the attributable effect. As γ goes to zero, the upper bound σ̄2
0 will go to infinity,

so that the maximum variance solution will always have a compatible variance and the procedures are

equivalent. When γ gets close to α, the procedure will more frequently use a sampling based interval, which

will be shown to be similar to a method introduced in Equation (1.4). In the next section, we investigate the

performance of both the maximum variance method and limited variance methods in a series of simulations.
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1.3 Simulations

1.3.1 Testing the normal approximation

For each hypothesized attributable effect A0, there may be many compatible unit level sharp hypotheses

τ0 such that
∑N
i=1 Ziτi = A0. Rejecting A0 at the α level implies that all compatible hypotheses must

also be rejected at the α level. In the suggested methodology of Section 1.2.2, we propose using a normal

approximation to the null distribution to find τ0 with the largest p-value. We now present several simulations

to assess how well the approximation works.

For n treated units and a hypothesis A0, there are at most
(
n+A0−1

n

)
ways to allocate the A0 to the n

treated units when the potential outcomes yi(1) and yi(0) are integer values. For small experiments, these

allocations can be explicitly enumerated to find the τ0 vector with the largest p-value. This presents a way

to compare how well the approximation holds in finding the largest p-value, at least for a sufficiently small

experiments and effect sizes for which all
(
n+A0−1

n

)
possible allocations can be enumerated and checked.
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Figure 1.1: Boxplot comparing of normal approximation maximum p-value (p̂) to true maximum p-value (p)
using relative error (p− p̂)/p. The x-axis labels indicate the units that had positive τi values. For example,
“1:3=2” indicates that τ1 = τ2 = τ3 = 3 and τi = 0 for i > 3.

For a small experiment (N = 10, n = 5), we generated y(0) and then allocated A to the different units,
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with A ∈ {1, . . . , 6}. The true A was either spread out or clustered it on only a few units. Additional

details on this process can be found in the supplemental materials. Figure 1.1 shows the relative error of

the p-value from the normal approximation comapred to p-value from complete enumeration. On the whole,

the approximation works quite well, even for this small experiment. The approximation performed least

well in these examples where the true treatment effect was larger and evenly distributed. Recalling that the

solution to the approximation concentrates the adjustments to the smallest values, it makes sense that the

approximation does not perform well in this situation.

As an additional check on the performance of the algorithm, the variance of T generated by the adjustment

schedule found by the proposed algorithm was compared to the variances of T for all possible adjustments

via enumeration. In all simulations, the adjustment selected had the largest variance of any possible solution.

While this does not always imply the largest p-value, as seen in Figure 1.1, the algorithm is performing its job

properly. As the sample size increases and the normal approximation improves, the accuracy with respect

to finding the true maximum p-value should increase, which is shown in additional simulations reported in

the supplemental materials.

1.3.2 Comparing to survey sampling approach

We now consider the performance of confidence intervals for A using the optimization routine detailed

in Section 1.2.2, which we call the “variance maximization method,” and the method that combines the

variance maximization method with a bound for the variance in the control groups detailed in Section 1.2.3,

which we label the “limited variance method.” As a benchmark method for comparison, we use the survey

sampling based approach of Hansen and Bowers (2009) (HB). Observe that the attributable effect A can be

decomposed as

A =

N∑
i=1

Zi(yi(1)− yi(0)) =

N∑
i=1

Ziyi(1)−

(
N∑
i=1

yi(0)−
N∑
i=1

(1− Zi)yi(0)

)
.

The quantities
∑N
i=1 Ziyi(1) and

∑N
i=1(1− Zi)yi(0) are completely observed as the totals in the treatment

and control groups, respectively. While the total
∑N
i=1 yi(0) is not observed, it can be estimated using

standard sample survey techniques (Hansen and Bowers, 2009; Sekhon and Shem-Tov, 2017). This leads to

a large sample confidence interval for A:

Â± t1−α/2
√
N
n

m
s2

0 =

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi ± t1−α/2
√
N
n

m
s2

0, (1.4)
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where s2
0 is the sample variance for the control units and t1−α/2 is the 1 − α/2 quantile from a Student’s

t-distribution with m − 1 degrees of freedom (additional details on the derivation of this interval are given

in the supplemental materials).

In these simulations, we vary the total experiment size (N), the proportion of the yi(0) that are zero (p),

and the true effect size (e). In each simulation, we compare the coverage rate of a 95% confidence interval

as well as the ratio of interval lengths for the proposed methods and that of HB. For the limited variance

method that requires splitting the α-level across two tests, we apply the method with both 99.9% and 99.0%

upper confidence bounds for σ2
0 . Detailed information on the simulation process is given in the supplemental

materials.
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Figure 1.2: Sample size simulation for A. For 5000 replications, the experimental population (N) is varied
from 10 to 500, while the other simulation parameters remain fixed (p = 0.1, e = 1, Proportion treated =
0.5).
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In the first simulation, we varied the experimental population size between 10 and 500, treating half of

the population in each experiment. Figure 1.2 shows the results of the simulations. The top panel reports the

proportion of the simulations in which the generated confidence intervals covered the true A. As the figure

shows, the basic variance maximization method has conservative coverage over the entire range of sample

sizes. The two limited variance methods are also conservative, but less so than the maximum variance

method. The survey sampling method under-covers at lower samples sizes but achieves nominal level for the

larger sample sizes. In the lower panel, the width of the confidence intervals for the variance maximization

and limited variance methods is compared to the width of the survey sampling method. For the size of the

intervals, the survey sampling method is always the smallest, on average, though it is often under-covering

for sample sizes less than 200. As the sample sizes get large, the limited methods approach the size of

the survey sampling based method. The variance maximization method has the largest intervals, which is

unsurprising given its large coverage rate.

In the second simulation, the parameter p, the probability of yi(0) being zero, varied from 0 to 0.95.

Figure 1.3 again shows the 95% confidence interval coverage and relative widths. With a sample size of

100, the survey sampling based (HB) method has modest under-coverage for several values of p. As the

proportion of zeros increases, the variance maximizing method becomes less conservative, but never falls

below its nominal level. Recall that the solution to the variance maximization optimization problem sets

the hypothesized yi(0) to zero (i.e., ỹi(0) = 0) for the smallest observed treated units. As the proportion of

zeros increases, this solution approaches the true τ0, whereas in general cases the solution is only guaranteed

to generate a p-value larger than that of the true τ0. Consequently, the method performs particularly well

in the case of zero-inflated outcomes. The relative width of the variance maximization interval tends to

approach the width of the HB interval; however, the trend reverses for p = 0.95, suggesting there may be

a limit to the proportion of zeros that this method can efficiently handle. The limited variance method

performs well, maintaining good coverage for most values of p while also having interval lengths that are

competitive with the sampling approach.

The third simulation varies the total effect size T =
∑N
i=1 τi as a function of the standard deviation of

the randomly generated yi(0). Figure 1.4 shows the results as the effect size was varied between zero and

two standard deviations. As the top panel of Figure 1.4 shows, the proposed methods maintain consistently

conservative coverage rates across the different effect sizes, while the survey sampling method under covers

somewhat. Interestingly, the relative size of the intervals for the proposed methods tended to increase as

the effect size increased. In particular for the variance maximization method, this scenario represents the

opposite of the zero-inflated situation: as the total effect increases, the true y(0) is less and less like ỹ(0) as
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Figure 1.3: Proportion of zeros in y(0) simulation for A. For 5000 replications, the parameter controlling
the proportion of yi(0) = 0 was varied between 0 and 0.95, while the other simulation parameters remain
fixed (e = 1, N = 100, n = 50).

the large effect size makes more and more of the τi large.

Looking across these simulations, the overall pattern emerges that, at least on these data, the proposed

methods appear to work well in small samples and when there is a great degree of treatment heterogeneity.

The variance maximization method is almost always conservative in its coverage rates and has reasonably

small interval widths in small samples or when there are many zeros in the data. The refinement that

uses a confidence interval for σ2
0 inherits many of these nice properties, while also having generally smaller

confidence intervals in a wider variety of situations. One interesting result is that the choice of the level of

the confidence interval used for σ2
0 did not have much effect, at least for the values selected.
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Figure 1.4: Effect size simulation for A. For 5000 replications, the size of the total effect T =
∑N
i=1 τi is

varied from zero to two standard deviations of yi(0), while the other simulation parameters remain fixed (p
= 0.1, N = 100, n = 50).

The simulations used thus far randomly assign treatment effects to individuals. Whether treatment effects

are correlated with yi(0) can also influence the power of the test, particularly for the variance maximization

method. Instead of randomly assigning treatment effects, Figure 1.5 shows the cumulative distribution

functions for p-value of the test when the largest treatment effects are allocated to either the subjects with

the largest yi(0) or smallest yi(0). To perform this simulation, yi(0) and treatment effects are generated

using the simulation default settings. The yi(0) are sorted from largest to smallest and treatment effects

are sorted in either increasing or decreasing order. When the effects are decreasing, the treatment helps the

subjects that already have large yi(0) values; when the effects are increasing, the effects help those with the
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Figure 1.5: Cumulative distribution function of p-values when testing a true null hypothesis about A. All
simulation parameters held at defaults. Potential outcomes to control are sorted such that y1(0) ≥ y2(0) ≥
· · · ≥ yN (0) and treatment effects are sorted in either increasing (τ1 ≤ τ2 ≤ · · · ≤ τN ) or decreasing
(τ1 ≥ τ2 ≥ · · · ≥ τN ) order.

lowest yi(0). While the test is conservative for both sorting methods, it is less conservative when the largest

effects are given to those with the smallest yi(0). As the optimization routine tests a hypothesis in which the

treatment effects are concentrated on subjects with yi(0), it is unsurprising that the test is most powerful

when the true treatment effect allocation is similar to the result of the optimization routine.

15



1.4 Oregon health insurance experiment

In 2008 the state of Oregon re-opened enrollment for Oregon Healthcare Plan (OHP) Standard, a medical

insurance program for low-income households that were ineligible for the federal Medicare program (OHP

Plus). As enrollment in this program had been closed for several years, officials anticipated a higher de-

mand than could be accommodated under the available budget. To address the issue of over-subscription,

state officials applied for, and received, a waiver from the Centers for Medicare and Medicaid Services to

implement a lottery system to allocate opportunities to apply to the program. After an advertising program

to solicit potential recipients, 74,922 individuals applied for the program. The initial solicitation did not

require individuals show eligibility for the program, so being randomly selected into the program provided

individuals the opportunity to complete an application, demonstrating eligibility in the program. Of the

74,922 applicants, 29,834 individuals were randomly selected to receive an invitation to apply for the pro-

gram. Of these, 8,698 applied and were approved to enroll in OHP Plus. More details on the program and

randomization process can be found in Finkelstein et al. (2012).

After 12 months, a portion of both the treated individuals (selected to complete an application) and the

control individuals (not permitted to apply) were sent a survey requesting information on various health

and economic questions. Of particular interest were the self-reported amounts of money spent out-of-pocket

for medical care during the previous 6 months. Responses to the question included many zeros and were

heavily right skewed. Of the subjects that responded to the questionnaire (N = 22,766), 53% claimed no out

of pocket costs in the last 6 months, while 6 individuals reported out of pocket costs in excess of $100,000.

Excluding subjects who reported zero out of pocket costs, the median cost reported was $250.

To analyze these questions, we first suppose that for all subjects Assumption 1.2 holds: 0 ≤ yi(1) ≤ yi(0).

This assumption supposes that having medical insurance will not raise a subject’s out of pocket costs. As

the Medicaid program covers nearly all medical costs, this assumption seems plausible. Before applying

the methods proposed in this chapter, we first create a dichotomous variable indicating whether a subject

reported spending more than zero dollars on health care. Applying the method of Rosenbaum (2001) to

predict the attributable effect yields a 95% prediction interval of [597, 889]. This result suggests that had

the control subjects had the opportunity to apply for state sponsored health care, between 10.3 and 15.4

percent who had out of pocket costs would have been able to avoid them.

While such savings may be beneficial no matter the overall amount spent, by dichotomizing the cost, this

analysis may confuse substantive changes in the amount the control group spent for small, but consistent

changes. To answer this question, we apply the proposed method in this chapter to predict the attributable

effect on the dollar scale and compare it to the survey sampling method of Hansen and Bowers (2009).
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Method Lower 95% Pred. Int. Upper 95% Pred. Int.

Hansen and Bowers 0 (0) 4,704,329 (100)
Maximum Variance 0 (0) 1,283,000 (27)

Table 1.1: 95% prediction intervals for the attributable effect of not having the opportunity to apply for
OHP Standard on total out of pocket costs. Numbers in parentheses represent percentage of maximum
attributable effect, which is the sum of all control units’ outcomes.

Method Lower 95% Pred. Int. Upper 95% Pred. Int.

Assuming 0 ≤ yi(0) ≤ yi(1)
Hansen and Bowers 0 (0%) 1068 (10.7%)
Maximum Variance 0 (0%) 1092 (10.9%)
Limited Variance (99.0) 0 (0%) 1100 (11%)

Assuming 0 ≤ yi(1) ≤ yi(0)
Hansen and Bowers 0 (0%) 213 (1.5%)
Maximum Variance 0 (0%) 160 (1.1%)
Limited Variance (99.0) 0 (0%) 160 (1.1%)

Table 1.2: 95% prediction intervals for the attributable effect of number of emergency department visits.
Under the assumption that 0 ≤ yi(0) ≤ yi(1), the effect of having the opportunity to apply for Medicaid
is identified. Under the assumption that 0 ≤ yi(1) ≤ yi(0), the effect for the control group is identified.
Numbers in parentheses indicate the percentage of the observed total attributed to the treatment.

Table 1.1 shows the results of the different methods. While both methods include an attributable effect of

zero in their estimates, the survey sampling method produces an interval that gives no information as it

includes every possible value for the attributable effect. The maximum variance method, however, excludes

attributable effects greater than 27 percent of the observed total in the control group (at 95% confidence).

The limited variance method using 99% and 99.9% confidence intervals for σ2
1 finds the same interval as the

maximum variance method and is not reported in the table.

Replacing usage of emergency departments with scheduled medical visits is often touted as a justification

for expanding government sponsored medical insurance. As emergency departments by law must provide

care, regardless of the individual’s lack of medical insurance, advocates argue that providing medical insur-

ance can actually decrease overall spending as insured individuals can better take advantage of less expensive

scheduled care. On the other hand, while emergency departments must treat subjects, they will still bill pa-

tients without medical insurance. Having access to Medicaid might incentivive individuals to consume more

medical services, in particular emergency department visits, as their own costs will significantly decrease.

To answer this controversy, subjects in the Portland, OR area were matched to hospital records to tabulate

the number of emergency department visits per subject (Taubman et al., 2014). Overall, the subset of the

experimental population included 24,646 subjects. Again, these data show a large portion of zero values

(16,180) and strong right skew.

Unlike the out of pocket costs, for emergency room visits there is not a clear reason to assume that a
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subject’s potential outcome to treatment is always at least as large as the potential outcome to control. We

therefore consider both possible assumptions for monotonicity and predict the attributable effect for the

treated subjects as well as the attributable effect for the control subjects. Table 1.2 provides the results

of these tests, again comparing the survey sampling method to the maximum variance method and limited

variance method with a 99% confidence interval for σ2
1 . All methods tend to favor Assumption 1.1 as the

prediction interval contains a larger portion of the observed data, though all intervals include zero leaving

the possibility of no effect or non-monotonic potential outcomes. These results bear some similarities to

those reported in Taubman et al. (2014), where the authors dichotomized these data at several usage levels

and found that treated subjects made more use of emergency facilities.

1.5 Discussion

In this chapter, we presented a novel method for testing hypotheses for the effect attributable to treatment,

the sum of the individual effects of the subjects within the treatment group. This method expands the

scope of attributable effects to count and continuous data, provided the researchers are able to assume that

effects are non-negative and that responses under the treatment condition are no less than responses under

the control condition (Assumption 1.1). Alternatively, this method can be applied to recover the sum of

treatment effects for the control group when control responses are assumed to be greater than treatment

responses (Assumption 1.2). We also presented a refinement of the method that uses the variance of the

observed control responses to limit the search space for acceptable hypotheses. This method maintained

many of the positive features of the simpler variance maximization method while being more efficient in

the simulations. These methods are computationally efficient, and simulations show that using a normal

approximation to the true null distribution adds little error compared to the true solution. From a statistical

perspective, the methods appear to perform well in small samples or when there is a high degree of treatment

effect heterogeneity. These methods might be most useful when combined with a prescreening method used

to detect heterogeneity (e.g., Ding et al., 2016) and employed only if the constant treatment effect assumption

seems to be a poor approximation to the true treatment effect distribution.

To evaluate the new methods, we compared them to the survey sampling based method of Hansen

and Bowers (2009). While the new methods performed comparably, it should be noted that the survey

sampling based estimator made use of neither the assumption of monotonicity nor the constraint that

0 ≤ A ≤
∑N
i=1 ZiYi. While it lies outside the scope of the current chapter to amend the estimator to

take advantage of these assumptions, there is a lengthy literature on both using monotonicity assumptions
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to derive bounds for average treatment effects (Manski, 1997; Kim, 2014; Demuynck, 2015; Frandsen and

Lefgren, 2016; Huang et al., 2017) as well as estimating means under boundedness assumptions (Casella

and Strawderman, 1981; Mandelkern, 2002; Evans et al., 2005), which could be combined to provide a more

efficient estimator under the assumptions invoked for the proposed methods.

1.6 Proofs and Additional Simulations

1.6.1 Large sample prediction intervals for A

By definition, for any given Z, the attributable effect of treatment can be decomposed as

A =
N∑
i=1

Ziyi(1)−

(
N∑
i=1

yi(0)−
N∑
i=1

(1− Zi)yi(0)

)
.

As
∑N
i=1 Ziyi(1) =

∑N
i=1 ZiYi and

∑N
i=1(1 − Zi)yi(0) =

∑N
i=1(1 − Zi)Yi are observed quantities, we need

only estimate
∑N
i=1 yi(0) using

Ŷ0 =
N

m

N∑
i=1

(1− Zi)Yi.

Plugging this estimator into the decomposition of A yields

Â =

N∑
i=1

ZiYi −

(
N

m

N∑
i=1

(1− Zi)Yi −
N∑
i=1

(1− Zi)Yi

)
=

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi.

Under conditions stated in Section 2.2, when N is large, Ŷ0 is approximately normal with mean
∑N
i=1 yi(0)

and variance N n
mσ

2
0 (Cochran, 1999, Theorem 2.2), where σ2

0 is the finite population variance of the yi(0).

By estimating σ2
0 with s2

0, the sample variance of the control units, a 100× (1− α)% prediction interval for

A has the form:

Â± t1−(α/2)

√
N
n

m
s2

0 =

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi ± t1−α/2
√
N
n

m
s2

0,

where t1−α/2 is the 1− α/2 quantile of a t-distribution with m− 1 degrees of freedom.

Using the method of Berger and Boos (1994), we replace the t-distribution and s2
0 with a normal distri-

bution and a confidence interval for σ2
0 . As the largest prediction interval occurs at the upper bound for σ2

0 ,
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which we notate σ̄2
0 , the resulting prediction interval is

N∑
i=1

ZiYi −
n

m

N∑
i=1

(1− Zi)Yi ± z1−(α−γ)/2)

√
N
n

m
σ̄2

0 ,

where γ is the amount of Type I error accorded to the upper confidence bound σ̄2
0 (i.e., it is a 100× (1−γ)%

upper confidence bound) and z1−(α−γ)/2 is the 1− (α− γ)/2 quantile of a standard normal distribution.

1.6.2 Proof of Theorem 1.1

Proof. Recall that we wish to maximize:

g(τ0) =

n∑
i=1

(τ0,i − yi + µ0))
2

=

n∑
i=1

τ2
0,i +

n∑
i=1

y2
i +

n∑
i=1

µ2
0 − 2

n∑
i=1

τ0,iyi + 2µ0

n∑
i=1

τ0,i − 2µ0

n∑
i=1

yi

=

n∑
i=1

(yi − τ0,i)2 +

n∑
i=1

µ2
0 + 2µ0A0 − 2µ0

n∑
i=1

yi.

As the term
∑n
i=1 µ

2
0 + 2µ0A0 − 2µ0

∑n
i=1 yi does not depend on τ0, maximizing g(τ0) is equivalent to

maximizing

h(τ0) =

n∑
i=1

(yi − τ0,i)2.

In other words, we can equivalently maximize the sum of squared remainders left after removing τ0,i. Writing

ri = yi − τ0,i, rewrite the maximization problem as

(P ′) maximize: h(r) =

n∑
i=1

r2
i

subject to:

n∑
i=1

ri =

n∑
i=1

yi −A0 = R0

0 ≤ ri ≤ yi

A simple greedy algorithm provides an optimal solution to P ′. Sort the observations so that y1 ≥ y2 ≥ · · · ≥

yn. Initialize R
(1)
0 = R0. For i = 1, . . . , n, do:

1. If yi ≥ R(i)
0 , set xi = R

(i)
0 . For all j > i, set rj = 0 and stop.

2. Otherwise, set ri = yi and R
(i+1)
0 = R

(i)
0 − yi.

3. If i = n, stop. Otherwise, update i = i+ 1 and repeat the loop.
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Let s be the largest integer such that
∑s−1
i=1 yi < R0. The result of the algorithm r has the form:

ri =


yi, i < s,

R0 −
∑s−1
i=1 yi, i = s,

0, i > s.

To show this is optimal, we show that we can transform any optimal solution into the greedy solution.

Let r be the solution found by the greedy algorithm and r̃ be any optimal solution. At each stage of the

following algorithm, transform r̃i into ri while maintaining the objective function value h(r̃). At each state

the proposed optimal solution has r̃j = rj for j < i. Starting from i = 1,

1. If r̃i = ri, continue to i+ 1.

2. Otherwise, consider the two possible values of ri:

(a) ri = R
(i)
0 : Observe that in this case rj = 0 for j > i. As the solution r̃ is feasible, it must be the

case that
∑n
j=i r̃j = R

(i)
0 = ri. Since the r̃j are non-negative, this implies a contradiction that

h(r̃) is maximal:

h(r)− h(r̃) = (R
(i)
0 )2 −

n∑
j=i

r̃2
j =

 n∑
j=1

r̃j

2

−
n∑
j=i

r̃2
j =

n∑
j=i

n∑
j′=i

r̃j′ > 0.

Therefore, when yi ≥ R(i)
0 the only optimal solution is the greedy one. At this point, we can stop,

having found that the greedy solution is optimal.

(b) yi < R
(i)
0 and ri = yi. Since r̃i is also bounded by yi, it must be the case that r̃i < ri. Again,

since
∑n
j=i r̃j = R

(i)
0 and r̃j < ri < R

(i)
0 , there must exist at least one j > i such that r̃j > 0.

Let δ = min(yi − r̃i, r̃j). Then the solution r̂ = r̃1, . . . , r̃i + δ, . . . , r̃j − δ, . . . , r̃n is also feasible.

Comparing the difference of objective functions, we see:

h(r̂)− h(r̃) = (r̃i + δ)2 − r̃2
i + (r̃j − δ)2 − r̃2

j = 2δ2 + 2r̃iδ − 2r̃jδ.

As δ is the lesser of yi − r̃i or r̃j , consider both cases:

i. δ = yi − r̃i: Then

δ2 + r̃iδ − r̃jδ = y2
i − yir̃i − r̃jyi + r̃ir̃j = (yi − r̃i)(yi − r̃j)
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We already know that yi > r̃i. By the ordering of units, since i > j, we know that yi ≥ yj ≥

r̃j). Therefore (yi − r̃i)(yi − r̃j) ≥ 0 so the solution r̂ is also optimal. Since δ = yi − r̃i, then

r̂i = yi = ri.

ii. δ = r̃j : Then

δ2 + r̃iδ − r̃jδ = r̃2
j + r̃ir̃j − r̃2

j = r̃ir̃j

As both r̃i ≥ 0 and r̃j ≥ 0, the solution r̂ is also optimal. As r̂i = r̃i + r̃j < ri, it must be the

case that some other unit j′ is also non-zero and can be used to create δ′ = min(yi − r̂i, r̃j′)

and another optimal solution. This logic can be repeated until an optimal solution can be

found that includes r̂i = yi.

3. Update r̃i = r̂i = ri. At this point, r̃j = rj for all j ≤ i.

4. Continue for i+ 1 and R
(i+1)
0 = R

(i)
0 − ri.

At the end of this algorithm, r̃ = r, the greedy solution, showing that any optimal solution can be trans-

formed into the greedy solution while maintaining h(r) ≥ h(r̃) at each step.

With a solution r to P ′, we can then translate back to P using the relationship τ0 = r−y. Consequently,

τ0 has the form:

τ0,i =


0, i < s,

A0 −
∑n
i=s+1 yi, i = s,

yi, i > s,

where s is the largest integer such that
∑n
i=s yi > A0.

1.6.3 Proof of Corollary 1.1

Proof. Observe that P is the continuous relation of the version of the problem for integer yi. Let τ∗ be the

solution to P . For i > s, τ∗i = yi, which are integer values. For i = s, τ∗s = A0−
∑n
i=s+1 yi is also an integer,

as A0 is an integer and the sum of any yi values must also be an integer. For i < s, τ∗i = 0. Thus τ∗ is an

integer solution and must be the optimal solution to the integer constrained version of P .

1.6.4 Additional simulation details

Testing the normal approximation

To test the suitability using the variance of the null distribution to approximate the p-values of the sharp

null hypotheses, we simulated a small experiment with 10 units from which 5 were assigned to treatment.
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First, the potential responses under control were simulated as:

yi(0) = P + 20B, P ∼ Poisson(7), B ∼ Binomial(0.01, 2).

Next, the set of true treatment effects were added to the treated units’ scores based on Table 1.3. The

columns represent the treatment unit, and each row shows the individual effect of the treatment τ0,i. The

true attributable effect for each row is the sum of row values. The first experiment adds one to the first

treated unit, the second adds one to both the first and second, and so on. We also consider placing a much

larger effect of six on the first unit and adding two to the first three units. For each allocation, the true

attributable effect A =
∑5
i=1 τi was used to generate y(1) from y(0) and a hypothesis test of A0 = A was

performed using the normal approximation strategy. Recall that the normal approximation is guaranteed to

find the adjustment that leads to the largest variance of the null distribution of the test statistic T , but this

may not correspond to the adjustment with the largest p-value, which is the true target. By enumerating

all compatible allocations τ0 and performing an exact randomization test, we can find the adjustment with

maximum p-value and compare this p-value found by the normal approximation by computing the relative

error |p− p̂|/p, where p is the largest p-value and p̂ is found from the method given in Section 1.2.2. In both

cases, p-values were generated by completely enumerating all
(

10
5

)
possible treatment allocations, generating

the null distribution of the test statistic T 2, and comparing the observed test statistic to the null distribution.

The simulations were repeated 100 times, each with a new y(0), for each true allocation.

1 2 3 4 5
1 1 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 1 1 1 1 0
5 1 1 1 1 1
6 6 0 0 0 0
7 2 2 2 0 0

Table 1.3: Strategies for allocating treatment effects used in small sample size simulations. Columns represent
the true effect of treatment τ0,i = yi(1)− yi(0) for each of 5 treated units. The attributable effect A is the
sum of the row values.

In order to completely enumerate all possible treatment allocations compatible with a given A0 as well as

perform exact hypothesis tests, the simulations so far have been kept fairly small. To consider the effect of

sample size on the performance of the variance maximization method, we repeated the simluations for larger

experiments using 10 out of 20 treated and 15 out of 30 treated. For each experiment, the true treatment

effect was 1 for 2 of the treated units and zero for the remainder. These experiments start to push the
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Figure 1.6: Boxplot of relative error when finding the largest p-value using the normal approximation
method compared to complete enumeration. For N = 10, n = 5, p-values are computed exactly. For the
simulations with 10 out of 20 and 15 out of 30 assigned to treatment, p-values are computed using 10,000
Monte Carlo samples.

boundaries of convenient computation when completely enumerating the entire randomization distribution,

so a sample of 10,000 treatment assignments was used instead. If the method is working well, the distribution

of p-values under the null should be approximately uniform when the null hypothesis is true. Figure 1.6

shows that the method performs reasonable well by this metric.

Coverage and confidence interval widths

The main chapter reports three simulations comparing the proposed methods to the survey sampling based

method. Here we provide additional details on the simulation process.

For each simulation, the y(0) data were generated for N experimental subjects using a zero inflated

binomial:

yi(0) = (1− P )B,P ∼ Bernoulli(p), B ∼ Binomial(100, 0.5).

This model was chosen to cover a range of conditions. When p is close to zero, the data are approximately

bell shaped, which may show to the HB method’s strengths. When p is increased, the data become bimodal
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and the HB method’s approximations may cease to work well.

In order to create a full experiment, we must also generate y(1). To get the individual treatment effects

τi, the population-level standard deviation σ0 for the y(0) values are measured and a total effect computed

as T = beNσ0c, where e is the effect size multiplier. As the y(0) were discrete, the total treatment effect

must be applied in integer amounts. There are
(
N+T −1
N−1

)
possible ways to distribute the total effect T to

the N units. One was chosen uniformly at random and used to generate y(1).

For 5000 replications, a treatment assignment was generated and the observed data were created using

the yi(1) for the treated units and the yi(0) for the control units. The true value of A was computed

by subtracting the true y(0) from the observed data. For each replication, 95% confidence intervals were

generated using the proposed method and the HB method. The interval widths were recorded as well as

whether the intervals covered the true A value. To compute the p-value for the proposed method, 1000

Monte Carlo samples from the assignment mechanism were used.
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Chapter 2

Randomization and permutation tests
of network formation

2.1 Introduction

Recent years have seen renewed interest in “design-based” approaches to analyzing randomized controlled

trials (RCTs). Design based inference, or randomization inference, relies on the known treatment assignment

mechanism of a RCT to derive tests and estimators, rather than specifying parametric forms for outcomes.

This paper is primarily concerned with the use of sharp null hypotheses. A sharp hypothesis specifies,

exactly, the outcome that would be observed for all units under any possible treatment regime. The sharp

null of no effects, as famously employed by Fisher (1935) in his “Lady Tasting Tea” experiment, states

that the observed outcome would be identical under all possible treatment assignments, which allows the

creation of a reference distribution for a suitable test statistic. By comparing the actually observed data to

the distribution under the null, the researcher can answer the question, “How likely is that I would see data

like this if treatment had no effect?” Sharp nulls can also be more expressive, allowing for constant additive

effects, multiplicative effects, and even high degrees of heterogeneity (Rosenbaum, 2002b, 2010; Ding et al.,

2016; Caughey et al., 2017).

Recently, methods have been developed to apply randomization inference to experiments with spillover,

where treatment to one unit changes the outcome of another unit in the study (Rosenbaum, 2007; Bowers

et al., 2013; Choi, 2017; Aronow and Samii, 2017; Athey et al., 2018). These studies use fixed networks,

observed before treatment has been assigned, to test models stating how treatment to one node in the network

changes the outcomes of other nodes. This paper considers a different question and asks if randomization

inference can be used to analyze network formation itself. This type of analysis is typically the domain

of parametric graph models that posit a distribution governing the generation of edges between nodes and

then seek to estimate parameters for the models. Extensive coverage of these approaches can be found in

This chapter contains joint work with Professor Yuguo Chen.
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Kolaczyk (2009); Goldenberg et al. (2010); Fienberg (2012); Hunter et al. (2012), and O’Malley (2013). One

frequent application of graph modeling is to use estimated parameters to perform community detection, the

identification of clusters within the graph of related nodes (Schaeffer, 2007; Fortunato, 2010; Coscia et al.,

2011; Nascimento and de Carvalho, 2011; Fortunato and Castellano, 2012; Harenberg et al., 2014; Amelio

and Pizzuti, 2014; Bedi and Sharma, 2016). While many of the community detection algorithms have been

developed without a clear statistical model, they can often be thought of as maximum likelihood estimation

for a suitably chosen model of link formation (Newman, 2013).

While the area of network analysis has seen much growth and continues to be a rapidly developing field,

little has been done to engage with experimental design. Specifically, parametric models are problematic

from a purely design-based perspective. First, the experimental design of an RCT does not typically justify

the assumptions implicit in parametric models (Berk, 2004; Freedman, 2008a,c,b). Regression techniques fail

to express the true stochastic nature of the experimental design, leading to possible bias in estimates and,

even when estimates are correct, problematic standard errors. Second, the parametric models frequently

condition on post-treatment outcomes when estimating parameters. Exponential random graph models, for

example, require estimating probabilities of link formation conditional on the rest of the network rather than

conditioning on the treatment assignment alone (Frank and Strauss (1986); Wasserman and Pattison (1996);

though see Suesse (2012) for an alternative approach). As a result, these approaches are best classified as

mediation analysis, as they condition a dyad’s link formation on other post-treatment variables, namely the

link formation of other dyads. While such mediation analyses may be interesting in their own right, they

may not be the main question of interest and frequently require stronger assumptions in order to maintain

causal interpretations (Robins and Greenland, 1992).

In this paper, we develop tests inspired by traditional network models, but built on a strong design-

based foundation. All of the tests proposed in this paper derive their statistical justification from the

random assignment of treatment to the nodes while still taking advantage of several ideas and algorithms

pioneered in the existing network science literature. We classify our proposed methods as being based on

local or global network structure. Local network structure tests closely follow the development of random

graph models in that they are based on counting the presence of topological features (edges, triangles, etc.)

within the treated and control groups. Global approaches, on the other hand, more closely follow graph

partitioning and clustering approaches in that they first analyze the entire graph, irrespective of treatment

assignment, and then use treatment assignment for inference. In Section 2.2.1 we review causal inference

approaches to randomized trials that use the randomization procedure as the “reasoned basis” for inference

(Fisher, 1935), in particular how this approach can be extended to networks. In Sections 2.2.2 and 2.2.3 we
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develop local and global tests that capture various ways in which treatments can influence network features.

In Section 2.3 we evaluate the proposed methods in a variety of simulated network generation processes.

In Section 2.4 we apply the methods to a gene wide association study after a randomized controlled trial

and to a network of board members for a set of Norwegian companies. Section 2.5 concludes with a brief

discussion.

2.2 Method

2.2.1 Causal inference for RCTs

Consider n units in a study with a random treatment Z ≡ (Z1, Z2, . . . , Zn)′, where Zi ∈ {0, 1}. As Z is

controlled by the researcher, the distribution of Z is known. Typically, and throughout this document, Z

is generated by selecting n1 units for treatment, with the remaining n0 units receiving control, and with Z

equally probable. To simplify later notation, for any binary variable write Z(0) ≡ 1−Z.

In the potential outcomes framework (Neyman, 1923), each unit’s response is a fixed value indexed by

the treatment assignment: Yi = yi(Z). Write Y = (y1(Z1), y2(Z2), . . . , yn(Zn))′. Unit i would have response

yi(z) if Z = z, but for some other treatment assignment u, the response would be yi(u). We say that a

treatment has an effect if yi(z) 6= yi(u) for at least one unit i. Write y(u) = (y1(u), y2(u), . . . , yn(u))′. By

the fundamental problem of causal inference (Holland, 1986), we cannot observe both yi(z) and yi(u), so we

must perform inference to determine if treatment has an effect. In this paper we use a sharp null hypothesis

of no effect that states H0 : y(z) = y(u) for all z and u. Under this hypothesis, we write y for the common

outcome that does not depend on treatment. The distribution of any statistic T (Z,y) can be determined

by the distribution of Z, which is a known randomization process (Fisher, 1935; Maritz, 1981; Rosenbaum,

2002b).

Zi = 1 Zi = 0 Total

Yi = 1 Z ′Y Z(0)′Y Y ′Y

Yi = 0 Z ′Y (0) Z(0)′Y (0) Y (0)′Y (0)

Total Z ′Z = n1 Z(0)′Z(0) = n0 n

Table 2.1: Cross tabulated outcomes under binary treatment experiment. By design, column totals are
fixed. Under the sharp null hypothesis of no effect, the row totals are fixed.

When the outcome is binary, the result of the experiment can be summarized in a 2× 2 table, as shown

in Table 2.1. By design the column totals in this table are fixed. Fisher (1935) showed that if treatment has

no effect, the row totals are also fixed, and the statistic Z ′Y follows a hypergeometric distribution. Since

Z ′Y completely determines the table, when the margins are fixed we often say that the set of tables is
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distributed according to the hypergeometric distribution. For an alternative motivation of this distribution,

one can imagine enumerating all possible Z and computing a test statistic T (Z,Y ) for each one. If the test

statistic is the total in the treated group, T (Z,Y ) = Z ′Y , this procedure is precisely Fisher’s exact test.

This later formulation based on T (Z,Y ) also introduces the role of the alternative to the test. If large

values of T indicate evidence against the null hypothesis, we define the p-value of the test as

p(z,y) = P (T (Z,y) ≥ T (z,y)) =
∑
Z∈Ω

P (Z) I(T (Z,y) ≥ T (z,y)),

where z and y are the observed treatment and outcome and Ω is the sample space of possible assignments.

In this paper we focus on complete random assignment for which P (Z = z) = (n1!(n − n1)!)/n!, but the

definition encompasses any treatment assignment mechanism. For a one-sided test of Table 2.1, using either

Z ′Y or −Z ′Y as a test statistic is a straightforward approach. For two-sided tests, one might use 1−h(Z ′Y ),

where h is the probability mass function of the hypergeometric distribution (Freeman and Halton, 1951),

or (Z ′Y − µ0)2 where µ0 = 1′Y n1/n is the mean of Z ′Y under the sharp null of no effects (Radlow and

Alf, 1975). Gibbons and Pratt (1975) and Agresti (2013, Section 3.5.3) discuss the relative merits of these

approaches. As we shall see in the subsequent questions, these two approaches suggest similar test statistics

when testing a sharp null hypothesis of no effect for a network.

The randomization inference approach generalizes to networks in a natural way. Consider applying

treatment to the n units and then measuring a simple network for those units (i.e., an undirected network

with no self-loops). Rather than focus on the n subjects in the experiment, shift focus to the m = n(n−1)/2

possible connections between them. Each dyad (i, j), i < j, may have one of four possible treatment

assignments: when i is treated and j is treated (Zi = 1, Zj = 1); when i is treated, but j is in the

control condition (Zi = 1, Zj = 0); when j is treated, but i is in the control condition (Zi = 0, Zj = 1);

and when both i and j are in the control condition (Zi = Zj = 0). If we assume that edge (i, j) would

behave in the same fashion if either one of its endpoints were treated, we can state the treatment levels as

Wij = Zi + Zj ∈ {0, 1, 2}.

As with other types of outcomes, we can posit the existence of potential networks composed of potential

edges, with respect to a treatment regime W . For each dyad (i, j), let yij(W ) = 1 if units i and j have a

link following treatment W and yij(W ) = 0 otherwise. If treatment had an effect, then yij(W ) 6= yij(V )

for at least one dyad ij for some W 6= V . If treatment had no effect, then we would observe the same

network under all treatment assignments. Under this hypothesis, the sharp null of no effect, we can apply

randomization inference to the network by selecting a test statistic T (W ,Y ). In the next section, we consider
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T that operates on Y directly. In Section 2.2.3 we consider test statistics T (Z, g(Y )) that operate on Y

through a function g that summarizes the network in some fashion.

2.2.2 Local approaches

In this section, we extend the logic of randomization tests for contingency tables to propose non-parametric

tests of network formation as an alternative to parametric graph models. Indeed, this approach is based

on the observation that networks can be collapsed into contingency tables, an observation that lead to the

original fitting of graph models by logistic regression and approaches designed for log-linear models (Holland

and Leinhardt, 1981; Fienberg and Wasserman, 1981b,a). Like existing graph models, the proposed non-

parametric tests can be used to understand many aspects of network topology. Like Fisher’s exact test, they

require no assumptions beyond the design of the RCT itself.

Wij = 2 Wij = 1 Wij = 0 Total

Yij = 1 W (2)′Y W (1)′Y W (0)′Y Y ′Y

Yij = 0 W (2)′Y (0) W (1)′Y (0) W (0)′Y (0) Y (0)′Y (0)

Total m2 = n1(n1 − 1)/2 m1 = n1n0 m0 = n0(n0 − 1)/2 m = n(n− 1)/2

Table 2.2: Within and across group edge counts for an experiment on n nodes. Again, column totals are
fixed by design, while row totals are fixed under the sharp null hypothesis.

As in the previous section, let Yij(W ) = 1 when there is a link in the network between i and j. Anal-

ogously to the binary case, define W (k) ≡ (I(W12 = k), I(W13 = k), . . . , I(W(n−1)n = k))′ and summarize

the results of the treatment in Table 2.2. As with the 2× 2 table, the column totals are fixed by the design.

Under the sharp null of no effect (i.e., Yij(W ) = Yij(V ) for all W , V , i, and j), the row totals are fixed.

As the row and column totals are fixed under the sharp null of no effects, the table is determined through

two cells: R1 = W (2)′Y (the number of edges within the treated group) and R2 = W (0)′Y (the number of

edges in the control group). Following the two-tailed tests of binary outcomes, we define

TPMF(W ,Y ) = 1− f(R1, R2), (2.1)

where R1 = W (2)′Y , R2 = W (0)′Y , and f is the probability mass function of (R1, R2).

Fixed row and column totals might suggest that (R1, R2) follows a multiple hypergeometric distribution,

but this is not the case. To illustrate this point, Figure 2.1 shows three simple networks: a line, a star, and

an irregular network. All three have 10 nodes and 9 edges, so the row and column margins will all be the

same for all three networks, but the distribution of tables is quite different. In this example, we will take 5

of the 10 nodes to be treated, leaving 5 in the control condition. There are
(

10
5

)
= 252 possible treatment
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assignments, each of which implies a particular table, though the table may be non-unique. The star network,

for example, only has two unique tables depending on whether the central node is in the treatment or control

conditions. For a particular treatment assignment, Figure 2.1 also shows the implied table for the network.

Despite having the same number of nodes and edges, the distributions are very different, with the support

increasing for more complex networks. Also observe that while the line and irregular network have the same

table for the given randomization, the probability of observing this table when the network is a line is about

3 times larger than when the network has the pattern of the irregular network.

While the distribution function f is generally difficult to compute exactly, the first few moments of the

distribution can be computed by combinatorial analysis (Frank, 1977, 1978; Chen and Friedman, 2017).

Using these moments, we can create a mean centered statistic using the first two moments of (R1, R2):

TCF(W ,Y ) =

R1 − µ1

R2 − µ2


′

Σ−1
12

R1 − µ1

R2 − µ2

 (2.2)

The moments of R1 and R2 are given in Appendix 2.6. We label this test statistic as TCF as it was first

proposed by Chen and Friedman (2017), though variations appear in other places in the literature. Chen

and Friedman propose TCF for two sample tests for high dimensional data in which a graph has been

formed over the combined samples. While there has been a long tradition of graph based permutation

tests for high-dimensional or object data (Friedman and Rafsky, 1979, 1983; Schilling, 1986; Henze, 1988;

Rosenbaum, 2005; Biswas et al., 2014), previous approaches required highly structured graphs as inputs such

as minimum spanning trees, disjoint edges, or graphs in which all nodes had equal degree. To our knowledge,

Chen and Friedman were the first to propose a test for arbitrary graphs, such as those that would be the

result of an experiment. Through the close relationship between permutation tests and randomization tests,

their test statistic also applies when analyzing network formation in randomized controlled trials.

Statistics based on R1 have a longer history in the literature. Whaley (1983) links seemingly unrelated

statistics, all of which are variations on a statistic proposed by Mantel (1967). Nyblom et al. (2003) apply a

statistic based only on R1 to the network context. For the more general matrix context, Baker and Hubert

(1981) propose a method than can generate within and across group edge count statistics. Dow and de Waal

(1989) uses this method to study “compactness” (within group edges) and “isolation” across group edges

for a variety of networks. Additional discussion on the wide application of these types of statistics in the

context of permutation tests can be found in Good (2005, Chapter 10).
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2.2.3 Global approaches

In the previous section, randomization inference was applied to the observed network by first splitting the

network into treatment and control subgraphs, and then comparing features of the two subgraphs, such as

edge counts. In this section, we take the approach of analyzing the entire graph first and then applying

randomization inference to the results of that analysis. Critically, the first step in this process, analyzing

the entire graph, is done without respect to the observed treatment assignment. Only after performing this

analysis is the treatment assignment information used to construct a randomization test.
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(d)

Figure 2.2: A graphical representation of using community detection to form a hypothesis test of the sharp
null of no effects. Panel (a) shows an example network with treated (black) and control (gray) nodes. In
panel (b), the treatment assignments are ignored and clustering is performed. In panel (c), treatment labels
are returned and assignment-cluster totals are used to form panel (d).
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Our first set of test statistics are constructed by applying community detection algorithms to the graph.

Reviews of community detection algorithms can be found in Schaeffer (2007); Fortunato (2010); Coscia

et al. (2011); Nascimento and de Carvalho (2011); Fortunato and Castellano (2012); Harenberg et al. (2014);

Amelio and Pizzuti (2014), and Bedi and Sharma (2016). In this paper, we focus on algorithms for non-

overlapping clusters, also known as graph partitioning algorithms. After applying the community detection

algorithm, we have a set of k labels C ∈ {1, . . . , k} for the n nodes. We use these labels to construct a 2× k

table of treatment and control nodes in each cluster. In the simplest case when k = 2, we have another

example of a binary classification problem, as in Table 2.1. As the counts in this table are nodes rather than

dyads analysis can proceed via Fisher’s exact test, using either a hypergeometric probability mass function

based test statistic or a mean centered test statistic. For k > 2 clusters, numerous extensions exist that

generalize the 2× 2 methods to 2× k tables (Agresti, 1992; Hirji and Johnson, 1996).

Figure 2.2 provides a graphical representation of using clustering to create a hypothesis test. For a

small simulated network and treatment assignment, the figure shows the initial network, clustering without

treatment assignment labels, adding the labels back, and cross classifying the node-cluster counts. In

this example, spectral clustering was performed to partition the graph into two blocks, though any other

clustering procedure may be used. Using a two-sided Fisher’s exact test, the p-value of this test is 0.527.

Researchers have identified many other global properties of graphs that can be used to describe their

topology. Those methods that assign numerical or ordinal scores to nodes can be used to construct tests

as well. One key area of inquiry in social network analysis is ranking nodes on their “centrality” to the

network. There are several different measures of centrality (Freeman, 1978), typically based on either graph

theoretic quantities such has the number of paths in which a node is present (Borgatti, 2005; Borgatti and

Everett, 2006) or spectral decomposition of the graph (Bonacich, 1972, 2007). For this paper we focus a

spectral method, the eigenvector of the largest eigenvalue λ of the adjacency matrix A:

Ax = λx.

For each node, xi can be thought of as proportional to the sum of the centrality scores of i’s neighbors,

where λ is the constant of proportionality. Therefore, central nodes are those that are connected to other

central nodes, on average. When there are multiple disconnected components to the graph, there will be

multiple eigenvectors for λ, with the ith entry being non-zero for only one vector for each node i. In that

case, we take xi to be the non-zero entry for any of the matching eigenvectors.

To perform inference, the xi values can be ranked to perform a Wilcoxon-Mann-Whitney (WMW) test of
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Figure 2.3: Example network from Figure 2.2 with node sizes proportional to the rank of eigenvector
centrality.

the hypothesis that treatment had no effect on the network (Lehmann, 1975; Maritz, 1981). While any other

randomization test for numerical data could be performed, such as a permutational t-test, distribution free

methods like the WMW have a close connection to the randomization inference literature and make good

choices when the scale of the data is of secondary importance to the relative contributions of the individual

observations (Rosenbaum, 2002b, 2010). Figure 2.3 plots the network used in the previous example with

node sizes proportional to the rank of the centrality of the node, as measured by eigenvector centrality. The

p-value from the WMW test is 0.698.

2.3 Simulations

In the following simulations, we test how well the four discussed test statistics perform when the null

hypothesis is false because the network depends on the treatment assignment in some way. All simulations

contain 100 units with n1 of those assigned to the treatment condition. For each of k = 500 replications,

the network is generated and the strict null hypothesis of no effect is tested with each of the four statistics

at the α = 0.05 level.

The first simulation is performed on a random graph where the probability of each edge depends the

number of nodes (0, 1, or 2) that are treated. In particular, P (Yij = 1) = Φ(β(Zi +Zj)− 1), where Φ is the

cumulative distribution function (CDF) of a standard normal variable and β is a coefficient that is varied
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(b) Stochastic block model
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(d) Preferential attachment model
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(e) Neighborhood closing model

Figure 2.4: Power plots for the four test statistics for a variety of data generation methods. Each model is
parameterized by the x-axis. The y-axis is the probability of rejecting the null hypothesis at the α = 0.05
level. Panel (a) is a random graph with link probability equal to Φ(β(Zi +Zj)− 1), where Φ is the standard
normal CDF. Panel (b) is a stochastic block model parameterized on the log odds ratio of within block edges
compared to across block edges. Panel (c) is a one-dimensional latent space model parameterized on the
difference of cluster centers. Panel (d) is a preferential attachment model parameterized by the preference
for treatment members. Panel (e) adds edges between the neighbors of treated units with probability p
starting from a fixed network.

from −1 to 1. We label this model the “probit random graph” as it shares a similar functional form to probit

generalized linear models. Figure 2.4(a) shows the results of the simulation in which both the centrality and

CF statistics perform quite well. The clustering based statistic generally performs poorly. Only when the β
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is small is it able to distinguish that the treatment is having an effect on the network.

The second simulation generates the network from a stochastic block model, also known as a planted

partition model. In this model, the treatment and control groups define two latent communities. We take

the simple approach in which all edges within communities occur with probability pwithin, independently.

All across group edges occur with probability pacross. We parameterize the simulation using an odds ratio

parameter

θ =
pwithin/(1− pwithin)

pacross/(1− pacross)
.

For these simulations, we draw a random across group probability from [0.1, 0.5] and then fix the probabiilty

of within group edge based on the equation:

pwithin =
θpacross

1 + pacross(θ − 1)
.

Figure 2.4(b) shows the results of these simulations with log(θ) on the x-axis. Again, the CF statistic

performs very well. As the probability of a within group edge gets larger than an across group edge, the

clustering based statistic also performs well. Both the centrality and PMF statistic do not perform well in

this simulation.

In the third simulation, we use a one-dimensional latent space model. Each node i is given a location on

the real line xi, and the probability of an edge between any two nodes i and j is given by exp(−(xi − xj)2).

The locations of the control nodes are drawn from a standard normal, while the treated units are drawn from

a normal distribution with mean µ and unit variance. Figure 2.4(c) shows the best performance from the

clustering and CF statistics, with some the centrality statistic achieving some power as the average distance

between the treated and control groups increases. Again the PMF statistic performs below its nominal level.

In the fourth simulation, we generate a “scale free” network where few nodes have very high degree and

most nodes have very low degree. Pairs of nodes (i, j) are drawn with probabilities pi and pj , respectively,

and an edge is formed between i and j. The process is repeated until n(n− 1)/8 edges are allocated. Nodes

with higher probabilities of being sampled will have many more neighbors than those with low probabilities.

To assign probabilities, we use the latent positions xi from the previous simulation. All nodes are ranked

such that ri = 1 implies that node i has the highest xi and ri = n implies i has the smallest xi. Then

pi ∝ 1/ri, such that
∑n
i=1 pi = 1. As the parameter µ, the difference between the center of the treatment

and control latent positions, increases, the probability that most preferred nodes are treated nodes increases

as well. Figure 2.4(d) shows that the centrality statistic performs the best for this data generating process,

with CF also performing well. The cluster and PMF statistics have no power at any value of θ.
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In the fifth simulation, we take an algorithmic approach to network generation. First, we generate an

Erdös-Renyi random graph with edge probability 0.10. After assigning treatment and control labels to the

nodes, for all nodes i and j such that there exists a node k that is a treated node and (i, k) and (j, k) are

in the original graph, can form a link between i and j with probability p, which is varied from 0 to 1 over

the simulation. Figure 2.4(e) shows that the CF statistic outperforms the others, though both the centrality

and the clustering statistic have reasonable power.

While not an exhaustive list of ways in which networks could be generated, the five selected models

cover many of the most common approaches used in network analysis. Looking across these simulations, we

see that the CF statistic is frequently a very powerful statistic, often having the greatest power or nearly

greatest power of the four statistics. If researchers suspect that treatment induces a stochastic block model

or a preferential attachment model, the clustering or centrality statistics might prove a better choice.

2.4 Applications

2.4.1 Gene-wide association study

Tsavachidou et al. (2009) conducted a 2×2 factorial randomized controlled trial to test the effect of selenium

and vitamin E to combat the progression of prostate cancer. Both selenium and vitamin E had been identified

in a previous observational study of prostate cancer as having potentially positive benefits. Subjects were

recruited from patients scheduled to undergo a prostatectomy due to existing prostate cancer. Overall, 39

patients were recruited. After 3 to 6 weeks of treatment (placebo, selenium, vitamin E, or both), 39 subjects

underwent surgery to remove their prostates. Cells were collected and subjected to expression assay. The

original study selected cells in three different regions of the excised prostate: epithelial cells, stroma cells,

and tumor cells. As only epithelial cells assays are available for all 39 patients, we focus on only those data

in this analysis.

After collecting the microarray expression data, Tsavachidou et al. (2009) fit two-way ANOVA models

for the two main effects as well as the interaction effect, assuming Normally distributed error terms. With

nearly 14,000 genes under study, the researchers applied a beta-uniform mixture model to control the false

discovery rate at the 2% level.Comparing the placebo to selenium, vitamin E, and combination treatments,

the researchers found 2109 differentially expressed genes, with 1329 of those significant comparisons coming

from the selenium-placedbo contrasts. Along with a unsupervised cluster analysis of gene expressions,

Tsavachidou et al. (2009) concluded that there were significant differences between the treatment conditions

with respect to gene expression.
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Placebo
Vitamin E
Selenium
Both

Figure 2.5: The network derived from the gene expression data described in Tsavachidou et al. (2009) based
on similarity of expression.

As an alternative to the parametric methods employed in the original publication, we will now apply a

network based approach that will have the dual benefits of requiring no asymptotic or parametric assumptions

as well as providing an omnibus test of the hypothesis that the treatment groups have the same pattern of

gene expressions. To this end, we create a gene co-expression network in which nodes are subjects and edges

are present between subjects that have a similar pattern of gene expression, looking across all genes in the

microarray assay.

For each subject, we rank all genes by expression level. Overall rates of expression may vary for subjects

for idiosyncratic reasons; transforming expression levels into ranks within subjects allows for a common

scale. From these ranks, an edge is added between i and j if either i or j is in the other’s top ten ranks.

Figure 2.5 shows the resulting network for the 39 subjects and 74 edges. Nodes are color coded by their

treatment assignment.

After collapsing the treatment categories to subjects that received any selenium (the selenium and com-

bination therapy groups) and those that did not (the vitamin E and pure control groups), we test the null

hypothesis of no effect on the network using the four proposed test statistics. The strongest result was found
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for the clustering statistic. Figure 2.6 shows the clusters found when using the clustering statistic. Visually,

the treated units (black circles) largely separate from the control units (white squares). The p-value of 0.0409

quantifies that this type of pattern would occur in very few random assignments, providing evidience against

the sharp null of no effects. This evidence is further reflected in the local statistics, with the CF statistic

having a p-value 0.059 and the PMF statistic having a p-value of 0.0648. The centrality statistic provided

little evidence against the null with a a p-value of 0.8834. That the centrality statistic was not particularly

powerful is consistent with the manner in which this network was constructed, with every node having at

least a degree of 10.

2.4.2 Female representation on corporate boards

Seierstad and Opsahl (2011) studied female representation on 384 corporate boards in Norway over the

period of May 2002 to August 2011. On alternating months, they compiled lists of corporate boards and

matched first names to lists of names that have clear gender reference. Names that could not be easily

matched were assigned a gender by investigating corporate web sites. Seierstad and Opsahl (2011) created

two mode networks that linked individuals to boards and one mode projections linking individuals who

served on the same board in the same month.

We investigate the network created by the union of networks of board members for the period of October

2010 to August 2011, comprising six individual networks. Figure 2.7 shows the network with female members

in white and male members in black. We test the null hypothesis that gender labels can be shuffled at random.

The local statistics showed fairly strong evidence against the null with the p-value for the Chen and Friedman

statistic being equal to 1 in 100,001, which is the number of Monte Carlo samples used, and the p-value for

the PMF statistic being 0.076. The global statistics showed less evidence against the null with the cluster

and centrality statistics returning p-values of 0.784 and 0.441, respectively.

2.5 Discussion

In this paper we considered a rigorous application of randomization inference to the setting of analyzing

networks that are the result of a randomized controlled trial. This approach makes no assumptions how

networks are formed, but allows researchers to select test statistics that are sensitive to different network

formation processes. From the simulations, we see edge count statistics are typically good choices for any

data generating problem, but for stochastic block models or preferential attachment networks, the cluster

or centrality statistic can be more powerful.
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The flexibility to select a test statistic for a particular alternative is a primary advantage of this method.

Creating statistics beyond the four proposed is also possible. Instead of counting edges, within and across

treatment group counts of triangles could replace edge counts. There are several other measures of node

centrality that may be useful for particular problems. It is also possible to take a hybrid approach in which

the treatment and control groups are partitioned in the manner of a local test, but these subgroups are then

analyzed using techniques more in line with global approaches.

Throughout this paper, we considered the case when a fixed number of units n1 was selected for treatment

with equal probability, but the method is also applicable to other assignment mechanisms. Provided one

can sample from the randomization distribution, Monte Carlo methods can be used to get estimates of the

null distributions. The moments from the TCF statistic can be re-computed directly from the treatment

assignment, or estimated from the same Monte Carlo process.

2.6 Moments of R1, R2

The test statistic TCF requires computing the expected number of edges within the treated group (µ1) and

the control group (µ2), as well as the variance-covariance matrix Σ, with entries σij . Let |E| be the number

of edges in the network, n the number of nodes, n1 the number of units assigned to the treatment condition,

and n0 = n− n1 the number of units assigned to control.

µ1 = |E|n1(n1 − 1)

n(n− 1)
,

µ2 = |E|n0(n0 − 1)

n(n− 1)
,

σ2
1 = µ1(1− µ1) + C

n1(n1 − 1)(n1 − 2)

n(n− 1)(n− 2)
+ (|E|(|E| − 1)− C)

n1(n1 − 1)(n1 − 2)(n1 − 3)

n(n− 1)(n− 2)(n− 3)
,

σ2
2 = µ2(1− µ2) + C

n0(n0 − 1)(n0 − 2)

n(n− 1)(n− 2)
+ (|E|(|E| − 1)− C)

n0(n0 − 1)(n0 − 2)(n0 − 3)

n(n− 1)(n− 2)(n− 3)

σ12 = (|E|(|E| − 1)− C)
n1n0(n1 − 1)(n0 − 1)

n(n− 1)(n− 2)(n− 3)
− µ1µ2,

Where C =
∑n
i=1 d

2
i −

∑n
i=1 di and di is the degree of node i. A proof of these quantities is given in Chen

and Friedman (2017) Appendix A.1.
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Figure 2.6: Network of selenium and placebo subjects with clusters identified. Black circles are control units,
white squares are treated units.
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Figure 2.7: Gender co-membership on publicly listed boards in Norway in 2010 and 2011. White nodes are
female members and black nodes are male members. Board members share an edge if both members served
on the same board at some point during the study period.
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Chapter 3

Average treatment effects for cluster
randomized trials

3.1 Introduction

Cluster randomization occurs when, for reasons of policy or study implementation, groups of subjects must

be randomized to the same treatment condition simultaneously. Cluster randomization is common in many

areas of investigation: students within schools, patients within clinics, products within factories, voters

within precincts. In each case it may only be feasible or desirable to apply a certain treatment across all

subjects within the cluster (a school start time, a patient in-take procedure, a manufacturing technique, a

voter mobilization campaign) even though researchers are primarily interested in outcomes at the subject

level.

Existing literature on clustered assignment has rightly warned researchers that analyzing unit level out-

comes as if each unit had been separately randomized leads to invalid inference (Cornfield, 1978; Donner and

Klar, 1994; Schochet, 2013; Middleton and Aronow, 2015). This literature clearly demonstrates that treating

cluster randomized trials as if the subjects were the level of randomization nullifies the desirable statistical

properties usually conferred by randomization. The downside of this literature, however, is that it has cast

the problem of analyzing cluster randomized designs as one of emulating subject level randomization. From

this perspective, clustering is a nuisance that would be avoided if possible, not a useful and interesting facet

of the design.

This is particularly apparent in discussions of covariance adjustment for cluster randomized trials. In

the randomization inference paradigm, covariance adjustment endeavors to remove noise from the outcome

while still relying on randomization as the only basis for inference. This approach contrasts with regression

modeling approaches in which covariance adjustment is part of model building. The danger in this latter

approach is that assumptions necessary for model building are rarely provided by randomization (Freedman,

This chapter contains joint work with Professor Ben Hansen.
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2008a,c,b; Samii and Aronow, 2012; Berk et al., 2013; Lin, 2013; Middleton, 2008). In the context of

cluster randomized trials, randomization inference approaches to covariance adjustment tend to emphasize

clustering in discussing how to construct proper test statistic or sampling distributions, but make little use

of the clustering in the actual covariance adjustment itself (Small et al., 2008; Aronow and Middleton, 2013).

What is lost in this discussion is that clusters have a unique covariate not present in subject level designs:

cluster size. It is generally difficult to state which covariates are important to adjust in a randomized trial,

because the relationship between background variables and potential outcomes is not known. With cluster

size, however, the intuition that large clusters will have larger total outcomes in many cases leads immediately

to the idea of basing at least some of the covariance adjustment on cluster size.

We are certainly not the first to recognize this feature of cluster randomized designs. From a design

perspective, covariance adjustment can be see as an attempt to balance covariates across treatment conditions

(Morgan and Rubin, 2012). If treatment assignment is proportional to cluster size, all variance in the

number of subjects assigned to each treatment condition will disappear, which forms a type of covariance

adjustment. On the analysis side, Middleton and Aronow (2015) included cluster size as the first of possibly

several covariates in adjusting cluster outcomes in a randomization inference framework. In this approach,

the cluster sizes included in each treatment condition is included in the estimation strategy as a correction

to the imbalance.

The method proposed in this chapter falls somewhat between the probability proportional to size and

post-hoc covariance adjustment approaches for incorporating cluster size. On one hand, it describes the price

paid by allowing variation the number of subjects assigned to treatment, suggesting designs that minimize

variation of cluster size. On the other hand, the approach allows for adjusting several different analyses

derived from a single design, such as analyzing subgroups that vary in their numbers across clusters such

that no single design could possibly assign treatment proportional to each subgroup. Subgroups in clustered

assignment are a particularly vexing issue as common design fixes such as stratifying individuals by subgroup

is not typically possible when clusters varying in distribution of subgroup members. Methods that post-

stratify based on subgroup membership are typically incompatible with clustered assignment (Miratrix et al.,

2013). Moreover, designs that randomized at the subject level, but then analyze on subgroups, effectively

generate cluster randomized trials where the cluster sizes are either zero or one. Even if researchers only wish

to analyze an outcome for the entire study, missing data and non-compliance with treatment assignment

often force analysis within subgroups defined by having data or complying with the treatment.

Our method also demonstrates the advantages of fully embracing the key feature of causal inference: that

data form two or more samples from different potential outcomes. It has been known since Neyman (1923)
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that estimation of treatment effects can be described as taking samples from the hypothetical population of

all subjects exposed to the treatment condition and, separately, the hypothetical population of all subjects

exposed to the control condition. This paradigm allows for applying many results from the survey sampling

literature when estimating average treatment effects, defined as the difference in population averages under

different treatment conditions. What this approach sometimes fails to highlight is that causal inference is

frequently more than just analyzing k-samples. The dependence between samples (i.e. treatment conditions)

is more than just a nuisance in computing covariances, it can also be a useful feature that can be profitably

exploited. As we show in this chapter, while a natural application of survey sampling methodology leads

an efficient, yet biased, estimator, a small adjustment to the estimator, which is only possible in the causal

inference context, eliminates the bias when cluster size is roughly proportional to cluster totals.

In Section 3.2, we describe the setting and notation and introduce several estimators for average treatment

effects in cluster randomized trials. Section 3.3, we apply our method to a field study that randomized

schools to receive a community building intervention. While randomization was applied at the school level,

we analyze outcomes for families and students clustered within schools. Finally, in Section 3.4, we conclude

with a discussion.

3.2 Methods

3.2.1 Potential outcomes

Consider a cluster randomized trial with c clusters, each with size wi. Thus the total experimental population

of units is n =
∑c
i=1 wi. If unit level subgroups can be identified, for example particular demographic

categories for students clustered in schools, identify the total number of units in subgroup g in a cluster as

w
(g)
i . As special cases, we can think of a completely randomized study of units as one in which each cluster

has size 1, in which case all cluster subgroup counts will be either zero or one.

Each cluster is randomly assigned to one of several possible treatments. The vector Z indicates treatment

assignment such that, Zi = k if the ith cluster is assigned to the kth treatment level. Following the potential

outcomes framework (Neyman, 1923; Holland, 1986), we posit the existence of a set of outcomes for each

subject yij(k), indexed by treatment assignment. We aggregate potential outcomes by cluster such that

yi(k) =
∑wi
i=1 yij(k). The observed outcome is thus the potential outcome indexed by the realized treatment

of cluster i: Yi = yi(Zi). As this notation suggests, we assume that the stable unit treatment value

assumption (Rubin, 1980) holds at the cluster level. This assumption states: (a) all clusters assigned to the

same treatment receive the same treatment (i.e., Yi = yi(k) ⇐⇒ Zi = k,∀i, k) and (b) that the assignment
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of cluster i is not a function of any other unit’s assignment (i.e., for the complete assignment vector Z,

Yi = yi(Z) = yi(Zi)).

In this chapter, we are primarily concerned with unit level average treatment effects (ATEs), defined as

the average of the difference of potential outcomes for each unit for under treatments k and l. For the entire

population study population, this is defined as

ρk − ρl =

∑c
i=1

∑wi
j=1 yij(k)

n
−
∑c
i=1

∑wi
j=1 yij(l)

n
=

∑c
i=1 yi(k)∑c
i=1 wi

−
∑c
i=1 yi(l)∑c
i=1 wi

In the subsequent sections, we introduce several estimators of ρk−ρl. We begin with the well-known Horvitz-

Thompson estimator, which has the desirable quality of being unbiased for the ATE. Then we consider a ratio

estimator that uses the observed totals of wi for treatment levels k and l. This estimator can be unbiased

in fairly narrow circumstances, and we bound the amount of bias. Finally, we introduce an estimator that

builds on the ratio estimator but remains unbiased in a wider range of situations.

3.2.2 Horvitz-Thompson estimators

A straightforward estimator of the treatment effect of k versus l can be constructed using Horvitz-Thompson

(HT) estimators for the total of potential responses divided by the known total of weights. Construct the

inverse propensity weighted indicators Ki = I(Zi = k)/P (Zi = k) and Li = I(Zi = l)/P (Zi = l) in order

to define the Horvitz-Thompson estimator of ρk − ρl as

Hk(Y )

n
− Hl(Y )

n
=

∑c
i=1KiYi
n

−
∑c
i=1 LiYi
n

=
K ′Y

n
− L

′Y

n

Observing that KiYi = 0 when i is not assigned to k, we can replace Yi by yi(k) to write KiYi = Kiyi(k).

Since E (Ki) = E (Zi = k) /P (Zi = k) = 1, the Horvitz-Thompson estimator is unbiased for ρk − ρl:

E

(
Hk(Y )

n
− Hl(Y )

n

)
=

∑c
i=1 E (Ki) yi(k)

n
−
∑c
i=1 E (Li) yi(l)

n
= ρk − ρl

The variance of the estimator can be decomposed as

1

n2
[Var (Hk(Y )) + Var (Hl(Y ))− 2Cov (Hk(Y ), Hl(Y ))]
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Let πi(k) = P (Zi = k) and πij(k, l) = P (Zi = k, Zj = l). When πij(k, l) > 0 for all units, standard survey

sampling results give unbiased estimators of Hk(Y ) and Hl(Y ) as (Cochran, 1999):1

V̂ (Hk(Y )) =

c∑
i=1

Ki
1− πi(k)

πi(k)
Y 2
i +

∑
i6=j

KiKj
πij(k, k)− πi(k)πj(k)

πij(k, k)
YiYj

V̂ (Hl(Y )) =

c∑
i=1

Li
1− πi(l)
πi(l)

Y 2
i +

∑
i 6=j

LiLj
πij(l, l)− πi(l)πj(l)

πij(l, l)
YiYj

As the term Cov (Hk(Y ), Hl(Y )) depends on the joint distribution of the potential outcomes, which is never

observed for any cluster, unbiased estimation of this term is not possible. It is, however, possible to estimate

a quantity that is smaller so that the overall variance estimator is conservative in expectation. Aronow and

Samii (2017) provide such a conservative estimator for Cov (Hk(Y ), Hl(Y )) as

Ĉ(Hk(Y ), Hl(Y )) =
∑
i 6=j

KiLj
πij(k, l)− πi(k)πj(l)

πij(k, l)
YiYj −

1

2

n∑
i=1

(Ki + Li)Y
2
i

Putting these estimators together, we get:

V̂

(
Hk(Y )

n
− Hl(Y )

n

)
=

1

n2

n∑
i=1

(
Ki

π(k)
+

Li
πi(l)

)
Y 2
i

− 1

n2

∑
i 6=j

(
KiKjπi(k)πj(k)

πij(k, k)
+
LiLjπi(l)πj(l)

πij(l, l)
− 2

KiLjπi(k)πj(l)

πij(k, l)

)
YiYj

3.2.3 Hájek estimators

While the HT estimator works well for any distribution of potential outcomes, we could exploit known

structure in the potential outcomes to generate a more efficient estimator. For cluster randomized trials, it

is often reasonable to make the assumption that that on average large clusters have large outcomes. Consider

the following reparameterization of the potential outcomes with some treatment level k:

yi(k) = αkwi + ri(k)

As we are free to select αk as any value we please, picking αk = ρk has a useful consequence for the residual

terms.

Lemma 3.1. The sum of residuals
∑c
i=1 ri(k) = 0 if and only if αk = ρk.

1Aronow and Samii (ress) provide conservative estimators for designs for which πij = 0 for some i and j (e.g., matched
pairs). Aronow and Samii (2017) extend these results for the covariance estimation as well.
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Proof. By definition ρk = (
∑c
i=1 yi(k))/(

∑c
i=1 wi). Substituting the decomposition of yi(k) yields:

ρk =
αk
∑c
i=1 wi∑c

i=1 wi
+

∑c
i=1 ri(k)∑c
i=1 wi

= αk +

∑c
i=1 ri(k)∑c
i=1 wi

Lemma 3.1 allows writing potential outcomes of any treatment level k as:

yi(k) = ρkwi + ri(k),

c∑
i=1

ri(k) = 0 (3.1)

A typical approach to outcomes proportional to size from the sampling literature is to use a ratio esti-

mator. In particular, we could consider a “Hájek estimator” that replaces the known total of cluster sizes

n with a Horvitz-Thompson estimator of the total (Hájek, 2011). The result is a difference of two ratios of

Horvitz-Thompson estimators:

Rk(Y )−Rl(Y ) =
Hk(Y )

Hk(w)
− Hl(Y )

Hk(w)
=
K ′Y

K ′w
− L

′Y

L′w
(3.2)

If the potential outcomes were exactly proportional to cluster size (i.e., yi(k) = ρkwi), the ratio estimator

is unbiased. For any treatment level k,

E (Rk(Y )) = E

(∑c
i=1Ki(ρkwi)∑c
i=1Kiwi

)
= ρkE

(
Hk(w)

Hk(w)

)
= ρk

so the difference Rk(Y )−Rl(Y ) is also unbiased. This assumption may be difficult to justify in most cases,

and the Hájek estimator will exhibit bias of the form:

E (Rk(Y )−Rl(Y )− (ρk − ρl)) = E

(
Hk(r(k))

Hk(w)

)
− E

(
Hl(r(l))

Hl(w)

)

Observe that the bias term depends on both the structure of the potential outcomes and randomization

mechanism for K and L. Notably, when covariance of Hk(r(k) and Hl(w) is the same as the covariance of

Hl(r(l)) and Hk(w), the bias can be described by bound that is the product of the variance of the estimator

with a purely design based quantity.

Proposition 3.1. When Cov (Hk(r(k)), Hl(w)) = Cov (Hl(r(l)), Hk(w)), the squared bias of the Hájek
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estimator is bounded by

[E (Rk(Y )−Rl(Y )− (ρk − ρl))]2 ≤ Var (Ck,l) Var (Rk(Y )−Rl(Y )) (3.3)

where

Ck,l =
Hk(w)Hl(w)

E (Hk(w)Hl(w))

Proof. By Lemma 3.1 and the unbiasedness of Horvitz-Thompson estimators, E (Hk(r(k))) = E (Hl(r(l))) =

0. Then the assumption Cov (Hk(r(k)), Hl(w))− Cov (Hl(r(l)), Hk(w)) = 0 is equivalent to

E (Hk(r(k))Hl(w))− E (Hk(w)Hl(r(l))) = 0

Multiply and divide by Hk(w)Hl(w) to get

E

(
Hk(w)Hl(w)

[
Hk(r(k))

Hk(w)
− Hl(r(l))

Hl(w)

])
= 0

Therefore, the covariance of these terms is equal to the negative product of their expectations,

Cov

(
Hk(w)Hl(w),

Hk(r(k))

Hk(w)
− Hl(r(l))

Hl(w)

)
= −E

(
Hk(r(k))

Hk(w)
− Hl(r(l))

Hl(w)

)
E (Hk(w)Hl(w))

= −E (Rk(Y )−Rl(Y )− (ρk − ρl)) E (Hk(w)Hl(w))

Applying the Cauchy-Schwartz inequality yields,

[E (Rk(Y )−Rl(Y )− (ρk − ρl))]2 ≤
Var (Hk(w)Hl(w))

[E (Hk(w)Hl(w))]
2 Var

(
Hk(r(k))

Hk(w)
− Hl(r(l))

Hl(w)

)

As Rk(Y )−Rl(Y ) = ρk−ρl+ Hk(r(k))
Hk(w) −

Hl(r(l))
Hl(w) , the last term can be written as Var (Rk(Y )−Rl(Y )).

This bound shows that the maximum ratio of bias to variance is given by the standard deviation of the

variable Ck,l or equivalently the coefficient of variation for the quantity Hk(w)Hl(w). As the design and

the vector w is known, the researcher can make decisions regarding the magnitude of bias without having to

look at the actual data. Cox and Hinkley (1974, chapter 8) suggest for a ratio of less than 1, bias has little

impact an inferences, noting that “an estimate of small bias and small variance will for most purposes be

preferable to one with no bias and appreciable variance” (p. 266). Särndal et al. (1992, section 4.2) suggest

the more stringent bound 0.1, but allow that “the distorting effect is not extremely pronounced” even if the
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bias ratio is large as 0.5.

Proposition 3.2. The variance of the Hájek estimator is given by:

Var (Rk(Y )−Rl(Y )) =
1

n2
Var (Hk(r(k))−Hl(r(l)))

Proof. We take an estimating equations approach to finding the variance of Rk(Y ) − Rl(Y ). Consider

estimating the ratio ρk from pairs (Yi, wi). Taking expectation is taken with respect to the finite population

of clusters, since E (ri(k)) = 0,

E (yi(k)− ρkwi) = E (ψ(yi(k), wi, k)) = 0

Then the finite sample estimating equation (Godambe and Thompson, 1986; Binder and Patak, 1994) for

ρk is a Horvitz-Thompson estimator of ψ:

Hk(ψ(Y ,w, ρk)) =

c∑
i=1

Ki ψ(Yi, wi, ρk) =

c∑
i=1

Ki(Yi − ρkwi) =

c∑
i=1

KiYi − ρk
c∑
i=1

Kiwi

Setting the estimating equation equal to zero and solving for ρk yields Rk(Y ). Stacking estimating equations

for θ = (ρk, ρl, ρk − ρl)′, gives:

ψψψ(Y ,w, θ) =


Hk(ψ(Y ,w, ρk))

Hl(ψ(Y ,w, ρl))

ρk − ρl


Basic M-estimation theory states that the variance of the estimating equations can be written in “sandwich”

form A(θ)−1B(θ)
[
A(θ)−1

]′
(Stefanski and Boos, 2002), where

A(θ) = E

(
− ∂

∂θ
ψψψ(Y ,w, θ)

)
B(θ) = E (ψψψ(Y ,w, θ)ψψψ(Y ,w, θ)′)

For the Hájek estimator Rk(Y )−Rl(Y ) under the working model, these matrices are of the form:

A−1 =


n−1 0 0

0 n−1 0

n−1 −n−1 1

 , B =


Var (Hk(r(k)) Cov (Hk(r(k)), Hl(r(l))) 0

Cov (Hk(r(k)), Hl(r(l))) Var (Hl(r(l)) 0

0 0 0
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So the variance of the estimator is

A−1B
[
A1
]′

=
1

n2
(Var (Hk(r(k))) + Var (Hl(r(l)))− 2Cov (Hk(r(k)), Hl(r(l))))

=
1

n2
Var (Hk(r(k))−Hl(r(l)))

To estimate 1
n2 Var (Hk(r(k))−Hl(r(l))), observe that this is the variance of a Horvitz-Thompson es-

timator for the average difference of residuals. While we do not observe the residuals directly, we plug in

estimated residuals

r̂i = Yi − wiRZi(Y )

into the Horvitz-Thompson variance estimator:

V̂ (Rk(Y )−Rl(Y )) =
1

n2

n∑
i=1

(
Ki

π(k)
+

Li
πi(l)

)
r̂2
i

− 1

n2

∑
i 6=j

(
KiKjπi(k)πj(k)

πij(k, k)
+
LiLjπi(l)πj(l)

πij(l, l)
− 2

KiLjπi(k)πj(l)

πij(k, l)

)
r̂ir̂j

3.2.4 Unbiased estimation of proportional outcomes

In many cases the Hájek estimator will have better efficiency than the Horvitz-Thompson estimator, such

that if the bias is well controlled the Hájek estimator will still have lower mean squared error than the

Horvitz-Thompson estimator. Nevertheless, researchers may still prefer an estimator that is unbiased under

a wider set of circumstances. Researchers may be analyzing data for which the possible bias is large. Even

when designing a study it may not always be possible to exert sufficient control over the design to make bias

negligible, particularly if clusters vary widely in the number of subgroup members. Moreover, if some clusters

contain zero subgroup members, the Hájek estimator may not be defined for all possible randomizations.

In the sampling literature, the ratio estimator is often motivated by capturing and smoothing the vari-

ance in the numerator by dividing by the denominator. If the numerator and denominator are positively

dependent, the resulting ratio should have significantly smaller variance than the numerator alone. If di-

viding by a positively dependent quantity is useful, it would also be beneficial to multiply by a negatively

dependent quantity. In classical sampling motivations, based on a single sample, such a quantity may be

difficult to construct. In the context of causal inference, on the other hand, we can use information about

clusters assigned to l to assist inferences about clusters assigned to k. Observe that for any randomization
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scheme such that P (Zi = k, Zj = l) ≤ P (Zi = k) P (Zj = l) for all i and j , we have that

Cov (Hk(w), Hl(w)) = E (Hk(w)Hl(w))−

(
c∑
i=1

wi

)2

=

c∑
i=1

c∑
j=1

E (KiLj)wiwj −
c∑
i=1

c∑
j=1

wiwj

=
∑
i 6=j

E (KiLj)wiwj −
c∑
i=1

c∑
j=1

wiwj ≤ 0

This suggests that the product of Hk(Y ) and Hl(w) may behave similarly to a ratio estimator.

As we are multiplying by an estimator of
∑c
i=1 wi instead of dividing by this quantity, we need to divide

by something that is roughly (
∑c
i=1 wi)

2. A natural choice would be E (Hk(w)Hl(w)):

Sk,l(Y ) =
Hl(w)Hk(Y )−Hk(w)Hl(Y )

E (Hk(w)Hl(w))

A simple rewriting of terms shows that Sk,l can be thought of a “corrected” version the Hájek estimator:

Sk,l(Y ) =
Hk(w)Hl(w)

E (Hk(w)Hl(w))
(Rk(Y )−Rl(Y )) = Ck,l (Rk(Y )−Rl(Y ))

As an alternative motivation of Sk,l, observe that we can write Rk(Y )−Rl(Y ) with a common denominator

as:

Rk(Y )−Rl(Y ) =
Hk(Y )

Hk(w)
− Hl(Y )

Hl(w)
=
Hl(w)Hk(Y )−Hk(w)Hl(Y )

Hk(w)Hl(w)

As ratios can be difficult to analyze, a reasonable approximation to Rk(Y )−Rl(Y ) would be to replace the

denominator with it’s expectation (see Hansen and Bowers, 2008, for a another use of this technique). The

resulting estimator is precisely Sk,l(Y ) as defined.

Perhaps unsurprisingly, the term Ck,l was also used in Proposition 3.1 in forming a bound on the bias

of Rk(Y )−Rl(Y ). As we show below, multiplying Rk(Y )−Rl(Y ) by Ck,l removes the bias from the ratio

estimator under similar conditions used in Proposition 3.1.

Proposition 3.3. Define K and L be propensity scaled treatment indicators such that Ki = I(Zi =

k)/P (Zi = k) and Li = I(Zi = l)/P (Zi = l). For any design that guarantees

1. E (KL′) = E (LK ′)

2. Cov (Hk(r(k)), Hl(w)) = Cov (Hk(w), Hl(r(l)))

the estimator Sk,l(Y ) is unbiased for ρk − ρl.
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Proof. Under the assumption E (KL′) = E (LK ′), the expectation of the numerator of Sk,l(Y ) is

E (Hl(w)Hk(Y )−Hk(w)Hl(Y )) = E (w′LK ′y(k)−w′KL′y(l))

= w′E (LK ′)y(k)−w′E (KL′)y(l)

= w′E (LK ′) (y(k)− y(l))

= w′E (LK ′) ((ρk − ρl)w + r(k)− r(l))

= (ρk − ρl)w′E (LK ′)w +w′E (LK ′) r(k)−w′E (KL′) r(l)

= (ρk − ρl)E (Hk(w)Hl(w)) + E (Hl(w)Hk(r(k)))− E (Hk(w)Hl(r(l)))

Dividing by E (Hk(w)Hl(w)) makes the first term ρk − ρl. By the assumption of equal covariances,

w′E (LK ′) r(k)−w′E (KL′) r(l) = 0.

To estimate the variance of Sk,l, observe that it can be viewed as a Horvitz-Thompson estimator of the

following population quantity (scaled by E (Hk(w)Hl(w))):

∑
(i,j)

πij(k, l)

πi(k)πj(l)
(wjyi(k)− wiyj(l))

The “population” is the set of pairs of clusters {(i, j) : i 6= j, i, j ∈ {1, . . . , c}} (the sum in the previous

equation is defined over this set). The natural Horvitz-Thompson estimator of this quantity is

∑
(i,j)

I(Zi = k)I(Zj = l)

πij(k, l)

πij(k, l)

πi(k)πj(l)
(wjYi − wiYj) =

∑
(i,j)

KiLj (wjYi − wiYj) = Hl(w)Hk(Y )−Hk(w)Hl(Y ).

Scaling by E (Hk(w)Hl(w)) yields Sk,l.

As Horvitz-Thompson type estimator, the variance of the estimator takes can be found using standard

54



equations.

Var (Sk,l) = E (Hk(w)Hl(w))
−2× ∑

(i,j)

πij(k, l)(1− πij(k, l))
πi(k)2πi(l)2

(wjyi(k)− wiyj(l))2

+
∑

(i,j,f,g)

πijfg(k, l, k, l)− πij(k, l)πfg(k, l)
πi(k)πj(l)πf (k)πg(l)

(wjyi(k)− wiyj(l))(wgyf (k)− wfyg(l))

+
∑

(i,j,f)

πijf (k, l, l)− πij(k, l)πif (k, l)

πi(k)2πj(l)πf (l)
(wjyi(k)− wiyj(l))(wfyi(k)− wiyf (l))

+
∑

(i,j,f)

πijf (k, l, k)− πij(k, l)πfj(k, l)
πi(k)πj(l)2πf (k)

(wjyi(k)− wiyj(l))(wjyf (k)− wfyj(l))

−
∑

(i,j,f)

πij(k, l)πfi(k, l)

πi(k)πi(l)πj(l)πf (k)
(wjyi(k)− wiyj(l))(wiyf (k)− wfyi(l))

−
∑

(i,j,f)

πij(k, l)πjf (k, l)

πi(k)πj(l)πj(k)πf (l)
(wjyi(k)− wiyj(l))(wfyj(k)− wjyf (l))

−
∑
(i,j)

πij(k, l)πij(l, k)

πi(k)πi(l)πj(k)πj(l)
(wjyi(k)− wiyj(l))(wiyj(k)− wjyi(l))


Here again, the notation (i, j), (i, j, f), and (i, j, f, g) denotes all 2-, 3-, and 4-tuples with distinct components.

We provide simplified versions for complete randomization and blocked randomization in a subsequent

section.

To estimate this variance we make a simplifying assumption to impute the unobserved potential outcomes,

for example yi(l) for subjects in the k treatment level. We assume that at the cluster level, the residual

terms ri(k) and ri(l) are equal. Under this assumption, we can impute the missing potential outcome as

yi(l) = yi(k)−wiSk,l or yi(k) = yi(l)+wiSk,l. Under this assumption, we can calculate the variance directly

and use it as an estimate of the true variance of Sk,l.

3.2.5 Subgroups and non-compliance

Using the cluster total notation, yi(k) =
∑c
i yij(k), the unit level ATE can be defined in terms of cluster

level totals. In addition to the ATE for the entire experimental population, we are often interested in average

treatment effects for subsets of the populations which we call “subgroups.” Let gij = 1 if a subject is in

subgroup g and gij = 0 otherwise. Let n(g) be the total number of subgroup members. Then subgroup
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specific effect for g is

ρ
(g)
k − ρ

(g)
l =

∑c
i=1

∑wi
j=1 gijyij(k)

n(g)
−
∑c
i=1

∑wi
j=1 gijyij(l)

n(g)
=

∑c
i=1 y

(g)
i (k)∑c

i=1 w
(g)
i

−
∑c
i=1 y

(g)
i (l)∑c

i=1 w
(g)
i

The general case presented so far can be thought of the subgroup in which gij = 1 for all subjects.

The HT and Hájek estimators can suffer from complications in the presence of subgroups. For the HT

estimator when w
(g)
i = 1 and for some designs, such as the complete random assignment discussed in the

section, it is the case that the HT estimator is equivalent to the difference of means of the treatment and

control groups. For example, for complete random assignment (discussed in more detail in the next section),

n =
∑c
i=1 1 = c, πi(k) = ck/c and pii(l) = cl/c and

Hk(Y )

c
− Hl(Y )

c
=

c

ck

∑c
i=1 I(Zi = k)Yi

c
− c

cl

∑c
i=1 I(Zi = l)Yi

c
=

∑c
i=1 I(Zi = k)Yi

ck
−
∑c
i=1 I(Zi = l)Yi

cl

Notably, in this expression the number of subjects in the treatment group
∑c
i=1 I(Zi = k)wi is a constant

for all Z. When the w
(g)
i are not constant, however, such as when analyzing a subgroup, while n(g) is still a

constant, it is no longer the case that
∑
i=1 I(Z = k)wi is a constant. Dividing by the observed number of

treated or control results in a ratio of random variables instead of a random variable divided by a constant.

This is easily addressed by dividing by n(g) rather than the observed number, but it is an common mistake

to make.

The Hájek estimator suffers as well when w
(g)
i = 0 for a sufficient number of clusters. In that case the

denominator
∑c
i=1Kiw

(g)
i can be equal to zero for some randomizations. In those cases, the Hájek estimator

is not defined. Work-arounds for this issue require conditioning on the observed w
(g)
i in the treatment levels

(Morgan and Rubin, 2012), but can be avoided by choosing a more robust estimator such as Sk,l.

3.2.6 Completely randomized and stratified designs

Having relied on the assumptions that E (KL′) = E (LK ′) and E (Hk(r(k))Hl(w)) = E (Hk(w)Hl(r(l))),

it is worth asking if these properties hold under any useful designs and what additional assumptions are

necessary on the potential outcomes. Conveniently, these assumptions are met under stratified designs when

the residuals ri and cluster totals wi are correlated by the same amount for all potential outcomes.

Proposition 3.4. For the potential outcomes to k and l, define ri(k) = yi(k)−ρkwi and ri(l) = yi(l)−ρlwi.

Suppose the c clusters are partitioned into b strata such that within each stratum s, there are cs clusters,

with cs,k assigned to k and cs,l to l. Furthermore, suppose that either:
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1. All stratum sizes are the same and

c∑
i=1

wiri(k) =

c∑
i=1

wiri(l)

2. Stratum sizes vary, but for all strata s:

cs∑
i=1

wsirsi(k) =

cs∑
i=1

wsirsi(l)

and
cs∑
i=1

rsi(k) =

cs∑
i=1

rsi(l) = 0

Then the properties E (KL′) = E (LK ′) and E (Hk(r(k))Hl(w)) = E (Hk(w)Hl(r(l))) hold.

Proof. When i 6= j are in the same block s,

E (KiLj) =
P (Zi = k, Zj = l)

P (Zi = k) P (Zj = k)
=

cs,kcs,l
cs(cs − 1)

c2s
cs,kcs,l

=
cs

cs − 1
= E (KjLi)

When i and j are in separate blocks, treatment assignment is entirely independent

E (KiLj) =
P (Zi = k, Zj = l)

P (Zi = k) P (Zj = k)
=

P (Zi = k) P (Zj = l)

P (Zi = k) P (Zj = k)
= 1 = E (KjLi)

Therefore E (KL′) = E ((KL′)′) = E (LK ′).

Let ws be the sum of wi for clusters in stratum s. Since E (KiLi) = 0 and E (KiLj) = E (LiKj) = 1 for
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i and j in different blocks, we have

E (Hl(w)Hk(r(k)))− E (Hk(w)Hl(w))

=

b∑
s=1

w′sE (LsK
′
s) rs(k)−w′sE (KsL

′
s) rs(l) +

∑
s6=t

w′sE (LsK
′
t) rt(k)−w′sE (KsL

′
t) rt(l)

=

b∑
s

cs
cs − 1

cs∑
i6=j

(wirj(k)− wirj(l)) +
∑
s 6=t

w′srt(k)−w′srt(l)

=

b∑
s

cs
cs − 1

cs∑
i6=j

(wirj(k)− wirj(l)) +
∑
s 6=t

w′srt(k)−w′srt(l) +w′r(k)−w′r(l)

=

b∑
s

cs
cs − 1

cs∑
i6=j

(wirj(k)− wirj(l)) +

b∑
s=1

b∑
t=1

w′srt(k)−w′srt(l)

=

b∑
s

cs
cs − 1

cs∑
i6=j

(wirj(k)− wirj(l)) +

(
c∑
i=1

wi

)2( c∑
i=1

ri(k)

)2

+

(
c∑
i=1

wi

)2( c∑
i=1

ri(l)

)2

=

b∑
s

cs
cs − 1

cs∑
i6=j

(wirj(k)− wirj(l))

Since
∑c
i=1 ri(k) =

∑c
i=1 ri(l) = 0 by Lemma 3.1.

When all strata are the same size,

E (Hl(w)Hk(r(k)))− E (Hk(w)Hl(w))

=
cs

cs − 1

b∑
s

cs∑
i 6=j

wirj(k)− wirj(l)

=
cs

cs − 1

b∑
s

cs∑
i 6=j

wirj(k)− wirj(l) +
cs

cs − 1

b∑
s

cs∑
i

wiri(k)− wiri(l)

=
cs

cs − 1

( c∑
i=1

wi

)2( c∑
i=1

ri(k)

)2

+

(
c∑
i=1

wi

)2( c∑
i=1

ri(l)

)2


= 0
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Alternatively, if within blocks w′srs(k)−w′srs(l) = 0 and 1′srs(k) = 1′srs(l) = 0,

E (Hl(w)Hk(r(k)))− E (Hk(w)Hl(w))

=

b∑
s

cs
cs − 1

cs∑
i 6=j

wirj(k)− wirj(l)

=

b∑
s

cs
cs − 1

 cs∑
i 6=j

wirj(k)− wirj(l) +

cs∑
i=1

wiri(k)− wiri(l)


=

b∑
s

cs
cs − 1

( cs∑
i=1

wi

)2( cs∑
i=1

ri(l)

)2

−

(
cs∑
i=1

wi

)2( cs∑
i=1

ri(l)

)2


= 0

In either case, E (Hk(r(k))Hl(w)) = E (Hk(w)Hl(r(l))) holds.

Simplified Estimators

For a completely randomized design with ck clusters assigned to k and cl clusters assigned to l, many of

estimators simplify. Interestingly, E (Hk(w)Hl(w)) does not depend on k or l:

E (Hk(w)Hl(w)) =
c

c− 1

( c∑
i=1

wi

)2

−
c∑
i=1

w2
i


Many of these simplifications are easier to express as sums within the treated and control groups. Define

the functions K(waY b) =
∑c
i=1 I(Zi = k)wai Y

b
i and L(waY b) =

∑c
i=1 I(Zi = l)wai Y

b
i .

Sk,l =
c(c− 1)

ckcl

L(w)K(Y )−K(w)L(Y )

(
∑c
i=1 wi)

2 −
∑c
i=1 w

2
i
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The variance similarly simplifies to:

Var (Sk,l) =

( c∑
i

wi

)2

−
c∑
i

w2
i

−2

×


(
c(c− 1)− ckcl

c2ckcl

)∑
(i,j)

(wjyi(k)− wiyj(l))2

+

(
c(c− 1)(ck − 1)(cl − 1)

ckcl(c− 2)(c− 3)
− 1

) ∑
(i,j,f,g)

(wjyi(k)− wiyj(l))(wgyf (k)− wfyg(l))

+

(
c(c− 1)(cl − 1)

ckcl(c− 2)
− 1

) ∑
(i,j,f)

(wjyi(k)− wiyj(l))(wfyi(k)− wiyf (l))

+

(
c(c− 1)(ck − 1)

ckcl(c− 2)
− 1

) ∑
(i,j,f)

(wjyi(k)− wiyj(l))(wjyf (k)− wfyj(l))

−
∑

(i,j,f)

(wjyi(k)− wiyj(l))(wiyf (k)− wfyi(l))

−
∑

(i,j,f)

(wjyi(k)− wiyj(l))(wfyj(k)− wjyf (l))

−
∑
(i,j)

(wjyi(k)− wiyj(l))(wiyj(k)− wjyi(l))


3.3 FAST social capital experiment

Gamoran et al. (2012) describes an experiment conducted in schools in Texas and Arizona designed to

increase the social capital of first grade students and their families. Participating schools in three districts in

Phoenix, AZ and one district in San Antonio, TX were randomly assigned to provide a series of community

building exercises using the Families and Schools Together (FAST) curriculum in which families shared meals

and played games. Control schools recruited participant families, but provided no additional community

engagement. Relevant outcomes included measures of social capital for the families, student classroom

behavior, and student academic achievement. Outcomes of Hispanic families were particularly important to

the researchers, as these families, many of whom were immigrants, were traditionally less engaged with the

school community.

City Schools Min Size Max Size Avg Size SD Size
1 Phoenix 6 14 93 69.00 29.37
2 Phoenix 8 43 79 60.62 14.68
3 Phoenix 12 20 63 48.17 12.60
4 San Antonio 12 34 90 58.58 17.41
5 San Antonio 14 44 94 64.57 15.46

Table 3.1: Within-block distribution of cluster sizes for the FAST study.

There were 52 schools recruited to the study. For the randomization, schools were blocked within city. In
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Phoenix, schools were additionally blocked within one of three districts, while in San Antonio two blocks were

formed by the researchers to match the schools based on percentage of “free or reduced lunch” qualifying

students. Table 3.1 shows the number of schools per block, along with the average and standard deviation of

the number of students per school within the block. As we can see, the variation on cluster size, particularly

in the first Phoenix district, is quite large.

English Proficient English Language Learner
Native American 0.0123 0.0006

Asian or Pacific Islander 0.0117 0.0036
Black 0.0743 0.0019

Hispanic 0.4912 0.2416
White 0.1294 0.0036

Table 3.2: Proportion of study particiapants categorized by school district reported race/ethnicity and
English language learner status.

Overall, there were 3084 students enrolled in the study, with 1592 in the community building schools

and 1492 in regular practice schools. Table 3.2 shows the proportion of students categorized by the district’s

reported ethnicity and whether students were considered “English language learners” (i.e., students with

difficulties learning in an English environment) when entering the first grade. Researchers targeted districts

with large Hispanic populations, and it is no surprise that Hispanic students make up nearly three quarters

of the study population. Hispanic students also make up nearly all of the students classified English language

learners.

Gamoran et al. (2012) analyzed outcomes using cluster aggregated values, which address how the average

response of a school is affected by the treatment, but does not address the student and family level treatment

effects as the school sizes vary a great deal (Schochet, 2013). Turley et al. (2017) added longitudinal data for

the study and provided analysis using a hierarchical linear model (Raudenbush, 1997). We recreate two of the

analysis performed in Turley et al. (2017) comparing treated and control families and students on parents’

self-reported social capital and an index of teach reported pro-social behavior by students. Additionally,

we create an index of academic performance combining teacher reported abilities in the first year of the

treatment and performance on state-wide math and reading exams in the third year following treatment.

Figure 3.1 shows the distributions of these three outcomes broken down by treatment and control groups.

All three distributions exhibit some amount of missing data. In the parents’ social capital measure, only

approximately 60% of parents completed surveys at the end of the first year of the study and not all parents

answered all questions. The pro-social behavior measures came from teacher surveys, which had much higher

completion rates. The academic outcomes blend teacher reports with end of year tests in the third year

of the study. Children who moved out of the districts or otherwise did not complete year end tests with
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Figure 3.1: Box plots comparing treated and control families and students on composite measure of parental
social capital, teacher reported student pro-social behavior, and academic achievement one and three years
after treatment.

their cohort were thus excluded from these measures. To address missingness concerns, we impute a näıve

estimate of ρk and ρl using the within treated and control group means.

Table 3.3 includes the overall average treatment effect estimates for the social capital, pro-social behavior,

and academic outcomes. For each of the outcomes, we apply the Horvitz-Thompson estimator, the Hájek

ratio estimator, and the corrected ratio estiamtor Sk,l to compare the treated and control subjects. In

addition the ATE estimates, the table also includes variance estimates and 95% confidence intervals. Overall,

the Hájek and corrected estimators were consistently close, while the Horvitz-Thompson estimator varied

from the other two more. Including wi via the Hájek estimator or Sk,l significantly improved precision,

leading to much smaller confidence intervals. Nevertheless, none of the 95% confidence intervals exclude

zero so that these results are compatible with the treatment having no effect on any of these outcomes.

Turley et al. (2017) reported similar findings for the overall groups, though they noted that many families

were assigned to the FAST treatment but never attended any classes. In an analysis of the “treatment-

on-the-treated” average effect, modeling compliance for the control group, they found significant results for

subjects that did imply with the treatment. Such an analysis is outside the scope of this chapter, but could
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Outcome Estimator ρ̂1 − ρ̂0 V̂ Lower 95% Upper 95%

Social Capital
Horvitz-Thompson 1.4138 1.9290 -1.3095 4.1370
Hájek 0.3968 0.0814 -0.1626 0.9561
Sk,l 0.3971 0.0539 -0.0582 0.8523

Pro-Social Behavior
Horvitz-Thompson 1.0890 2.2406 -1.8459 4.0239
Hájek -0.0335 0.1190 -0.7098 0.6427
Sk,l -0.0336 0.0818 -0.5944 0.5273

Academic Outcomes
Horvitz-Thompson 0.1921 0.0296 -0.1453 0.5294
Hájek 0.1803 0.0288 -0.1524 0.5129
Sk,l 0.1804 0.0198 -0.0952 0.4560

Table 3.3: Results of analyzing three different outcomes from the Gamoran et al. (2012) social captial study.
For each outcome, we apply the Horvitz-Thompson, Hájek, and bias corrected estimator Sk,l. The table
shows the estimate, the estimated variance, and the bounds of a 95% confidence interval.

be incorporated by defining subgroups based on compliance status, with the class membership being defined

by a model for the control subjects.

Estimator Subgroup ρk − ρl V̂ Lower 95% Upper 95%
Horvitz-Thompson Native American 4.49 28.54 -5.99 14.97
Horvitz-Thompson Asian or Pacific Islander 11.29 74.77 -5.66 28.25
Horvitz-Thompson Black 0.60 18.42 -7.82 9.01
Horvitz-Thompson Hispanic 0.93 4.16 -3.07 4.93
Horvitz-Thompson White 3.53 34.43 -7.98 15.03
Hájek Native American 0.05 0.01 -0.09 0.19
Hájek Asian or Pacific Islander 0.16 0.02 -0.10 0.42
Hájek Black -0.03 0.10 -0.65 0.60
Hájek Hispanic -0.07 0.97 -2.00 1.86
Hájek White 0.33 0.62 -1.21 1.88
Sk,l Native American 0.05 0.00 -0.07 0.17
Sk,l Asian or Pacific Islander 0.16 0.01 -0.05 0.37
Sk,l Black -0.03 0.07 -0.54 0.49
Sk,l Hispanic -0.07 0.71 -1.72 1.58
Sk,l White 0.34 0.42 -0.94 1.61

Table 3.4: Subgroup specific effects for parent social capital outcomes.

Similar results appear in the subgroup specific analyses. Subgroup specific effects for the three outcomes

are given in Table 3.4, Table 3.5, and Table 3.6. For none of the groups did the treatment appear to be

significant. While it is not directly tested, given the overlap in confidence intervals, it seems that treatment

did not improve average outcomes any of the subgroups more than any of the others.

3.4 Discussion

In this chapter we have considered the issue of estimating average treatment effects in cluster randomized

studies. Like some previous approaches, we argue that cluster size (wi) is a critical variable in understanding

63



Estimator Subgroup ρk − ρl V̂ Lower 95% Upper 95%
Horvitz-Thompson Native American 8.41 41.48 -4.21 21.04
Horvitz-Thompson Asian or Pacific Islander 10.73 95.02 -8.38 29.84
Horvitz-Thompson Black -0.12 27.54 -10.41 10.17
Horvitz-Thompson Hispanic 0.66 4.64 -3.56 4.89
Horvitz-Thompson White 2.97 41.98 -9.74 15.67
Hájek Native American 0.10 0.01 -0.07 0.28
Hájek Asian or Pacific Islander 0.15 0.02 -0.15 0.44
Hájek Black -0.09 0.15 -0.86 0.68
Hájek Hispanic -0.35 0.98 -2.29 1.60
Hájek White 0.25 0.77 -1.46 1.97
Sk,l Native American 0.10 0.01 -0.04 0.25
Sk,l Asian or Pacific Islander 0.15 0.02 -0.10 0.39
Sk,l Black -0.09 0.11 -0.73 0.55
Sk,l Hispanic -0.35 0.73 -2.02 1.33
Sk,l White 0.25 0.52 -1.17 1.67

Table 3.5: Subgroup specific effects for student prosocial behavior outcomes.

the operating characteristics of estimators of average treatment effects in cluster randomized trials. The

standard Horvitz-Thompson estimator does not directly include the variation in wi in the estimator, though

this variation directly contributes to the variance of the estimator. Ratio estimators such as the Hájek

estimator include the observed variation in wi across the treatment conditions in the estimator but are not

unbiased expected in narrow circumstances.

Under fairly broad assumptions, the bias in the Hájek estimator can be bounded in proportion to an

estimable variance term. Moreover, a term in constant of proportionality in the bound on the bias can be

used as a multiplicative term to develop an estimator that is unbiased under the same broad assumptions

used in the derivation of the bound. We showed how this new, corrected estimator Sk,l can be interpreted

of as scaled version of the Hájek estimator, an approximation to the Hájek estimator with the denominator

held at its expectation, or as a Horvitz-Thompson estimator of a particular population quantity. Using this

last representation, we a derived variance estimator for Sk,l. We also showed that several common designs

meet our estimator’s requirements and provided simplified versions of Sk,l and its variance estimator for

those designs.
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Estimator Subgroup ρk − ρl V̂ Lower 95% Upper 95%
Horvitz-Thompson Native American 0.30 0.41 -0.96 1.55
Horvitz-Thompson Asian or Pacific Islander 0.35 0.99 -1.61 2.30
Horvitz-Thompson Black -0.26 0.12 -0.95 0.43
Horvitz-Thompson Hispanic 0.17 0.03 -0.14 0.49
Horvitz-Thompson White 0.51 0.30 -0.56 1.59
Hájek Native American 0.00 0.00 -0.01 0.02
Hájek Asian or Pacific Islander 0.00 0.00 -0.03 0.03
Hájek Black -0.02 0.00 -0.07 0.03
Hájek Hispanic 0.12 0.01 -0.11 0.35
Hájek White 0.06 0.01 -0.08 0.21
Sk,l Native American 0.00 0.00 -0.01 0.02
Sk,l Asian or Pacific Islander 0.00 0.00 -0.02 0.03
Sk,l Black -0.02 0.00 -0.06 0.02
Sk,l Hispanic 0.12 0.01 -0.07 0.32
Sk,l White 0.06 0.00 -0.06 0.18

Table 3.6: Subgroup specific effects for student academic outcomes.
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Hájek, J. (1961). Some extensions of the Wald-Wolfowitz-Noether theorem. The Annals of Mathematical
Statistics, 32(2):506–523.

68
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