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ABSTRACT 

 

 Quantitative phenotypes regulated by multiple genes are prevalent in nature and 

many diseases falls into this category. High-throughput sequencing and high-performance 

computing provides a basis to understand quantitative phenotypes. However, finding a statistical 

approach correctly model the phenotypes remain a challenging problem. In this work, I present a 

resampling-based approach to obtain biological functional categories from gene set and apply the 

approach to analyze lithium-sensitivity of neurological diseases and cancer. Then, the non-

parametrical permutation-based approach is applied to evaluate the performance of a GWAS 

modeling procedure. While the procedure performs well in statistics, search space reduction is 

required to address the computation challenge. 
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CHAPTER 1: Introduction - Massive Genomic Data, Database, and Analysis 

Continuous Phenotypes 

A central problem for biologists is devising how to summarize complex phenomena using 

a concise set of descriptors, when in fact many biological characteristics are not categorical at the 

phenome level of description. For example, height1, BMI2, and crop nutrient production3, are all 

"quantitative phenotypes", to name a few. While these phenotypes do have genomic basis and 

some finite heritability, but they are more complex than strictly Mendelian traits. Many widely-

studied phenotypes, including detrimental diseases4 such as schizophrenia5 and autism6, are also 

considered to be quantitative, with both genetic and environmental components contributing to 

observed phenotypic variability. Some examples of these environmental components include soil 

quality for crop harvest index7, nutrition for obesity8, and nurturing environment for intelligence9. 

A central theme of this thesis is the proper statistical methods and their implementation to 

understand biological phenomena in the context of the above descriptors. 

One century ago, Fisher proposed an “infinitesimal model” which successfully described 

genetic effects on quantitative phenotypes10. In this model, trait values are composed of a large 

number of heritable factors with small contributions in an additive way. This model was later 

developed to incorporate other factors such as recombination, selection, migration, drifting, 

mutation, and epistasis11. The model explains why heritability in continuous trait is partially 

"missing". Large number of common SNPs with statistically insignificant individual contributions 

collectively bring a compelling effect12. Therefore, exploration of continuous phenotypes calls for 

large-scale studies that require huge amount of sequencing, expression, and interaction data. 

Biologically, the "infinitesimal model" is supported by expression data and regulation network 

analysis, which find genetic regulation network to be essential in phenotype emergence13.  

  

Technology Advancement in Data Acquisition, Annotation, and Processing 

In the paper "Big Data, Astronomical or Genomical?"14, Stephens, et. al. compared the 

amount of genomic data available to-date to that of Astronomical data, YouTube and Twitter, and 

reviewed the unique challenges in genomic data acquisition, storage, distribution, and analysis. 
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The distribution stage is more related to hardware architecture and ethical issues, while the 

acquisition, storage, and analysis stages motivated developments in sequencing technologies, and 

computational tools and databases. 

Technological advancement in Next Generation Sequencing enables efficient, low-cost 

sequencing, so that enormous amount of data impossible using traditional Sanger method can be 

produced. For example, a popular sequencing technique is Illumina15. Illumina applied bridge PCR 

to amplify sequence fragments on a solid surface instead of flowing in a homogenized liquid, so 

that multiple fragments can be amplified at the same time15. Fluorescent-tagged nucleotides are 

attached to the end of fragments, one at a time, during the process of amplification. The fluorescent 

signal indicates which nucleotide is attached to the amplified fragment at each round, sequencing 

cooperatively with amplification. Raw sequence data deposited in the Sequence Read Archive 

(SRA) rapidly increases with the aid of advanced sequencing technologies.16   

Meanwhile, algorithms and large-scale computing resources have been developed to 

assemble and align the fragments sequenced. Burrows-wheeler transform17 indexes all the 

rotations of a long string. Then the rotated strings are arranged in a binary tree to enable fast search 

of substrings for alignment. De Bruijn graph organizes overlapped fragments in a directed graph 

and quickly finds combined sequence, enabling de novo assembly18. The genomic data types are 

largely heterogeneous. Tools addressing different problems have been developed and organized 

onto platforms and packages. Galaxy19 provides an online platform mainly focused on sequencing 

alignment and assembly with simple text manipulation and statistics. OMICtools20 is an online 

platform which categorizes online tools by evaluating literature and provides an AI-aided tool 

choice and workflow construction corresponding to the biological question of interest. For 

command-line workflows, Biopython21 provides tools for sequence parsing, alignment, motif 

prediction, annotation, and statistics. Bioconductor22 has about 1560 project-oriented tools 

deposited. Besides providing a convenient access to databases, Bioconductor, based on R 

language, is especially strong for performing statistical analysis and presenting data. 

Databases have evolved to accompany the sequencing data and annotate the genomic 

information with their biological products and function. Oxford journal website provides a 

comprehensive collection of databases for convenient search23. Database updates are annually 

reported on the Nucleic Acid Research database issue23. Sequencing annotation databases include 
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SRA for raw sequencing data and alignment16, DDBJ for nucleotide and protein sequences24, and 

GenBank integrating nucleotide sequencing with gene products, protein structure, and biomedical 

literature25. ENCODE26 project collects highly specified sequencing data in human, mouse, C. 

elegans, and fruit fly, including genome sequences, epigenetic patterns, regulatory binding sites, 

and chromatin contact information. Databases annotating genomic polymorphisms include 

dbSNP27 and dbVar28, which annotate mutations and structure variations in human chromosome, 

their frequencies, and impact on function and disease susceptibility. JASPER29 and DBTSS30 

integrate sequence information for transcription factor binding sites from various species and cell 

types based on immunoprecipitation, methylation, and RNA sequencing experiments. 

FANTOM531 provides an atlas for regulatory RNA in human and mouse, as well as promoters and 

enhancers in human. ArrayExpress32 and Gene Expression Omnibus33 archive microarray 

experiment data and make expression data set available for further regulation network study and 

functional category analysis. UniProt34 provides a hub annotating protein sequences with rich 

information including but not limited to: function, activity, active sites, binding regions, post-

translational modification, interaction, structure, mutations, and related diseases. OMA35, 

OrthoDB36 and Pfam37 organize protein by sequence and domain similarity to explore evolution 

in function. Protein-protein interaction databases such as STRING38 and BioGRID39 compile 

networks through physical contact and functional regulations. KEGG40 and GO (Gene Ontology)41 

link genes to a systems-functional level of pathways and biological knowledge. An important task 

is to integrate these data sources for use in projects that tackle biological problems with multiple 

aspects. One effort is to provide direct mapping or even a common language for cross-talk between 

databases. BioMart42 from Ensembl project43 provides a mapping among different systems of gene 

and gene product symbols and their functional attributes. Gene Ontology Consortium initially 

begun with providing a cross-species description of genetic functions41. Based on similar 

approaches, KaBOB44 system semantically integrates 18 biomedical databases and provides 

consistent representation of biomedical data and concepts.  

 

 

Permutation-based Resampling Method for Assessing Many-to-Many 
Mapping 
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Associating genomic data with phenotype is a multi-dimensional problem. When the gene-

function annotation is available, what functional categories and pathways are overrepresented our 

gene set? In this case, many ontology terms or pathways are simultaneously tested for their 

enrichment. When the gene/variant-function annotation is unavailable, what would be a proper 

model describing the system? In this case, multiple models are tested.  

When multiple hypotheses are tested, one might find more false positives than suggested 

by an uncorrected p-value with a fixed threshold. For example, when we evaluated m0 null 

hypotheses and found m rejected with a threshold , then the probability to have at least one false 

positive would be approximately m0. Bonferroni correction is a stringent threshold so that the 

possibility to mistakenly reject 1 true null-hypothesis is under . While it is too stringent for gene 

ontology analysis, it is still widely used in genetic variant association studies due to its simplicity. 

Benjamini-Hochberg correction controls false discovery rate (FDR) under  assuming 

independent or positively-correlated hypotheses45. The Benjamini-Yekutieli method extends 

corrections to negatively correlated hypotheses46. A recent modification of the Benjamini-

Hochberg method aims to account for acyclic tree-like structures47. 

These methods are very useful, but none provide a completely reliable estimation of false 

positives, due to the extremely interconnected nature of the elements in gene ontology, other 

biological databases, and genomic models. The assumption of independency or positive-

correlation is not always valid. Therefore, non-parametric simulated statistics, is essential for 

accurate assessment of the significance of correlations. Chapters 1-3 discusses that when 

association is known, genes are permuted with background gene list to show how many annotation 

terms are overrepresented by chance. Chapter 4 would present the case when association is 

unknown, permuting phenotypes would show what associations occurs by chance and therefore 

sets a threshold to control False Positive Rate. 

Improving Statistics of Gene Set Analysis, and overview of Thesis Chapter 1 

Understanding biology in terms of categories generally reduces to a set of binary 

classification problems.  For each potential category that might describe a system, the question is: 

“Does that category fit?”  Next, since the data are stochastic by nature, we also ask: “How 

confident are we that this category fits?” and “Is it more important to find as many relevant 

categories as possible, or to be very sure that the identified categories are correct?” Chapter 1 of 
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the thesis deals with these questions as they apply to gene annotation enrichment studies, in which 

a list of genes is analyzed for enrichment in a number of biological process-related categories, thus 

pinpointing which biological processes these genes enable. 

The most straightforward way to quickly obtain an overview of biological information in 

a large data set is to evaluate whether a biological feature is overrepresented in the gene set.  

Huang, et.al. (2008)48 reviewed the gene ontology enrichment tools available at the time and 

categorized them into singular enrichment analysis (SEA), gene set enrichment analysis (GSEA), 

and modular enrichment analysis (MEA). SEA uses hypergeometric test, Fisher's exact test, or 

Chi-squared test to evaluate whether the fraction of the genes associated with a certain biological 

feature in the gene set of interest is reached or exceeded by chance contrasting a background gene 

set48. GSEA applies permutations between experiment and control gene sets to find distribution of 

maximum enrichment score and its significance48. MEA incorporates network relationships 

between annotated terms with SEA48. In the present thesis, a pipeline improving SEA with a 

GSEA-like random-sampling like procedure is developed, so that the permutation procedures 

would also be applicable even if gene rank metric or case-control format are hard to obtain. 

MEA tools try to overcome the disadvantage of multiple hypothesis correction of SEA by 

including the acyclic tree structure. TopGO options "elim"49 and "parent-child"50 adjust the 

candidate gene association with a parent term if a child term is found to be enriched. DAVID51 

provides a hierarchical enrichment option so that the terms at the same level would be evaluated 

at the same time. However, the hierarchical enrichment overlooks the fact that a child term can 

have multiple parents across levels and the levels of gene ontology terms themselves are poorly 

defines. Moreover, MEA tools overlook the overlap between the sibling terms, cousin terms, and 

distant terms due to genetic pleiotropy. For these terms, selection of an overlapped gene would 

bring positive correlation, while selection of a non-overlapped gene would bring negative 

correlation. Therefore, we choose to combine SEA tools with resampling method.  

In chapter one, a resampling-based method is introduced for false positive rate control. 

"Null sets", the gene sets randomly selected from background gene set, are evaluated as an 

estimation for false positives.  

Another aspect discussed in chapter one is inclusion of false negatives, which is motivated 

by application of gene ontology enrichment in our data set of interest, the human orthologs of 



 6 

honey bee alarm pheromone set. The honey bee alarm pheromone set is a set of genes differentially 

expressed when honey bee aggression behavior is triggered by the chemical alarm pheromone52. 

This honey bee gene set is shown to be more conserved with social placental mammals such as 

human, than non-social insects53. It is likely to provide understanding to genetic basis to social 

behavior. However, using both heuristic and resampling method with FDR<=0.05 brings only the 

most general gene ontology terms. The false negative is investigated. Metrics54,55 , such as F-

measure and Matthews Correlation Coefficient, balancing false negatives and true positives are 

introduced. Optimizing these metrics provides a statistical basis to rationally alter p-value 

thresholds. Relaxing significance threshold to balance signal and noise may bring back more 

specific gene ontology terms, than an arbitrary threshold. 

The biological basis of complex continuous phenotypes also justifies increasing thresholds 

to embrace the previously thought “insignificant” terms. Complex continuous phenotypes are 

regulated by large quantity of genes with small contributions cooperating in a non-centralized 

network. The small alarm-pheromone set human ortholog is not contradicting to the feature in that 

a non-centralized network still maintains its general properties even if a certain portion of 

nodes/genes is removed. On the other hand, contributions of “insignificant” ontology terms would 

be large due to the large population of these terms. Therefore, it is also biologically reasonable to 

relax the threshold if optimization of balancing metrics requires.  

Application of Simulated Enrichment Statistics on Lithium Sensitive Gene 
Sets, and overview of Thesis chapters 2 and 3 

Chapters two and three apply statistical method from chapter one for a systems analysis of 

lithium-sensitive genes. Jakobsson, et.al. have provided a comprehensive review of the 

biochemical mechanism of lithium function and its importance in neurodegenerative disease, 

affective disorder, and cancer56. Lithium has been used as a treatment in major depressive 

disorder57, bipolar disorder58, and schizophrenia59. In combined treatment, lithium has enhanced 

effects of SSRI60. Epidemiology studies have revealed that lithium concentration negatively 

correlate with dementia61 and rising rates of Alzheimer's disease mortality with age62. 

Retrospective studies have revealed that lithium reduced cancer risk in patients with bipolar 

disorder63. Li+ competes with Mg2+ in binding with many kinases including GSK3B64, which 

regulates a large number of substrates65. Among the substrates inhibited by GSK3B, BDNF66 has 

shown neuro-protective function and has been a therapeutic target for Alzheimer's disease67. 
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Lithium inhibition of inositol monophosphatase, which is another Mg2+ binding enzyme, have 

been shown to induce autophagy68.  

To systematically study the effect of lithium, it is key to understand how the Mg2+ binding 

enzyme interactive network is involved in the disease-related biochemical pathways. The protein-

protein interaction database STRING38 provides annotations based on experiment, ortholog 

evidence, and computational prediction. The interactome largely covering same genes are merged 

together. Eventually, 10 distinctive interactomes become the input of the enrichment analysis. 

Each interactome is then processed by the pipeline developed in chapter 1 for a resampling-based 

KEGG pathway enrichment study using 1000 null sets.  

For each disease annotated in the KEGG database40, either they are annotated to a single 

disease term or to multiple pathway terms. A collective p-value is computed by the geometric 

mean of all the p-value of mutual enrichment of interactome and KEGG terms associated with the 

disease. The lower the p-value, the more sensitive the disease would be to lithium. We used the 

analysis to identify which cancers and neurological diseases are likely to be most responsive to 

lithium therapy and which genes are most promising targets in a multidrug therapy involving 

lithium.    

The calculation result has shown that except for very few outliers, cancer terms has 

achieved the lowest collective p-value. A majority of neurodegenerative disease and affective 

disorder have good enrichment in lithium interactome. Metabolic pathways are not responsive to 

lithium interactomes. The bipolar disorder and major depressive disorder, which are clinically 

proved to be sensitive to lithium treatment, have shown high enrichment. 

The key genes are evaluated by how many times they appeared in the intersection of a 

disease-related pathway and lithium interactome. The number is normalized by the number of 

pathways associated with the disease. Among the highly ranked genes, many are known to be the 

drug target for disease treatment. For example, the APP is identified as a key protein in 

Alzheimer’s disease and major depressive disorder. In both diseases, amyloid-beta produced by 

abnormal cleavage of APP are observed clinically69,70. MAPK3, associated with cell apoptosis71,  

is both highly ranked in neurodegenerative disorder and cancer. 

The study is limited with direct annotation and the contribution of individual genes are 

assumed to be the same, which is not the case in reality. However, it is a quick way to indicate 



 8 

which diseases are sensitive to lithium treatment, yet regardless of the direction. Many of the well-

identified drug targets, including the key enzymes themselves, are absent from the direct 

annotation. The interaction network showed how these genes regulates the highly ranked genes 

found in the study and bridges lithium effects on the diseases. 

Quantitative Model for GWAS Data and Search Space Reduction: overview 
of Chapter 4 

Gene mutation, differential expression sensitivity to environment, and interaction are 

ultimately associated with phenotype variations. Especially, mutations in non-coding region is 

expected to result in less detrimental consequences to phenotype than those in coding regions. But 

these variations would alter phenotypes by regulating the expression of genes72. Therefore, it is 

necessary to include variations in both coding and non-coding regions to build a genotype-to-

phenotype model of high resolution. It is also found that mutations interact (epistasis), resulting in 

greater effect on phenotype than would have been the sum of individual contributions, particularly 

in complex continuous phenotypes73. Therefore, to describe a continuous phenotype, a quantitative 

model including both additive and epistatic effects based on regression is necessary. 

In chapter four, a Stepwise Procedure for constructing an Additive and Epistatic Multi-

Locus model (SPAEML) is described. This model includes both first order (additive) and second 

order (two-way epistatic) terms and a normal random noise term74. The model is fitted by step-

wise model selection procedure75. To evaluate the effectiveness of the model, it is compared to 

two other statistical approaches. One is Joint Linkage analysis76, which is a multi-locus model that 

does not incorporate epistasis. The other is FastEpistasis77, which only includes one pair of 

epistatic markers in each model. 

The applications were tested on synthetic data sets and validated by linear fitting using R. 

False positive rate, detection rate, and specification rate are evaluated. It is confirmed that the 

multi-locus models (SPAEML and JL) outperforms single-locus model. The SPAEML is able to 

specify epistatic and additive effect when minor allele frequency is high. However, due to 

combinatorial growth of number of models to test, SPAEML takes much longer time to run than 

JL (a week vs three hours). Therefore, search space reduction is necessary.  

Future work: Search Space Reduction in Model Selection  
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Currently, many efforts have been taken to reduce the possible search space. Pure statistical 

methods are quickly developed. For example, LASSO78 captures the strongest effect by adding 

constraint term in regression procedure. "Screen and Clean"79 showed a two-staged workflow 

finding all the additive effects with LASSO and then only fit the interactive pairs between the 

SNPs identified.  In addition to statistical methods, it would also be helpful to take advantage of 

the prior biological knowledge to effectively exclude the models that are not biologically 

meaningful. MDR80 categorized multi-locus data into high-risk and low-risk group so that the 

combination of multiple factors is reduced to two groups. Later versions of MDR also work with 

quantitative phenotypes.81 

Haplotyping is one such approach. Experiments have shown that human chromosomes are 

organized in haplotype blocks where the groups of genomic variations82 are likely to be inherited 

together. Therefore, grouping SNPs in haplotype blocks would effectively reduce the candidate 

markers in the model83,84,85.  

Additionally, the molecular basis of epistasis lies in gene regulation network86. Magnum87 

builds on about 200 tissue-specific regulatory network information from FANTOM531and 

validated by GTEx88. KnowENG89 incorporates the interaction information from databases like 

STRING38, annotation databases like KEGG40 and GO41, and protein domain similarity 

information to predict interaction between exons. Juicer tool packages90 process Hi-C data to 

reveal 3D structure of chromatin and bring information about contact probability of long-distance 

genetic elements. These software packages enable evaluation of interaction probability and 

provide effective ways to integrate regulatory and co-expression information in modeling. 

Stochastic search and non-parametrical model building approaches have been extensively 

developed for effectively build a model for GWAS data. Ljungberg, et.al. (2004)91 provided an 

efficient algorithm by hierarchically and stochastically partitioning the search space to find global 

optimal in 2 and 3 QTN models with many-way interactions. Wan, et.al. (2009)92 developed a 

machine-learning tree search algorithm to identify interactive SNPs. However, there are no unified 

workflow that can take the genotype and phenotype table and automatically reduce search space, 

select SNP and SNP pairs, and fit for the model. My next goal is to explore these algorithms and 

incorporate statistical structure in the given genomic data set and priori biological knowledge, so 
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that a straightforward workflow can be developed for accurately description of continuous 

phenotype using multi-locus, interaction-inclusive models.  

Conclusion 

In this work, I have demonstrated that non-parametrical statistics is now a feasible way to 

analyze genomic data. For gene annotation enrichment analysis, resampling simulation estimates 

false discovery rate in an unbiased way regardless the structure of the database. A flexible 

significance threshold balancing detection and correctness is better than an arbitrary threshold in 

exploring highly noised data set such as the honey bee alarm pheromone set. Application the 

resampling approach for mutual enrichment in lithium-sensitive gene set and disease-associated 

pathways is a fast and straightforward way to identify disease responsive to lithium and potential 

pharmaceutical targets for these diseases. In GWAS analysis where data set is much larger, 

permutation method is more computationally challenging. For a small data set, I was able to 

validate the step-wise procedure including both additive and epistatic effects for multi-locus model 

(SPAEML). The performance for the modeling procedure was evaluated using permutation 

method and simulated data set. For realistic-sized data set, search-space-reduction for potential 

model is essential. 
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Abstract 

Background: A central question in bioinformatics is how to minimize arbitrariness and bias in analysis 

of patterns of enrichment in data.  A prime example of such a question is enrichment of gene ontology 

(GO) classes in lists of genes. Our paper deals with two issues within this larger question.  One is how 

to calculate the false discovery rate (FDR) within a set of apparently enriched ontologies, and the 

second how to set that FDR within the context of assessing significance for addressing biological 

questions, to answer these questions we compare a random resampling method with a commonly used 

method for assessing FDR, the Benjamini-Hochberg (BH) method. We further develop a heuristic 

method for evaluating Type II (false negative) errors to enable utilization of F-Measure binary 

classification theory for distinguishing “significant” from “non-significant” degrees of enrichment. 

Results: The results show the preferability and feasibility of random resampling assessment of FDR 

over the analytical methods with which we compare it. They also show that the reasonableness of any 

arbitrary threshold depends strongly on the structure of the dataset being tested, suggesting that the 

less arbitrary method of F-measure optimization to determine significance threshold is preferable. 

Conclusion: Therefore, we suggest using F-measure optimization instead of placing an arbitrary 

threshold to evaluate the significance of Gene Ontology Enrichment results, and using resampling to 

replace analytical methods 

Keywords: Gene Ontology; F-measure; False Discovery Rate; Microarray Data Analysis 

 

Background 

Gene Ontology (GO) enrichment analysis is a powerful tool to interpret the biological 

implications of selected groups of genes. The gene lists from experiments such as microarrays, are 

gathered into clusters associated with biological attributes, and defined as GO terms1. The GO terms 

are arranged in an acyclic tree structure from more specific to more general descriptions, including 

biological process (BP), cellular component (CC), and molecular function (MF). GO aspires to create 
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a formal naming system to define the biologically significant attributes of genes across all organisms. 

Each enriched GO term derived from a list of genes is evaluated by its significance level, i.e. the 

probability that the measured enrichment would be matched or exceeded by pure chance. 

Enrichment tools have been developed to process large gene lists to generate significantly 

enriched ontologies. Huang et.al (2009) summarizes the tools widely used for GO enrichment2 . 

Different tools emphasize different features. Gorilla3, DAVID4, g:profiler5 are web interfaces that 

integrate functional annotations including GO annotations, disease and pathway databases etc. 

Blast2GO6 extends annotation of gene list to non-model organisms by sequence similarity. GO-Miner7, 

Babelomics8, FatiGO9, GSEA10,11, and ErmineJ12 apply resampling or permutation algorithms on 

random sets to evaluate the number of false positives in computed gene ontologies associated with test 

sets. DAVID 4 and Babelomics8 introduced level-specific enrichment analysis; that is, not including 

both parents and children terms. TopGO contains options, “eliminate” and “parent-child”, which 

eliminate or reduce the weight of genes in the enriched children terms when calculating parent term 

enrichment13. TopGO14  and GOstats15  provide R-scripted tools for ease of further implementation.  

Cytoscape plugin in BinGO 16 is associated with output tree graphs.  

To calculate raw p-values for GO enrichment without multiple hypothesis correction, methods 

used include exact or asymptotic (i.e. based on the hypergeometric distribution or on Pearson's 

distribution), one- or two-sided tests17. Rivals et. al. discussed the relative merits of these methods17.   

Generally, inference of the statistical significance of observed enrichment of categories in gene 

ontology databases can’t be assumed to be parametric, because there is no a priori reason to postulate 

normal distributions within gene ontology terms.  Randomization methods are powerful tools for 

testing nonparametric hypotheses18.  However, heuristic methods for testing nonparametric hypotheses 

have long been widely used due to lack of adequate computational resources for randomization tests. 

In gene ontology enrichment, a widely-used heuristic method is that of Benjamini and Hochberg19.  In 

their original paper, Benjamini and Hochberg tested their method against a more computationally 

intensive resampling procedure for selected input data and found no significant difference, Thus the 

more computationally efficient Benjamini-Hochberg method was justified. 

Benjamini-Hochberg has been widely applied in enrichment tools such as BinGO16, DAVID4, 

GOEAST20, Gorilla3, and Babelomics8, to name a few. The similar Benjamini-Yekutieli method is 

included in the GOEAST package which enables to control the FDR even with negatively correlated 

statistics20 21. A recent approach published by Bogomolov, et.al. (2017) deals with multiple hypothesis 
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correction and error control for enrichment of mutually dependent categories in a tree structure using 

a hierarchical Benjamini-Hochberg-like correction22. Gossip provides another heuristic estimation of 

false positives that compares well with resampling in the situations tested23. 

A randomized permutation method for assessing false positives is embedded in the protocol of 

Gene Set Enrichment Analysis (GSEA)10.  Kim and Volsky24 compared a parametric method (PAGE) 

to GSEA and found that PAGE produced significantly lower p-values (and therefore higher putative 

significance) for the same hypotheses.  They suggest that PAGE might be more sensitive because 

GSEA uses ranks of expression values rather than measured values themselves.  However, they do not 

demonstrate that the hypothesis of normal distributions in gene ontology databases that underlies 

PAGE is generally true. 

Noreen25 considered the potential of using more widely available computer power to do exact 

testing for the validity of hypotheses, in order to be free of any assumptions about the sampling 

distributions of the test statistics, for example the assumption of normality.  The essence of the more 

exact methods is the generation of a null hypothesis by the creation and analysis of sets of randomly 

selected entities (null sets) that are of the same type as the test set. Then the extent to which the null 

hypothesis is rejected emerges from comparing the results of conducting the same analysis on the null 

sets and the test set.  As exemplified by the over one thousand citations of this work by Noreen, these 

methods have been widely adopted in many areas in which complex datasets must be mined for 

significant patterns, as for example in financial markets.     

In the present paper we utilize a straightforward random resampling method for creation of null 

sets and compare resultant assessments for estimating false positives with commonly used analytical 

methods as applied to gene ontology enrichment analysis.  We also evaluate the computational cost of 

this method relative to analytical methods. 

In applying all the cited methods and tools, it is common to apply a threshold boundary between 

"significant enrichment" and "insignificance".  Such assignment to one of two classes is an example 

of a binary classification problem. Often such classifications are made utilizing an optimum F-

measure26. Rhee, et.al. (2008) have suggested application of F-measure optimization to the issue of 

gene ontology enrichment analysis27. In the present work, we present an approach to gene enrichment 

analysis based on F-measure optimization, which considers both precision and recall and provides a 

flexible reasonable threshold for data sets depending on user choice as to the relative importance of 
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precision and recall. We also compare a resampling method to the Benjamini-Hochberg method for 

estimation of FDR and use with F-measure optimization.   

We also consider the argument made by Powers 26 that the F-measure is subject to biases, and 

that instead of precision and recall (the constituents of the F-measure) the constructs of markedness 

and informedness should be considered.  Whereas precision and recall are entirely based on the ability 

to identify positive results, informedness and markedness give equal weight to identification of 

negative results.   We note that the Matthews Correlation Coefficient (MCC), another well-vetted 

measure of significance28, is the geometric mean of the markedness and informedness. 

Our results in this paper will suggest that resampling is preferable to analytical methods to 

estimate FDR, since the compute costs are modest by today’s standards and that even well-accepted 

and widely used analytical methods may have significant error.  Our results also suggest that F-measure 

or MCC optimization is preferable to an arbitrary threshold when classifying results as “significant” 

or “insignificant”.  For the particular analyses in this paper, we found no significant difference in 

utilizing F-measure vs. MCC. in assessing significance of results in computing enrichment in gene 

ontology analysis. 

Methods 

Enrichment Tool 

For results reported in this study (described below), the TopGO14  package is implemented to 

perform GO enrichment analysis, using the “classic” option.  In this option, the hypergeometric test is 

applied to the input gene list to calculate an uncorrected p-value.  

 

 

 

FDR Calculation 

The empirical resampling and Benjamini-Hochberg (BH) methods are used to estimate the 

FDR. The p-value adjustment using Benjamini-Hochberg is carried out by a function implemented in 

the R library. http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html  
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The resampling method is based on the definition of p-value as the probability that an observed 

level of enrichment might arise purely by chance. To evaluate this probability, we generate several null 

sets, which are the same size as the test set. The genes in the null sets are randomly sampled from the 

background/reference list. GO enrichment analysis was carried out on both test set and null set. The 

average number of enriched results in the null sets would be the false positives. In all the results shown 

in this paper, 100 null sets were used to compute the average, unless otherwise indicated.  In the 

pipeline, available for download in Supplementary material, the number of null sets is an adjustable 

parameter.  The ratio of false positives to predicted positives is the FDR. 

 

F-measure Optimization and the Matthews correlation coefficient.  

To evaluate F-measure and MCC, we started with evaluating true/false positive/negatives and 

the metrices derived from the true/false positive/negatives. The number of "predicted positive" is the 

number of GO terms found at a threshold. For an analytical method such as BH, the "false positive" 

would be (predicted positive) multiply by FDR, which is estimated by the corrected p-value. For 

resampling, the "false positive" would be the average number of GO terms found by null sets. The 

"true positive" is calculated by: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)  − (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

Then, we calculate the precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

 

 

Recall is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑒𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

“Real Positive” is defined by 
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𝑅𝑒𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

In the absence of the ability to calculate “False Negatives” directly, we estimate the number of 

real positives as the maximum true positive achieved across the range of possible p-values.  This 

procedure is shown graphically in Figure 1 for the BH method of computing false positives, using as 

an example a gene list to be described in detail later in the paper.  In this figure we plot predicted 

positives, false positives (False Discovery Rate x predicted positives), and true positives (predicted 

positives – false positives) vs. uncorrected p-value for the entire range of p-values from 0 to 1. At very 

lenient p-values the FDR approaches 1, resulting in the true positives approaching 0. It is difficult to 

evaluate false negatives and thus assign a number for “real positives”, since a false negative is an object 

that escaped observation, and thus can’t be counted directly.  Yet such estimation is essential to 

applying F-measure.  In our case, if we follow the trajectory of the true positives in Figure 2.1 as the 

threshold is relaxed, we see that at very stringent p-values all positives are true positives.  As the 

threshold is relaxed further, more false positives are generated, so the predicted positive and true 

positive curves start to diverge.  At p = 0.13 (a far higher value than would ordinarily be used as a 

cutoff) the true positives reach a maximum, and the number of true positives starts to decline as p is 

further relaxed.  We utilize this maximum value as the maximum number of GO categories that can be 

possibly regarded as enriched in the data set; i.e., the number of real positives. 

Based on precision and recall at each raw p-value cut-off, we can obtain a table and curve of 

F-measure vs uncorrected p-value. The F1-measure is an equally weighted value of precision and recall. 

A generalized F-measure introducing the parameter  can be chosen based on the research question, 

whether minimization of type I (false positive) or type II (false negative) error, or balance between the 

two, is preferred, according to the equation: 

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 1 

The larger the magnitude of  the more the value of F is weighted towards recall; the smaller 

the value of  the more the value of F is weighted towards precision.  Optimizing F-measure provides 

us a threshold which emphasize precision (<1) or recall (>1), or balance of both (=1).   Note that 

precision and recall are extreme values of F-measure; that is, Precision=F0 and Recall=F∞. 

To compare the different thresholds, we also calculated for each of them the Matthews 

correlation coefficient (MCC) 28. Originally developed to score different methods of predicting 
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secondary structure prediction in proteins, the MCC has become widely used for assessing a wide 

variety of approaches to binary classification, as exemplified by the 2704 citations (at this writing) of 

the original paper. Perhaps even more telling, the citation rate for the seminal MCC paper has been 

increasing as the method is being applied in a greater variety of contexts, reaching 280 citations in 

2017 alone.  

In the expression below for the MCC, the True Negative (TN) is estimated using total number 

of GO categories in the database minus predicted positive and false negative. 

𝑀𝐶𝐶 =
𝑇𝑃∙𝐹𝑁−𝐹𝑃∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 Equation 2 

The MCC can be expressed in an equivalent expression using definition of informedness and 

markedness, which includes precision and recall, as well as the inversed precision and recall evaluating 

the proportion of true negatives: 

𝑖𝑛𝑣𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
            Equation 3 

𝑖𝑛𝑣𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                  Equation 4 

𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑖𝑛𝑣𝑅𝑒𝑐𝑎𝑙𝑙 − 1            Equation 5 

𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑖𝑛𝑣𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 1    Equation 6 

Combining Equations 2-6 and some algebra we find: 

𝑀𝐶𝐶 = √𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 ∙ 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 Equation 7 

 

In an analogous fashion to the manner in which the F-measure may be generalized to weight 

either precision or recall more strongly by a variable , so also the MCC can be generalized to more 

strongly weight either markedness or informedness by the expression 

𝑀𝐶𝐶 = √𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 × 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠𝛽
1+𝛽

       Equation 8 

Data Sets 

• Environmental Stress Response (ESR) 

First dataset is the Yeast Environmental Stress Response (ESR) data 29, a robust data set for a 

model organism. The ESR set is list of genes commonly differentially expressed in response to 
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environmental stresses such as heat shock, nutrient depletion, chemical stress, etc. Approximately 300 

genes are up-regulated, and 600 genes are down-regulated in the ESR set.  We expect this set to be 

“well-behaved” (give reasonable results with standard methods of analysis), since the data come from 

a very well annotated model organism subject to a widely studied experimental intervention.   

• Alarm Pheromone (AP) 

The second data set is comprised of human orthologs to the honey bee Alarm Pheromone set30. 

The Alarm Pheromone set is a list of genes differentially expressed in honey bee brain in response to 

the chemical alarm pheromone, which is a component of the language by which honey bees 

communicate with each other. Previous studies have shown that the Alarm Pheromone set is enriched 

in placental mammal orthologs, compared to other metazoans including non-social insect orthologs31. 

The Alarm Pheromone set is much smaller than the ESR set, with 91 up-regulated genes and 81 down-

regulated genes. We expect the AP set to be not so “well-behaved” compared to the ESR set, as we are 

using model organism orthologs (human) to a non-model organism (honey bee) and the organisms 

diverged about 600 million years ago. 

• Random Test Sets 

To generate a baseline of the analysis for each data set using different FDR calculation methods, 

we have applied the pipeline to analyze randomly-generated sets as “test” set inputs, where FDR should 

equal to 1 for all uncorrected p-values.  

The BH FDR curves are calculated in the following way: The R program p.adjust is applied to 

generate a list of analytically calculated FDR (BH) corresponding to uncorrected p-values for each 

“test” sets. Then the lists of FDRs are merged and sorted by uncorrected p-values. The FDRs are 

smoothed by a “sliding window” method: at each uncorrected p-value point, the new FDR is the 

average value of 11 FDRs centered by the uncorrected p-value point.  

The Resampling FDR curves are calculated in the following way: The output uncorrected p-

values are binned in steps of 1E-4. The counts below the upper bound of each p-value bin for the “test” 

set enrichment categories are the “Predicted positives”, and average counts for the null set enrichment 

categories are the “False Positives”. The process is repeated for the multiple “test” sets, and 

corresponding to each test set, 100 null sets were generated for “False Positive” calculation. Then the 

number of total and false positives are averaged, respectively. The FDR would be the quotient of the 

averaged total and false positives. Then, all the FDRs are plotted against the uncorrected p-values. 
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Results 

In this section, we present the results of applying our methods to the two previously published 

sets of data introduced in the Methods section, the ESR set and the human orthologs of the Alarm 

Pheromone set. For both above data sets, we show the results from analyzing the genes using the 

biological process (BP) category of the gene ontology.  These results will show 1) areas of agreement 

and difference between Benjamini-Hochberg and random resampling in evaluation of FDR, 2) how 

the assessment of significance of enrichment varies according to the particular database that is being 

probed, and 3) how the assessment of significance of enrichment varies according to the weight 

assigned to precision vs. recall.  

ESR Set (Environmental Stress Response, yeast)  

• Benjamini-Hochberg (BH) 

Figure 2.2 shows the results of F-measure optimization on the ESR data based on FDR 

calculated by Benjamini-Hochberg (BH) method.  As expected by their definitions, precision (F0) 

decreases with increasing p-value while recall increases with increasing p-value.  F0.5 (precision-

emphasized), F1 (precision and recall equally weighted) and F2 (recall-emphasized) all show relative 

maxima, providing a rational basis for assigning a threshold for significance. The horizontal scale is 

extended far enough to visualize the determination of the number of real positives.  In the case of the 

up-regulated gene set, maximum F1 occurs at an uncorrected p-value close to 0.05.  In the case of the 

down-regulated gene set however, it appears that a much more stringent cutoff would be appropriate.   

• Resampling 

Figure 2.3 shows the results of F-measure optimization on the ESR data using resampling to 

calculate FDR. The false positives are calculated by average number of GO categories enriched in 

random sets. For the up-regulated set, all the F-measures optimize at much lower uncorrected p-values 

than do the F-measures calculated by the BH method. For the down-regulated set, resampling-

calculated F0.5 is optimized at a lower uncorrected p-value than BH method while F1 and F2 are 

optimized at slightly higher uncorrected p-value. 

Comparing the results in Figure 2.2 and Figure 2.3 show that the optimum cutoff (as measured 

by maximum F1) varies widely, depending on the gene set to be tested and the method for assessing 

FDR.  Using BH the optimum cutoff is .0476 for upregulated ESR and .012 for downregulated ESR.  

Using resampling, the optimum cutoff is .0096 for upregulated ESR and .0126 for downregulated ESR.  
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Also, as expected, the optimum cutoff is relaxed when recall is emphasized (F2 instead of F1)   and 

made more stringent when precision is emphasized (F0.5 instead of F1).   

 

Alarm Pheromone Set (human orthologs)  

• Benjamini-Hochberg (BH) 

Figure 2.4 shows exactly the corresponding results as Figure 2.2, this time on the human 

orthologs to the honey bee alarm pheromone set.  F-measures are maximized at much higher thresholds 

than for the ESR set.  The difference in optimal F-measure is largely due to the different shapes of the 

recall curves.  For the ESR set, precision drops significantly more rapidly with increasing uncorrected 

p-value than does the AP set.  Therefore, a higher uncorrected p-value can be used for the latter set 

with essentially the same degree of confidence.  

• Resampling 

Figure 2.5 shows the number of GO categories and F-measures for the alarm pheromone set 

human orthologs using resampling method. The resampling method have found more false positives 

than BH, and therefore the precision is much lower than the precision calculated from BH, and the F-

measures are optimized at lower uncorrected p-values than the F-measures calculated from BH. 

From the above Figures 2.2-2.5, we can note the stepped structure in the number of enriched 

GO categories. The stepped structure lies in the fact that the number of genes associated with any GO 

category, in the test set or reference set, must be an integer with limited number of choices. Therefore, 

the uncorrected p-values calculated would be in a discrete set instead of a continuum. Consequently, 

the number of positives as a function of p-values increases in a stepped way. As a result, the F-measures 

derived from the number of GO categories have spikes. But as our graphs have demonstrated, the 

optimal F-measures reflect the different weights on precision and recall despite the spikes. 

Comparing the results in Figures 2.4 and 2.5 shows that, for the AP gene sets as for the ESR 

gene sets, the optimum cutoff threshold is different for the upregulated and downregulated gene sets 

and also is different when BH is used to determine the FDR as compared to resampling. 

 

Comparison of F-Measure with MCC for Optimization of Threshold Choice 
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As indicated in the section on methods, a widely used alternative to the F-measure for 

optimization is the Matthews Correlation Coefficient (MCC) which, unlike the F-measure, gives equal 

weight to negative as well as positive identifications.  Figure 2.6 shows MCC optimization for exactly 

the same data set (ESR) and False Discovery Rate determination (Resampling) as in Figure 2.5. The 

most important lesson from this Figure is that the uncorrected p-value that maximizes MCC1 is the 

same as the uncorrected p-value that maximizes F1.  Inspection of the formulas reveals the reason.  The 

divergence between MCC and F-measure occurs only when the false negatives are a significant fraction 

of the total negatives.  Since there are tens of thousands of terms in the gene ontology database this 

condition does not pertain to our situation, so optimization of the F-measure is an adequate strategy.  

However, we agree with Powers 26 that optimization of the MCC is the more universally correct 

strategy.  

 

 

Comparison of FDR (False Positive) Calculation by Benjamini-Hochberg (BH) and 

Resampling 

In the previous section, we have demonstrated how to use F-measure optimization to obtain a 

flexible threshold based on whether precision or recall is more heavily weighted by the researcher.   In 

that section the FDR is calculated but not shown explicitly.  The present section explicitly compares 

the FDR as calculated by the BH method and by random resampling. In each case the random 

resampling FDR is computed based on the average of 50 randomly sampled null sets of the same size 

as the test set.  Figure 2.7 shows that for the ESR set, the BH method and resampling estimate similar 

FDR at low p-value. As the threshold increases, the BH method estimates lower false discovery rate, 

and therefore higher precision, than the resampling method at the same uncorrected p-value. By 

contrast, for the Alarm Pheromone set, the BH method estimates lower FDR than resampling.  

To further evaluate the methods, we carried out multiple runs using random (null) sets as test 

sets. In this case, the FDR should in principle be 1, for any uncorrected p-value. The results of this test 

are shown in Figure 8a, where for each segment of p-values (bin size = 0.0001) we show the mean 

plus/minus the standard deviation. The resampling method passes the test on the average, but the results 

are noisy.  The BH method systematically underestimates FDR. Figure 7b shows that the noise in the 
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resampling method results in Figure 7a are largely due to the variation in the random null sets, and that 

the noise level in using random resampling for real data is acceptably low. 

Statistical Summary of Results from Different Threshold Criteria. 

Table 2.1 shows the statistical summary of using all different criteria for the distinction between 

significant and non-significant enrichment.  Notable features of this table include: 1) Variation of the 

threshold within the range explored in this study made relatively little statistical difference for the ESR 

set.  Over the entire range of thresholds, both the precision and the recall for the ESR set are good, and 

the number of terms returned does not change very much. 2) Variation of the threshold within the range 

explored in this study makes a very large difference in the results of the AP set.  For the most stringent 

choice of threshold, the precision is high, but the recall is quite low.   Relaxing the threshold improves 

the recall, but at a cost to the precision, so there is a distinct tradeoff between precision and recall, and 

3) We discovered that optimizing F1 is exactly equivalent to optimizing the Matthews correlation 

coefficient.  F.5 is optimized at a lower uncorrected p-value than F1 while F2 is optimized at a higher 

p-value, and the same pattern is seen for MCC. 

Identity of Enriched Terms Using Different Threshold Criteria. 

• Higher order relatively general terms. 

The enriched GO terms are categorized by their parent terms, 1st order parent being direct 

children of the root term “Biological Process” (GO:0008150), 2nd order parent being direct children of 

the 1st order parent terms. Each enriched GO term is traced back to the root by the shortest route.  

Tables 2.2 through 2.5 below provide an outline of the complete gene ontology results by showing the 

high order terms that are either themselves enriched according to the described criteria or have child 

terms enriched, or both.  In each case the results from three different thresholds are shown, BH 

FDR<.05, optimum F.5, and optimum F1.  The most striking pattern is that for the ESR sets (Tables 2.2 

and 2.3), modifying the threshold within the parameters of this paper did not change the identity of the 

putatively enriched higher order terms very much.  However, for the AP sets (Tables 2.4 and 2.5), 

relaxing the threshold caused a substantial increase in the number of high order terms judged to be 

putatively significant.  However, from Table 1 is it seen that the precision (confidence) of the additional 

terms for the AP sets is substantially lower than for the terms returned using the most stringent 

threshold.  Thus, for the AP set we clearly see that we can’t simultaneously have high precision and 

high recall.  We must trade one for the other. 
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• Relatively Specific Terms. 

Specific, or “child” terms returned in these calculations are too numerous to delineate 

completely in the body of the paper. They are instead provided in the spreadsheet 

“AllGOTermsInTree_Final (supplementary material 2.1)”  Separate tabs delineate the returns from 

ESR upregulated, ESR downregulated, AP upregulated, and AP downregulated.  Each entry in the 

spread sheet is color coded with the code given in the tab labeled “color coding”.  Entries that are 

shaded are either primary or secondary (more general) classes, which will also be shown in Table 2.1.  

Entries colored in black appear at "standard" threshold: BH FDR<0.05.  Entries colored in blue emerge 

at the threshold determined by optimal F0.5. For AP Up, the standard threshold is the most stringent 

while for all other sets, the optimal F0.5 is the most stringent. Entries colored in red first emerge at the 

least-stringent threshold for that data set, which corresponding to optimal F1. The format of the 

spreadsheet for each of the data sets is as follows: Column A is the identifying number of the GO class 

that is returned as significant, column B is the name of that class, and column C is the raw enrichment 

p-value for that class. Column D is non-zero only for the rows belonging to primary or secondary GO 

classes (which are shown explicitly in Tables 2.2-2.5 for the four data sets). The numerical value in 

column D represent the smallest uncorrected p-value of all the classes under the primary or secondary 

class shown in that row. The spread sheet is organized to be sectioned off according to primary or 

secondary classes. To illustrate the sectioning, under the “AP up” is the primary class “cellular process” 

and immediately under that the secondary class “protein folding”.  This is followed by more specific 

classes under “protein folding” such as “chaperone-mediated protein folding” and others. The columns 

E and farther to the right are GO numbers representing the lineage of the particular term in that row 

starting with the primary class and continuing to the particular term in that row. 

Because the trade-offs with varying threshold are most clear with the AP sets, we select those 

now for discussion. One biologically interesting feature emerging from varying the threshold consists 

of the more specific GO classes emerging from general classes already identified with a more stringent 

threshold.  For example, in the “AP up” set “protein folding” was identified as a secondary class of 

interest by virtue of a very strong enrichment score. On relaxing the threshold more specific “child” 

classes emerged, such as “chaperone cofactor-dependent protein folding”, “endoplasmic protein 

folding”, and others.  While these more specific classes are identified with less confidence than the 

overall “protein folding” class they are subsumed into, they do provide the most likely subclasses 

within protein folding to be biologically meaningful.  Similarly, under the secondary class of “signal 

transduction” more specific subclasses such as “ER-nucleus signaling pathway”, “stress-activated 
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MAPK cascade” and others emerge with modest threshold relaxation.   This pattern is seen throughout 

the spreadsheet.  Relaxing the threshold provides not only improved recall, but improved specificity, 

which will help in biological interpretation of GO enrichment results. 

• Summary 

In general, when thresholds are varied, a tradeoff can plainly be seen between precision and 

recall.  When looking at the specific GO classes that are returned at different choices of threshold a 

second tradeoff emerges, between generality and specificity. As threshold is relaxed some more 

general terms are revealed, but the greater effect is that more specific terms are revealed within general 

terms that were suggested at more stringent thresholds.  These specific terms can help to provide a 

more focused interpretation of the biological results.   

Conclusions 

In this work, we have addressed two issues with the commonly used methods in the GO 

enrichment analysis: the relationship between resampling vs. Benjamini-Hochberg theory for 

estimating false discovery rate, and the arbitrariness of the threshold for significance. 

To consider resampling vs. Benjamini-Hochberg we made five independent comparisons.  Four 

consisted of upregulated and downregulated genes separately for two different animal experiments.  

The fifth was an array of random gene lists (null sets).  For the yeast ESR sets the two methods gave 

almost the same results for uncorrected p-value<.04 but diverged substantially for more relaxed p-

values, with the BH underestimating the FDR.  For the honeybee AP set the BH method underestimated 

the FDR significantly at all uncorrected p-values.  For the random or null sets, we know that the correct 

FDR is 1, because there is no significance to the results. Yet for the null sets the BH method produced 

FDR<1 by a large margin for the full range of uncorrected p-values.  By contrast the resampling 

method, although noisy, does not systematically deviate from 1 in its prediction of FDR for the null 

sets. 

It is of interest to consider why the BH method, while very useful and successful in some cases, 

sometimes fails.  It is understood that the method will always work when the true inferences are 

independent.  Strictly speaking, this will not be true of Gene Ontology data since many genes belong 

in multiple Gene Ontology categories.  However, Benjamini and Yekutieli21 showed that the method 

was still valid for dependent hypotheses provided that the related hypotheses that failed the null test 

showed positive regression of likelihoods. Consideration of the tree-like structure of Gene Ontology 
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data32 shows that this is true to a great extent. The branches of the tree-like structure clearly show 

positive regression within each branch; if a child category is enriched a parent is more likely to be 

enriched, and vice versa. Thus, as long as the enriched classes fall along a few well-delineated branches 

of the Gene Ontology tree structure, BH will work well. This appears to be largely the case for the 

yeast ESR set at relatively stringent p-values, in which the experimental intervention activated well-

defined and annotated pathways. Thus, for relatively stringent cutoffs the BH FDR works well for this 

data set. However, some genes are members of categories in multiple branches, compromising the 

positive regression criterion.  In the ESR set at relatively relaxed thresholds, and for the AP set at all 

thresholds, many Gene Ontology categories in different branches but with overlapping gene 

membership are represented in the returned categories, so that both independence and the positive 

regression criterion are violated. These considerations tell us why BH fails dramatically for the 

completely null sets. Neither independence nor positive regression are satisfied, except sometimes 

completely accidentally.  

For the issue of the arbitrariness of the threshold, we introduced optimization of F-measures so 

that both type I and II errors are considered. Unlike arbitrarily applied threshold of BH FDR<0.05 or 

uncorrected p-value<0.01 for any data set, the F-measure optimization approach provides a flexible 

threshold appropriate to the nature of the data set and the research question. If the data set is high in 

noise-to-signal ratio and the penalty for letting in false positive is high, we can choose to optimize F-

measures weighing more on precision. If the data set fails to show much enrichment by commonly-

applied methods, we can relax the threshold and extract the best information indicated by F-measure 

optimization.  

A concern is that, because of the nature of the problem, we were forced to use a heuristic (albeit 

reasonable) method to estimate the false negatives, essential for calculating recall.  We judge that this 

concern is more than offset by the advantage of enabling the replacement of an arbitrary threshold with 

F-measure optimization.   

We found that for the particular class of problems dealt with in this paper the F-measure is as 

appropriate an optimization criterion as the Matthews Correlation Coefficient. 

By examination of the specific GO categories that are returned by our analysis, we find that 

relaxing the threshold, we see revealed the most likely specific subcategories within the general 

categories that are revealed at the most stringent threshold.  Thus, varying the threshold not only 

reflects the tradeoff between precision and recall, but also between generality and specificity.  
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In the supplementary material we present the spreadsheet “AllGOTermsInTree_Final”, 

which shows all the specific GO terms returned in the work described in this paper.  Also, in the 

supplementary material, we present our automatic pipeline integrating TopGO with resampling and 

analyzing functions to carry out the whole process of resampling, enrichment analysis, F-measure 

calculation, and representing results in tables and figures. The pipeline also includes a GOstats15 

module for easy analysis of under-represented terms and a STRINGdb33  module for KEGG pathway 

terms. As demonstrated, the pipeline can also calculate analytical FDR including, but not limited to, 

the BH method.  

In summary, we suggest replacing a fixed p-value for assigning a threshold in enrichment 

calculations with an optimal F-measure, which incorporates the well-established and well-defined 

concepts of precision and recall.  
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Tables 

 

Data Set Threshold 
Uncorrected 

p-value 

# enriched 

categories 
Precision Recall MCC 

ESR Up 
BH 

FDR<0.05 
0.00459 118 0.936 0.798 0.864 

 RS opt F0.5 0.0029 110 0.964 0.765 0.858 

 RS opt F1 0.0096 146 0.890 0.939 0.914 

 Max MCC 0.0096 146 0.890 0.939 0.914 

ESR Down 
BH 

FDR<0.05 
0.00689 211 0.948 0.883 0.914 

 RS opt F0.5 0.0016 185 0.989 0.808 0.894 

 RS opt F1 0.0126 251 0.902 1 0.948 

 Max MCC 0.0126 251 0.902 1 0.948 

AP Up 
BH 

FDR<0.05 
0.00116 57 0.807 0.0974 0.290 

 RS opt F0.5 0.012 246 0.600 0.312 0.429 

 RS opt F1 0.0636 699 0.416 0.615 0.500 

 Max MCC 0.0636 699 0.416 0.615 0.500 

AP Down 
BH 

FDR<0.05 
0.00138 58 0.759 0.353 0.517 

 RS opt F0.5 4.00E-04 44 0.909 0.321 0.540 

 RS opt F1 0.0073 146 0.534 0.626 0.577 

 Max MCC 0.0073 146 0.534 0.626 0.577 

Table 2.1. Precision, Recall, and Matthews Correlation Coefficients (MCC) at thresholds BH 

FDR<0.05, Resampling optimal F0.5, and Resampling optimal F1. For the four data sets examined, we 

have found that optimal F1 is the position that MCC reaches maximum.  This correspondence between 

optimum F1 and optimum MCC was unanticipated but emerged from independent calculation of both 

quantities. For the ESR set, the MCC is high for all thresholds. For AP set, MCC is relatively low, and the 

MCC for BH FDR<0.05 is the lowest. 
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GO ID Parent Term Minimum raw p-value of child terms 

GO:0008152 Metabolic Process (80,85,100) 3.40E-13 

GO:0050896 response to stimulus (22,23,26) 7.40E-13 

GO:0065007 biological regulation (4,5,7) 9.00E-05 

GO:0009987 cellular process (4,5,13) 0.00035 

**GO:0032502 developmental process (0,0,1) 0.00589 

Table 2.2. ESR, Up-regulated Set Each row corresponds to a 1st order Parent Terms of enriched 

GO categories of ESR set, Up regulated genes. The three numbers in parentheses reflect the total number 

of terms in the Parent family (Parent plus children).  We found no difference in the high order terms between 

BH FDR<.05 and F.5. However, the developmental process parent term (labeled with “**”) emerges when the 

threshold is increased to optimal resampling F1.  The groupings as defined by the parent terms do not change 

very much, but the number of more specific child terms increases moderately.  

 

GO ID Parent Term 
Minimum raw p-value of child 

terms 

GO:0008152 Metabolic Process (120,139,168) 1.00E-30 

GO:0009987 Cellular process (6,6,7) 1.00E-30 

GO:0071840 
Cellular component organization or 

biogenesis (31,32,36) 
1.00E-30 

GO:0051179 Localization (21,22,22) 5.20E-28 

GO:0065007 biological regulation (7,11,15) 3.20E-12 

*GO:0050896 response to stimulus (0,1,2) 0.00357 

Table 2.3. ESR, Down-regulated Set 1st order Parent Terms of enriched GO categories of ESR 

set, down regulated genes. For this data set the optimum F .5 was more stringent than the BH FDR <.05.  The 

term “response to stimulus” (labeled with “*” does not meet the optimum F .5 criterion but does for the other 

two criteria. The numbers in the parentheses refer to the numbers of enriched terms in each parent category, 

ordered from low to high. As with the up-regulated genes, relaxing the threshold did not change the parent 

terms much, but did increase the number of more specific child terms moderately.   
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GO ID Parent Term Minimal raw p-value of child terms 

GO:0009987 Cellular process (13,36,96) 1.10E-10 

GO:0050896 Response to stimulus (57,71,119) 1.40E-08 

GO:0065007 Biological regulation (28,113,288) 4.30E-05 

GO:0008152 Metabolic process (9,44,113) 5.00E-05 

GO:0032502 Developmental process (1,9,33) 0.00043 

GO:0071840 
cellular component organization or 

biogenesis (1,6,12) 
0.00102 

*GO:0051179 Localization (0,8,37) 0.00138 

*GO:0022414 reproductive process (0,2,7) 0.00192 

*GO:0002376 immune system process (0,2,8) 0.00504 

*GO:0032501 
multicellular organismal process 

(0,5,19) 
0.00509 

*GO:0040011 Locomotion (0,1,2) 0.00932 

**GO:0051704 multi-organism process (0,0,11) 0.02 

**GO:0008283 cell proliferation (0,0,2) 0.02962 

Table 2.4. 1st order Parent Terms of enriched GO categories of AP set, Up regulated genes. The 

terms with “*” appears when the threshold is increased from BH FDR<0.05 (uncorrected p-value<0.00116) to 

optimal resampling F0.5-measure (uncorrected p-value<0.012). Terms with “**” emerges when the threshold 

is increased to that for optimal resampling F1(uncorrected p-value<0.0096). The number in the brackets refers 

to the number of enriched terms within each parent category at each threshold, ordered from low to high . 

Unlike the ESR sets, for this data set relaxing the threshold caused significantly greater returns in both general 

terms and their children. 
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GO ID Description Minimal p-value of child terms 

GO:0008152 Metabolic Process (40,7,25) 3.20E-08 

GO:0009987 cellular process (3,4,13) 7.00E-06 

GO:0071840 
cellular component organization or 

biogenesis (1,0,5) 
7.90E-06 

*GO:0051179 Localization (0,3,16) 0.00052 

**GO:0065007 biological regulation (0,0,15) 0.00145 

**GO:0050896 response to stimulus (0,0,7) 0.00174 

**GO:0022414 reproductive process (0,0,1) 0.00441 

**GO:0051704 multi-organism process (0,0,1) 0.00441 

**GO:0032501 
multicellular organismal process 

(0,0,3) 
0.00441 

**GO:0032502 developmental process (0,0,1) 0.00534 

Table 2.5. 1st order Parent Terms of enriched GO categories of AP set, Down regulated genes. 

The terms with “*” disappears when the threshold is decreased from BH FDR<0.05 (uncorrected p-

value<0.00138) to optimal resampling F0.5-measure (uncorrected p-value<4.00E-4). Terms with “**” emerges 

when the threshold is increased at optimal resampling F1(uncorrected p-value<0.0073). The number in the 

brackets refers to the number of enriched terms at each threshold, low to high.  Unlike the ESR sets, for this 

set relaxing the threshold caused substantial increases in the putative enriched categories at both the general 

level and the more specific child level.  
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Figures 

 

Figure 2.1. Number of positives for the yeast environmental stress response (ESR) set over the 

full range of uncorrected p-values from 0 to 1. “Predicted positives” is the number of Biological Process 

GO categories returned as a function of the p-value threshold for significance.  “False Positives” is the number 

of predicted positives multiplied by the False Discovery Rate as calculated by the Benjamini -Hochberg 

formulation.  “True Positives” is “Predicted Positives” minus “False Positives”.  “Real Positives”, nec essary 

to estimate number of false negatives, is estimated as the largest number of true positives computed at any 

uncorrected p-value. 

  



 

 38 

 

Figure 2.2. Number of positives and F-measure values for ESR set, BH-estimated FDR. a) Shows 

the number of enriched biological process Gene Ontology categories as a function of uncorrected p-value, the 

Benjamini-Hochberg number of false discoveries, and the projected true positives, namely the difference 

between the predicted positives and the false positives, for the upregulated ESR gene set. This panel is from 

the same data set at Figure 1. The number pairs in parenthesis are respectively (uncorrected p-value 

maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of 

true positives at that p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), 

(uncorrected p-value maximizing true positives, number of true positives at that p-value) b) is the same as a) 

for the downregulated gene set. c) shows the F-measures computed from a) and d) the F-measures computed 

from b). Number of real positives, necessary to calculate recall (and therefore (F -measure)), is approximated 

by (predicted positives – false positives) max. The p-value at which the computed true positives are a maximum 

is 0.13 for upregulated gene list (a) and at 0.099 for downregulated gene list. (b) The pairs of numbers in 

parenthesis in a) and b) indicate the p-value and number of returned GO terms at significant markers, 

specifically at maximum F0.5 (emphasizing precision), F1 (balanced emphasis between precision and recall), 

F2 (emphasizing recall), and Recall where we obtain an estimation of relevant elements by maximizing true 

positive). 
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Figure 2.3. Number of positives and F-measure values for ESR set, Resampling-estimated FDR. 

a) Shows the number of enriched biological process Gene Ontology categories as a function of uncorrected p-

value, the average number of enriched Gene ontology categories from the random set as the false positi ves, 

and the projected true positives, namely the difference between the predicted positives and the false positives, 

for the up-regulated ESR gene set. The number pairs in parenthesis are respectively (uncorrected p-value 

maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of 

true positives at that p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), 

(uncorrected p-value maximizing true positives, number of true positives at that p-value) b) is the same as a) 

for the down-regulated gene set. c) shows the F-measures computed from a) and d) the F-measures computed 

from b). Number of real positives, necessary to calculate recall (and therefore (F -measure)), is approximated 

by (predicted positives – false positives) max. The p-value at which the computed true positives are a 

maximum is 0.021 for upregulated gene list (a) and 0.0179 for downregulated gene list. (b) The pairs of 

numbers in parenthesis in a) and b) indicate the p-value and number of returned GO terms at significant 

markers, specifically at maximum F0.5 (emphasizing precision), F1 (balanced emphasis between precision and 

recall), F2 (emphasizing recall), and Recall (where we obtain an estimation of relevant elements by 

maximizing true positive).  
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Figure 2.4. Number of positives and F-measure values for Alarm Pheromone set, BH-estimated 

FDR. a) shows the number of enriched biological process Gene Ontology categories as a function of 

uncorrected p-value, the Benjamini-Hochberg number of false discoveries, and the projected true positives, 

namely the difference between the predicted positives and the false positives, for the upregulated alarm 

pheromone human orthologs gene set. The number pairs in parenthesis are respectively (uncorrected p-value 

maximizing F0.5, number of true positives at that p-value), (uncorrected p-value maximizing F1, number of 

true positives at that p-value), (uncorrected p-value maximizing F2, number of true positives at that p-value), 

(uncorrected p-value maximizing true positives, number of true positives at that p-value) b) is the same as a) 

for the downregulated gene set. c) shows the F-measures computed from a) and d) the F-measures computed 

from b). Number of real positives, necessary to calculate recall (and therefore (F-measure)), is approximated 

by (predicted positives – false positives) max. The p-value at which the computed true positives are a 

maximum is 0.391 for upregulated gene list (a) and at 0.292 for downregulat ed gene list. (b) The pairs of 

numbers in parenthesis in a) and b) indicate the p-value and number of returned GO terms at significant 

markers, specifically at maximum F0.5 (emphasizing precision), F1 (balanced emphasis between precision and 

recall), F2 (emphasizing recall) and Recall (where we obtain an estimation of relevant elements by maximizing 

true positive). 
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Figure 2.5. Number of Positives and F-measure values for AP set, Resampling-estimated FDR. 

The figure shows the number of enriched biological process Gene Ontology categories as a function of 

uncorrected p-value, the average number of enriched Gene ontology categories from the random set as the 

false positives, and the projected true positives, namely the difference between the predicted positives and the 

false positives, for the up-regulated alarm pheromone human orthologs gene set. b) is the same as a) for the 

down-regulated gene set. c) shows the F-measures computed from a) and d) the F-measures computed from 

b).   Number of real positives, necessary to calculate recall (and therefore (F-measure)), is approximated by 

(predicted positives – false positives) max. The p-value at which the computed true positives are a maximum is 

0.596 for upregulated gene list (a) and at 0.065 for downregulated gene list. (b) The pairs of numbers in 

parenthesis in a) and b) indicate the p-value and number of returned GO terms at significant markers, 

specifically at maximum F0,5 (emphasizing precision), F1 (balanced emphasis between precision and recall), 

F2 (emphasizing recall), and Recall (where we obtain an estimation of relevant elements by maximizing true 

positive). 
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Figure 2.6. Number of Positives and MCC-measure values for AP set, Resampling-estimated 

FDR. This figure is the same as Figure 5 except that the optimization to determine significance-insignificance 

threshold is Matthews Correlation Coefficient (MCC) rather than F-measure. Note that the uncorrected p-

value threshold for optimum MCC1 is the same as for F1. Examination of the expressions for the two quantities 

shows that the reason for the convergence is that in this case the number of false negatives is very small 

compared to the number of total and true negatives, so the fractional variation in true negatives is very small.  

This is true for all the data sets. 
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Figure 2.7. False discovery rate comparison. False discovery rate estimated by Benjamini-

Hochberg (solid curve) and Resampling (dashed curve) for the ESR set and Alarm Pheromone set. Figure 7 

compares the number of false discovery rate calculated by Benjamini-Hochberg (solid) and Resampling 

(dashed) in each set: a) up-regulated ESR, b) down-regulated ESR, c) up-regulated Alarm Pheromone set, and 

d) down-regulated Alarm Pheromone set. Generally, resampling has found higher false discovery rate than 

Benjamini-Hochberg. At low p-values, the BH and resampling methods get similar estimation of false 

discovery rate for the ESR set.  
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Figure 2.8. Comparison of different FDR calculation method on accuracy and convergence. a) 

Comparison of BH and Resampling on random “test” sets.  At each p-value (p-values binned at intervals 

of .0001), the mean and standard deviation are calculated and plotted as shown. The random test sets consist 

of 281 yeast genes, against the background of the entire yeast genome. For each of the methods 50 test sets 

were used and the mean plus/minus standard deviation plotted as shown. Resampling hits the mark on the 

average but with substantial noise, while BH systematically underestimates FDR. b) Evaluation of resampling 

convergence on a real data set, ESR upregulated considered in this paper.  This set is run against five different 

ensembles of null sets, each ensemble containing 100 null sets.  The mean and standard deviation are plotted 

and compared to the results from the random test sets.  It is seen that the noise of the resampling method on a 

real data set is acceptable.  
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Additional Files 

Additional file 2.1--- AllGOTermsInTree_Final.xlsx 

This is the spreadsheet showing all enriched terms at thresholds: BH FDR<0.05, optimal F0.5, and optimal 

F1. The terms are arranged by the primary and second-order parent terms. 

 

Additional file 2.2 --- pipelinemanual .docx  

“A TopGO- and GOstats-based automated pipeline for GO enrichment analysis using F-measure 

optimization based on resampling and traditional calculation”  

This is a word document giving detailed description of how to run the pipeline for resampling or 

analytical FDR calculation and obtain thresholds maximizing F-measures  

 

Additional file 2.3 --- pipeline.gz 

This file contains source codes of the pipeline and the ESR and AP data sets for demo runs. 
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Abstract 

Lithium has many widely varying biochemical and phenomenological effects, suggesting 

that a systems biology approach is required to understand its action. Multiple lines of evidence 

point to lithium intake and consequent blood levels as important determinants of incidence of 

neurodegenerative disease, showing that understanding lithium action is of high importance. In 

this paper we undertake first steps towards a systems approach by analyzing mutual enrichment 

between the interactomes of lithium-sensitive enzymes and the pathways associated with affective 

and neurodegenerative disorders. This work integrates information from two important databases, 

STRING and KEGG pathways. We find that for the majority of neurodegenerative disorders the 

mutual enrichment is many times greater than chance, reinforcing previous lines of evidence that 

lithium is an important influence on incidence of neurodegeneration. Our work suggests rational 

prioritization for which disorders are likely to be most sensitive to lithium and identifies genes that 

are likely to be useful targets for therapy adjunct to lithium. 

 

Keywords: Lithium, systems biology, affective disorders, neurodegenerative disorders, biochemical 

pathways, biochemical networks 

 

Introduction 

Lithium is typically the first line therapy for bipolar disorder, including associated 

depression as well as mania.1  A comprehensive review of the literature confirms that lithium is 

also effective against unipolar depression with unique anti-suicidal effectiveness, and may also be 

useful against cancer and neurodegenerative disease.2   



 

 47 

Significant insights have been gained into the biochemical bases of lithium’s action.  The 

lithium-sensitive enzyme glycogen synthase kinase 3-beta (GSK3B)3 inhibits signaling induced 

by Brain-Derived Neurotrophic Factor (BDNF).4  Thus lithium would be expected to enhance 

activity of BDNF.  BDNF may be a key bridge between affective and neurodegenerative disorders, 

since levels of this enzyme have been implicated in depression5, bipolar disorder 6 7, and dementia8.  

Indeed, in animal experiments, lithium was shown to induce brain-derived BDNF. 9 In addition, 

BDNF has been shown to play an important role in survival of adult and developing central neurons 

both in culture and in vivo.10 11 12 13 14  The role of lithium in increasing activity of BDNF plus the 

role of BDNF in survival of neurons support the hypothesis that lithium might have a role to play 

in the treatment of neurodegenerative disease.15   

Other reported research results have supported the potential of lithium for treatment of 

neurodegenerative disease.16 However relevant clinical trials remain to be done.  In the absence of 

clinical trial results, insights may be obtained from comparative studies on bipolar patients who 

have received long-term lithium treatment, and those who have not.  In one such study, in an 

otherwise well-matched cohort of elderly (approximately 70 years old), 5% of those on long-term 

lithium therapy (continuous for the previous five years) were diagnosed with Alzheimer’s disease 

(AD), while 33% of those not receiving consistent lithium therapy were diagnosed with AD.17   

Epidemiological studies on the general population are suggestive.  A recent nationwide 

study in Denmark showed that lithium level in the drinking water was significantly correlated with 

incidence of dementia, with higher lithium levels showing lower levels of dementia.18  A more 

recent epidemiological study in Texas showed a similar specific effect for Alzheimer’s disease.19  

An important feature of the epidemiological studies is that they involve levels of lithium ingestion 

that are many times smaller than those used for bipolar therapy, and are therefore almost certainly 

without significant side effects. 

One neurodegenerative disorder, frontotemporal dementia (FTLD), initially presents with 

behavioral symptoms resembling mania,20 posing a challenge for diagnosis.  A definitive diagnosis 

in the early stage of the disease requires neuroimaging.21  The consensus is that FTLD is invariably 

fatal, with a more rapid progression than Alzheimer’s Disease.22  However, there may be one 

documented apparent exception to the incurability of FTLD, in a case history presented by Monji 

et al.23 In this study a middle-aged man presented manic symptoms that had no apparent origin in 
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early life.  Because imaging revealed abnormalities typical of FTLD, a diagnosis of FTLD was 

made.  However, because the psychiatric symptoms had a pattern like bipolar disease, lithium 

therapy was begun.  In a little under two years the psychiatric symptoms had been completely 

mitigated and new brain images appeared normal.  The authors concluded that the initial diagnosis 

of FTLD was in error.   However, the data presented in the paper were also consistent with the 

hypothesis that the FTLD diagnosis was correct and that the lithium therapy reversed the course 

of the disease. Dr. Monji, first author on the study, confirmed in an email to us that this hypothesis 

was consistent with their data.   

A case history suggests efficacy of lithium for alleviating agitation and psychosis in both 

FTLD and Alzheimer’s disease.24 The efficacy of lithium for FTLD patients is to be tested in a 

recently announced clinical trial,25 although only with respect to relief of the behavioral symptoms 

cited in the above reference over the course of a 12-week trial.  The limited scope of this study is 

a continuation of a line of thought that considers affective and neurodegenerative aspects of FTLD 

as relatively separate26, a line of thought that we question because of the evidence discussed above.    

Dysfunction of autophagy is strongly implicated in neurodegenerative disease.27 28 29 30  

Lithium has been shown to induce autophagy, due to its inhibition of inositol monophosphatase.31  

This is the basis of a pathway for autophagy enhancement, independent of the well-studied effects 

of mTOR on autophagy.32 This additional pathway for autophagy enhancement has led to the 

suggestion of a combined lithium-rapamycin treatment for Huntington’s Disease, with lithium 

inhibiting inositol monophosphatase and rapamycin inhibiting mTOR.33   

The full range of lithium effects on autophagy is complicated,34 as might be expected 

because of lithium’s lack of specificity.  

Because lithium affects many different biological molecules and processes2, it is essential 

to utilize the tools of systems biology35 if a comprehensive understanding of lithium action and its 

prospects for therapy are to be obtained.  Important concepts for organizing biological information 

in a systems context are pathways and networks.  A very useful tool for obtaining data about known 

pathways is the KEGG database.36  An equally useful and complementary tool is the STRING 

database of interacting proteins.37 

In the present paper we investigate further the possible linkages among 1) lithium, 2) 

affective disorders, and 3) neurodegenerative disorders by analyzing the mutual enrichment 
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between the interactomes of lithium-sensitive enzymes, and the KEGG pathways associated with 

affective and neurodegenerative disorders.  

Methods 

Analysis was performed on the interactomes of lithium-sensitive genes, as identified by 

prior literature search2. This search suggested BDNF, BPNT1, DISC1, DIXDC1, FBP1, FBP2, 

GSK3A, GSK3B, inositol monophosphatases (IMPA1, IMPA2, and IMPAD1), INPP1, and PGM1 

as key to understanding the broad biological actions of lithium. The interactomes of these genes 

were extracted from the STRING database (https://string-db.org).  For each key gene, we adjust 

confidence level and order of neighbors (nearest only or next nearest included), so that each set 

contains a few hundred genes. This size is large enough for statistically reliable enrichment 

analysis.  Table 1 shows the minimum confidence level and the maximum order of interaction 

(direct, removed by one, etc.) for each set.  Very similar sets were merged; in particular FBP1 and 

FBP2 were merged into one set, and the inositol monophosphatases were merged into one set. On 

the other hand, GSK3A and GSK3B showed sufficient differences to be considered separately.  

Overall, we consider 10 distinct lithium-sensitive entities. 

Gene Confidence level Order of Neighbor Interactome Size 

BDNF 0.4 1 335 

BPNT1 0.6 2 388 

DISC1 0.8 2 113 

DIXDC1 0.6 2 378 

FBP1 0.9 2 175 

GSK3A 0.4 1 307 

GSK3B 0.4 1 225 

IMPAD 0.9 2 504 

INPP1 0.7 2 228 

PGM1 0.4 1 176 

Table 3.1 Interactome parameters and sizes for lithium-sensitive genes.  

Disease Association 

We used the R-package KEGGgraph38 39 to identify the genes associated with the pathways 

of interest.  For one condition, bipolar disorder, there was no annotated pathway in the KEGG 

database. In lieu of an annotated pathway, we used the list of bipolar-related genes compiled by 

Nurnberger et al40.  

Empirical p-value calculation 

https://string-db.org)/
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The fundamental question we address is whether there is significant overlap or mutual 

enrichment between the interactomes of lithium-sensitive genes and the pathways or gene sets 

implicated in affective and/or neurodegenerative disorders.  

For each of the 10 lithium sets, an ensemble of 1000 null sets are generated by random 

selection from the human genome. Each null set is the same size as the corresponding lithium set. 

Then we used the R-package STRINGdb41 to perform KEGG pathway enrichment analysis.  This 

operation is a particular example of the powerful technique of gene-annotation enrichment 

analysis.42 In gene-annotation enrichment analysis a test list of genes (often derived from gene 

expression experiments) is compared to an organized database of gene annotations, often referred 

to as a gene ontology43, an array of gene lists corresponding to different biological functions, 

molecular functions, or locations in the cell.  The output of the gene-annotation enrichment 

analysis is expressed as the likelihood that the list overlaps could have occurred by chance (p-

value).  A very low p-value implies that the degree of overlap is highly significant statistically and 

very likely is significant biologically. In our study the gene lists we are comparing are the 

interactomes of lithium sensitive enzymes on the one hand, and KEGG pathways or otherwise 

derived lists associated with neural disease on the other hand.  For each KEGG term retrieved, a 

null distribution of uncorrected p-value is generated by the 1000 null sets.  This gives us a measure 

of the false discovery rate, since any overlap between the null sets and the KEGG pathways is 

purely accidentally. Then the fraction of null set uncorrected p-values smaller than or equal to the 

lithium-sensitive set uncorrected p-value would be the empirical p-value. For a detailed discussion 

of empirical p-value determination see Ge et al44.  

Key Gene Prediction 

We predict key genes by counting how many times a gene appears in the cross section of 

interactomes and pathways associated with a particular disease. Then the counts are normalized 

by number of pathways associated with each disease. In this way, we predict which genes might 

be robust in disease-related pathways. Then, the genes are scored by the sum of mean counts over 

all diseases. A higher ranking indicates a gene would be associated with an important factor in 

many diseases.  

Results 
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Figure 3.1. Heatmap for Lithium-sensitive enzyme interactome enrichment in disease-related 

pathways. The empirical enrichment p-value was calculated for each set of disease-associated genes. a) and 

b) are disorders where lithium treatment has proved to be effective and both show high enrichment. c) and d) 

are diseases where the effect of lithium treatment is unknown. c) shows relatively low enrichment while d) 

shows high enrichment.  

Figure 3.1 shows a few examples of mutual lithium interactome enrichment with specific 

disease pathways, represented by heatmaps. Each area on the heatmap is a color-coded 

representation of the degree of mutual enrichment between the genes in the interactome of the 

indicated lithium sensitive enzyme and the genes in the indicated pathway.  The darker the shade, 

the more significant the mutual enrichment of the interactome-pathway combination is.  Fig.3.1 a) 

and b) shows two diseases where lithium treatments have been effective, and both show very strong 

enrichment. Fig.3.1 c) and d) shows two diseases where the effect of lithium treatment has not 

been explored. Parkinson’s disease, Fig.1 c), shows low enrichment while FTLD, Fig.3.1 d), shows 

high enrichment.  We infer that FTLD is a more likely disease target for lithium treatment than 

Parkinson’s Disease.  A spreadsheet providing p-values for the mutual enrichment of the lithium 

sensitive interactomes and the relevant pathways for all 112 diseases studied are provided in 

supplementary material. 

For each of the 112 diseases considered we computed the geometric mean of the inverse 

of the p-values for each interactome/pathway enrichment and propose this as a “lithium sensitivity 

index” for the disease. The lithium sensitivity index is just the reciprocal of the mean p-value for 
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each of the mutual enrichments between lithium-sensitive interactomes and the relevant pathways, 

where the mean p-value is: 

                 pmean=1/((1/p1)x(1/p2)x(1/p3)x…….x(1/pn))1/n                 Equation (3.1) 

We note that the individual p-values vary by several orders of magnitude.  The method of 

averaging in Equation (3.1) ensures that both strong and weak enrichments contribute significant 

weight to the mean.  Note also that our method is bounded at the low end of p-values by the number 

of null samples it is reasonable to compute, given compute time constraints.  For ten thousand null 

sets as used in this paper, the lowest p-values are not numbers but the expression <1E-4, which 

means that the degree of mutual enrichment was greater for the test set than for all ten thousand of 

the null sets.  For computing the inverse of the lowest p-values, we set the inverse at 1E+4.   

Table 3.2 shows the top 34 ranked diseases out of the 112.  Note that two diseases for 

which lithium is known to be effective therapy, bipolar disorder and major depression disorder, 

rank high, 9 and 29 respectively.   Other notable diseases shown in Table 3.2 include Alzheimer's 

(20 out of 112), for which there is epidemiological evidence17 above, FTLD (30 out of 112) for 

which there is evidence via case history23, and schizophrenia (22 out of 112) for which there is 

some evidence of efficacy as an adjunct to antipsychotics.45 Scores for all 112 diseases are 

provided in supplementary material. 
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Disease Sensitivity index Mean p-value 

Dravet syndrome 1718.943899 .0006 

HTLV1-Associated Myelopathy (HAM) 626.8531541 .0016 

Congenital pain insensitivity with anhidrosis 466.9837537 .0021 

Hemorrhagic destruction of the brain, subependymal 

calcification, and cataracts 

418.143026 .0024 

Rasmussen encephalitis 293.1481892 .0034 

Lattice corneal dystrophies (LCD) 263.6451883 .0038 

Subependymal giant cell astrocytoma 246.0470815 .0041 

Bipolar Disorder 239.2876 .0042 

Familial episodic pain syndrome (FEPS) 231.5937968 .0043 

Familial exudative vitreoretinopathy (FEVR) 205.3474156 .0049 

Focal dermal hypoplasia 205.3474156 .0049 

Choroid plexus papilloma 198.0197413 .0051 

Juvenile-onset dystonia 183.6715435 .0054 

Prion diseases 175.0031999 .0057 

Axenfeld-Rieger syndrome (ARS) 169.1174332 .0059 

Congenital stromal corneal dystrophy (CSCD) 169.1174332 .0059 

Ring dermoid of cornea 169.1174332 .0059 

Stapes ankylosis with broad thumb and toes 169.1174332 .0059 

Benign familial neonatal and infantile epilepsies 153.4488999 .0065 

Alzheimer's disease 148.6362283 .0067 

Neurosis 132.0111986 .0076 

Schizophrenia 132.0111986 .0076 

Pituitary adenomas 123.9488444 .0081 

Febrile seizures 108.3195689 .0093 

Episodic ataxias 104.5457633 .0095 

Familial or sporadic hemiplegic migraine 104.5457633 .0095 

Cerebral amyloid angiopathy (CAA) 89.36992044 .0112 

Major depressive disorder 89.36992044 .0112 

Epileptic encephalopathy with continuous spike-waves 

during slow-wave sleep 

87.85098473 .0114 

Frontotemporal lobar degeneration (FTLD) 75.82609324 .0132 

Cerebral palsy 72.92882566 .0137 

Generalized epilepsy and paroxysmal dyskinesia 

(GEPD) 

69.3705138 .0144 

Amyotrophic lateral sclerosis (ALS) 67.25422275 .0149 

Fleck corneal dystrophy (FCD) 63.08690002 .0158 

Table 3.2. Top 34 neuron-related disease by lithium sensitivity.  

As a control on our methods, we compared the statistical distribution of scores for neural 

disease with corresponding scores for metabolic pathways (also from KEGG), and with random 

gene sets (null sets).  This comparison is shown in box plots in Figure 3.2. As expected the scores 

for the null sets are quite low, collapsing into a range between 1 and 2.05.  The scores for the 

metabolic pathways are also low, reflecting fact that lithium has not been found to be major 
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modulator of metabolism.  Just two metabolic pathways account for the height of the upward 

extension of the metabolic box plot, carbohydrate metabolism and nucleotide metabolism.  On the 

other hand, the scores for neural diseases are quite high.  These scores, together with large numbers 

of cell, animal, and epidemiological studies suggesting lithium may play a role in ameliorating this 

class of disease, suggest moving forward into clinical trials for selected affective and 

neurodegenerative disorders.  Even in studies in which lithium is not the primary variable, 

environmental lithium should be measured and correlated with outcomes or used as an 

experimental variable, because of the possibility that lithium and another drug may be synergistic. 

For example, lithium and rapamycin stimulate autophagy by independent pathways, leading to a 

suggestion that they might be a promising combination therapy for Huntington’s disease.46  

 

 

Figure 3.2 Log10 of sensitivity index of lithium-sensitive interactome for null sets, metabolic 

pathways, and pathways associated with neural disease.   
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Schizophrenia Bipolar AD ALS FTLD Prion MDD Sum 

MAPK3 0 0 4 0 1.33 4 4 13.33 

APP 0 0 6 0 0 0 6 12 

TP53 0 0 0 5 2.5 0 0 7.5 

RAC1 0 0 0 4 2 0 0 6 

PSEN1 0 0 4 0 2 0 0 6 

PLCB3 0 0 3 0 0 0 3 6 

PLCB2 0 0 3 0 0 0 3 6 

PLCB1 0 0 3 0 0 0 3 6 

PPP3CC 0 0 3 3 0 0 0 6 

PRKACB 0 0 0 0 0 3 3 6 

ITPR1 0 0 3 0 0 0 3 6 

PPP3CA 0 0 3 3 0 0 0 6 

PRKACG 0 0 0 0 0 3 3 6 

NOS1 0 0 3 3 0 0 0 6 

PLCB4 0 0 3 0 0 0 3 6 

PRKACA 0 0 0 0 0 3 3 6 

CYCS 0 0 3 3 0 0 0 6 

HTR2A 1 2 0 0 0 0 2 5 

NOTCH1 0 0 0 0 0 5 0 5 

GAPDH 0 0 5 0 0 0 0 5 

MAP2K1 0 0 0 0 0.67 2 2 4.67 

BAX 0 0 0 2 0.67 2 0 4.67 

GRM1 1.5 3 0 0 0 0 0 4.5 

TNF 0 0 2 2 0 0 0 4 

GNAQ 0 0 2 0 0 0 2 4 

GNG2 0 2 0 0 0 0 2 4 

ITPR3 0 0 2 0 0 0 2 4 

CDK5 0 0 4 0 0 0 0 4 

FYN 0 0 0 0 0 4 0 4 

IL1B 0 0 2 0 0 2 0 4 

ITPR2 0 0 2 0 0 0 2 4 

PRKCA 0 0 0 0 0 0 4 4 

PPP3CB 0 0 2 2 0 0 0 4 

Table 3.3.  Gene counts normalized by pathway number for genes appearing at intersection of 

interactomes and pathways. Table truncated for ease of display. Full table in supplementary material.  
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In addition to pathways we examined our results to identify specific genes within the 

lithium sensitive interactomes that may be important in modulating lithium effect on disease are 

useful to identify.  Table 3.3 indicates the genes that occur with the greatest frequency at the 

intersection of the lithium-sensitive interactomes and pathways associated with selected neural 

diseases.  The complete tally for all 112 diseases considered in this study is provided in 

supplementary material.  We suggest that genes that appear prominently at the intersection of 

lithium sensitivity and neural disease pathways, and their promoter regions, should receive 

attention as possible sites of important mutations affecting lithium response to neural disease, and 

possibly as targets for drugs more specific than lithium.  This is in addition to the ten lithium-

sensitive genes that were used as a starting point for this study, based on their previous mentions 

in the literature.  

The genes in Table 3.3 are ranked by total number of appearance across the diseases. The 

high rank indicates that a gene might be 1) found associated with multiple diseases or 2) associated 

with multiple interactomes for a particular disease-associated pathway. For the former case, the 

gene might indicate similar mechanisms for the multiple diseases. For the latter case, the gene 

would be a promising target in treatment of that particular disease.  

For example, Table 3.3 have shown that MAPK3 is a shared gene by Alzheimer's Disease 

(AD), Prion, Major Depressive Disorders (MDD), and Frontotemporal lobar degeneration (FTLD), 

indicating that these diseases might have some shared mechanism. MAPK3 appeared in 4 

interactome-pathway cross-sections in AD, Prion and MDD, and on average associated with 1.33 

interactome-pathway cross-section in FTLD.  MAPK3 is an essential component of the MAP 

signal transduction pathway that carries signals from cell surface to the nucleus.  In analysis of 

normal as compared to AD brain tissue, MAPK3 is one of a small number of genes found to have 

alternative promoter usage and splicing.47   

Another prominent gene in Table 3.3 is APP (amyloid precursor protein), which gives a 

strong signal in both AD (Alzheimer’s Disease) and MDD (Major Depressive Disorder).  

Published studies implicate specific mutations in APP in incidence of AD 48, and implicate amyloid 

beta, the cleavage product of APP, in incidence of MDD.49   Lithium has well established efficacy 

in the treatment of MDD,50 and regulates the production of amyloid beta.51 Taken together these 
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findings suggest that influence of lithium on APP may be a common mode of action of lithium 

effect on both Alzheimer’s disease and major depressive disorder.  

Summary and Discussion 

We have conducted a pathway and network analysis of the role of lithium in 122 

neurodegenerative and affective disorders.   We have found that for the large majority of such 

disorders, there is high mutual enrichment between the interactomes of lithium-sensitive enzymes 

and the pathways associated with those diseases, indicating that lithium is very likely to affect the 

course of the disease.  We have also identified specific genes that exist frequently at the 

intersection of lithium-sensitive interactomes and neural disease pathways, suggesting these genes 

as possible targets for more specific drugs than lithium.   

We hope that the results described in this paper and more detailed supplementary material 

will contribute to prioritizing and designing clinical trials of lithium for neural disease.  To provide 

context for such prioritization and design, it is essential to take into account the ways in which 

lithium is unique, both as a pharmaceutical and as an ion that is ubiquitous in the environment, and 

therefore ubiquitous in the water and food we ingest2: 

1. Unlike other ions, lithium is not regulated by selective membrane transport processes.  

Therefore, lithium concentration in both extracellular and intracellular compartments, 

rather than being roughly constant, is roughly proportional to lithium ingestion. 

2. Unlike other pharmaceuticals, lithium is wildly nonselective in its biochemical effects.  The 

major underlying mechanism for the lack of selectivity is lithium’s general propensity to 

inhibit the many enzymes that have magnesium as a cofactor. 

3. Unlike other pharmaceuticals, lithium is an essential nutrient.  The question with lithium 

is not whether it should be ingested or not, but rather how much.  Extreme lithium 

deprivation results in failure to thrive, while too much lithium is toxic.  

In the light of all these factors, we suggest that the correct question to ask with respect to 

lithium and a particular disease is not, “Should lithium be administered for this particular disease?” 

but rather, “What is the optimum blood level of lithium for this individual, given his or her disease 

history, status, and genetic propensities?”  Unlike other pharmaceuticals that are far more specific 

and inhibit or activate one or a small number of genes, the model for lithium action is that it alters 
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the balance between a large number of interacting processes and pathways.  Thus, a dose-response 

curve for lithium is likely to be highly nonlinear and not always monotonic.  

There are just a few well-established markers for optimum concentrations. For a patient 

with a reliable diagnosis of bipolar disorder a common target would be 0.8-1 mM.  Significantly 

higher concentrations will result in acute toxicity, while significantly lower will result in loss of 

effectiveness.  Epidemiological studies on bipolar patients who are, and are not, on lithium therapy 

suggest that this level also protects against Alzheimer’s disease.  However, this level has some 

side effects when sustained for years or decades, namely an increased risk of kidney damage and 

lowered thyroid activity.  Thus, for other conditions one would like to find lower effective 

concentrations; indeed one would like to do that for bipolar disorder as well, perhaps by combining 

lithium with other mood stabilizers that act in a synergistic fashion, enabling the lithium dose to 

be reduced. 

At the other end of the dosage scale, epidemiological evidence is compelling that 

geographical variations in concentration of lithium in the drinking water are correlated with 

incidence of Alzheimer’s; the lower the lithium the higher the incidence of mania.  It thus seems 

that for Alzheimer’s, an optimum level of blood lithium would be higher than the naturally 

occurring range, but perhaps lower than the therapeutic dose for bipolar disorder in order to 

minimize possible side effects of the bipolar therapeutic dose. 

Another important marker is provided by a study showing that over a four-year period a 

lithium level of .25-.4 mM of lithium (1/3 to 1/2 of the bipolar therapeutic dose) did not incur any 

renal damage52.  This study suggests that clinical studies exploring low to medium-dose lithium 

could be undertaken with relatively minimal concerns for side effects. 

One of the authors (EJ) is an elderly person (79) and has found the evidence cited above 

sufficiently compelling that he self-administers lithium calibrated to a blood level of .3-.4 mM, in 

order to reduce the pace of age-related neurodegeneration.  His outcome, however important it 

may be to him personally, has no statistical significance.  We need a clinical study involving many 

subjects addressing the same question. 

In general, it seems clear that whatever other studies are undertaken with respect to 

affective and neurodegenerative disorders, lithium blood levels should be monitored, since even 

geographical variations may have significant effects.  The cost of adding lithium level to the 
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routine blood tests is minimal, especially compared to the potential benefits.  Beyond that, multiple 

studies should be undertaken in which low- to moderate-level lithium supplements are 

administered, since these are likely to be safe (although of course side effects should be 

monitored). 

Perhaps our results, especially as scored in Table 1 and combined with other 

considerations, might help to focus on which neurodegenerative diseases might be most useful to 

consider for lithium therapy.  Other considerations might be: 1) whether the disease impacts a large 

number of people, so that alleviating the condition would relieve much suffering, 2) the age at 

which the condition strikes, considering that the impact on individual, family, and others may be 

more if the disease strikes at a younger age, 3) the mortality rate, and 4) how rapidly the disease 

progresses, since the more rapidly progressing the disease the more rapidly meaningful statistics 

may be gathered from an intervention trial.  

Many conditions that score highly in Table 1 might be usefully considered.  One condition 

that looms large to us, because of the loss of a person close to us at the age of 46, is FTLD.  The 

mean p-value for FTLD pathway mutual enrichment with lithium-sensitive interactomes is .0132, 

which is highly significant. While not as common as Alzheimer’s, FTLD is not rare.  Estimated 

lifetime risk is 1/742, so many millions of people each year die of FTLD.53  The ratio of official 

incidence to mortality is 0.97; it is generally accepted to be 100% lethal. Life expectancy after 

diagnosis depends on the variant, but ranges from 3 to 9 years, so progression is much more rapid 

than Alzheimer’s, and permits meaningful statistical analysis of any clinical trial in a relatively 

short time.  Age of onset is most typically middle- to late middle-age when the individual is still 

employed and a crucial part of nuclear and extended family, in contrast to typically later onset of 

Alzheimer’s. We have noted earlier in this paper that the initial symptoms of FTLD are sufficiently 

similar to mania (which is treated successfully with lithium) to sometimes lead to confusing 

diagnoses, which may suggest a common underlying biochemistry.  

We will be happy to collaborate on further specific pathway or network analysis relevant 

to any of the neural diseases for which lithium may be. 
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Abstract 

Lithium has many widely varying biochemical and phenomenological effects, suggesting 

that a systems biology approach is required to understand its action.  Multiple lines of evidence 

point to lithium as a significant factor in development of cancer, showing that understanding 

lithium action is of high importance.  In this paper we undertake first steps towards a systems 

approach by analyzing mutual enrichment between the interactomes of lithium-sensitive enzymes 

and the pathways associated with cancer.  This work integrates information from two important 

databases, STRING and KEGG pathways.  We find that for the majority of cancer pathways the 

mutual enrichment is many times greater than chance, reinforcing previous lines of evidence that 

lithium is an important influence on cancer.   

Keywords: Lithium, systems biology, biochemical pathways, biochemical networks 

Introduction 

Clinical and Epidemiological Context for Lithium and Cancer  

By far the most common medical use of lithium is as a first line therapy for bipolar disorder, 

including associated depression as well as mania.1  A comprehensive review of the literature 

confirms that lithium is also effective against unipolar depression with unique anti-suicidal 

effectiveness, and may also be useful against cancer and neurodegenerative disease.2   

One line of evidence for the possible use of lithium as an anticancer agent is 

epidemiological.  A retrospective study showing that psychiatric patients undergoing lithium 

therapy for bipolar disorder had a much lower incidence of cancer than a matched group not 

receiving lithium therapy.3 More recent studies of similar design, one conducted nationwide across 

Sweden, and another across Taiwan, achieved the same result.4 5 On the other hand another 

nationwide study, this time from Denmark, showed no correlation of lithium with colorectal 
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adenocarcinoma.6 On closer look, the Denmark study does not contradict the Swedish study.  The 

Swedish study also found that for the entire population lithium was not correlated with cancer 

incidence, but in addition found that bipolar individuals not treated with lithium had a higher 

incidence of cancer than the general population.  Lithium-treated bipolar patients, on the other 

hand, had essentially the same cancer incidence as the general population.  

One piece of experimental evidence for lithium’s potential as a cancer therapeutic modality 

is that it was observed to inhibit prostate tumor growth,7 presumably through its ability to inhibit 

GSK3. A detailed study of molecular mechanisms by which lithium inhibition of GSK3-beta 

inhibits proliferation of prostate tumor cells in culture was presented by Sun et al.8 The work was 

subsequently extended to an animal model.9  A clinical trial for the effect of lithium coupled with 

prostatectomy on men has been conducted but as of this writing results have not yet been 

published.10  

With respect to other cancers, lithium has been found to be lethal to neuroblastoma cells 

but not to normal nerve cells.11  The experimentally determined effective dose was 12 mM, a level 

which would be lethal if achieved systemically in a human or model organism but perhaps could 

be induced locally.  A similar effect was found in ovarian cancer cells,12 although a subsequent 

similar study on ovarian cancer cells suggests only a more modest benefit.13 It is not clear from 

our reading of the two ovarian cancer papers why the results are significantly different from each 

other. 

With respect to colorectal cancer, one study suggests that lithium inhibits proliferation of 

a colorectal cancer cell line.14 Another study on colon cancer cells showed that lithium specifically 

induced a reversal of the epithelial-to-mesenchymal transition characteristic of the cancer cells.15  

Two studies with relatively small sample size suggested a possible link between lithium 

and tumors of the upper urinary tract.16 17 However a large-scale study involving all urinary tract 

cancers in Denmark over a multi-year period found no correlation with lithium use.18 

Because lithium therapy is systemic rather than topical or local, it follows that lithium 

might inhibit metastasis.  Evidence that this is the case for colon cancer comes from observation 

of inhibition of metastasis-inducing factors by lithium and by observation on reduced metastasis 

in model animals given lithium therapy.19 
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Autophagy is a key cellular process in the inhibition of cancer.20  Lithium has been shown 

to induce autophagy, due to its inhibition of inositol monophosphatase.21  The full range of lithium 

effects on autophagy is complicated,22 as might be expected because of lithium’s lack of 

specificity.2   

Because of the promising indications as cited above, lithium has been suggested as one of 

a number of drugs commonly used for other reasons, to be repurposed for cancer.23 

Biochemical Context for Lithium and Cancer 

Much of lithium’s biochemical action may be summarized by noting that it inhibits 

enzymes that have magnesium as a co-factor.2 There are many published examples of such 

competition. Lithium appears to inhibit β-adrenergic and muscarinic receptor coupling to G 

proteins by competing with magnesium, which facilitates such coupling. 24 25 26 27 28  A particularly 

important example is substitution of a lithium ion for a magnesium ion acting as a cofactor in 

inositol monophosphatase, mentioned earlier in this paper.  In this protein the binding site for 

lithium is not revealed in crystallography nor in solution NMR but can be identified in magic angle 

spinning solid state NMR, which is more suitable for systems with large internal motion.29 Another 

target of lithium, also a magnesium-dependent phosphatase and with relevance to neural effects, 

is bisphosphate 3-prime-nucleotidase (BPNT1).30 31  These findings are consistent with a 

hypothesis that lithium inhibits at least some magnesium-dependent enzymes by displacing 

magnesium from its binding site thereby reducing the structural stability and lowering activity of 

the enzyme.   

One mode of action with many consequences is lithium inhibition of glycogen synthase 

kinase 3 beta (GSK3B), initially shown in vitro and in intact cells,32 and in the context of 

embryonic development.33 It was later shown that lithium exerted its inhibitory effect on GSK3B 

by competing with magnesium for an essential binding site.34  There are two closely related forms 

of GSK3, termed alpha (GSK3A) and beta (GSK3B), which are equivalently inhibited by 

lithium.35 The two forms of GSK3 have substantial functional redundancy.36  However some of 

their physiological properties are different, as demonstrated by the fact that GSK3B knockout mice 

are not viable,37 but GSK3A knockout mice survive.38 The very widespread nature of  GSK3B 

effects is related to the large number of transcription factors that it regulates.39  It functionally 

modulates cellular threshold for apoptosis,40 it is central to mediating mitochondrial response to 
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stress;41 it facilitates immune responses by enabling the nuclear export of NF-ATc;42 it regulates 

inflammation;43 it regulates cardiac hypertrophy and development,44 to name just a few.  Based 

on microarray studies of brain cells in animals, lithium alters gene expression patterns 

significantly,45 to be expected due to the large number of transcription factors regulated by 

GSK3B.  Mice heterozygous for GSK3B exhibit similar behavioral traits to wild type littermates 

treated with 1mM lithium (a concentration that inhibits about 25% of GSK3 activity, in line with 

1 of the 4 alleles of GSK3 inactivated in the GSK3B heterozygous mice)46 

In addition to inhibiting the activity of GSK3B, lithium also inhibits its transcription.47  Of 

all kinases, GSK3 appears to have the largest number of known substrates, over 100 known48 and 

about 500 predicted by theory based on scanning and interpreting relevant motif sequences in the 

human genome.49 Lithium will thus to some extent modulate activity along all pathways containing 

the hundreds of GSK3 substrates. So far, to our knowledge there are no published counterexamples 

to the hypothesis that lithium will exert an inhibitory effect on all proteins with essential 

magnesium binding sites, of which there are estimated to be over three thousand.50 

A second major widespread effect of lithium is as a cofactor with magnesium in interacting 

with phosphate groups.  The primary energy source for cells and the substrate for phosphorylating 

enzymes is not bare ATP, but rather magnesium-associated ATP (MgATP).51  NMR studies show 

that lithium associates with MgATP.52  Based on this admittedly small amount of data, we 

hypothesize that lithium associates with all magnesium-phosphate complexes and will thus 

modulate to some extent all phosphorylation reactions and all ATP-splitting processes.  This is a 

reasonable interpretation of early work by Willis and Fang, in which lithium was found to increase 

the activity of the sodium-potassium pump without itself being transported significantly.53  We 

have noted earlier in this paper the inhibitory effect of lithium on GSK3 by the mechanism of 

competing with Mg.  Here we note that lithium also inhibits the activity of GSK3 by a second 

method, that is, by increasing phosphorylation.54  Depending on context of relevant protein-protein 

interactions, lithium’s effect on phosphorylation of a particular protein may be to either increase 

it or decrease it.  For example, lithium decreases phosphorylation of tau-protein, presumably 

because it inhibits GSK3B, which is implicated in the phosphorylation of the tau-protein.55 

Because lithium affects many different biological molecules and processes2, it is essential 

to utilize the tools of systems biology56 if a comprehensive understanding of lithium action and its 
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prospects for therapy are to be obtained.  Important concepts for organizing biological information 

in a systems context are pathways and networks.  A very useful tool for obtaining data about known 

pathways is the KEGG database.57  An equally useful and complementary tool is the STRING 

database of interacting proteins.58 

In the present paper we investigate further the possible linkages among 1) lithium, 2) 

affective disorders, and 3) neurodegenerative disorders by analyzing the mutual enrichment 

between STRING-derived interactomes of lithium-sensitive enzymes, and the KEGG pathways 

associated with cancer. 

Methods 

Analysis was performed on the interactomes of lithium-sensitive genes, as identified by 

prior literature search2. This search suggested BDNF, BPNT1, DISC1, DIXDC1, FBP1, FBP2, 

GSK3A, GSK3B, inositol monophosphatases (IMPA1, IMPA2, and IMPAD1), INPP1, and PGM1 

as key to understanding the broad biological actions of lithium. The interactomes of these genes 

were extracted from the STRING database (https://string-db.org).  For each key gene, we adjust 

confidence level and order of neighbors (nearest only or next nearest included), so that each set 

contains a few hundred genes.  This size is large enough for statistically reliable enrichment 

analysis.  Very similar sets were merged; in particular FBP1 and FBP2 were merged into one set, 

and the inositol monophosphatases were merged into one set. On the other hand, GSK3A and 

GSK3B showed sufficient differences to be considered separately.  Overall, we consider 10 distinct 

lithium-sensitive entities. 

Disease Association 

We used the R-package KEGGgraph59 60 to identify the genes associated with the pathways 

of interest.   

 

 P-value calculation 

The fundamental question we address is whether there is significant overlap or mutual 

enrichment between the interactomes of lithium-sensitive genes and the pathways or gene sets 

implicated in various cancers.  

https://string-db.org)/
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For each of the 10 lithium sets, an ensemble of 1000 null sets are generated by random 

selection from the human genome. Each null set is the same size as the corresponding lithium set. 

Then we used the R-package STRINGdb61 to perform KEGG pathway enrichment analysis.  This 

operation is a particular example of the powerful technique of gene-annotation enrichment 

analysis.62 In gene-annotation enrichment analysis a test list of genes (often derived from gene 

expression experiments) is compared to an organized database of gene annotations, often referred 

to as a gene ontology63, an array of gene lists corresponding to different biological functions, 

molecular functions, or locations in the cell.  The output of the gene-annotation enrichment 

analysis is expressed as the likelihood that the list overlaps could have occurred by chance (p-

value).  A very low p-value implies that the degree of overlap is highly significant statistically and 

very likely is significant biologically. In our study the gene lists we are comparing are the 

interactomes of lithium sensitive enzymes on the one hand, and KEGG pathways and Kegg 

pathways associated with cancer on the other hand.  For each KEGG term retrieved, a null 

distribution of uncorrected p-value is generated by the 1000 null sets.  This gives us a measure of 

the false discovery rate, since any overlap between the null sets and the KEGG pathways is purely 

accidentally. Then the fraction of null set uncorrected p-values smaller than or equal to the lithium-

sensitive set uncorrected p-value would be the empirical p-value. For a detailed discussion of 

empirical p-value determination see Ge et al64.  

 

Key Gene Prediction 

We predict key genes by counting how many times a gene appears in the cross section of 

interactomes and pathways associated with a particular disease. In this way, we predict which 

genes might be most important in disease-related pathways. Then, the genes are scored by the sum 

of mean counts over all diseases. A higher ranking indicates a gene would be associated with an 

important factor in many diseases.  

Results 

Figure 4.1 shows mutual lithium interactome enrichment with specific cancer pathways, 

represented by heatmaps. Each area on the heatmap is a color-coded representation of the degree 

of mutual enrichment between the genes in the interactome of the indicated lithium sensitive 
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enzyme and the genes in the indicated pathway.  The darker the shade, the more significant the 

mutual enrichment of the interactome-pathway combination is. The light areas on the heatmap 

represent situations where a lithium-sensitive interactome has little or no mutual enrichment with 

a cancer pathway.  The dark areas, deep orange and red, represent situations where enrichment is 

very strong—far greater than could be expected by chance. Three genes stand out as being not 

strongly connected to cancer pathways: BPNT1, DISC1, and PGM1. Of the cancer pathways, 

breast cancer stands out as being not likely to be strongly influenced by lithium levels.  For the 

remainder of the genes and the remainder of the cancers, the relationship between the lithium-

sensitive interactome and the cancer phenome is strong. 

For each of the cancer-associated pathways we wished to compute a single number 

representing the relative likely sensitivity of the disease to lithium, in order to contribute to 

prioritizing which diseases are most likely to benefit from clinical trials with lithium.  There is a 

significant literature on combining p-values,65 with choices among methods depending on the 

detailed structure of the data.  We adopt a relatively simple approach, which is to compute the 

geometric mean of the individual p-values for each pathway-interactome mutual enrichment value.    

pmean=(p1 x p2 x p3 x……pn)1/n                 Equation (1) 

The method of averaging in Equation (1) ensures that both strong and weak enrichments 

contribute significant weight to the mean.  Note that all of the p-values that go into Equation (1) 

are corrected for false discovery rate by random resampling.  Thus, no further false discovery rate 

correction is necessary for computing pmean. Note also that our method is bounded at the low end 

of p-values by the number of null samples it is reasonable to compute, given compute time 

constraints.  For one thousand null sets as used in this paper, the computed p-value will be zero 

when none of the thousand null sets shows the degree of enrichment of the test sets.  For purposes 

of computing the pmean in equation (1) we substitute 10-4 for zero for each of these cases. 
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Figure 4.1. Visual representation of mutual enrichment patterns between cancer-associated 

pathways and the interactomes of lithium-sensitive gene products. Calibration of p-value vs. color is 

indicated by a vertical scale to the right of the heat map. Red or dark orange indicates very strong enrichment 

while lighter color indicates weak or, if white, no enrichment. Three genes stand out as being not strongly 

connected to cancer pathways: BPNT1, DISC1, and PGM1. Of the cancer pathways, breast cancer stands out 

as being not likely to be strongly influenced by lithium levels. For the remainder of the genes and the 

remainder of the cancers, the relationship between the lithium-sensitive interactome and the cancer phenome 

is strong. 
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Cancer-related KEGG pathway pmean 1/pmean 

Colorectal_cancer 0.00049903 2003.89209 

Pancreatic_cancer 0.00053973 1852.76828 

Proteoglycans_in_cancer 0.00054323 1840.83131 

Renal_cell_carcinoma 0.00056283 1776.72794 

Pathways_in_cancer 0.00056569 1767.76501 

Chronic_myeloid_leukemia 0.00085134 1174.61894 

Non-small_cell_lung_cancer 0.00090896 1100.15513 

Endometrial_cancer 0.00091244 1095.95823 

Prostate_cancer 0.00091481 1093.12212 

MicroRNAs_in_cancer 0.00093106 1074.04618 

Melanoma 0.00093303 1071.77346 

Viral_carcinogenesis 0.00099762 1002.38273 

Glioma 0.00122264 817.904951 

Acute_myeloid_leukemia 0.00125638 795.934615 

Bladder_cancer 0.00150566 664.158631 

Small_cell_lung_cancer 0.00352993 283.291551 

Thyroid_cancer 0.00567253 176.288152 

Basal_cell_carcinoma 0.03711938 26.9401078 

Chemical_carcinogenesis 0.05277248 18.9492716 

Transcriptional_misregulation_in_cancer 0.14953148 6.68755483 

Central_carbon_metabolism_in_cancer 1 1 

Choline_metabolism_in_cancer 1 1 

Breast_cancer 1 1 

Table 4.1. Rank order of significance of enrichment between lithium-sensitive interactomes and 

KEGG cancer-associated pathways. It is seen that for the great majority of pathways the mutual enrichment 

is very significant, with p-values significantly below .01. Breast cancer is unusual; it appears there is no 

enrichment beyond chance. The table also displays a “lithium sensitivity index”, which is 1/p mean  

Table 4.1 shows in rank order the significance of enrichment between lithium-sensitive 

interactomes and KEGG cancer-associated pathways. It is seen that for the great majority of 

pathways the mutual enrichment is very significant, with p-values significantly below .01. Breast 

cancer is unusual; it appears there is no enrichment beyond chance.  The table also displays a 

“lithium sensitivity index”, which is 1/pmean 

We should note that sensitivity to lithium does not necessarily imply a beneficial 

sensitivity. There are some indications for some cancers that lithium might be beneficial, as 

described in the Introduction section of this paper, but because of the complexity of the feedback 
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relationships in these pathways, a complicated relationship between lithium ingestion and cancer 

incidence is very possible.  

 

Figure 4.2. This figure visualizes the strength of the projected lithium influence on cancer 

pathways. The logarithms of the lithium sensitivity indices (1/p mean) are shown in boxplot format together 

with the corresponding results when the lithium interactomes are replaced with random gene sets. Essentially 

this figure shows the signal-to-noise ratio of our results and demonstrates conclusively that lithium ingestion 

is overwhelmingly likely to modulate the incidence of a wide range of cancers.  

Figure 4.2 visualizes the strength of the projected lithium influence on cancer pathways.  

In this figure the logarithms of the lithium sensitivity indices (1/pmean) are shown in boxplot format 

together with the corresponding results when the lithium interactomes are replaced with random 
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gene sets.  Essentially this figure shows the signal-to-noise ratio of our results and suggests that 

lithium ingestion is overwhelmingly likely to influence the incidence of a wide range of cancers.   

Summary and Discussion 

We have conducted a pathway and network analysis exploring the role of lithium in 

multiple cancers.   The results show that for the large majority of such cancers, there is high mutual 

enrichment between the interactomes of lithium-sensitive enzymes and the pathways associated 

with those diseases, indicating that lithium is very likely to affect the incidence and course of the 

disease.  Our results are consistent with a variety of lines of evidence from both epidemiology and 

from experiment, cited in the Introduction section of this paper, suggesting possible influence of 

lithium on the incidence and progression of cancer. 

We hope that the results described in this paper will contribute to prioritizing and designing 

clinical trials of lithium for cancer.  To provide context for such prioritization and design, it is 

essential to take into account the ways in which lithium is unique, both as a pharmaceutical and as 

an ion that is ubiquitous in the environment, and therefore ubiquitous in the water and food we 

ingest2: 

1. Unlike other ions, lithium is not regulated by selective membrane transport processes. 

Therefore, lithium concentration in both extracellular and intracellular compartments, 

rather than being roughly constant, is roughly proportional to lithium ingestion. 

2. Unlike other pharmaceuticals, lithium is wildly nonselective in its biochemical effects. 

The major underlying mechanism for the lack of selectivity is lithium’s general 

propensity to inhibit the many enzymes that have magnesium as a cofactor. 

3. Unlike other pharmaceuticals, lithium is an essential nutrient.  The question with 

lithium is not whether it should be ingested or not, but rather how much.  Extreme 

lithium deprivation results in failure to thrive, while too much lithium is toxic.  

In the light of all these factors, we suggest that the correct question to ask with respect to 

lithium and a particular disease is not, “Should lithium be administered for this particular disease?” 

but rather, “What is the optimum blood level of lithium for this individual, given his or her disease 

history, status, genetic propensities, and other medications?” Unlike other pharmaceuticals that are 

far more specific and inhibit or activate one gene or a small number of genes, the model for lithium 
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action is that it alters the balance between a large number of interacting processes and pathways. 

Thus, a dose-response curve for lithium is likely to be highly nonlinear and not always monotonic.  

There are just a few well-established markers for optimum concentrations. For a patient 

with a reliable diagnosis of bipolar disorder a common target for optimality would be blood 

concentration of 0.8-1 mM.  Significantly higher concentrations will result in acute toxicity, while 

significantly lower will result in loss of effectiveness.  However, this level has some side effects 

when sustained for years or decades, namely an increased risk of kidney damage and lowered 

thyroid activity. 

At the other end of the dosage scale, epidemiological evidence is compelling that 

geographical variations in concentration of lithium in the drinking water are correlated with a 

variety of health and wellness markers. 

Another important marker is provided by a study showing that over a four-year period a 

lithium level of .25-.4 mM of lithium (1/4 to 1/2 of the bipolar therapeutic dose) did not incur any 

renal damage66. This study suggests that clinical studies exploring low to medium-dose lithium 

could be undertaken with relatively minimal concerns for side effects. 

One possible piece of low-hanging fruit for a clinical trial would be low- to medium-dose 

lithium for men undergoing active surveillance (AS) for advance of prostate cancer.  From studies 

of AS outcomes, a large fraction of patients on AS ultimately require invasive treatment, as 

reviewed by Dall’Era et al67. When this need arises it typically comes after only a few years.  Thus, 

a trial of lithium in this context would produce significant results in a short time and would be 

relatively inexpensive. One of us (EJ) conducted an informal one-person trial on himself after 

being diagnosed with prostate cancer in 2014, ingesting lithium supplements sufficient to bring his 

blood lithium to .3-.4mM while undergoing AS by Memorial Sloan Kettering Cancer Center.  

MSK did not prescribe the lithium but agreed to include lithium level measurement in periodic 

blood tests.) In October 2017 EJ was told that there was no longer a need for AS. One case, 

important as it is to EJ, does not have statistical significance. We need clinical trials with 

significant numbers of people. 

We will be happy to collaborate on further specific pathway or network analysis relevant 

to any of the cancers for which lithium may be a promising component of therapy.   
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Abstract 

Association studies have been successful at identifying genomic regions associated with 

important traits, but routinely employ models that only consider the additive contribution of an 

individual marker. Because quantitative trait variability typically arises from multiple additive and 

non-additive sources, utilization of statistical approaches that include main and two-way 

interaction marker effects of several loci in one model could lead to unprecedented characterization 

of these sources. Here we examine the ability of one such approach, called the Stepwise Procedure 

for constructing an Additive and Epistatic Multi-Locus model (SPAEML), to detect additive and 

epistatic signals simulated using maize and human marker data.  Our results revealed that 

SPAEML was capable of detecting quantitative trait nucleotides (QTNs) at sample sizes as low as 

n = 300 and consistently specifying signals as additive and epistatic for larger sizes. Sample size 

and minor allele frequency had a major influence on SPAEML’s ability to distinguish between 

additive and epistatic signals, while the number of markers tested did not. We conclude that 

SPAEML is a useful approach for providing further elucidation of the additive and epistatic 

sources contributing to trait variability when applied to a small subset of genome-wide markers 

located within specific genomic regions identified using a priori analyses.    

Key words: Epistasis, stepwise model selection, genome-wide association study, quantitative genetics  
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Introduction 

The ability to identify genomic regions containing gene(s) associated with quantitative 

phenotypes has great potential for elucidating the genetic architecture of traits (e.g. number of 

genes, their effect sizes, additive vs. non-additive sources), as well as identifying targets for 

marker-assisted selection in plants and animals and therapy in humans. One analysis that seeks to 

identify such regions is the genome-wide association study (GWAS), in which statistical analyses 

are conducted on a set of markers spanning a species’ entire genome to determine which marker 

subsets exhibit the strongest associations with a trait of interest (reviewed in Lipka et al, 2015)1. 

In general, statistically significant marker-trait associations suggest that functional variants for the 

trait under study are located in the surrounding genomic region. To date, GWAS have been able 

to identify genes associated with many important traits, e.g. predisposition to breast cancer and 

diabetes in humans 2,3, and provitamin A levels in maize4. At present, GWAS is one of the most 

actively researched and applied methods for investigating the genomic underpinnings of 

Alzheimer’s disease5, coronary heart disease6, Parkinson’s disease7, carotenoid biosynthesis in 

maize8, and disease resistance in cattle9, among others. Thus, the ability of GWAS to identify 

specific genomic regions associated with traits critical for human health and agronomic 

performance has been demonstrated, and continued refinement of the statistical approaches in 

GWAS could make this analysis even more relevant for quantitative genetics research and its 

applications. 

The simplest and most widely used analytical approach for GWAS is to perform a separate 

statistical test for association between each marker and the evaluated trait. For example, a GWAS 

conducted to identify loci associated with the presence/absence of a disease in humans might 

perform either a Pearson’s chi-square test or conduct logistic regression separately for every 

marker in a genome-wide marker set10,11. Similarly, a GWAS conducted for a quantitative 

agronomic trait in a given crop12 might use the unified mixed linear model (MLM)13 that includes 

both fixed effect covariates to account for false positives arising from population structure and 

random effect covariates to account for those arising from familial relatedness.  

Although testing each marker individually has been effective in identifying statistically 

significant marker-trait associations in a wide variety of species and traits, it suffers from two 

major biological drawbacks. First, the consideration of only one marker at a time makes it 

impossible to quantify the simultaneous contributions of multiple functional variants located 
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throughout the genome in one statistical model. Second, these single-marker statistical tests 

typically do not consider the contributions of certain types of non-additive sources of variation, 

such as epistasis. Improvements to the typical statistical models used for GWAS could lead to 

more effective models. 

Both theoretical14,15 and empirical16,17,18 quantitative genetics research suggest that 

quantitative trait variation is under the control of multiple functional variants. Thus, statistical 

approaches need to complement this by including multiple markers in one model. Stepwise model 

selection is one of the simplest approaches for simultaneously estimating the additive effects of 

multiple loci. Here the additive effect of every marker throughout the genome is considered for 

inclusion as an explanatory variable in an optimal model. An extremely useful application of this 

approach is the multi-locus mixed-model (MLMM)19. In the MLMM, stepwise model selection is 

conducted on a given set of markers and false positives are controlled for by including the same 

fixed and random effects covariates as those used in the unified MLM13. An important advantage 

of the MLMM and similar approaches over single marker analyses is their capability to 

substantially lower false positive detection rates of marker/trait associations19. The MLMM has 

been shown to be useful for GWAS in crop diversity panels, especially as an extra step to further 

elucidate the signals already identified by an initial genome-wide scan using the unified MLM4,20,21  

Another application of stepwise model selection in GWAS is found in the US maize nested 

association mapping (NAM) panel22,23,24, where it is called joint linkage (JL) analysis. The maize 

NAM panel consists of 25 recombinant inbred line (RIL) families that share a common parent. To 

account for the family structure of the NAM panel, JL analysis starts with a baseline model 

containing the trait of interest as the response variable and the families as a fixed effect. Stepwise 

model selection is then conducted, where the nested additive effect of each marker within each 

family is considered for inclusion into an optimal JL analysis model. The use of JL analysis on the 

US maize NAM population data has proven fruitful for dissecting the genomic sources of many 

quantitative traits, including flowering time22, inflorescence25 and leaf blight26. Although the 

number of markers considered in these studies is orders of magnitude smaller than those currently 

available from high-throughput genotypic and/or phenotypic data, it is encouraging that this 

statistical approach successfully provided insight into the genetic architecture of those traits. To 

facilitate its broader adoption in GWAS, JL analysis has been made available in the graphical user 

interface (GUI) of TASSEL527, a publicly available Java package.  
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Non-additive sources of genetic variation are hypothesized to contribute to the 

discrepancies reported between the observed signals identified in GWAS and what is theoretically 

expected given the heritability of the trait under study28. Epistasis, generally defined as the 

interaction effect between alleles at two or more genomic loci29, is one such non-additive source. 

The direct quantification of epistatic effects by inclusion into multi-locus statistical models could 

improve our understanding of the genomic architecture of traits. A number of statistical approaches 

have been described for this purpose (e.g. Cordell, 2002; Haley and Knott, 1992; Jannink and 

Jansen, 2001; Karkkainen et al, 2015)30,31,32,33 and computationally efficient software has been 

developed. In particular, FastEpistasis34, Glide35, EpiGPU36, Boost37, multiEpistSearch38  and 

EPIQ39 explicitly search for pairwise epistasis among a set of markers provided by the user. 

However, none of the statistical models used in these packages can incorporate contributions from 

multiple pairs or higher-order combinations of interacting loci. This is a significant drawback, as 

a substantial proportion of non-additive variation could be attributable to multiple sets of 

epistatically interacting loci. In this manuscript we evaluate the Stepwise Procedure for 

constructing an Additive and Epistatic Multi-Locus model (SPAEML), which could potentially 

remedy that drawback. 

We extended the TASSEL5 code for JL analysis to implement SPAEML and tested its 

ability to detect additive and epistatic QTNs as a function of sample size and number of markers. 

To achieve this, we used genomic data from 2,648 individuals from the North Central Regional 

Plant Introduction Station (NCRPIS) maize diversity panel40 and from an Alzheimer’s disease 

(AD) case-control cohort consisting of 2,099 human subjects41 to simulate traits with different 

heritabilities and QTN effect sizes. Since these were not nested association mapping populations, 

the effect of nesting was not enabled in any of our analyses. We compared SPAEML to two other 

methods. The first, JL analysis, constructs a multi-locus model for additive marker effects and 

therefore will always misspecify any epistatic markers included in the model as additive. In 

contrast, FastEpistasis focuses on the interaction effect of one marker pair at a time; thus any 

additive signals identified by this approach will be misspecified as epistatic. Our hypothesis was 

that SPAEML can detect and correctly specify both types of markers.  

Materials and Methods 
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Stepwise procedure for constructing an additive and epistatic multi-locus model 

(SPAEML) 

The statistical approach implemented for SPAEML is similar to those previously described 

(e.g.  Bogdan et al, 2004; Yu et al, 2008)24,42. Briefly, this procedure involves identifying the 

optimal version of the multi-locus linear model that combines additive and epistatic effects: 

𝑌𝑖 = 𝜇 + ∑ 𝛽𝑗𝑥𝑖𝑗 +𝑗∈𝐼 ∑ 𝛾𝑢𝑣𝑥𝑖𝑢𝑥𝑖𝑣 +(𝑢,𝑣)∈𝑈 𝜀𝑖       (i) 

for a data set consisting of n individuals and m markers denoted by 𝑥1, … , 𝑥𝑚. In this model, 

𝑌𝑖 is the observed trait value of the ith individual (e.g., human subject or plant accession); 𝜇 is the 

grand mean; 𝛽𝑗  is the additive effect of the jth marker; 𝛾𝑢𝑣 is the two-way epistatic term between 

the uth and the vth marker; I is a subset of the m markers with additive effects included in the 

model; U is another subset of markers with two-way epistatic effects included in the model; 𝑥𝑖𝑗, 

𝑥𝑖𝑢, and 𝑥𝑖𝑣 denote the observed genotypes coded additively at the jth,  uth, and vth marker loci 

respectively for the ith individual; and 𝜀𝑖 represents a normally distributed random error term. A 

stepwise model selection procedure is used to determine the optimal sets of markers belonging to 

I and U. 
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Simulation Study 

• Genotypic and phenotypic data 

To evaluate the statistical performance of SPAEML we conducted two independent 

simulation studies: one using genotypic data from a maize diversity panel, and one using genotypic 

data from a human case-control study. The maize data were from the NCRPIS maize diversity 

panel40, consisting of a collection of 2,815 diverse maize inbred lines from throughout the world. 

We focused on a subset of 2,648 individuals genotyped for 681,257 single nucleotide 

polymorphisms (SNPs) using genotyping-by-sequencing (GBS)43. These data are publicly 

available at: http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes. 

The second dataset is from the Mayo Clinic late-onset Alzheimer’s disease GWAS, which consists 

of 844 Alzheimer’s disease (AD) cases and 1,255 controls41. All 2,099 of these individuals were 

genotyped using 213,528 SNPs located within +/- 100 kb of 24,526 genes whose transcript levels 

were measured in Zou et al (2012)41. These data are available at:  

https://www.synapse.org/#!Synapse:syn2910256.  

Within each species, we constructed multiple test datasets varying in sample size and 

number of markers. All test datasets consisted of either the full set of individuals (n = Max; i.e. 

2,648 maize or 2,099 human individuals), or the same random subset of n = 300 individuals in 

each species. Similarly, the test datasets included either a random subset of m = 15,000 SNPs or a 

random subset of m = 5,000 SNPs. For both species, all SNPs in the 5,000-marker set were also 

included in the 15,000-marker set.  

Traits were simulated as previously described in scheme 2 of (Zhang et al, 2010)44 for each 

of the above data subsets. First, additive and/or epistatic quantitative trait nucleotides (QTN) were 

randomly selected from a subset of markers that were present in both the 5,000- and 15,000-marker 

subsets from each species. For consistency across all simulation settings, the range of possible 

QTN effect sizes was bounded by 0 and 1. A total of five simulation settings were used (Table 

5.1), each with differing numbers of additive and epistatic QTN, their effect sizes, and the broad-

sense heritability values (𝐻2). To empirically evaluate the false positive detection rate of SPAEML 

in the absence of genomic signals, the traits simulated in the first setting had zero QTN and 𝐻2 =

0. The genomic sources of variation underlying the traits in the next setting consisted of four 

markers that were randomly selected to be additive QTN and four additional marker pairs that 

http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes
https://www.synapse.org/#!Synapse:syn2910256
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were randomly selected to be epistatic QTN. The additive and epistatic QTN both followed a 

geometric series; that is, the QTN with the 𝑗𝑡ℎ largest effect size was 0.95𝑗. Since the purpose of 

this setting was to evaluate the ability of SPAEML to identify signals for a trait with an ideal 

genetic architecture, the heritability was set at 𝐻2 = 0.99. To assess whether SPAEML can 

distinguish between additive and epistatic signals, the next setting consisted of two simulated QTN 

containing both nonzero additive and nonzero epistatic effects. Thus, the additive effects of these 

two QTN were 0.90 and 0.81, and the epistatic effect of these two QTN was 0.9. All traits 

simulated at this setting had a broad-sense heritability of 𝐻2 = 0.95. 

The next simulation setting strove to emulate the genetic architecture of a trait one might 

expect to find in a crop species. Thus, traits simulated in this setting were loosely based on the 

contrasting genetic architecture of inflorescence traits between maize and teosinte16,45. The genetic 

underpinnings of these simulated traits consisted of one two-way epistatic QTN of effect size 0.90, 

26 additive QTN with the effect size of the 𝑗𝑡ℎ QTN set to 0.45j, and a broad-sense heritability of 

𝐻2 = 0.92. In a similar vein, the next setting was based on the genetic architecture of Alzheimer’s 

disease in humans46,47,48. For this setting, a large-effect additive QTN with effect size of 0.90 and 

a geometric series of 19 additive QTN with the effect size of the 𝑗𝑡ℎQTN set to 0.40𝑗were 

simulated. In addition, a two-way epistatic QTN with effect size 0.70 was simulated. To imitate 

the contributions of the APOE gene to Alzheimer’s disease46, one of the two loci contributing to 

this epistatic QTN was the same as the large-effect additive QTN with effect size of 0.90. 

Consistent with the literature48, all traits simulated in this setting had a broad-sense heritability of 

𝐻2= 0.34.  

A total of 100 traits were simulated for each setting, species, and sample size. For a given 

simulated trait and sample size, the cumulative additive and epistatic QTN effects were calculated 

across all individuals. The variance of these cumulative effects comprised the genetic variance 

component of the trait. Finally, for a given 𝐻2, we simulated a normal random variable with mean 

0 and variance 𝜎𝑟
2, where 𝜎𝑟

2 is determined from 𝐻2. That is, if we let 𝜎𝑔
2 denote the genetic 

variance component of the trait, then the variance of this normal random variable is calculated by 

solving the following equation for 𝜎𝑟
2: 

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑟

2         (ii) 
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Thus, any simulated trait value from a particular individual equals the sum of the 

cumulative QTN effects and the observed value of the aforementioned normal random variable. 

For the first setting, with zero QTN and 𝐻2 = 0, this normal random variable was simulated with 

a variance of 𝜎𝑟
2 = 1. 

 

• Statistical models fitted to each trait at each setting 

For each trait that was generated in the simulation study, SPAEML, JL analysis, and 

FastEpistasis were conducted to identify markers exhibiting peak associations with additive and 

epistatic QTN. For each of the five simulation settings, sample sizes, species, and number of 

markers, two separate permutation procedures (described in Churchill and Doerge, 1994)49 were 

conducted 100 times to empirically determine the inclusion and exclusion P-value thresholds that 

control the Type I error rate at 0.05: once for SPAEML and once for JL anlaysis. We conducted 

SPAEML using a Java package derived from the original TASSEL5 suite, but with the added 

ability to include epistasis (https://bitbucket.org/wdmetcalf/tassel-5-threaded-model-fitter). 

Additionally, the built-in stepwise model selection procedure from TASSEL was used to conduct 

the stepwise model selection procedure that only considered additive marker effects, a procedure 

which we refer to as joint linkage (JL) analysis. The FastEpistasis package was obtained from 

http://www.vital-it.ch/software/FastEpistasis, and Bonferroni correction was applied to control for 

multiple testing. FastEpistasis only tests one pair of markers at a time and constructs a model that 

includes additive effects for each marker and a two-way interaction term that models their epistatic 

effect. 

• Criteria used to quantify the detection of QTNs 

For a trait simulated under a given sample size, marker number, species, and setting, a QTN 

was said to have been detected by one of the three statistical approaches if either a marker 

contributing to the QTN itself or at least one marker located within a surrounding +/- 250 kb 

window was i.) included as a main (additive) effect in SPAEML or JL analysis, ii.) included as 

part of a two-way interaction (epistatic) effect by SPAEML, or iii.) included as part of a two-way 

interaction effect with a P-value less than or equal to the Bonferroni-adjusted 𝛼 = 0.05 threshold 

when analyzed in FastEpistasis. Thus, an approach’s (i.e., SPAEML, JL analysis, or FastEpistasis) 

detection rate of a QTN was defined to be the proportion of the corresponding 100 simulated traits 

https://bitbucket.org/wdmetcalf/tassel-5-threaded-model-fitter
http://www.vital-it.ch/software/FastEpistasis
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in which a QTN was detected. A similar metric specific to SPAEML, the specification rate of a 

QTN, was defined as the proportion of 100 traits where an additive QTN was correctly identified 

by SPAEML as additive, and both loci contributing to an epistatic QTN were correctly identified 

by SPAEML as epistatic. A window size of +/- 250 kb has been previously used in maize diversity 

panels to designate local regions of genomic proximity in maize50,51. To enable a side-by-side 

comparison of results between the two species, the same +/- 250 kb window size was used in the 

human data. 

A false positive (FP) detection was said to occur for i.) each main effect detected by 

SPAEML or JL analysis corresponding to a marker located outside of the +/-250 kb windows 

surrounding all QTN and ii.) each two-way interaction effect detected in SPAEML where both 

corresponding markers were located outside of the +/- 250 kb windows surrounding all QTN, or 

when iii.) a statistically significant association outside of these windows was identified by 

FastEpistasis. Hence the FP rate of a given approach was defined to be the proportion of 100 traits 

simulated at a given sample size, marker number, species, and setting with at least one FP.  

Results 

We conducted a simulation study to explore the impact of sample size and number of 

markers on the ability of SPAEML to identify additive and epistatic QTN. To enable a thorough 

investigation, traits with different genetic architectures ranging in complexity were simulated 

using genotypic data from a maize diversity panel and then again with genotypic data from a 

human case-control cohort (Table 5.1).  Figure 5.1 shows that the distributions of minor allele 

frequencies (MAFs) of the 15,000 markers considered in both species are vastly different. While 

the majority of the 15,000 SNPs in the maize diversity panel have MAFs below 0.1, the majority 

of the 15,000 SNPs in the human case-control study have MAFs that are greater than 0.1. Within 

both data sets, the MAFs of the markers randomly selected to be QTNs span the entire range of 

observed MAFs. These patterns enabled us to observe the way the collective distribution of allele 

frequencies in a marker set influenced the performance of SPAEML. 

Observed false positive rates across the five genetic architectures 

The purpose of simulating traits under the “Null” setting was to evaluate the effectiveness 

of the premutation procedure (used for SPAEML and JL analysis) and the Bonferroni procedure 
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(used for FastEpistasis results) to control the type I error rate at 𝛼 = 0.05.  The observed empirical 

FP rates across species, number of markers, and sample sizes suggest that these procedures are 

controlling for type I errors reasonably well, with SPAEML having empirical FP rates that are 

most consistently close to 𝛼 = 0.05 (Figure 5.2). The FP rates are generally higher for simulation 

settings other than “Null,” especially for the traits simulated under the “Ideal” genetic architecture 

(𝐻2 = 0.99, all QTNs have large effect; Table 5.1) in maize (Supplementary Figure 5.1). These 

results are not surprising because it is theoretically possible for all three approaches to identify 

markers that are in linkage disequilibrium (LD) with the simulated QTN. FastEpistasis, which tests 

the epistatic effect of one pair of loci at a time, tended to yield higher FP rates than the other two 

stepwise approaches, while SPAEML tended to have low FP rates at the maximum sample sizes 

in both datasets (Supplementary Figure 5.1).  

Accuracy of SPAEML at a limited sample size of n = 300 individuals 

The results from these simulation studies show that sample size has a substantially greater 

impact on QTN detection than the number of markers, underscoring the well-established 

importance of having sufficient sample sizes when conducting quantitative genetics analysis52. 

Nevertheless, to ascertain the limits of the ability of SPAEML to identify genomic signals, all five 

simulation settings were run with n = 300 individuals. One of the most detrimental impacts of 

small sample size on the accuracy of SPAEML appeared to be on the FP rate; substantially high 

FP rates from SPAEML were observed only at n = 300 (Supplementary Figure 5.1). In contrast, 

the FP rates for JL analysis and FastEpistasis were more consistent across sample sizes. At n = 

300, SPAEML detected QTN at rates vastly superior to those of FastEpistasis, but not as high as 

those of JL analysis (Figure 5.3a; Supplementary Figures 5.2-5.9). Finally, we observed that at n 

= 300, SPAEML is more likely to misspecify additive QTN as epistatic and identify only one locus 

contributing to an epistatic QTN (Figure 5.3b; Supplementary Figures 5.10-5.17). In contrast at n 

= max, SPAEML yielded i.) minimal FP rates, ii.) QTN detection rates that were comparable to 

JL analysis, iii.) greater capability to identify both loci underlying epistatic QTN, and iv.) the 

capacity to distinguish between additive and epistatic signals in traits simulated in the human 

dataset. In light of this contrast and the negligible impact of the number of tested markers on the 

simulation results, the remaining sections present findings based on n = max individuals and m = 

15,000 markers.  
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Distinguishing between additive and epistatic signals at the same locus 

Among the three approaches that were evaluated, only the output of SPAEML provide 

results for both additive and epistatic terms fitted to one model. To characterize the ability of 

SPAEML to distinguish between additive and epistatic signals, both of the QTNs considered in 

the “Additive vs. Epistatic” setting harbored non-zero additive and epistatic effects. At this setting, 

we observed contrasting results between the two species. In maize, SPAEML classified the signals 

at these QTNs as epistatic 100% of the time, suggesting that SPAEML was unable to distinguish 

between these additive and epistatic effects (Supplementary Figures 5.12-5.13). Contrastingly, 

SPAEML identified the additive and epistatic signals underlying both QTN simulated in the human 

dataset for all simulated traits. Similar results were obtained for the Alzheimer’s disease-like 

(“AD-like”) setting, where the large-effect additive QTN also include a substantially large epistatic 

signal (Supplementary Figures 5.16-5.17).  

 

Accuracy in more complex genetic architectures 

We compared the accuracy of the three approaches in simulation settings 4 and 5, which 

approximate the polygenic underpinnings of maize inflorescence (“Inflorescence-like” in Table 

5.1) and Alzheimer’s disease (“AD-like”). Two important characteristics distinguish these two 

settings. First, “Inflorescence-like” was highly heritable (𝐻2 = 0.92) while “AD-like” was not (𝐻2 

= 0.34). Secondly, the effect size of the epistatic QTN was substantially higher relative to those of 

the additive QTN in the “Inflorescence-like” setting, whereas the strength of the epistatic QTN in 

the “AD-like” setting was not.  

The detection rate for additive QTN improved as a function of the effect size for both JL 

and SPAEML, with roughly comparable accuracy between the two approaches (Figure 5.4A). In 

the human dataset, SPAEML provided the added advantage of always correctly identifying both 

loci contributing to the epistatic QTN, and correctly specifying additive QTNs as a function of 

their effect size (Figure 5.4A and Supplementary Figures 5.16-5.17). This latter result intuitively 

makes sense: the stronger the QTN effect, the more likely it is to be distinguished from a non-

additive signal. Among the corresponding traits simulated with maize data, SPAEML was at most 
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capable of detecting one out of two loci contributing to an epistatic QTN, and all additive QTNs 

were misspecified as epistatic (Figure 5.4B). We hypothesize that the generally lower MAF 

observed in the markers from the maize dataset provided weaker statistical support for each of the 

simulated QTN, resulting in the observed misspecification. 

Discussion 

Statistical approaches that consider the additive and epistatic contributions of multiple 

genomic loci could enable unprecedented quantification of the genetic architecture of 

agronomically important and human health-related quantitative traits. Using genotypic data from 

a maize diversity panel and a case-control study of Alzheimer’s disease in humans, we conducted 

a simulation study to determine the accuracy and limits of applicability of SPAEML. Specifically, 

we assessed the impact of sample size, number of markers, MAF, and the genetic architecture 

underlying a given trait on the ability of SPAEML to detect and correctly specify additive and 

epistatic QTN. Our results suggest that sample size has greater influence on the performance of 

SPAEML than the number of markers, in all considered cases. Additionally, the capability of 

SPAEML to distinguish between additive and epistatic QTN was much greater when traits were 

simulated in the human data set, possibly due to the generally higher values of marker MAFs. At 

the maximum evaluated sample sizes, the detection rate of SPAEML was comparable to JL 

analysis, and unequivocally superior to that of FastEpistasis. 

Our study builds upon previous work31,32,33,53 that explicitly assesses the ability of 

stepwise-based or similar approaches to identify and distinguish between additive and epistatic 

genomic signals. Novel state-of-the-art computational approaches54 and inexpensive genotyping 

protocols43,55 are resulting in extremely large amounts of genotypic and phenotypic data. Larger 

sample sizes facilitate improved accuracy of analyses. However, exhaustive searches for multiple 

sets of epistatically interacting loci on a genome-wide scale in large datasets faces a difficult 

multiple-testing problem33. Stepwise model selection and related approaches have been successful 

in circumventing this problem in the past25,56,57 by considering a relatively small number of total 

markers in their analyses; this past success drove us to investigate SPAEML. 

Based on our results, we expect SPAEML will be particularly useful for quantifying 

additive and epistatic marker-trait associations in specific genomic regions that have been 

identified in a priori biological or statistical analyses. This will result in the analysis of a smaller 
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set of markers, thus yielding a smaller search space for optimal models and enabling researchers 

to capitalize on the accuracy of SPAEML that we demonstrate here. Our exploration of the factors 

that influence the accuracy of SPAEML is not exhaustive, but is sufficient to complement so-called 

“search space reduction” efforts58,59 by providing a rough assessment of the number of markers to 

target within the genomic regions identified in a priori analyses.  

Effect of sample size 

Our study confirmed the common expectation that sample size positively affects the 

accuracy of SPAEML. We also demonstrated that SPAEML is capable of true positive detection 

and even correct specification of additive and epistatic QTN at the smaller sample size that we 

explored (n = 300). However, the accuracy improves dramatically at larger sample sizes. Although 

this result is unsurprising, direct quantification of SPAEML’s ability to identify additive and 

epistatic QTN at different sample sizes is informative, as it is useful to know how a model will 

behave on a smaller dataset when desired sample sizes are unavailable. Our results show that even 

in those cases SPAEML will find many significant SNPs and epistatic pairs, although they may be 

misspecified in the final model. 

Effect of the marker set size 

In contrast to the substantial impact of sample size on the accuracy of SPAEML, we 

observed similar true and false positive rates at the two marker sizes that were tested. From a 

statistical perspective, these results suggest that for these simulated data, the conservativeness of 

the multiple testing problem is similar for both 5,000 and 15,000 markers. Thus, the larger marker 

set does not decrease the accuracy of SPAEML. This is important, as our marker sets are orders of 

magnitude smaller than those currently available on a genome-wide scale in heavily researched 

species. We hope the usefulness of SPAEML holds for larger sets, although direct extrapolation is 

not recommended. We believe this method is best used on a set of markers that has been whittled 

down by using prior biological information, such as linkage disequilibrium analysis, hypothetical 

relations between markers and cellular pathways, or other preliminary analyses that remove 

markers that are least likely to contribute to the final model function. This will bring the problem 

into the setting of optimal performance for SPAEML, and also reduce the computational burden 

from testing both additive and epistatic effects, which grows binomially with the marker set size. 
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Effect of the minor allele frequency 

We found SPAEML to be much more capable of distinguishing between additive and 

epistatic signals for traits simulated in the human dataset, despite that the same number of markers, 

similar number of individuals, and the same simulated genetic architectures were evaluated in the 

maize and human datasets. We propose two distinct but not mutually exclusive hypotheses to 

explain these results. First, differences between the underlying characteristics of the maize and 

human genomes could result in LD-related properties being more favorable for SPAEML to work 

optimally in the human dataset. The second hypothesis is that the differences in accuracy are a 

downstream ramification of the difference in MAF distribution across the two datasets (Figure 

5.1), potentially explained by the procedures for data collection. The maize dataset is a diversity 

panel, meaning that it consists of a wide variety of genetically diverse species40. Thus rare variants 

are prominent, and consequently SNPs with low MAFs are observed. Although rare variants are 

undoubtedly also present in the human genome, recent research suggests that the humans tend to 

be far less genetically diverse than plants, having gone through multiple rounds of purifying 

selection during inter-continental migrations in human evolution60,61. Combined with the fact that 

the human data we analyzed were from a case-control study, low MAFs are less prominent. In any 

case, the differences in SPAEML accuracy suggest that both the genomic characteristics of a 

species and the distribution of MAFs among the tested markers could exhibit a critical impact on 

the results. 

Conclusions and next steps 

To ensure that the most appropriate biological conclusions are made by breeding, medical, 

and quantitative genetics research communities, it is imperative that statistical models which 

approximate the genetic architecture of traits are accurate. By design, both JL analysis and 

FastEpistasis oversimplify the intricate patterns of main effects and multifaceted interactions 

between loci contributing to phenotypic variability. While JL is designed to only consider additive 

effects in a multi-locus model, FastEpistasis is designed to only test for epistasis, one pair of 

markers at a time. In contrast, we demonstrate that SPAEML is a sensitive and accurate approach 

capable of identifying and distinguishing between additive and epistatic genomic signals, at least 

for datasets of several thousand samples and markers. We suggest that SPAEML, which conducts 

model selection for all possible main effects and two-way interaction effects of a set of markers, 
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is best used for constructing an accurate model on a limited set of markers identified through an a 

priori analysis, once the least-contributing markers have already been eliminated. To reduce the 

inherent computational burden with running SPAEML, we are currently working to migrate the 

Java code for SPAEML into Scala for a more scalable deployment on Spark. This will enable 

massive parallelization of the procedure. In the meantime, the Java program that conducts 

SPAEML is already available to the public free of charge.  
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TITLES AND LEGENDS TO FIGURES 

 

Figure 5.1. Distribution of the minor allele frequencies (MAFs) of the evaluated single nucleotide 

polymorphisms (SNPs). Box plots depicting the MAFs (Y-axis) of the 15,000 SNPs that were tested in the 

human dataset and the 15,000 SNPs that were tested in the maize dataset (X -axis).  The MAFs of all SNPs 

that were randomly selected to be quantitative trait nucleotides (QTNs) for the simulation studies are denoted 

by purple dots. These box plots illustrate that the MAFs of the SNPs in the maize dataset tend to be lower 

than those in the human dataset.  
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Figure 5.2.  Comparison of false positive rates for the three approaches evaluated in “Null” 

setting where no quantitative trait nucleotides (QTNs) were simulated. The rate of false positive detection, 

defined as a SNP located outside of +/- 250 kb of any of the QTNs, for joint linkage (JL) analysis, the stepwise 

procedure for constructing an additive and epistatic multi-locus model (SPAEML), and FastEpistasis are 

plotted on the Y-axis of each graph. Starting from the left, the first two graphs show the results for the traits 

simulated in the human data, while the last two columns show the results for the maize simulated data.  The 

graphs with the title “5k” show the results when 5,000 markers were tested, and the graphs with the title “15k” 

show the results when 15,000 markers were tested. The X-axis of each graph show the sample sizes that were 

tested, with max indicating the maximum sample size of each dataset (2,648 in the maize dataset and 2,099 in 

the human dataset).  
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Figure 5.3.  Detection (A) and specification (B) rates of simulated quantitative trait nucleotides 

(QTNs) for the three approaches evaluated in the “Ideal” genetic architecture with setting with four 

large-effect additive QTN and four large-effect epistatic QTN and heritability equal to 0.99 (A). The 

detection rates of the additive QTNs, defined as the proportion of SNPs located within +/ - 250 kb of any of 

the simulated QTN detected using joint linkage (JL) analysis (red bar), the stepwise procedure for constructing 

an additive and epistatic multi-locus model (SPAEML; green bar), and FastEpistasis (blue bar) are plotted on 

the Y-axis of each graph. The first two rows (shaded pale yellow) show results for the simulated additive 

QTN, while the bottom two rows (shaded pale purple) show results for the simulated epistatic QTN. The first 

and third rows show results for the simulations conducted in the human dataset, while the second and fourth 

rows show results for the simulations conducted in the maize dataset. The X-axis on each graph depict the 

effect sizes of the QTN.  The left column shows results for n = 300 individuals and m = 15,000 markers, while 

the right column shows results for n = max individuals (i.e., n = 2,099 in humans and n = 2,648 in maize) and 

m = 5,000 markers.  Both JL and SPAEML are able to detect the additive and epistatic effects, while 

FastEpistasis failed to detect all the additive effects and most of the epistatic effects. (B) Specification rates 

of SPAEML, defined as the proportion of times that a detected additive QTN was correctly specified in the 

SPAEML model as additive, misspecified as epistatic (first two rows); or the proportion of times for a detected 

epistatic QTN that it was misspecified as additive, only one locus contributing to the QTN was detected, or 

both loci contributing to the QTN (bottom two rows). These proportions are depicted on the Y -axis of each 

graph. The X-axes of each graph, and how they are subdivided into rows and columns, are the same as in (A). 

Optimal specification is obtained at n = max; m = 5,000 marker setting and in the human data.  
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Figure 5.4.  Detection (A) and specification (B) rates of simulated additive quantitative trait 

nucleotides (QTNs) for the three approaches evaluated in the two complex genetic architectures at a 

maximum number of individuals (n = 2,099 human subjects and n = 2,648 maize lines) and 15,000 

markers (A) The detection rates of the additive QTNs, defined as the proportion of SNPs located within +/- 

250 kb of any of the simulated QTNs detected using joint linkage (JL) analysis, the stepwise procedure for 

constructing an additive and epistatic multi -locus model (SPAEML), and FastEpistasis are plotted on the Y-

axis of each graph. The first row shows results for the simulations conducted in the human dataset, while the 

second row shows results for the simulations conducted in the maize dataset. The X-axis on each graph depict 

the effect sizes of the additive QTN.  The left column shows results for the inflorescence-like genetic 

architecture, while the right column shows results for the AD-like genetic architecture. Similar detection rates 

were observed across JL analysis and SPAEML, while FastEpistasis failed to detect all the additive effects. 

(B) Specification rates of SPAEML, defined as the proportion of times that a detected additive QTN was 

correctly specified in the SPAEML model as additive or misspecified as epistatic, are depicted on the Y -axis 

of each graph. The X-axes of each graph, and how they are subdivided into rows and columns, are the same 

as in (A). Correct specification of additive QTN occurs in the traits simulated using human data. 

“Inflorescence-like” = setting with 26 additive QTN, one epistatic QTN and heritability equal to 0.92; “AD-

like” = setting with 20 additive QTN, one epistatic QTN and heritability = 0.34  
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Table 5.1. Description of the number of individuals, markers, and genetic architecture 

considered in the five tested simulation settings. 

 

aQTN, quantitative trait nucleotide 
bmax, denotes maximum sample size, that is 2,648 maize individuals and 2,099 human individuals 
cAD, Alzheimer’s disease 

 

 

 

Simulation 

setting 

No. of 

individuals 
No. of markers Heritability 

No. of additive 

QTNa 

(range of effect 

sizes) 

No. of epistatic 

QTN 

(range of effect 

sizes) 

1 = “Null” 300; maxb 5,000; 15,000 0 0 0 

2 = “Ideal” 300; max 5,000; 15,000 0.99 4 (0.81-0.95) 4 (0.81-0.95) 

3 = “Additive 

vs epistatic” 

300; max 5,000; 15,000 0.95 2 (0.81-0.90) 1 (0.90) 

4 = 

“Inflorescence

-like” 

300; max 5,000; 15,000 0.92 26 (9.63 x 10-10 – 

0.45) 

1 (0.90) 

5 = “AD-like”c 300; max 5,000; 15,000 0.34 20 (2.75 x 10-8 – 

0.9) 

1 (0.70) 
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CAPTER 6: Future Work - Search Space Reduction Approaches for GWAS 

Epistatic Model Selection 

 

The main focus of this thesis has been the development of methods to overcome multiple-

testing problem in complex biological scenarios. In chapters 1-3, I presented the application of 

non-parametric resampling method in gene ontology enrichment analysis. This method allows 

accurate estimation of p-values despite large number of tests performed on the dataset. However, 

this approach is not the end-all for every biological problem. In some situations, the number of 

possibilities to explore is so large that even the standard permutation procedure is not sufficient. 

In chapter 4, the permutation method is applied to evaluate a multi-locus model including both 

additive and epistatic approach for GWAS data of small size. While that worked well for smaller 

sample sizes, it was still very computationally intensive. The entire space of all possible models to 

evaluate grows as an exponential of binomials of the number of genomic markers. When 

evaluating more than ten thousand markers, brute-force approach becomes computationally 

infeasible. Therefore, one must first reduce the number of possible models to consider, a process 

known as "search space reduction". This is best accomplished by narrowing down the number of 

markers to those most likely to contribute to the phenotype. A number of tool packages and 

algorithms have been developed to address this problem, yet a consistent workflow is yet to be 

developed. In this chapter I provide an overview of the approaches that have been discussed in the 

literature, and suggest a way to synthesize a single, meaningful solution. Generally those 

approaches cluster into (1) machine learning or statistics algorithms to filter out SNPs that are least 

likely to carry a signal; (2) removal of SNPs by applying a-priori considerations not related to the 

biological problem in question, and (3) using prior knowledge about the biological problem being 

studied to narrow down on the SNPs most likely to be involved. 

Removal of SNPS least likely to contribute: LASSO, MDR, MAPIT 

It makes sense that among hundreds of thousands of SNPs present in each individual, only 

a small fraction actually contributes to the phenotype being studied. Thus, it is desirable to have 

some way to very quickly eliminate SNPs that are clearly unrelated to the problem and thus should 

not be taken into account when building the genotype-to-phenotype model.  
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One such method is LASSO: The Least-Absolute Shrinkage and Selection Operator1. It 

efficiently searches for the strongest effects while solving a constrained least-square problem, 

while constraining the sum of coefficients' absolute value below a fixed number5.  

min
𝛽0 ,𝜷

{
1

𝑁
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2

𝑁

𝑖=1

}  + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 

where 

𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑝)𝑇   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑐𝑎𝑠𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑁 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠 

 

𝜆: 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 

LASSO effectively shrinks coefficients of insignificant terms to zero, and could be used to 

quickly pre-screen a large number of markers before proceeding with actual model construction. 

The Screen and Clean package2 is built on this principle that a set of SNPs was selected by LASSO 

and then fitted into a more precise model. Other examples of using LASSO for GWAS include 

Graphic-guided fused lasso (GFLASSO)3 and Adaptive Group LASSO4. GFLASSO combines 

LASSO with genetic regulatory network. In the regulatory network, the SNPs associated with two 

directly interacting genes would be "fused" by having an additional penalizing term, so that the 

highly-correlated SNPs would be selected or filtered together3. 

min
𝛽0 ,𝜷

{
1

𝑁
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2

𝑁

𝑖=1

} + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

+ 𝛾 ∑ |𝑓(𝑟𝑚𝑙)||𝛽𝑗𝑚 − 𝑠𝑖𝑔𝑛(𝑟𝑚𝑙)𝛽𝑗𝑙|
(𝑚,𝑙)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑖𝑟

, 

where  

𝑟𝑚𝑙 is the correlation derived from the interaction network. 

Kim, et.al. (2009) applied GFLASSO method on both simulation study and a case study 

on asthma data set and demonstrated that GFLASSO has improved accuracy compared to regular 

LASSO3. Yang, et.al. (2010)4 developed the model by updating penalizing coefficient recursively 

(adaptive group LASSO, AGL) and applied it on rheumatoid arthritis data set from the Wellcome 

Trust Case Control Consortium (WTCCC)5. Yang, et.al. (2010)4 suggested that while the adaptive 
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group LASSO outperforms regular LASSO in detecting and specifying interactive pairs, it is still 

limited by the search space and therefore requires search space reduction with biological filters.  

By definition, LASSO would quickly converge to the strongest effects. While many 

epistatic effects do not have a strong additive effect, LASSO is a good tool to build an initial coarse 

model.  

Multifactor Dimensionality Reduction (MDR)6 is a method of processing SNPs such that 

their combinations are collectively replaced by a single list of predictors. MDR categorizes allele 

combinations into high/low risk groups by phenotype values followed by a data-mining procedure. 

First, data is partitioned into different sections and the program start with one section. For each 

combination of alleles, the ratio of diseased phenotype is calculated3. If the ratio is higher than a 

pre-set threshold, the combination is considered “high-risk”3. Otherwise, the combination would 

be “low-risk”3. Then, the grouping into high and low risk is modified and cross-validated by other 

data sections3. This works very well for case-control studies. Generalized versions of MDR7,8 also 

extend its application to quantitative traits. Family Multifactor Dimensionality Reduction (FAM-

MDR)9 includes familial correlations derived from theoretical model. All these approaches derived 

from MDR method effectively collapse allele combination into 1D vector. SNPHarvester10 is a 

package that combines MDR method and LASSO-like regression to identify interacting SNPs, 

which efficiently detect disease-associated SNPs. The authors for SNPHarvester points out that 

the package would perform better if guided by knowledge of biological knowledge to pre-select 

"Good" SNPs10. Similarly, prior knowledge of biological pathways, as implemented in Pathway 

Genetic Load (PGL)11. It generates weighed sum of important loci in the pathway associated with 

the phenotype and uses weighed sum instead of a vector of genotype values for regression. Instead 

of predicting which combination is most likely to contribute to the trait based only on statistics, 

PGL pre-selects alleles that are associated with pathways and combines them with a score. The 

scores would again replace the SNP combinations to be associated with the trait. Crawford, et.al. 

(2017) proposed PGL to evaluate SNPs affecting traumatic injury prognosis for sepsis and death 

by analyzing loci in the TLR4 signaling and response pathway14. 

Random Forests is a machine learning procedure especially suitable for categorical 

phenotypes. SNPs are partitioned so that combination of SNPs would lead to almost clear 

separation of phenotype categories. For example, Goldstein, et.al. (2010) applied random forest 
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on multiple sclerosis (MS) case-control dataset and obtained genes bolstered by previous study as 

well as new candidate genes12. However, Winham, et.al. (2012) has pointed out that the 

performance of random forest decreases as dimensionality increases and therefore might not be 

suitable for complex phenotypes13. 

MAPIT is a method that identifies variants that exhibit non-zero epistatic interactions with 

any other variant without the need to identify the specific marker combinations that drive the 

epistatic association14. Therefore, it is also a good candidate in pre-selecting candidates for 

epistatic pair for more detailed fitting later. MAPIT is designed to study quantitative trait with two-

way interaction, but the model is readily extensible to categorical trait and higher-order 

interactions. Since the marginal epistatic effect instead of explicit combination is evaluated, 

MAPIT can efficiently search candidate SNPs for interactions. However, MAPIT explicitly went 

through each SNP, which renders it less efficient than LASSO. 

Overall, LASSO might be a straightforward and efficient pre-filtering method to quickly 

build an additive model, if the potential model would be sparse. Other methods might be included 

later to further improve the pipeline to accommodate different data features. 

A-priori biological considerations: LD pruning 

Most organisms, especially complex multicellular eukaryotes, have chromosomal regions 

called "haplotype blocks" wherein groups of genetic variants are likely to be inherited together15. 

Replacing single SNPs with haplotyping blocks (or randomly choosing one SNP out of a set in 

one block) drastically reduces the total number of SNPs that participate in the model selection 

process. Linkage-Disequilibrium is a statistical approach to identify haplotype regions on 

chromosomes1. Software packages LINDEN16 and BEAM17 facilitate this process by analyzing 

high-LD regions. PASCAL18 and SKAT19 annotates SNPs onto genes that are in high-LD with 

them. After haplotyping SNPs, each haplotype group is considered as one variable in the model 

and represented by a randomly select SNP in the group. 

 

Using information from biological pathways and functions  
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In addition to haplotyping and PGL, SNP-pair search methods based on prior biological 

hypotheses have also been explored. For example, Reverse Pathway Genetic Approach starts with 

knowledge of pathways associated with a Mendelian disorder, identifies SNPs that are in epistasis 

with the genes of the pathway, and compares these SNPs with rare, major effect mutations involved 

in the pathway20. Ritchie (2011)21 has reviewed the potential of combining regulatory networks 

and pathways for filtering out SNPs that are likely to interact with each other. Liu et.al. (2012)22 

selects SNPs in disease-associated regulatory network and performs two-locus analysis to detect 

epistatic pairs. In group LASSO, an additional penalize term is included so that the coefficient for 

SNPs sharing an edge in regulatory network would shrink to zero at the same time. These methods 

involve the accuracy of pre-selecting the candidate SNPs but do not utilize the regulatory network 

data to expand the final model. Using similar methods, one could build an interaction matrix 

describing how likely the epistasis pair would form. To build the interaction matrix, several data 

source can be utilized: (1) sequencing data such as ChIP-Seq for direct transcription factor binding 

information23 and Hi-C for chromatin structure24, (2) networks derived from the sequencing data 

such as GTEx project25 and Juicebox toolkit24, (3) co-expression data from microarray 

experiments, (4) protein-protein interaction data from BioGRID26 and STRING27. Software like 

d2z28 and Jellyfish29 calculate the k-mer distribution in promoter region, which can be applied to 

evaluate similarity in the promoter regions and predict co-regulation. MatInspector also calculates 

promoter region similarity for co-regulation prediction but based on alignment instead of k-mer 

distribution.30 A study on Merino sheep pigmentation used MatInspector to construct regulatory 

network and used the network to predict epistatic pairs31. A recent algorithm called SPADIS 

further give more weights to SNP groups that are distantly connected in a regulatory network to 

ensure coverage over biologically meaningful pathways that might otherwise blurred by nearby 

high LD regions32. Hi-C data is included in the SPADIS method to consider physical distance of 

SNPs in a 3D structure24,32. (4) Exploration into evolutionary history of chromosome 

rearrangement might bring some insight into inter-chromosome epistasis.  

These biological toolkits and databases indicate the likelihood a SNP (group) would be 

interacting with another SNP (group). With these information, the candidate SNP to be added into 

the model would be ranked.  The step-wise procedure would then include and evaluate the 

candidate SNPs stochastically according to their rank. 
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Proposed workflow to synthesize the above methods into one automated 
solution 

 

Haplotyping using PASCAL or SKAT would be the first step. These packages not only 

group SNPs, but also associate them with genes. After this step, SNPs are grouped for reduced 

number of variable, and annotated to incorporate biological analysis. 

Then, a LASSO procedure is conducted to build an initial model. LASSO would quickly 

filter for the haplotypes with strongest effect as candidate.  

Meanwhile, multiple packages are applied in analyzing biological network depending on 

the input gene list size. If hundreds of genes are annotated, Packages like KnowEng33 and 

Magnum34 would incorporate multiple biological databases to predict candidate interactions. If 

SNPs of interest are collapsed near only a few genes, probably databases like co-expression35, or 

promoter region similarity analysis like D2z28 would indicate the most likely co-regulatory genes. 

Moreover, our script generating direct annotation to chromosome region, active CTCF binding 

sites, and Hi-C data using ANNOVAR36 would model the contact probability in chromatin regions. 

Then, a matrix of pairwise interaction probability is generated from all the analysis. 

In the SPAEML procedure, candidate SNPs are added into the model following the 

interaction probability stochastically. When significance is reached, search for model would stop. 
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In summary, the next stage of the work is to build a modeling pipeline integrating search 

space reduction method with SPAEML. SNPs are grouped in haplotype blocks and each block is 

replaced by single representative SNP. A coarse model is built by LASSO. To avoid exhaustive 

search, candidate SNP and pairs are prioritized with biological information and added into the 

model in a stochastic way. 
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