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ABSTRACT 

Transient polymers are emerging materials that transform from macromolecules to small 

molecules triggered by predefined environmental stimuli. Distinct from traditional degradable 

polymers, transient materials undergo domino like chain unzipping reactions, leading to 

controlled and complete depolymerization upon one cleavage. Taking advantage of the unique 

feature of triggered materials transience, this dissertation focuses on developing transient 

polymer microcapsules for programmable payload release. In Chapter 2, a rapid solvent 

evaporation strategy was developed to prepare transient polymer microcapsules with a low-

ceiling-temperature polymer, cyclic poly(phthalaldehyde) (cPPA), as the shell wall materials. 

Chapter 3 described an ion co-activation effect that modulated cPPA depolymerization rates in 

the presence of acid. In Chapter 4, we further investigated the ion specificity in the co-activation 

effect and anion solvation properties were found to significantly impact the co-activation 

behavior. Based on the specific ion co-activation effect, we developed programmable 

microcapsules whose payload release kinetics depends on the ionic species in the solutions. 

Chapter 5 further expanded the co-activation effect in Lewis acid solutions that achieved 

depolymerization in mild environment. In Chapter 6, several studies were devoted to understand 

the molecular and interfacial mechanisms of the ion co-activation effect. Chapter 7 reviewed 

current topics on the Hofmeister effect and constructed a crude model on auto-catalytic 

microcapsules. The thesis research offers an encapsulation strategy and ion library for triggered 

release microcapsules and will be of significance for designing logic gate responsive 

microcapsules, reversible activation-deactivation materials and self-regulating reaction networks 

in autonomous chemical system.  
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CHAPTER 1 : INTRODUCTION 

 

1.1 OVERVIEW OF POLYMER MICROCAPSULES AND TRIGGERED RELEASE  

Compartmentalization is critical for evolutions of cells and organisms.1 Membranes and 

proteins construct the physical boundaries and separate chemicals and nutritions in different 

organelles. These microscopic compartments allow biochemical reactions and molecular 

interactions to proceed simultaneously and/or in a programmed sequential fashion, directing 

mass transport and self-organization into complex hierarchical structures. In synthetic analogues, 

designing an autonomous self-regulating chemical systems needs equivalent artificial 

compartments that are able to recognize, translate, and amplify input signals into chemical 

outputs and reaction cascades. Polymer microcapsules, vesicles and micelles are synthetic 

compartments with macromolecules as the physical boundary. They are promising components 

with functional payloads and programmed to release with temporal and spatial control for 

building autonomous chemical systems. Among these polymeric compartments, microcapsules 

consist of diverse shell walls and payloads of different chemical and physical properties. The 

payloads remain dormant inside the microcapsules and are delivered on-demand upon the rupture 

or transformation of the shell walls to initiate the payload’s functions. Microencapsulation 

improves payload’s stability against oxidation and heat, and has found applications in drug 

delivery,2,3 cosmetics,4,5 food & beverage,6 agrochemicals,7 and self-healing composite 

materials.8  

Gaining temporal control in payload delivery is important for integrating microcapsules 

and other compartments into autonomous chemical systems. The payload release kinetic profiles 

depend on the structures and compositions of microcapsules, the properties of the shell wall 
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polymers, and the solubility of the encapsulated payloads. For example, matrix-based 

microcapsules (microparticles) with biodegradable polymers are useful in drug delivery to 

achieve controlled release in a time frame that matches the biological systems (typically days to 

months). In drug delivery, tri-phasic payload release kinetic profiles are commonly observed 

(Figure 1.1).  This is attributed to different payload delivery mechanisms: burst release caused by 

the unencapsulated and surface bounded drugs (phase I), controlled release driven by diffusion 

(phase II), and release induced by shell wall erosion (phase III). The burst release stage is usually 

uncontrollable and thereby not desired for drug delivery applications. This burst release stage can 

be shortened by optimizing the encapsulation procedures, formulations, and post-processing 

methods.9 Phase II and III of the release kinetic profiles can be tuned by changing molecular 

weight and crystallinity of the matrix/shell wall polymers, environments of the microcapsule’s 

suspensions, drug-drug or drug-polymer interactions, etc.10  

 

Figure 1.1. Tri-phasic drug release kinetic profiles in poly(lactic-co-glycolic acid)-based drug 

delivery systems. Phase I, burst release of surface bounded drugs; phase II, diffusion driven drug 

release; phase III, erosion driven drug release. (Reprinted with permission from reference 10. 

Copyright © 2011 Elsevier B. V.) 
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On the contrary, burst release triggered by a specific stimuli is beneficial for applications 

such as self-healing materials. The self-healing materials repair material’s “wound” in situ with 

minimum external intervention. Sometimes, instantaneous property recovery is required to 

prevent catastrophic failures. For example, immediate transparency recovery of a broken 

windshield is useful to protect passengers during a collision. Because the core-shell 

microcapsules have the potential to release payloads completely in a burst release kinetic profile, 

the core-shell morphology is desirable for self-healing applications.3,11 

In addition to releasing the encapsulated payloads from mechanically ruptured 

microcapsules, environmentally triggered payload release from core-shell microcapsules are 

attracting increasing interest. Triggered release microcapsules offer temporal and spatial controls 

of payload delivery. Various chemistry strategies,12,13 manufacture methodologies,6,9 and 

mathematics models14 have been developed to advance these fields. Precedent literatures have 

reported microcapsules triggered by various environmental stimuli, including contact and 

endogenous stimuli, such as pH, ions, redox, and enzymes; remote and exogenous stimuli, such 

as photo-irradiation, thermal radiation, sonication, microwave, and magnetic energy. The 

applications of these triggered release microcapsules range from cancer therapy, 

anticorrosive/antimicrobial coatings, batteries and electronics, to personal care products (Figure 

1.2). For example, pH-responsive microcapsules encapsulated with antitumor drugs deliver 

payloads after internalized by cancer tissues, where the intracellular acidic environments 

triggered the shell wall disassembly.15 This allows more spatially accurate and efficient drug 

delivery. Another example is to incorporate thermo-responsive microcapsules/microspheres for 

lithium batteries that autonomously shut down once the local temperature increases over the 
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safety threshold.16,17 Several studies also reported microcapsules that serve as microreactors for 

one-pot reaction cascades.18–20   

 

Figure 1.2. Triggered release mechanisms and applications of environmentally triggered 

microcapsules. (Reprinted with permission from reference 12. Copyright © 2011 American 

Chemical Society)  

1.2 MICROENCAPSULATION METHODOLOGIES FOR CORE-SHELL MICROCAPSULES 

Development of encapsulation methodologies drives the production of advanced 

microcapsules for various applications. Emerging from our interest to develop synthetic 

analogues for autonomous chemical systems and self-healing applications, the main focus of this 

dissertation is the development of core-shell microcapsules with solid polymer shell walls. 

Considerations for selecting an encapsulation methodology for target payloads include their 
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chemical properties, phase (liquid, solids, gas), hydrophilicity, solubility and volatility. Four 

major encapsulation methodologies are shown in Figure 1.3.  

 

 

 

Figure 1.3. Schemes of encapsulation methodologies for producing core-shell microcapsules: (a) 

interfacial polymerization, (b) layer-by-layer assembly, (c) coacervation, and (d) internal phase 

separation (also called solvent evaporation).(Reprinted with permission from reference 12  

Copyright © 2011 American Chemical Society) 

1.2.1 Microcapsules Prepared by Interfacial Polymerization 

Emulsion based interfacial polymerization is one of the most affordable and versatile 

encapsulation methods (Figure 1.3a). Typically, oil-in-water (O/W), water-in-oil (W/O) or oil-in-

oil (O/O) emulsions are generated by mechanical agitation. A crosslinked polymer network form 

at the interfaces of the continuous and the dispersed phases dissolved with complementary 

reactants, separately. Commonly employed chemicals for shell wall formation are amines, 

isocyanates, alcohols and acid chlorides. The microcapsules prepared by interfacial 

polymerization have ultrathin and robust shell walls and 90 wt% of the microcapsules are loaded 

with the payloads. This method is also scalable and versatile to encapsulate different functional 
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payloads and reactive chemicals, which are of interest to develop self-healing materials. 

Microcapsules with dicyclopentadiene (DCPD) were demonstrated to recover material’s 

mechanical properties. Charge transfer salts,21 liquid metal gallium-indium,22 carbon nanotubes23 

or functionalized carbon nanoparticles24 were encapsulated for reconstructing electronic 

conductivity. Color changing microcapsules upon mechanical rupture were developed for 

damage indication coatings.25–27 Several strategies have also been developed to reinforce the 

microcapsule’s barrier properties by forming polyurethane/poly(urea-formaldehyde) double 

layered shell walls in microcapsules.28 Microcapsules with superior stability were also prepared 

with a coating of polydopamine.29  

1.2.2 Microcapsules Prepared by Layer-by-Layer Assembly and Coacervation 

The Layer-by-layer (LbL) assembly method produces microcapsules based on 

electrostatic interactions of charge complementary polyelectrolytes (Figure 1.3b).15 The 

polyelectrolytes are deposited onto sphere-shaped templates (CaCO3, polystyrene, etc), which 

are removed after forming shell walls. Positively and negatively charged polyelectrolytes are 

deposited alternatively onto the surface of the sphere-shaped templates in a stepwise manner. 

The advantage of LbL method is the ability to load various core materials after the shell wall 

formation, because the shell wall is semipermeable. The permeability of the shell walls is also 

reversible by tuning charge density through environment variations (pH, ions, redox).30 The main 

limit in the applications of these microcapsules are their shell wall’s mechanical properties. 

Reinforcement strategies such as doping inorganic nanoparticles in the shell walls promote the 

stability of these microcapsules against air-drying.31,32  

Coacervation method produces microcapsules with solid shell walls based on charge 

complementary polymers (Figure 1.3c). Similar to interfacial polymerization, charge 
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complementary polymers are dissolved separately in the continuous and the dispersed phases of 

the emulsions. The electrostatic interactions between the polymers and their chain entanglements 

are driving forces to form the shell walls.33 

1.2.3 Microcapsules Prepared by Solvent Evaporation Method  

Emulsion-based solvent evaporation method is suitable for systems with readily prepared 

polymers (Figure 1.3d).9,34–38 The driving force for shell wall formation in this method is the 

evaporation of the solvent that precipitates the polymers at the interfaces. This method can be 

used to prepare both matrix-based microparticles and core-shell microcapsules. This method has 

been applied in large-scale production of biodegradable polymer microparticles for drug delivery 

applications.9,34 The core-shell microcapsules prepared by the solvent evaporation method have 

good mechanical properties, because of the relatively thick shell walls (~10% relative to the 

microcapsule’s diameters). One limitation of this method is few polymer/payload combinations 

are available to satisfy the interfacial wetting requirements to form the core-shell morphology. 

We will elaborate on this matter in Chapter 2, 2.1. 

1.2.4 Microcapsules Prepared by Flow-Focusing Microfluidic Devices 

Microcapsules prepared from emulsion templates generated by a flow-focusing 

microfluidic device is a rising research area. The flow-focusing microfluidic devices generate 

emulsion droplets with precise control of dimensions, structures, and compositions, compared 

with polydisperse emulsion droplets generated by mechanical agitation. The microfluidics 

method provides monodisperse microcapsules that serve as model systems for property analysis 

and structural variations. The Weitz group has made significant contributions in developing 

functional microcapsules, polymersomes and complex emulsions with flow-focusing 

microfluidic devices.39 Microcapsules prepared by water-in-oil-in-water (W/O/W) double 
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emulsion templates are the most widely applied (Figure 1.4). To form solid shell walls in 

W/O/W method, typically, the middle fluid oil phase consists of photocurable monomers and 

photoinitiators, and the middle fluid polymerizes under UV irradiation. Alternatively, shell wall 

polymers can be dissolved in the middle fluid and the shell wall form after solvent evaporation.   

 

Figure 1.4. Three configurations of flow-focusing microfluidic devices for producing W/O/W 

double emulsion templates with (a) thick middle phases, (b) ultra-thin middle phases, and (c) 

multiple inner droplets. (Reprinted with permission from reference 39  Copyright © 2014 WILEY-

VCH)  

Microfluidic devices with various configurations have been developed to produce single, 

double, and triple emulsions for a variety of applications. Gas-filled microcapsules with robust 

shell walls were fabricated by W/O/W double emulsion to enhance the signal contrasts in 

acoustic imaging applications.40 Development of triple emulsions, 

hydrocarbon/water/photocurable oil/water, enhanced the retention of volatile hydrocarbon 

payloads such as fragrance (α-pinene) with a thin layer of water around the hydrocarbon core.41 
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Another triple emulsion system is water/fluorocarbon/photocurable oil/water, where payloads 

with different polarity (water, ethanol, hexadecane) has been encapsulated successfully.42 Chu et 

al. also developed multi-level hierarchical complex emulsions via a cascade of flow-focusing 

microfluidic devices.43 A thermo-responsive polymer, poly(N-isopropylacrylamide) (pNIPAM), 

was selectively formed at the outer layer of the emulsion droplets A temperature variation 

triggered the collapse of the pNIPAM layer and released the internal droplets.  

1.3 STRATEGIES FOR ENVIRONMENTALLY TRIGGERED MICROCAPSULES 

To achieve triggered payload release from core-shell microcapsules, chemically modified 

and engineered shell walls have been designed. Based on whether the environmental stimuli 

intimately or remotely trigger the shell wall and release the encapsulated payloads, the triggered 

release strategies are categorized into endogenous triggers (pH, ion, redox, enzyme, etc) and 

exogenous triggers (irradiation, microwave, sonication, etc).3 

1.3.1 Endogenous Triggered Release Microcapsules  

Acid or base triggered microcapsules are developed based on shell walls with chemical 

linkers and backbones that either degrade or dissolve in response to pH variations. For example, 

ketal hydrolysis chemistries have been employed in preparing acid sensitive 

microcapsules/microparticles with interfacial polymerization.44 Broaders et al. has reported using 

diethylaminoketal (DEAK) and trimesoyl chloride to form crosslinked shell walls. The 

microcapsules and degradation products were demonstrated to be biocompatible. In vitro 

experiments showed that these microcapsules were triggered by the acidification of the cells and 

delivered the encapsulated hydrophobic drugs. Several studies have also reported libraries of 

ketal linkers with different length and substitute groups. Tunable ketal chemistries have been 

developed by the Frechet’s group to synthesize acid sensitive polyureas and polyurethanes 
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microparticles.45 A recent report from Thayumanavan’s group has systematically examined the 

effect of substitute groups of ketals on their degradation kinetics.46  

Redox-responsive microcapsules are important applications in biomedical applications. 

Thiol-disulfide redox-responsive groups are one of the most commonly employed. 

Microcapsules shell wall crosslinked by the disulfide groups are stable outside the cells in an 

oxidizing environment. When the microcapsules are uptake by the cells, the disulfide groups are 

reduced into thiol groups in the intracellular reducing environments, unzipping the crosslinking 

networks and releasing the payloads.47 Another example is to use redox reactions to control the 

permeability of the microcapsules. Ma et al. reported microcapsules with multi-layer 

organometallic polyelectrolytes poly(ferrocenysilane) (PFS).30  When the microcapsules were 

exposed in FeCl3 (1 mM) solutions, the PFS microcapsules expanded and became permeable to 

4.4 kDa dextran molecules. The sensitivity of the microcapsules to oxidants (1 mM FeCl3) was 

remarkable and was hypothesized due to increasing positive charges upon oxidation that caused 

repulsion between the charge complementary layers and disrupted the shell wall integrity. Lv et 

al. reported redox-responsive microcapsules with conducting polymers, polypyrrole and 

polyaniline, as the shell walls. The polyaniline microcapsules collapsed upon reduction and 

released the encapsulated healing agents. 

Ion-responsive microcapsules are less commonly explored in the literature but have many 

potential variations in designing environmentally triggered microcapsules. In early studies, 

Okahata et al. demonstrated microcapsules with phospholipid bilayer membranes as the shell 

wall materials. The release of payloads (NaCl) was regulated by phase transition temperature (45 

°C from rigid solids to liquid crystals) of the lipid bilayers and/or the cleating of Ca2+ with the 

lipid’s phosphoethanolamine groups.48,49 Chu et al. reported microcapsules with porous 
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membrane consisting of linear grafted poly(N-isopropylacrylamide-co-benzo-18-crown[6]-

acrylamide) (poly(NIPAM-co-BCAm)). The benzo-18-crown[6]acrylamide (BCAm)  moieties 

are the ion recognition unit. The binding of metal ions (Ba2+ or Pb2+) with BCAm shifted the 

lower critical solution temperature (LCST) of pNIPAM, which isothermally triggered the 

transition of the membranes into swollen phases, closing the pores of the membranes and 

slowing down the payload  release. Another polymer with benzo-15-crown[5]acrylamide 

moieties was found to have a squirting payload release mechanism. The binding of K+ with the 

crown ether moieties triggered significant shrinking of the microcapsules and squeezed the 

payloads out.50  

1.3.2 Exogenous Triggered Release Microcapsules.  

Photo-irradiation provides external triggered release mechanisms and are desirable for 

microcapsules in cosmetics and radiation therapy applications. One strategy for designing light-

sensitive microcapsules is to incorporate chromophores such as azobenzene. Azobenzene 

absorbs energy in both visible (> 400 nm) and UV (300-400 nm) spectrums. Under visible light, 

azobenzene converts from a cis to a trans isomer, and under UV light, azobenzene converts from 

a trans to a cis isomer.51 The cis azo moieties form aggregates and rupture the shell walls to 

release payloads under UV irradiation.52  

Another strategy is based on the optothermal triggered release mechanism. Composite 

microcapsules are prepared with shell walls containing inorganic nanoparticles. The 

nanoparticles absorb irradiation energy and increase local temperatures of the shell walls, thus 

either rupturing the shell walls53 or triggering phase transitions of the shell walls to deliver the 

payloads.54 Yavuz et al. reported gold nanocages with hollow interiors and porous wall 

structures. The nanocages were coated with thermo-responsive pNIPAM. After irradiation by a 
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laser beam, the surface temperature increased and triggered the transition of pNIPAM from 

extended conformations to collapsed conformations. The collapsed polymer released the 

encapsulated cargos on demand.  

Similarly, microcapsules doped with MnCO3,
55 TiO2 nanoparticles,56 or carbon 

nanotubes53 have also been reported to deliver payloads under photo-irradiation or microwave 

irradiation.55 Meanwhile, hybrid microcapsules with Fe3O4 is a useful strategy for magnetic-

responsive microcapsules.57 The payload release can be controlled spatially by a magnetic field 

and temporally by a thermal-induced self-rupturing mechanism.   

1.4 TRANSIENT POLYMERS AS SHELL WALL MATERIALS FOR TRIGGERED 

RELEASE MICROCAPSULES 

Transient polymers are emerging polymer materials that can autonomously transform 

from macromolecules to small molecules in an amplified and complete fashion. Different from 

traditional degradable polymers, which need n-1 cleavages for complete depolymerization, 

transient polymers need one single cleavage at the chain end or at a random site, followed by 

continuous depolymerization from the cleavage to unzip the backbones autonomously. In 

addition to the feature of controlled and clean depolymerization, transient polymers are also 

beneficial for chemical and signal amplifications because one cleavage results in multiple copies 

of small molecules. In the last decade, this class of polymers has been applied to sensors/point-

of-care assays,58,59 lithography,60 microcapsules,61 adhesives,62 and transient electronics 

packaging.63,64  

To achieve continuous depolymerization upon cleavage, previously reported polymers 

are designed based on two mechanisms. One approach is to initiate sequential intramolecular 

elimination and/or cyclization reactions once cleaved and these polymers depolymerize in a self-
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immolative manner. Alternatively, kinetically trapped low ceiling temperature (Tc) polymers are 

synthesized below their Tc. Upon cleavage, when T > Tc, these polymers revert back to 

monomers driven by thermodynamic equilibrium. Several types of polymers have been 

synthesized based on these two mechanisms, including polyphthalaldehyde (linear and cyclic), 

poly(ethyl glyoxylate), poly(benzyl ethers), and polycarbamates. Representative backbones and 

corresponding mechanisms are summarized in Figure 1.5.65 

 

Figure 1.5. Representative transient polymer backbones and their depolymerization mechanisms. 

(Reprinted with permission from reference 65  Copyright © 2014 American Chemical Society)  

 

1.4.1 Self-Immolative Transient Polymers 

Sagi et al. reported the first self-immolative polymer (SIP) prepared from a phenyl 

carbamate (Figure 1.5c).66 Removing the end capping groups triggered sequential 1,6-

elimination and decarboxylation reactions, resulting in CO2 and azaquinones as the 
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depolymerization products. Furthermore, quinones reacted with water molecules in the solvent 

and generated 4-aminobenzylalcohol as the final depolymerization products. A signal 

amplification system was also designed based on this SIP using a precursor of fluorescent amine. 

The polymers have significantly reduced fluorescence because the amines were masked as 

carbamates. Upon end group cleavage, the self-immolative reactions produced the fluorescent 

amines, thus amplifying the signals. Modified polymer backbones based on this SIP also served 

as prepolymers to form crosslinked shell walls for triggered release microcapsules.67 

Depolymerization kinetics was modulated by modifying backbones with cyclizing spacers 

(Figure 1.5d-e).68–71 Recently, the Shabat group introduced chemiluminescence features in self-

immolative polycarbamates. The depolymerization generated phenolate-dioxetane, which 

decomposed through a chemiexcitation process with amplified signals.72–74 This strategy further 

advances the applications of SIP in (bio)imaging, molecular sensors, and light-emitting 

materials. 

The Phillips group has advanced the synthesis and applications of transient polymers. 

Poly(benzyl ethers) is one of the newest transient polymers, which depolymerize through 

sequential quinone methide elimination (Figure 1.5b).75 In addition to solution phase 

depolymerization, solid phase depolymerization of poly(benzyl ethers) was demonstrated with 

the detection units as the pendent groups, which increased the number of accessible detection 

units (often considered as the rate-limiting step) at the interfaces of the bulk polymers and 

solution or air.76 This strategy provides opportunities to apply transient polymers as bulk 

materials.   
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1.4.2 Low-Ceiling-Temperature Transient Polymers 

Polyphthalaldehyde (PPA) (Tc ≈ -40 °C) 77,78 in Figure 1.5a belongs to low-ceiling-

temperature polymers. Ceiling temperature is where depolymerization and polymerization reach 

equilibrium.79 Above ceiling temperature, the polymers become thermodynamically unstable and 

tend to revert back to small molecules. Kinetically stabilized PPA can be synthesized by anionic 

polymerization and capping the chain termini. The end capping group can be stimuli-responsive 

units. The removal of end groups trigger the cascade depolymerization.80 To incorporate 

functionality, copolymers of o-phthalaldehyde (o-PA) with substituted benzaldehydes were 

synthesized by anionic polymerization. Another strategy for obtaining kinetically stabilized PPA 

is cationic polymerization, which has been recently discovered that a cyclic polymer, cyclic 

poly(phthaladehyde) (cPPA), is the sole product.81 The cationic polymerization has more 

tolerance for monomer (o-PA) impurities that provides a facile approach to synthesize cPPA of 

molecular weight 10-200 kDa with satisfactory yields.  

Another class of low-ceiling-temperature polymer is polyglyoxylate. This class of 

polymers is attractive because the depolymerization products, glyoxylate, is demonstrated to be 

nontoxic in invertebrate and plant ecotoxicity models, and the ceiling temperature of poly(ethyl 

glyoxylate) (PEtG, Tc = 37 °C) is of interest in biological applications.82 Fan et al. have 

systematically designed and investigated polyglyoxylates with different ester substitutes83 and 

stimuli-responsive end-capping groups with chloroformate derivatives.83,84 Highly reactive 

chloroformates allow the end-capping procedures to complete in situ at -20 °C (lower than the Tc 

of PEtG). Redox-responsive, UV-responsive, acid-responsive, and multi-responsive end-capping 

groups were prepared to incorporate multiple triggered depolymerization features in PEtG. A 

triblock amphiphilic copolymer of PEtG and polyethylene glycol (PEG), PEG-PEtG-PEG, was 
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found to form micellar nanostructures through self-assembly and released payload in response to 

UV irradiation. Cyclopolymerization of PEtG and PPA was also demonstrated by Kaitz et al. via 

cationic polymerization.85 Copolymers with tunable glass transition temperatures and thermal 

degradation temperatures were obtained, allowing applications that require tunable mechanical 

properties and thermal stabilities.  

  



17 

 

1.5 REFERENCES 

(1)  Lehn, J. M. Toward Self-Organization and Complex Matter. Science 2002, 295, 2400–

2403. 

(2)  Ramazani, F.; Chen, W.; Van Nostrum, C. F.; Storm, G.; Kiessling, F.; Lammers, T.; 

Hennink, W. E.; Kok, R. J. Strategies for Encapsulation of Small Hydrophilic and 

Amphiphilic Drugs in PLGA Microspheres: State-of-the-Art and Challenges. Int. J. 

Pharm. 2016, 499, 358–367. 

(3)  Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable Controlled-Release 

Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. 

Rev. 2016, 116, 2602–2663. 

(4)  Ammala, A. Biodegradable Polymers as Encapsulation Materials for Cosmetics and 

Personal Care Markets. Int. J. Cosmet. Sci. 2013, 35, 113–124. 

(5)  Lei, Y.; Xu, L.; Joyee, C. Polyurea Capsules Prepared with Aliphatic Isocyanates and 

Amines. U.S. Patent 13,969,038, Dec 19, 2013. 

(6)  Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. 

Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and 

Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. 

(7)  Burakowska-Meise, E.; Bem, V.; Joanna Mecfel-Marczewski; Klimov, E.; Kolb, K.; 

Matthias Bratz; BOWE, S. J.; Repage, R.; Frihauf, J. Agrochemical Microcapsules with a 

Shell of Polyvinylalcohol and Polyoxazoline. Eur. Pat. Appl. 069455, Aug 18, 2015. 

(8)  White, S. R.; Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. 

R. Self-Healing Polymers and Composites. Am. Sci. 2011, 99, 392–399. 

(9)  Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by Solvent Evaporation: State of the 

Art for Process Engineering Approaches. Int. J. Pharm. 2008, 363, 26–39. 

(10)  Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The Mechanisms of Drug 

Release in Poly(lactic-Co-Glycolic Acid)-Based Drug Delivery Systems - A Review. Int. 

J. Pharm. 2011, 415, 34–52. 

(11)  Wong, A. D.; DeWit, M. A.; Gillies, E. R. Amplified Release through the Stimulus 

Triggered Degradation of Self-Immolative Oligomers, Dendrimers, and Linear Polymers. 

Adv. Drug. Deliv. Rev. 2012, 64, 1031–1045. 

(12)  Esser-Kahn, A. P.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Triggered 

Release from Polymer Capsules. Macromolecules 2011, 44, 5539–5553. 

(13)  Wang, H. C.; Zhang, Y.; Possanza, C. M.; Zimmerman, S. C.; Cheng, J.; Moore, J. S.; 

Harris, K.; Katz, J. S. Trigger Chemistries for Better Industrial Formulations. ACS Appl. 

Mater. Interfaces 2015, 7, 6369–6382. 

(14)  Siepmann, J.; Siepmann, F. Mathematical Modeling of Drug Delivery. Int. J. Pharm. 



18 

 

2008, 364, 328–343. 

(15)  Sato, K.; Yoshida, K.; Takahashi, S.; Anzai, J. ichi. PH- and Sugar-Sensitive Layer-by-

Layer Films and Microcapsules for Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 809–

821. 

(16)  Baginska, M.; Blaiszik, B. J.; Merriman, R. J.; Sottos, N. R.; Moore, J. S.; White, S. R. 

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres. 

Adv. Energy Mater. 2012, 2, 583–590. 

(17)  Baginska, M.; Blaiszik, B. J.; Odom, S. A.; Caruso, M. M.; Sottos, N. R.; White, S. R. 

Experimental Mechanics on Emerging Energy Systems and Materials. Proc. 2010 Annu. 

Conf. Exp. Appl. Mech. 2011, 5, 17–23. 

(18)  Longstreet, A. R.; McQuade, D. T. Organic Reaction Systems: Using Microcapsules and 

Microreactors to Perform Chemical Synthesis. Acc. Chem. Res. 2013, 46, 327–338. 

(19)  Yang, H.; Fu, L.; Wei, L.; Liang, J.; Binks, B. P. Compartmentalization of Incompatible 

Reagents within Pickering Emulsion Droplets for One-Pot Cascade Reactions. J. Am. 

Chem. Soc. 2015, 137, 1362–1371. 

(20)  Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S.; Cheng, F.; Binks, B. P.; Yang, H. Ionic Liquid 

Droplet Micro-Reactor for Catalysis Reactions Not at Equilibrium. J. Am. Chem. Soc. 

2017, 139, 17387–17396. 

(21)  Vrbka, L.; Vondrásek, J.; Jagoda-Cwiklik, B.; Vácha, R.; Jungwirth, P. Quantification and 

Rationalization of the Higher Affinity of Sodium over Potassium to Protein Surfaces. 

Proc. Natl. Acad. Sci. 2006, 103, 15440–15444. 

(22)  Blaiszik, B. J.; Kramer, S. L. B.; Grady, M. E.; McIlroy, D. A.; Moore, J. S.; Sottos, N. 

R.; White, S. R. Autonomic Restoration of Electrical Conductivity. Adv. Mater. 2012, 24, 

398–401. 

(23)  Odom, S. A.; Tyler, T. P.; Caruso, M. M.; Ritchey, J. A.; Schulmerich, M. V; Robinson, 

S. J.; Bhargava, R.; Sottos, N. R.; White, S. R.; Hersam, M. C.; Moore, J. S. Autonomic 

Restoration of Electrical Conductivity Using Polymer-Stabilized Carbon Nanotube and 

Graphene Microcapsules. Appl. Phys. Lett. 2012, 101, 043106–043111. 

(24)  Kang, S.; Jones, A. R.; Moore, J. S.; White, S. R.; Sottos, N. R. Microencapsulated 

Carbon Black Suspensions for Restoration of Electrical Conductivity. Adv. Funct. Mater. 

2014, 24, 2947–2956. 

(25)  Li, W.; Matthews, C. C.; Yang, K.; Odarczenko, M. T.; White, S. R.; Sottos, N. R. 

Autonomous Indication of Mechanical Damage in Polymeric Coatings. Adv. Mater. 2016, 

28, 2189–2194. 

(26)  Robb, M. J.; Li, W.; Gergely, R. C. R.; Matthews, C. C.; White, S. R.; Sottos, N. R.; 

Moore, J. S. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by 

Aggregation-Induced Emission. ACS Cent. Sci. 2016, 2, 598–603. 



19 

 

(27)  Odom, S. A.; Jackson, A. C.; Prokup, A. M.; Chayanupatkul, S.; Sottos, N. R.; White, S. 

R.; Moore, J. S. Visual Indication of Mechanical Damage Using Core-Shell 

Microcapsules. ACS Appl. Mater. Interfaces 2011, 3, 4547–4551. 

(28)  Zhang, L.; Cai, L. H.; Lienemann, P. S.; Rossow, T.; Polenz, I.; Vallmajo-Martin, Q.; 

Ehrbar, M.; Na, H.; Mooney, D. J.; Weitz, D. A. One-Step Microfluidic Fabrication of 

Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angew. Chemie 

- Int. Ed. 2016, 55, 13470–13474. 

(29)  Kang, S.; Baginska, M.; White, S. R.; Sottos, N. R. Core-Shell Polymeric Microcapsules 

with Superior Thermal and Solvent Stability. ACS Appl. Mater. Interfaces 2015, 7, 

10952–10956. 

(30)  Ma, Y.; Dong, W.-F.; Hempenius, M. a.; Möhwald, H.; Vancso, G. J. Redox-Controlled 

Molecular Permeability of Composite-Wall Microcapsules. Nat. Mater. 2006, 5, 724–729. 

(31)  Shchukln, D. G.; Ustinovich, E. A.; Sukhorukov, G. B.; Möhwald, H.; Sviridov, D. V. 

Metallized Polyelectrolyte Microcapsules. Adv. Mater. 2005, 17, 468–472. 

(32)  Cui, J.; Fan, D.; Hao, J. Magnetic {Mo72Fe30}-Embedded Hybrid Nanocapsules. J. 

Colloid Interface Sci. 2009, 330, 488–492. 

(33)  Arshady, R. Microspheres and Microcapsules, a Survey of Manufacturing Techniques. 

Part II : Coacervation. Polym. Eng. Sci. 1990, 30, 905–914. 

(34)  Li, W.-I.; Anderson, K. W.; Deluca, P. P. Kinetic and Thermodynamic Modeling of the 

Formation of Polymeric Microspheres Using Solvent Extraction/evaporation Method. J. 

Control. Release 1995, 37, 187–198. 

(35)  Pekarek, K. J.; Jacob, J. S.; Mathiowitz, E. Double-Walled Polymer Microspheres for 

Controlled Drug Release. Nature 1994, 367, 258–260. 

(36)  Dowding, P. J.; Atkin, R.; Vincent, B.; Bouillot, P. Oil Core-Polymer Shell Microcapsules 

Prepared by Internal Phase Separation from Emulsion Droplets. I. Characterization and 

Release Rates for Microcapsules with Polystyrene Shells. Langmuir 2004, 20, 11374–

11379. 

(37)  Fundueanu, G.; Constantin, M.; Esposito, E.; Cortesi, R.; Nastruzzi, C.; Menegatti, E. 

Cellulose Acetate Butyrate Microcapsules Containing Dextran Ion-Exchange Resins as 

Self-Propelled Drug Release System. Biomaterials 2005, 26, 4337–4347. 

(38)  Zhao, Y.; Fickert, J.; Landfester, K.; Crespy, D. Encapsulation of Self-Healing Agents in 

Polymer Nanocapsules. Small 2012, 8, 2954–2958. 

(39)  Datta, S. S.; Abbaspourrad, A.; Amstad, E.; Fan, J.; Kim, S. H.; Romanowsky, M.; Shum, 

H. C.; Sun, B.; Utada, A. S.; Windbergs, M.; Zhou, S.; Weitz, D. A. 25th Anniversary 

Article: Double Emulsion Templated Solid Microcapsules: Mechanics and Controlled 

Release. Adv. Mater. 2014, 26, 2205–2218. 

(40)  Abbaspourrad, A.; Duncanson, W. J.; Lebedeva, N.; Kim, S. H.; Zhushma, A. P.; Datta, S. 



20 

 

S.; Dayton, P. A.; Sheiko, S. S.; Rubinstein, M.; Weitz, D. A. Microfluidic Fabrication of 

Stable Gas-Filled Microcapsules for Acoustic Contrast Enhancement. Langmuir 2013, 29, 

12352–12357. 

(41)  Choi, C. H.; Lee, H.; Abbaspourrad, A.; Kim, J. H.; Fan, J.; Caggioni, M.; Wesner, C.; 

Zhu, T.; Weitz, D. A. Triple Emulsion Drops with An Ultrathin Water Layer: High 

Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. Adv. Mater. 

2016, 28, 3340–3344. 

(42)  Lee, H.; Choi, C. H.; Abbaspourrad, A.; Wesner, C.; Caggioni, M.; Zhu, T.; Nawar, S.; 

Weitz, D. A. Fluorocarbon Oil Reinforced Triple Emulsion Drops. Adv. Mater. 2016, 28, 

8425–8430. 

(43)  Chu, L. Y.; Utada, A. S.; Shah, R. K.; Kim, J. W.; Weitz, D. A. Controllable 

Monodisperse Multiple Emulsions. Angew. Chemie - Int. Ed. 2007, 46, 8970–8974. 

(44)  Broaders, K. E.; Pastine, S. J.; Grandhe, S.; Frechet, J. M. Acid-Degradable Solid-Walled 

Microcapsules for pH-Responsive Burst-Release Drug Delivery. Chem. Commun. 2011, 

47, 665–667. 

(45)  Paramonov, S. E.; Bachelder, E. M.; Beaudette, T. T.; Standley, S. M.; Lee, C. C.; Dashe, 

J.; Fréchet, J. M. J. Fully Acid-Degradable Biocompatible Polyacetal Microparticles for 

Drug Delivery. Bioconjug. Chem. 2008, 19, 911–919. 

(46)  Liu, B.; Thayumanavan, S. Substituent Effects on the pH Sensitivity of Acetals and Ketals 

and Their Correlation with Encapsulation Stability in Polymeric Nanogels. J. Am. Chem. 

Soc. 2017, 139, 2306–2317. 

(47)  Johnston, A. P.; Such, G. K.; Caruso, F. Triggering Release of Encapsulated Cargo. 

Angew. Chemie - Int. Ed. 2010, 49, 2664–2666. 

(48)  Okahata, Y.; Lim, H. J. Functional Capsule Membranes. Signal-Receptive Permeability 

Control of NaCl from a Large Nylon Capsule Coated with Phospholipid Bilayers. J. Am. 

Chem. Soc. 1984, 106, 4696–4700. 

(49)  Okahata, Y. Lipid Bilayer-Corked Capsule Membranes. Reversible, Signal-Receptive 

Permeation Control. Acc. Chem. Res. 1986, 19, 57–63. 

(50)  Liu, Z.; Liu, L.; Ju, X.-J.; Xie, R.; Zhang, B.; Chu, L.-Y. K+-Recognition Capsules with 

Squirting Release Mechanisms. Chem. Commun. 2011, 47, 12283–12285. 

(51)  Hartley, G. S. The Cis-Form of Azobenzene. Nature 1937, 140, 281–281. 

(52)  Yi, Q.; Sukhorukov, G. B. UV-Induced Disruption of Microcapsules with Azobenzene 

Groups. Soft Matter 2014, 10, 1384–1391. 

(53)  Pastine, S. J.; Okawa, D.; Zettl, A.; Frechet, J. M. J. Chemicals On Demand with 

Phototriggerable Microcapsules. J. Am. Chem. Soc. 2009, 131, 13586–13587. 

(54)  Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, 



21 

 

C.; Andrea G. Schwartz, L. V. W.; Xia, Y. Gold Nanocages Covered by Smart Polymers 

for Controlled Release with near-Infrared Light. Nat. Mater. 2009, 8, 935–939. 

(55)  Gorin, D. A.; Shchukin, D. G.; Mikhailov, A. I.; Köhler, K.; Sergeev, S. A.; Portnov, S. 

A.; Taranov, I. V.; Kislov, V. V.; Sukhorukov, G. B. Effect of Microwave Radiation on 

Polymer Microcapsules Containing Inorganic Nanoparticles. Tech. Phys. Lett. 2006, 32, 

70–72. 

(56)  Wang, Y.; Caruso, F. Template Synthesis of Stimuli-Responsive Nanoporous Polymer-

Based Spheres via Sequential Assembly. Chem. Mater. 2006, 18, 4089–4100. 

(57)  Du, Q.; Ma, T.; Fu, C.; Liu, T.; Huang, Z.; Ren, J.; Shao, H.; Xu, K.; Tang, F.; Meng, X. 

Encapsulating Ionic Liquid and Fe3O4 Nanoparticles in Gelatin Microcapsules as 

Microwave Susceptible Agent for MR Imaging-Guided Tumor Thermotherapy. ACS Appl. 

Mater. Interfaces 2015, 7, 13612–13619. 

(58)  Lewis, G. G.; Robbins, J. S.; Phillips, S. T. A Prototype Point-of-Use Assay for 

Measuring Heavy Metal Contamination in Water Using Time as a Quantitative Readout. 

Chem. Commun. 2014, 50, 5352–5354. 

(59)  Mohapatra, H.; Phillips, S. T. Using Smell to Triage Samples in Point-of-Care Assays. 

Angew. Chemie - Int. Ed. 2012, 51, 11145–11148. 

(60)  Coulembier, O.; Knoll, A.; Pires, D.; Gotsmann, B.; Duerig, U.; Frommer, J.; Miller, R. 

D.; Dubois, P.; Hedrick, J. L. Probe-Based Nanolithography: Self-Amplified 

Depolymerization Media for Dry Lithography. Macromolecules 2010, 43, 572–574. 

(61)  DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T. Stimuli-Responsive Core-

Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable 

Poly(phthalaldehyde) Membrane. Macromolecules 2013, 46, 3309–3313. 

(62)  Kim, H.; Mohapatra, H.; Phillips, S. T. Rapid, On-Command Debonding of Stimuli-

Responsive Cross-Linked Adhesives by Continuous, Sequential Quinone Methide 

Elimination Reactions. Angew. Chemie - Int. Ed. 2015, 54, 13063–13067. 

(63)  Park, C. W.; Kang, S. K.; Hernandez, H. L.; Kaitz, J. A.; Wie, D. S.; Shin, J.; Lee, O. P.; 

Sottos, N. R.; Moore, J. S.; Rogers, J. A.; White, S. R. Thermally Triggered Degradation 

of Transient Electronic Devices. Adv. Mater. 2015, 27, 3783–3788. 

(64)  Lopez Hernandez, H.; Kang, S. K.; Lee, O. P.; Hwang, S. W.; Kaitz, J. A.; Inci, B.; Park, 

C. W.; Chung, S. J.; Sottos, N. R.; Moore, J. S.; Rogers, J. A.; White, S. R.; Hernandez, H. 

L.; Kang, S. K.; Lee, O. P.; Hwang, S. W.; Kaitz, J. A.; Inci, B.; Park, C. W.; Chung, S. J.; 

Sottos, N. R.; Moore, J. S.; Rogers, J. A.; White, S. R. Triggered Transience of Metastable 

Poly(phthalaldehyde) for Transient Electronics. Adv. Mater. 2014, 26, 7637–7642. 

(65)  Phillips, S. T.; Dilauro, A. M. Continuous Head-to-Tail Depolymerization: An Emerging 

Concept for Imparting Amplified Responses to Stimuli-Responsive Materials. ACS Macro 

Lett. 2014, 3, 298–304. 

(66)  Sagi, A.; Weinstain, R.; Karton, N.; Shabat, D. Self-Immolative Polymers. J. Am. Chem. 



22 

 

Soc. 2008, 130, 5434–5435. 

(67)  Esser-Kahn, A. P.; Sottos, N. R.; White, S. R.; Moore, J. S. Programmable Microcapsules 

from Self-Immolative Polymers. J. Am. Chem. Soc. 2010, 132, 10266–10268. 

(68)  Dewit, M. A.; Gillies, E. R. A Cascade Biodegradable Polymer Based on Alternating 

Cyclization and Elimination Reactions. J. Am. Chem. Soc. 2009, 131, 18327–18334. 

(69)  Chen, E. K. Y.; McBride, R. A.; Gillies, E. R. Self-Immolative Polymers Containing 

Rapidly Cyclizing Spacers: Toward Rapid Depolymerization Rates. Macromolecules 

2012, 45, 7364–7374. 

(70)  Dewit, M. A.; Beaton, A.; Gillies, E. R. A Reduction Sensitive Cascade Biodegradable 

Linear Polymer. J. Polym. Sci., Part A Polym. Chem. 2010, 48, 3977–3985. 

(71)  McBride, R. A.; Gillies, E. R. Kinetics of Self-Immolative Degradation in a Linear 

Polymeric System: Demonstrating the Effect of Chain Length. Macromolecules 2013, 46, 

5157–5166. 

(72)  Green, O.; Gnaim, S.; Blau, R.; Eldar-Boock, A.; Satchi-Fainaro, R.; Shabat, D. Near-

Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode. J. 

Am. Chem. Soc. 2017, 139, 13243–13248. 

(73)  Shabat, D.; Hananya, N. A Glowing Trajectory between Bio- and Chemi-Luminescence: 

From Luciferin-Based Probes to Triggerable Dioxetanes. Angew. Chemie - Int. Ed. 2017, 

56, 2–12. 

(74)  Gnaim, S.; Shabat, D. Self-Immolative Chemiluminescence Polymers: Innate Assimilation 

of Chemiexcitation in a Domino-like Depolymerization. J. Am. Chem. Soc. 2017, 139, 

10002–10008. 

(75)  Olah, M. G.; Robbins, J. S.; Baker, M. S.; Phillips, S. T. End-Capped Poly(benzyl Ethers): 

Acid and Base Stable Polymers That Depolymerize Rapidly from Head-to-Tail in 

Response to Specific Applied Signals. Macromolecules 2013, 46, 5924–5928. 

(76)  Yeung, K.; Kim, H.; Mohapatra, H.; Phillips, S. T. Surface-Accessible Detection Units in 

Self-Immolative Polymers Enable Translation of Selective Molecular Detection Events 

into Amplified Responses in Macroscopic, Solid-State Plastics. J. Am. Chem. Soc. 2015, 

137, 5324–5327. 

(77)  Aso, C.; Tagami, S. Polymerization of Aromatic Aldehydes. III. The Cyclopolymerization 

of Phthalaldehyde and the Structure of the Polymer. Macromolecules 1969, 3, 414–419. 

(78)  Aso, C.; Tagami, S.; Kunitake, T. Polymerization of Aromatic Aldehydes. II. Cationic 

Cyclopolymerization of Phthalaldehyde. J. Polym. Sci., Part A Polym. Chem. 1969, 7, 

497–511. 

(79)  Dainton, F. S.; Ivin, K. J. Reversibility of the Propagation Reaction in Polymerization 

Processes and Its Manifestation in the Phenomenon of a “Ceiling Temperature.” Nature 

1948, 162, 705–707. 



23 

 

(80)  DiLauro, A. M.; Robbins, J. S.; Phillips, S. T. Reproducible and Scalable Synthesis of 

End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes). Macromolecules 2013, 

46, 2963–2968. 

(81)  Kaitz, J. A.; Diesendruck, C. E.; Moore, J. S. End Group Characterization of 

Poly(phthalaldehyde): Surprising Discovery of a Reversible, Cationic Macrocyclization 

Mechanism. J. Am. Chem. Soc. 2013, 135, 12755–12761. 

(82)  Belloncle, B.; Burel, F.; Oulyadi, H.; Bunel, C. Study of the in Vitro Degradation of 

Poly(ethyl Glyoxylate). Polym. Degrad. Stab. 2008, 93, 1151–1157. 

(83)  Fan, B.; Trant, J. F.; Wong, A. D.; Gillies, E. R. Polyglyoxylates: A Versatile Class of 

Triggerable Self-Immolative Polymers from Readily Accessible Monomers. J. Am. Chem. 

Soc. 2014, 136, 10116–10123. 

(84)  Fan, B.; Trant, J. F.; Gillies, E. R. End-Capping Strategies for Triggering End-to-End 

Depolymerization of Polyglyoxylates. Macromolecules 2016, 49, 9309–9319. 

(85)  Kaitz, J. A.; Moore, J. S. Copolymerization of O -Phthalaldehyde and Ethyl Glyoxylate: 

Cyclic Macromolecules with Alternating Sequence and Tunable Thermal Properties. 

Macromolecules 2014, 47, 5509–5513. 

 



24 

 

 

CHAPTER 2 : LOW-CEILING-TEMPERATURE POLYMER MICROCAPSULES 

WITH HYDROPHOBIC PAYLOADS VIA RAPID SOLVENT EVAPORATION  

 

2.1 INTRODUCTION 

Microcapsule-based self-healing composite materials have been used to restore 

mechanical, optical, and electrical properties to damaged materials.1–7 Mechanical damage triggers 

the release of microcapsule’s payloads into the damage zone, initiating the healing process. The 

release of payloads on-demand via non-mechanical triggering events remains an active area of 

development in self-healing materials.8–10 In Chapter 1, we discussed a promising approach for 

developing stimuli-responsive microcapsules with a kinetically stabilized low-ceiling-temperature 

polymer. This class of polymers undergoes cascade depolymerization when end-capping groups 

are removed and/or the polymer backbones are cleaved by environmental triggers. The polymers 

rapidly lose mechanical integrity once triggered and provide a convenient means for the on-

demand delivery of payloads. Choices for the low-ceiling-temperature polymers are plentiful and 

include polyphthalaldehydes,11–13polyglyoxylates,13,14 and poly(olefin sulfones).15–18 However, 

using these low-ceiling-temperature polymers as the microcapsule’s shell walls is often 

challenging, due to strict requirements on the compatibility of the shell walls and payload 

materials, while maintaining shell wall stability under encapsulation conditions. 

In previous studies, fabrication of microcapsules using low-ceiling-temperature polymers 

has relied on a water-in-oil-in-water (W/O/W) double emulsion template generated using a flow-

focusing microfluidic device. Fluoride-responsive microcapsules with silyl ether-capped linear 

poly(phthalaldehyde) as the shell wall were fabricated using this approach.19 Acid-triggered 
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microcapsules have also been demonstrated using poly(o-(α-methyl)vinylbenzaldehyde) as the 

shell wall.20 Beyond these few examples, an alternative, scalable method for the encapsulation of 

hydrophobic payloads in low-ceiling-temperature polymers is an important target for on-demand, 

environmentally triggered microcapsule release. 

Solvent evaporation is a promising route to fabricate polymer microcapsules with 

hydrophobic payloads for controlled release.21–31 Typically, an oil-in-water (O/W) single emulsion 

template is generated by agitation, followed by solvent evaporation to form microcapsules. The 

oil phase is a ternary system, containing a polymer, a volatile solvent (vs) and a non-volatile non-

solvent (nvns). The polymer is soluble in the vs and immiscible with the nvns. Before 

emulsification, the mixing ratios of the three components are adjusted to form a homogeneous 

solution. After emulsification, the vs is removed by evaporation, leaving the polymer as the shell 

wall and the nvns as the payload. As predicted by canonical spreading coefficient theory,32 a core-

shell microcapsule morphology is thermodynamically favored only when the interfacial tensions 

(γ) between polymer (p), core (o) and surfactant (w) satisfy relations 2.1-2.3: 

𝛾𝑤𝑝 − (𝛾𝑜𝑤 + 𝛾𝑜𝑝) < 0,                                          2.1 

𝛾𝑜𝑝 − (𝛾𝑤𝑜 + 𝛾𝑤𝑝) < 0,                                          2.2 

𝛾𝑜𝑤 − (𝛾𝑝𝑜 + 𝛾𝑝𝑤) > 0.                                          2.3 

As such, the combinations of polymer, core and surfactant are limited and the solvent 

evaporation method has mostly been applied in the formation of microcapsules from poly(methyl 

methacrylate),24,33 polystyrene,21 poly(lactide)25 and cellulose.34 In this Chapter, a 

microencapsulation procedure using rapid solvent evaporation was developed to prepare 
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microcapsules with hydrophobic core materials and a low-ceiling-temperature polymer shell wall, 

cyclic poly(phthalaldehyde) (cPPA).12 Core-shell microcapsules has been fabricated via kinetic 

trapping mechanism as a result of rapid solvent removal, whereas an acorn-shaped microcapsule 

morphology was obtained under slow solvent evaporation (Figure 2.1). Tuning the polymer-to-

core weight ratios and polymer concentrations in the oil phase, we identified the boundary 

conditions to kinetically trap the core-shell structure. This method was used to encapsulate a 

variety of hydrophobic payloads including a corrosion inhibitor jojoba oil (JJB),26,33 mineral oil 

(MO), and the organotin catalyst dibutyltin dilaurate (DBTL). We also examined another low-

ceiling-temperature polymer, poly(vinyl tert-butyl carbonate sulfone) (PVtBCS),17 as an 

alternative shell wall material for the fabrication of stimuli-responsive microcapsules.  

 

Figure 2.1. Schematic illustration of the effect of solvent evaporation rate on microcapsule’s 

formation. Pink circles represent the O/W emulsion droplets; gray dots represent cPPA polymer 

precipitated in the emulsion droplets. (a) Core-shell microcapsules were formed under rapid 

solvent evaporation as cPPA migrated to the O/W interface. (b) Acorn-shaped morphologies were 

formed under slow evaporation as cPPA migrated to one side of the O/W droplets, leaving the 

polymer shell walls partially enclosing the cores (payload). After rinsing the microcapsules, the 

payloads and polymers were separated, resulting in hemispherical morphologies.  
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2.2 KINETICALLY TRAPPED CORE-SHELL CPPA MICROCAPSULES VIA RAPID 

SOLVENT EVAPORATION  

2.2.1 Polymer Synthesis 

Core-shell microcapsules were successfully prepared through the generation of an O/W 

emulsion followed by rapid solvent evaporation. Two low-ceiling-temperature polymers, cPPA 

and PVtBCS were used as the shell wall materials, separately. cPPA was synthesized by cationic 

polymerization using boron trifluoride etherate (BF3·OEt2) as an initiator (Mn=55 kDa, PDI=1.6, 

Table 2.1).12 PVtBCS was synthesized by free radical polymerization using tert-butyl 

hydroperoxide (t-BuOOH) as an initiator (Mn=19 kDa, PDI=3.2, Table 2.2).17   

 

Table 2.1. Characterization of cPPA 

Polymer Yield(%) Mn (kDa) PDI 

cPPA 78 55 1.6 

 

cPPA was synthesized following literature procedures with slight modification.12 

Generally, 6 g purified monomer, o-phthalaldehyde (o-PA), was weighed into a Schlenk flask, and 

the solid was vacuumed and purged under N2 three times before dissolving in anhydrous 

dichloromethane (DCM). The solution was cooled to -78 °C and BF3∙OEt2 was added dropwise. 

The solution was stirred for 40 min, then 0.2 mL pyridine was added, and the solution was left 

O
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stirring for another 2 h. The obtained polymer solution was then poured into cold methanol and 

the polymer was precipitated as a white powder. The polymer was further purified by re-dissolving 

in DCM and re-precipitating in cooled methanol twice. The polymer was dried under high vacuum 

for 24 h and then stored at -20 °C. Characterization of the polymer was consistent with the 

previously reported literature.  

 

Table 2.2. Characterization of PVtBCS 

Polymer Yield(%) Mn (kDa) PDI 

PVtBCS 79 19 3.2 

 

The vinyl butyl carbonate monomers and PVtBCS were synthesized following the 

previously reported literature.17 In brief, the polymerizations were as follows: a three-neck round-

bottom flask was fitted with a cold-finger, a stir bar, a gas inlet adapter, and a rubber septum. The 

carbonate monomer (1 g) was added to the flask which was cooled in an acetone/dry ice bath. 

Sulfur dioxide (SO2, 40 equiv.) was condensed in a three neck graduated cylinder and subsequently 

transferred to the three-neck flask via the cold finger. The solution was equilibrated at -78 °C for 

5 min and then t-BuOOH (2.5 mol %) was added. The polymerization was allowed to proceed for 

3 h. The polymer was drawn from the reaction mixture and transferred into cold methanol. After 

the methanol was decanted, the solid polymer was dissolved in chloroform and re-precipitated in 

cold methanol. The PVtBCS was dried for 3 h under high vacuum and freeze dried for 6 h to 
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prevent loss of molecular weight at room temperature. The polymers were then stored at -20 °C.  

Characterization of the polymers was consistent with the previously reported literature.2 

2.2.2 Encapsulation Parameters and Microcapsule’s Morphology 

Before emulsification, a homogeneous mixture (oil) of cPPA, JJB, and DCM was prepared 

with the guidance of a ternary phase diagram at 25 °C (Figure 2.2). The phase boundary (green) 

demarcates solutions that are homogeneous (below) and biphasic (above). Before emulsification, 

the mass ratio of mcPPA/mJJB/mDCM in the oil mixture must be in the homogeneous regime to achieve 

a core-shell structure. Immediately after emulsification, DCM was removed rapidly under reduced 

pressure or slowly under ambient pressure in order to form the microcapsule’s shell wall. Various 

mcPPA/mJJB/mDCM ratios and corresponding microcapsule’s morphologies were examined in this 

chapter and listed in Table 2.3 and Table 2.4. 

 

 

Figure 2.2. cPPA-JJB-DCM ternary phase diagram at 25 °C. The green squares denote cloud 

points for different compositions of cPPA, JJB and DCM. Green line was drawn to guide the 

visualization. Below the green line is the homogeneous regime; above the green line is the biphasic 

regime.  
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Table 2.3. Summary of Encapsulation Parameters Used in Microfluidic Emulsification 

Entry mcPPA/mJJB/mDCM mcPPA/mJJB mcPPA /moil phase
a Evap. b Morphology ξ (%)e 

M1 1.33/1/13.26 1.33 0.085 Vac Core-shell 107.6 

M2 1.33/1/17.52 1.33 0.067 Vac Core-shell 113.5 

M3 1.33/1.33/13.26 1.00 0.084 Vac Core-shell 109.4 

M4 1/1/13.26 1.00 0.066 Vac Core-shell 89.4 

M5 0.66/0.66/13.26 1.00 0.045 Vac Core-shell 105.6 

M6 0.33/0.33/13.26 1.00 0.024 Vac Core-shell c - 

M7 0.13/0.13/13.26 1.00 0.010 Vac Core-shell c - 

M8 1/1.14/13.26 0.88 0.065 Vac Acorn - 

M9 1/2.27/13.26 0.44 0.060 Vac Fail d - 

M10 1/5.77/13.26 0.17 0.050 Vac Fail d - 

M11 1/1.33/13.26 0.75 0.064 Vac Acorn 30.1 

M12 1/1/13.26 1.00 0.066 S. P. Acorn 12.4 

a  moil phase=mcPPA+mJJB+mDCM
 

b Vac represents rapid solvent evaporation under reduced pressure for 1 h; S. P. represents slow 

solvent evaporation under ambient pressure for 24 h (rotation rate < 30 rpm) 

c These microcapsules exhibit microcracks on the shell wall surface 

d No capsules were obtained 

e Loading efficiency. Loading efficiency was calculated by comparing the experimental core 

loading to the theoretical core loading (detailed in 2.6.1.) 
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Figure 2.3. SEM and fluorescence microscopy images of encapsulation products. (a)-(h) and (k)-

(l) are SEM images of encapsulation products using composition ratios of entries M1-M8 and 

M11-12 in Table 2.3. (i), (j) are fluorescence microscopy images of encapsulation products using 

composition ratios of entries M9 and M10, where no capsules were recovered from filter paper.   
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Table 2.4. Summary of Encapsulation Parameters Used in Bulk Emulsification 

Entry mcPPA/mJJB/mDCM mcPPA/mJJB mcPPA /moil phase
a Evap.b Morphology ξ (%)c 

B1 1/0.75/13.26 1.33 0.067 Vac Core-shell 89.0 

B2 0.66/0.5/13.26 1.32 0.046 Vac Core-shell 81.9 

B3 0.33/0.25/13.26 1.32 0.024 Vac Core-shell 90.0 

B4 0.13/0.1/13.26 1.30 0.010 Vac Acorn - 

B5 1/1/13.26 1.00 0.066 Vac Core-shell 73.6 

B6 0.66/0.66/13.26 1.00 0.045 Vac Core-shell 92.6 

B7 0.33/0.33/13.26 1.00 0.024 Vac Acorn - 

B8 0.13/0.13/13.26 1.00 0.010 Vac Acorn - 

B9 1/1.33/13.26 0.75 0.064 Vac Acorn 25.2 

B10 0.66/0.88/13.26 0.75 0.045 Vac Acorn 34.5 

B11 1/1/13.26 1.00 0.066 S. P. Acorn 27.2 

a  moil phase=mcPPA+mJJB+mDCM
 

b Vac represents rapid solvent evaporation under reduced pressure for 1 h; S. P. represents slow 

solvent evaporation under ambient pressure for 24 h (rotation rate < 30 rpm) 

c  Loading efficiency was calculated by comparing the experimental core loading to the theoretical 

core loading (detailed in 2.6.1.) 
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Figure 2.4. SEM images of cPPA microcapsules fabricated from bulk emulsification. 

Preparation ratios were following entries B1-B11 listed in Table 2.4. 

 

2.2.3 Effect of Solvent Evaporation Rate on Microcapsule’s Morphology 

Both microfluidic and bulk emulsification methods were employed to substantiate our 

hypothesis of the effect of solvent evaporation rate on microcapsule’s morphology. For most 
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studies, we used cPPA as the shell wall polymer, JJB as core materials (nvns), and DCM as vs 

(mcPPA/mJJB/mDCM = 1/1/13.26). An oil soluble fluorescence dye, Nile red, was added to organic 

phase to assist visualization and release profile measurements. We found that the core-shell 

structure was favored when DCM was removed rapidly. To illustrate the effect of solvent 

evaporation rate, microcapsule’s morphology was monitored by microscopy during solvent 

evaporation (Figure 2.5). Immediately after microfluidic emulsification, mono-disperse droplets 

were obtained (Figure 2.5a). After evaporation under reduced pressure for 30 min, sphere-shaped 

intermediate morphologies were observed (Figure 2.5b). The diameter was reduced in the 

transition from the droplets (416.3  3.0 μm) to the microcapsules (268.0  4.7 μm), indicating the 

loss of DCM (Figure 2.6). After another 30 min evaporation, the final products were filtrated, 

cleaned and dried. SEM images revealed that the products were mono-dispersed, sphere-shaped, 

core-shell microcapsules (Figure 2.3d). In contrast, when the emulsion was allowed to evaporate 

under ambient pressure for 30 min, acorn-shaped morphologies were observed (Figure 2.5c). The 

final products were found to possess a hemispherical structure (Figure 2.3l). The O/W droplet 

morphology evolution under slow solvent evaporation is illustrated schematically in Figure 2.1b. 

Partially enclosed structures developed as the polymer phase migrated to one side of the droplet. 

Filtering and rinsing the acorn-shaped structures resulted in the removal of the JJB core and the 

formation of hemi-spherical polymer particles (Figure 2.3l).  
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Figure 2.5. Optical microscopy images of O/W droplets during solvent evaporation. O/W droplets 

collected immediately after (a) microfluidic emulsification and (d) bulk emulsification; Sphere-

shaped intermediate morphologies after 30 min evaporation at reduced pressure (fast 

evaporation) obtained from (b) microfluidic emulsification and (e) bulk emulsification; Acorn-

shaped morphologies after 30 min evaporation at ambient pressure (slow evaporation) obtained 

from (c) microfluidic emulsification and (f) bulk emulsification. 

 

 

Figure 2.6. Changes in O/W droplet diameters as a function of time during DCM evaporation 

(red). The DCM remained (blue) is calculated based on the volume changes of the droplets and 

the densities of cPPA, JJB, and DCM. Note: The volume changes are assumed to be only attributed 

from DCM evaporation. Density: cPPA 0.790 g/mL, JJB 0.868 g/mL, and DCM 1.326 g/mL.  
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In order to validate the critical role of solvent evaporation rate on the formation of core-

shell microcapsules, we performed parallel experiments with bulk emulsification. The O/W 

emulsion was generated by mechanical agitation (Figure 2.5d), followed by rapid or slow solvent 

evaporation. Similar to the microfluidics results, under rapid evaporation, a spherical structure was 

formed and a core-shell morphology was obtained (Figure 2.5e, Figure 2.4e,). When the 

evaporation rate was reduced, acorn-shaped morphologies were observed and final products were 

hemispherical (Figure 2.5f, Figure 2.4k). 

Using rapid solvent evaporation to obtain core-shell structured microcapsules is 

contradictory to previous studies by Dowding et al. where slow solvent evaporation yielded better 

shell wall structures.21 Their observations were explained by the canonical spreading coefficient 

theory developed by Torza and Mason.32 This theory suggests that obtaining a core-shell structure 

after the vs evaporates requires the interfacial tension (γ) of any two phases in polymer (p), core 

(o) and surfactant (w) to satisfy the above mentioned relations 2.1-2.3. Under these relations, the 

core-shell structure is in a thermodynamic equilibrium state and a slower solvent evaporation rate 

allows enough time for polymers to uniformly migrate onto the O/W interface,35,36 minimizing 

kinetic factors and forming a spherical core-shell structure with better barrier properties as shown 

by Dowding et al. In the present work, however, the acorn-shaped morphologies obtained under 

slow evaporation indicated that the spreading of p phase over o phase resulted in partial enclosure 

due to the thermodynamic driving forces; apparently the core-shell structure is a non-equilibrium 

state. By increasing the evaporation rate, the core-shell structure is kinetically trapped, overcoming 

the thermodynamic tendency to form acorn shaped morphologies.28,29 
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2.2.4 Microcapsule Diameter and Shell Wall Thickness  

Using the microfluidics approach, we were able to precisely tune the microcapsule’s 

diameters (D) from 149.3±7.5 μm to 244.1±5.7 μm by adjusting the flow rate ratios of the water 

and oil phases (Qw/Qo) from 120 to 10 (Figure 2.7), while maintaining mcPPA/mJJB/mDCM = 

1/1/13.26. A linear relationship was found between the logarithm values of D and Qw/Qo.  

The shell wall thickness was measured by imaging manually ruptured cPPA microcapsules. 

SEM images revealed that the shell wall thickness varied from 12.4±1.9 μm to 18.7±4.1 μm 

(Figure 2.8). The shell wall thickness was approximately 10% of the microcapsule’s diameter 

(Table 2.5, column 4). 

 

Figure 2.7. Effect of water to oil flow rate ratios(Qw/Qo) on microcapsule’s diameter. A linear 

relationship (red line) log(D)=2.59-0.21*log(Qw/Qo) (R2=0.991) was observed between the 

logarithmic values of diameters (D) and Qw/Qo.  
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Figure 2.8. SEM images of crushed cPPA microcapsules prepared by microfluidics method 

showing shell wall thickness for (a) entry M1, (b) entry M2, (c) entry M3, (d) entry M4, and (e) 

entry M5 listed in Table 2.3. 

Table 2.5. Summary of Microcapsule’s Diameters and Shell Wall Thickness 

Entry Diameter (μm) Shell Wall Thickness (μm) Thickness/Diameter 

M1 139.7±5.8 18.7±4.1 0.133 

M2 119.9±4.7 12.4±1.9 0.103 

M3 186.3±8.9 15.7±1.6 0.084 

M4 168.2±16.6 13.7±1.7 0.081 

M5 183.7±5.8 16.0±1.5 0.087 

 

In bulk emulsification, microcapsules showed a polydisperse size distributions (Figure 

2.9). When the agitation rate was maintained at 400 rpm and the oil phase composition was 

mcPPA/mJJB/mDCM = 1/1/13.26, the diameter ranged from 10-120 μm. Representative shell wall 

images are shown in Figure 2.10. Due to the polydispersity of the microcapsules, the ratio of the 

shell wall thickness to the microcapsule’s diameters could not be estimated.  
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Figure 2.9. Size distributions of microcapsules prepared by bulk emulsification in (a) entry B1, 

(b) entry B2, (c) entry B3, (d) entry B5, and (e) entry B6 listed in Table 2.4.  

 

Figure 2.10. SEM images of crushed cPPA microcapsules prepared by bulk emulsification 

showing shell wall thickness in (a) entry B1, (b) entry B2, (c) entry B3, (d) entry B5, and (e) 

entry B6 listed in Table 2.4. 
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2.2.5 Core Materials Loading  

Successful loading of the target payload (JJB) by the rapid solvent evaporation procedure 

was qualitatively examined by fluorescence microscopy (FM) after compressing few 

microcapsules between two glass slides. As shown in Figure 2.11b and Figure 2.11d, fluorescent 

liquid (Nile red in JJB) was released upon rupture of the microcapsules. Thermogravimetric 

analysis (TGA) was performed to quantify the loading of JJB in microcapsules (Figure 2.11e). 

Thermal profiles of cPPA microcapsules exhibited distinct mass loss at ca. 150 °C and at ca. 300 

°C, attributed to the thermal decomposition of cPPA and evaporation of core JJB oil, respectively. 

Microcapsules fabricated using microfluidics contained approximately 44.7 wt% JJB (blue, solid 

line, loading efficiency ξ = 89.4%) and microcapsules from bulk emulsification contained 36.8 

wt% JJB (blue, dashed line, loading efficiency ξ = 73.6%)). In contrast, the thermal profiles of the 

acorn-shaped microcapsules obtained from the slow solvent evaporation revealed that less than 20 

wt% JJB was encapsulated in both microfluidic (Figure 2.16, entry M12, ξ = 12.4%) and bulk 

emulsification methods (Figure 2.17, entry B11, ξ = 27.2%).  

 

Figure 2.11. Microscopy images and thermal profiles of the cPPA core-shell microcapsules 

(prepared by mcPPA/mJJB/mDCM=1/1/13.26, in microfluidic and bulk emulsifications followed by 

rapid solvent evaporation). Microcapsules fabricated from microfluidic emulsification (a) before 
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Figure 2.11. (cont.) crushing and (b) after crushing, showing the release of core material JJB 

(arrow); Insets are SEM images of intact and ruptured microcapsules showing exterior and cross-

sectional shell wall morphologies; Microcapsules fabricated from bulk emulsification (a) before 

crushing and (d) after crushing, showing the release of core material JJB (arrow); Insets are SEM 

images of intact and ruptured microcapsules showing exterior and cross-sectional shell wall 

morphologies; (e) Thermal analysis of microcapsules fabricated with microfluidic emulsification 

(solid blue, LJJB=44.7 wt%, ξ = 89.4%) and bulk emulsification (dashed blue, LJJB=36.8 wt%, ξ = 

73.6%). Thermal analysis of cPPA (red) and JJB (black) were plotted to assist the quantification 

of individual component loading in the microcapsules. 

 

2.3 EFFECT OF MATERIALS COMPOSITIONS ON MICROCAPSULE’S MORPHOLOGY 

AND LOADING 

To determine the criteria for obtaining core-shell microcapsules under rapid solvent 

evaporation, we investigated the boundary conditions for cPPA-JJB-DCM compositions at which 

the kinetic trapping effect overcomes thermodynamic driving forces. cPPA-JJB-DCM ternary 

system with varied compositions were tested and the encapsulation products were examined by 

SEM and FM. We summarized the microcapsule’s morphologies with respect to the corresponding 

cPPA-JJB-DCM compositions in the ternary phase diagram shown in Figure 2.12. 
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Figure 2.12. Effect of cPPA-JJB-DCM compositions on microcapsule’s morphologies prepared 

by microfluidic and bulk emulsifications followed by rapid solvent evaporation. The cPPA-JJB-

DCM phase boundary ( ) is replotted from Figure 2.2. The resulting morphologies of 

encapsulations over a range of chemical compositions are denoted on the ternary phase diagram 

for microfluidic emulsification (a-c) and bulk emulsification (d-f). (b) and (e) are SEM images for 

mcPPA/mJJB =0.75, which resulted in acorn-shaped microcapsules. (c) and (f) are SEM images for 

mcPPA/mJJB =1.33, which resulted in core-shell microcapsules. Note: the black dashed line is the 

mid-line of the phase diagram triangle, and the composition located on the mid-line has mcPPA/mJJB 

value of 1.00. 
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2.3.1 Effect of Polymer-to-Core Mass Ratios on Microcapsule’s Morphology 

The effect of polymer-to-core mass ratios (mcPPA/mJJB) was investigated for a range of 

values from 1.33 to 0.17 (Table 2.3, Figure 2.3). When 1.00 ≤ mcPPA/mJJB ≤ 1.33, the encapsulation 

produced spherical core-shell microcapsules (entries M1-M7). When the mcPPA/mJJB was 0.88 and 

0.75, acorn shaped microcapsules were obtained (Table 2.3, entry M8, M11). Further reduction of 

the mcPPA/mJJB ratio to 0.44 and 0.17, yielded no microcapsules after evaporation (Table 2.3, entry 

M9, M10). Representative SEM images are shown for acorn and core-shell microcapsules (Figures 

Figure 2.12b and Figure 2.12c). These results indicate that mcPPA/mJJB ≥1 is required for obtaining 

the core-shell structure. 

2.3.2 Effect of Polymer Concentrations on Microcapsule’s Morphology 

We also investigated the effect of polymer weight concentration in the oil phase (mcPPA/moil 

phase) on microcapsule’s morphology. The mcPPA/moil phase ratio was adjusted from 0.010 to 0.084, 

while maintaining the mcPPA/mJJB value at 1.00 (Table 2.3, entries M3-M7, Figure 2.3).  When 

0.045 ≤ mcPPA/moil phase ≤ 0.084, monodisperse spherical microcapsules were produced (Table 2.3, 

entries M3-M5). When mcPPA /moil phase was lowered to 0.024 and 0.010 (Table 2.3, entries M6-

M7), the encapsulation products were polydisperse spherical microcapsules. SEM images also 

revealed that when mcPPA/moil phase was lower than 0.024, the shell walls exhibited micro-cracks 

(Figure 2.3f-g). Therefore, mcPPA /moil phase ≥ 0.045 is another requirement to obtain a core-shell 

structure.  
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2.3.3 Effect of Encapsulation Parameters on Microcapsule’s Morphology in Bulk Emulsification 

Method  

To confirm these boundary conditions discussed in 2.3.1 and 2.3.2, we performed bulk 

emulsification experiments with varied cPPA-JJB-DCM compositions (Table 2.4, Figure 2.4, 

Figure 2.12d-f). In good agreement with the microfluidic experiments, the composition 

requirements for kinetically trapping the core-shell structures were mcPPA/mJJB ≥1 and mcPPA /moil 

phase ≥ 0.045 (Figure 2.12d-f, Table 2.4, Figure 2.4).  

2.3.4 Effect of Encapsulation Parameters on Microcapsule’s Core Loading  

The loading of JJB in microcapsules with varied mcPPA/mJJB/mDCM ratios was examined by 

TGA (Figure 2.13).  At mcPPA/mJJB =1.33, approximately 48.7 wt% and 35.3 wt% JJB oil loading 

was obtained by microfluidic and bulk emulsification methods, respectively. At mcPPA/mJJB =0.75, 

approximately 17.2 wt% and 14.4 wt% JJB oil loading was obtained by microfluidic and bulk 

emulsification methods, respectively. Generally, a core-shell morphology led to a higher payload 

(JJB) content than an acorn-shaped structure.  

 

Figure 2.13. Thermal analysis of microcapsules prepared by different mcPPA/mJJB ratios in 

microfluidic and bulk emulsifications followed by rapid solvent evaporation. (a) Microcapsules 

prepared by microfluidic emulsification with mcPPA/mJJB =1.33 (blue, core-shell morphology, 

LJJB=48.7 wt%) and mcPPA/mJJB =0.75 (green, acorn-shaped morphology, LJJB=17.2 wt%). (b) 

Microcapsules prepared by bulk emulsification with mcPPA/mJJB =1.33 (blue, core-shell 



45 

 

Figure 2.13. (cont.) morphology, LJJB=35.3 wt%) and mcPPA/mJJB =0.75 (green, acorn-shaped 

morphology, LJJB=14.4 wt%). Thermal analysis of cPPA (red) and JJB (black) were plotted to 

assist the quantification of individual component loading in the microcapsules. 

 

2.4 ACID TRIGGERED PAYLOAD RELEASE PROFILES FROM CPPA MICROCAPSULES  

cPPA is known as an acid-responsive polymer.35,36 Here, we evaluated the release profiles 

of cPPA microcapsules under acidic conditions (Figure 2.14). Since the release kinetics can vary 

with the dimension of microcapsules and shell wall thickness, we only tested microcapsules 

fabricated by microfluidic emulsification with the composition of mcPPA/mJJB/mDCM=1/1/13.26, 

which has moderate diameter (168.2±16.6 µm) and shell wall thickness (13.7±1.7 µm) (Table 2.3, 

Table 2.5, entry M4). For release analysis, we selected heptane as the suspension medium. Heptane 

is a non-solvent for cPPA and its hydrophobicity will not inhibit JJB oil release. The release of the 

JJB oil core was measured by monitoring the fluorescent intensity (Nile red) of the microcapsules 

as a function of time. The release of encapsulated JJB oil in pure heptane at different concentrations 

of trifluoroacetic acid (TFA) was plotted in Figure 2.14. In pure heptane, less than 5% release of 

JJB was observed after 48 h, indicating the microcapsules are stable under neutral conditions. As 

the concentration of acid in heptane increased, the core material (JJB) was released at a faster rate, 

indicating faster depolymerization of the cPPA shell wall. The core release from cPPA 

microcapsules was modeled by fitting the results to an empirical logarithmic dose response 

equation,37 

𝑅 =
𝑅0−𝑅𝑓

1+(𝑡/𝑡1/2)
𝑛 + 𝑅𝑓         2.4 
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where R0 is the initial release value, Rf is the final release value, t1/2 is the release half-life and n is 

the order exponent. Fitting parameters are summarized in Table 2.6. The exponent n of this 

logarithmic fit is found to be ca. 3. A smaller half-life value indicates a faster payload release rate. 

 

Figure 2.14. Microcapsule’s release profiles over 48 h. (a) Release profile in response to 200 

mM TFA in heptane. (b) Release profiles in response to 200 mM TFA (red), 100 mM TFA (blue), 

and 50 mM TFA (green) in heptane and pure heptane (black). Data plots were fitted with an 

empirical logarithmic function. Error bars represent standard deviation from three experiments. 

Table 2.6. Release Profile Model Parameters 

TFA concentration (mM) R0 Rf n t1/2 (h) 

50 0 93.9 3 12.0 

100 0 90.0 3 2.9 

200 0 97.4 3 0.008 

 

2.5 GENERALITY OF THE RAPID SOLVENT EVAPORATION METHOD TO 

ALTERNATIVE CORE AND SHELL WALL MATERIALS 

2.5.1 Encapsulation of Alternative Core Materials in cPPA Microcapsules 

To illustrate the generality of this encapsulation procedure, we encapsulated other 

hydrophobic core materials using microfluidic emulsification and rapid solvent evaporation. 
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Following one of the compositions satisfying the kinetic trapping conditions, mcPPA/mJJB/mDCM = 

1/1/13.26, we replaced JJB with mineral oil (MO) or a liquid tin catalyst dibutyltin dilaurate 

(DBTL). The spherical, core-shell structure was confirmed by SEM images as shown in Figure 

2.15. For these hydrophobic payloads, the loading efficiency is hard to estimate due to the lack of 

distinct two-stage weight loss as observed in cPPA/JJB microcapsules.  

2.5.2 Microcapsules with Alternative Shell Wall Materials 

To further test the generality of this procedure, we also successfully encapsulated JJB in a 

poly(olefin sulfone) shell wall. We selected PVtBCS as an alternative shell wall material due to 

its responsiveness to thermal stimuli (decomposition onset temperature is 91 °C).17 Using the 

condition, mPVtBCS/mJJB/mCHCl3=1/0.75/14.92, we obtained polydisperse core-shell microcapsules 

with PVtBCS shell wall via microfluidic emulsification and rapid solvent evaporation procedure 

(Figure 2.15). The loading of the core materials was about ~51.5 wt%. By comparing to the feed 

ratio of core materials, we estimated the loading efficiency to be ~120%. We attributed this number 

to slow degradation of shell wall materials PVtBCS during the encapsulation procedure.17
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Table 2.7. Summary of Encapsulation Parameters 

Polymer (g) Core (g) Solvent (g) Encap.  Evap.  Morphology 

cPPA 0.1 DBTL 0.1 DCM 

1.326 

Microfluidics Vac Core-shell 

cPPA 0.1 MO 0.1 DCM 

1.326 

Microfluidics Vac Core-shell 

PVtBCS 0.1 JJB  0.075 CHCl3 

1.492 

Microfluidics Vac Core-shell 

 

Figure 2.15. Thermal analysis and SEM images of cPPA microcapsules with different core 

materials or different shell walls as listed in Table 2.7. TGA profiles of (a) cPPA-DBTL 

microcapsules, (b) cPPA-MO microcapsules, and (c) PVtBCS-JJB microcapsules. SEM images of 

(d) intact cPPA-DBTL microcapsules, (e) intact cPPA-MO microcapsules, and (f) PVtBCS-JJB 

microcapsules; SEM images of broken (g) cPPA-DBTL microcapsules, (h) cPPA-MO 

microcapsules,3 and (i) PVtBCS-JJB microcapsules showing the shell wall thickness and core-

shell structure. 
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2.6 EXPERIMENTAL DETAILS 

2.6.1 Materials and Instrumentations  

Unless otherwise noted, all starting materials were obtained from Sigma Aldrich and used 

as received. The monomer o-PA (98%, Alfa-Aesar) was purified by hot filtration followed by a 

single recrystallization according to a literature procedure.12 t-BuOOH was purchased from Sigma 

Aldrich as a 5-6 M solution in decane and was assumed to be 5.5 M for all calculations. SO2 

(anhydrous, 99.98%) was purchased from Airgas in lecture bottles. DCM was obtained from an 

anhydrous solvent delivery system equipped with activated alumina columns. All glassware was 

oven dried prior to use. The synthesis of cPPA and synthesis of the poly(olefin sulfone)s followed 

previous literature procedures with minor modifications.12,17 The polymer structure was confirmed 

on 1H NMR spectra using a Varian 500 MHz spectrometer.  

Analytical gel permeation chromatograph (GPC) analyses were performed with a 

Waters1515 Isocratic HPLC pump, a Waters (2998) Photodiode Array Detector, a Waters (2414) 

Refractive Index Detector, a Waters (2707) 96-well autosampler, and a series of 4 Waters HR 

Styragel columns (7.8 x 300mm, HR1, HR3, HR4, and HR5) in THF at 30 °C. The GPC was 

calibrated using monodisperse polystyrene standards.  

The thermal properties of microcapsules were characterized on a TA Instrument Q50 TGA 

and a Mettler Toledo TGA851e.  Dynamic TGA experiments were performed by heating samples 

from 25 to 650 °C at a rate of 10 °C/ min. A purge gas of N2 at 60 mL/min was used for all 

experiments.  
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The loading efficiency is calculated by comparing the actual JJB core loading ( LJJB ) in 

microcapsules with the theoretical JJB core loading ( LJJB
th

) in the microcapsules.  

Loading efficiency (ξ) =
LJJB

LJJB
th

´100%           2.5 

The LJJBwas determined by the remained wt% from TGA profiles at 250 °C. And the theoretical 

LJJB
th

 is calculated from,  

LJJB
th =

mJJB

mJJB +mcPPA
´100%

           2.6 

where mJJB and mcPPA are the initial mass of JJB and cPPA used for microcapsule’s preparation. 
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Figure 2.16. TGA profiles of cPPA microcapsules fabricated from microfluidic emulsification. 

Preparation ratios were following entries M1-M12 in Table 2.3. TGA profiles of entries M6-M10 

in Table 2.3. M6-M8 were not collected due to low yield. 

 

Figure 2.17. TGA profiles of cPPA microcapsules fabricated from bulk emulsification. 

Preparation ratios were following entries B1-B11 in Table 2.4. TGA profiles of entries B4, B7 and 

B8 in Table 2.4 were not collected due to low yield. 

The distribution coefficient of Nile red in the shell wall cPPA and the core materials JJB 

oil is determined by a fluorospectrometer (HORIBA Scientific, FluoroMax-4). To quantify the 

Nile red concentration, the mass of microcapsules (bulk emulsification, mcPPA/mJJB/mDCM = 

1/1/13.26) were accurately measured. The microcapsules were crushed between two glass slides, 

rinsed repeatedly with heptane to dissolve the released core materials from the mechanically 
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crushed microcapsules. The broken shell wall was then centrifuged, collected and dried before 

dissolving in DCM. Fluorescence intensities of the core Nile red/heptane solution and shell wall 

Nile red/DCM solution were measured by the fluorospectrometer. The concentration of Nile red 

in the core or shell wall was determined from the Nile red calibration curve (Figure 2.18) in the 

corresponding solvent. The distribution coefficient (m/m) of Nile red in JJB/cPPA was calculated 

as 0.557 ± 0.050 based on three parallel experiments.   

 

Figure 2.18. Nile red calibration curve in (a) DCM and (b) heptane.  

Visualization of microcapsule’s morphology and triggering experiments was performed on 

a Leica DMR optical microscope (fluorescence mode). Scanning electron microscopy (SEM) was 

performed using a Hitachi S-4700. Before SEM imaging, samples were sputter-coated with Au/Pd 

to eliminate surface charging effects. Image J software was used to measure the diameter of 

microcapsules.  

The density of polymer was measured by gas pycnometer (Quantachrome Instrument 

Ultrapyc 1200e) using pulse mode. 



53 

 

The ternary phase diagram for cPPA, DCM (vs), and JJB (nvns) was determined by mixing 

accurate amounts of the three components in a 7-mL glass vial.21,27 The total mass of the mixed 

solution with the glass vial and stir bar was recorded. Then, the solvent was evaporated while 

stirring at 25 °C until the solution became cloudy. The total mass was reweighed immediately and 

mass difference was attributed to the evaporation of DCM only. Weight fractions of cPPA, JJB, 

and DCM at the phase boundary were then determined. Fourteen samples were prepared with 

different mass compositions to complete the phase diagram. 

2.6.2 Microcapsules Prepared by Microfluidic Emulsification 

cPPA microcapsules were fabricated using a flow-focusing microfluidic device to prepare 

emulsions, followed by solvent evaporation. This technique enables controlled formation of 

emulsion droplets with approximately identical geometry,38,39 which is quite useful for thorough 

characterization of microcapsule’s properties. Microfluidic devices were composed of two tapered 

cylindrical glass capillaries inserted into the opposing ends of a square glass capillary (Figure 

2.19). A homogeneous mixture of various compositions of cPPA, JJB, and DCM was injected into 

the left cylindrical capillary. Nile red was added in the oil phase to facilitate visualization and 

release profile measurements. A 2.5 wt% aqueous solution of the emulsifier poly(vinyl alchohol) 

(PVA, Mw=89,000-98,000, 99% hydrolyzed) was injected into the region between the right 

capillary and square capillary. O/W droplets formed as the two flows merged at the orifice of the 

collection tube. The generated droplets were collected in a round bottom flask filled with 1 wt% 

PVA solution. Immediately after collection, flasks were connected to a rotary evaporator to remove 

DCM at reduced pressure for 1 h (rapid evaporation). For slower evaporation, the emulsion was 

stirred (<30 rpm) at ambient conditions until evaporation was complete (ca. 24 h).  



54 

 

 

Figure 2.19. A optical microscopy image of O/W droplets generated by a microfluidic device. 

Device and image courtesy: Dr. Mostafa Yourdkhani. 

 

To monitor DCM evaporation, aliquots of the emulsion were taken at periodic time 

intervals and imaged by fluorescence microscopy (FM) to observe variations in microcapsule’s 

morphologies and diameters. A total of 15-20 droplets were imaged at each time point. Assuming 

the volume loss in the droplets was only due to DCM evaporation, and knowing the initial weight 

percentage and density of DCM, JJB, and cPPA, we calculated the residual DCM based on the 

reduction in microcapsule’s diameter (Figure 2.6).  

After evaporation, microcapsules were collected by vacuum filtration and washed with 500 

mL deionized water to remove residual surfactant followed by another wash with 50 mL of heptane 

to remove residual organics. Microcapsules were subsequently dried at room temperature for 24 h 

to complete the drying process. 

2.6.3 Microcapsules Prepared by Bulk Emulsification 

cPPA microcapsules were fabricated by bulk emulsification followed by solvent 

evaporation. A homogeneous mixture of various compositions of cPPA, JJB, and DCM was 

prepared. The mixture was added dropwise into a 1 wt% PVA solution under 400 rpm agitation. 

The container was capped and the O/W emulsion was stirred for another 10 min. The emulsion 

was then poured into 100 mL of 1 wt% PVA solution in a round bottom flask, and the solvent 
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DCM was removed by rotary evaporation for 1 h at reduced pressure or following slow evaporation 

procedure as used in microfluidics method. The resulting microcapsules were cleaned and dried 

by the same procedure used in microfluidic method.  

2.6.4 Release Profile Measurements  

The release profiles of microcapsules were obtained based on the change of Nile red 

fluorescence intensities inside the microcapsules, following a previous literature procedure with 

minor modifications.20 A sample of 10-20 microcapsules was placed in a 96-well plate. Heptane, 

a non-solvent for the shell wall polymer cPPA, was used as a medium to prepare TFA solutions. 

It should be noted that heptane may have a plasticizing effect on cPPA polymers. The TFA-heptane 

solution was added to samples of cPPA microcapsules. The well plate was then sealed to prevent 

solution evaporation. Fluorescence microscopy images were captured at designated time intervals 

over a period of 48 h. For each sample, all imaging parameters, such as exposure time, color 

contrast, and color balance were held constant during data collection. To determine the release 

profile, Image J was used to measure the mean gray value of the microcapsules. The change of 

mean gray values represents the remaining core percentage by normalization. For each 

concentration, at least three samples were prepared and imaged.  
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CHAPTER 3 : INVESTIGATING ION CO-ACTIVATION EFFECT ON TRANSIENT 

POLYMER MICROCAPSULES 

 

3.1 INTRODUCTION 

Programmable materials that respond to complex input signals instead of individual 

signals are of interest to achieve CPU like functions. Microcapsules triggered by molecular pairs 

or regulated by co-activators are significant to design logic-gate materials and autonomous 

chemical systems with feedback controlled loops (Figure 3.1).1 For example, feedback controlled 

reaction cascades can be designed with microcapsules ruptured by a pair of molecules and/or 

physical signals that discussed in Chapter 1. The ruptured microcapsules may deliver payloads 

that react with complementary payloads released from other microcapsules for self-healing 

applications.2 Alternatively, microcapsules can react with functionalized surface to immobilize 

the array of microcapsules and print materials in situ.3 Thus, chemical or physical signals are 

translated and amplified into macroscopic responses of polymer formation. The resulting 

polymerization increases local viscosity that can further trigger reaction-diffusion induced 

patterning 4–6 or materials regeneration.7 In another scenario, the payload is a co-activator that 

catalyze the shell wall rupture in the presence of a primary trigger. The microcapsule’s shell wall 

is triggered and ruptured by the primary stimuli and the released co-activators further catalyze 

the shell wall erosion, resulting in autocatalytic payload release. Motivated by the goal of 

designing advanced logic-gated microcapsules, in Chapter 3, we investigated the ionic effect at 

the solid/liquid interfaces in cPPA microcapsule’s suspensions. 
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Figure 3.1. Concept scheme of designing a logic gate with microcapsules. (a) A CPU consists of 

microcapsules arrays, suspensions or microcapsule-based composites. Microcapsules are 

programmed to respond in the presence of one or multiple pairs of signals. (b) Individual logic 

gate for activated (blue) and inert (grey) microcapsules. An activated microcapsule releases 

functional payload driven by shell erosion, triggered by the presence of two stimuli. An inert 

microcapsule releases encapsulated payload driven by diffusion. The shell wall does not undergo 

significant erosion without the presence of at least one stimuli.  

  

3.2 ION CO-ACTIVATION EFFECT OF LICL ON CPPA MICROCAPSULE’S SHELL 

WALL DEPOLYMERIZATION 

3.2.1 Depolymerization Products 

In Chapter 2, we have developed an encapsulation procedure to produce cPPA 

microcapsules. The acid triggered cPPA depolymerization generates a cationic intermediate.8,9 

We hypothesize that the addition of ions affects the cPPA depolymerization kinetics via ion-
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polymer interactions, leading to tunable depolymerization rates modulated by varied acid and ion 

concentrations.  

The ion co-activation effect was demonstrated and confirmed in LiCl by nuclear magnetic 

resonance (NMR) spectroscopy (Figure 3.2). Unless otherwise noted, the microcapsules used in 

all depolymerization analysis were prepared by bulk emulsification followed by rapid solvent 

evaporation procedure (detailed in Chapter 2, 2.6.3) with cPPA (Mn=58 kDa, PDI=1.6) as the 

shell walls and jojoba oil (JJB) as the core materials. The oil mixture for O/W emulsion has the 

composition of mcPPA/mJJB/mDCM=1/0.75/13.26 and Nile red was added in the oil mixture to 

assist visualization and payload release measurements. The cPPA microcapsules were suspended 

in methanol-d4 (~5 mg/mL) solutions containing trifluoroacetic acid (TFA, 0.01 M), LiCl (0.01 

to 1 M) or both. We choose methanol as the medium because the microcapsules disperse and 

suspend favorably and this solvent has good solubility for salts compared with other organic 

solvents. In the 1H NMR spectrum of samples suspended in TFA (0.01 M in methanol-d4) for 24 

h, no apparent depolymerization was observed (Figure 3.2, red), because this concentration of 

TFA was too low to initiate rapid depolymerization at the cPPA microcapsule’s interfaces. Also, 

the spectrum of samples suspended in LiCl (1 M in methanol-d4) showed no peaks for 

depolymerization products (Figure 3.2, black). In contrast, cPPA depolymerization was observed 

in solutions containing both TFA (0.01 M) and LiCl (1 M) based on the highlighted aromatic and 

acetal peaks. The depolymerization products were trans (1t) and cis (1c) isomers of 1,3-dihydro-

1,3-dimethoxyisobenzofuran and 1,2-bis(dimethoxymethyl)benzene (2). The depolymerization 

products were consistent with previous report on o-PA reacting with methanol and the 

depolymerization products remained the same in all triggering conditions regardless of adding 

LiCl (Figure 3.3).10 
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Figure 3.2. 1H NMR spectra of microcapsules suspended in various triggering solutions after 24 

h treatment. Microcapsules were suspended in 1 M LiCl (black), 0.01 M TFA (red), and 1 M 

LiCl + 0.01 M TFA (blue), solvent: methanol-d4. No depolymerization was observed in 1 M LiCl 

or 0.01 M TFA. Depolymerization products in 1 M LiCl + 0.01 M TFA mixed solution was 

shown in Figure 3.3. Note: DCM was residual solvent from the microcapsule’s preparation.  

 

 

Figure 3.3. Reaction schemes of cPPA depolymerization products in methanol-d4 and o-PA 

reacting with methanol-d4. (a) cPPA depolymerization products in methanol-d4. (b) o-PA 

monomers react with methanol-d4.
 Depolymerization products remained the same regardless of 

the depolyerization conditions (+/- ions) used in this chapter. Stoichiometry: x+y+z=n+2, 

x+y+2z=m. 
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3.2.2 Tunable Depolymerization Rates Co-Activated by LiCl  

    To quantify the depolymerization rates in different triggering solutions, we tracked the 

depolymerization mol % by NMR over 48 h using ethylene glycol (~5 mg/mL) as an internal 

standard to produce depolymerization profiles (Figure 3.4). Fitting the depolymerization profiles 

with an empirical logarithmic function,11 we extracted the shell wall depolymerization half-life 

(tD50). In either TFA (0.01 M) or LiCl (1 M) solutions, no depolymerization was observed and no 

tD50 values were obtained (Figure 3.4, red and black traces). tD50 in TFA (0.01 M) + LiCl (1 M) 

mixed solution was 6.0 ± 0.5 h (Figure 3.4, blue trace). This tD50 was shorter than that of 

microcapsules suspended in 0.5 M TFA solution (12.2 ± 0.3 h) (Figure 3.4, pink trace). LiCl did 

not affect the depolymerization by itself, but led to significant acceleration in the 

depolymerization rates with acid, showing a co-activation effect.  

 

Figure 3.4. LiCl co-activation effect on cPPA depolymerization. Shell wall depolymerization 

profiles of cPPA microcapsules (Mn=58 kDa, ~5mg/mL) suspended in 1 M LiCl (black), 0.01 M 

TFA (red), 0.5 M TFA (pink), and 1 M LiCl + 0.01 M TFA (blue), solvent: methanol-d4. 

Depolymerization profiles was measured by NMR using ethylene glycol (~5 mg/mL) as an 

internal standard. Data plots were fitted with an empirical logarithmic function (quantification 

procedures were detailed in 3.5.4). Error bars represent standard deviation of three 

experiments.  



65 

 

To further demonstrate the co-activation effect of LiCl and tunable depolymerization 

rates, we varied the combinations of TFA and LiCl concentrations and plotted the corresponding 

depolymerization mol % at designated time points in Figure 3.5. At 4 h, the synergistic trigger 

(TFA + LiCl) resulted in depolymerization mol % ranging from 12 mol % to more than 90 mol 

%, and apparently, always led to more depolymerization mol % compared with the individual 

trigger TFA or LiCl of the same concentration. The lowest concentration used was 0.01 M TFA 

+ 0.01 M LiCl. This mixed solution generated 16 mol % depolymerization at 24 h compared 

with 0 mol % depolymerization in 0.01 M LiCl only or 0.01 M TFA solutions only.  

 

Figure 3.5. Summary of cPPA microcapsule’s shell walls (Mn=58 kDa, ~5 mg/mL) 

depolymerization mol % in varied concentrations of TFA and LiCl at 0, 4, 8, 16, and 24 h, 

solvent: methanol-d4. The depolymerization mol % was measured by NMR using ethylene glycol 

(~5 mg/mL) as an internal standard. 

 

The microcapsule’s morphology changes induced by cPPA shell wall depolymerization 

were confirmed under SEM and optical microscopy (Figure 3.6-Figure 3.8). Microcapsules 
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suspended in acid-free/salt-free methanol, TFA (0.01 M), or LiCl (0.1-1 M) displayed similar 

morphologies, identical to the as-synthesized cPPA microcapsule’s morphology (Figure 3.14). 

They all possessed a golf-ball like surface, attributed to the rapid solvent evaporation 

procedure.12 In contrast, microcapsules suspended in solutions containing both TFA (0.01 M) 

and LiCl (0.1-1 M) exhibited shell wall erosion with visible damage (Figure 3.6, Figure 3.7). 

 

Figure 3.6. SEM images of individual microcapsules suspended in various solutions showing the 

morphology changes after 24 h treatment. cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) were 

suspended in (a) methanol (acid-free salt-free), (b) 0.01 M TFA, (c) 1 M LiCl, and (d) 0.01 M 

TFA + 0.1 M LiCl. After 24 h treatment, the microcapsule’s suspensions were filtered and the 

microcapsules left on the filter paper were imaged. Microcapsules suspended in (a)-(c) solutions 

showed no depolymerization and identical morphologies, which are similar to as-synthesized 

microcapsule’s morphology (shown in Figure 3.14). The microcapsules suspended in the (d) 

solution containing both TFA and LiCl showed the most shell wall erosion compared with other 

samples after 24 h treatment. 
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Figure 3.7. SEM images of cPPA microcapsules suspended in various solutions for 24 h. cPPA 

microcapsules (Mn=58 kDa, ~5 mg/mL) were suspended in (a) methanol (acid-free salt-free), (b) 

0.01 M TFA, (c) 0.1 M LiCl, and (d) 0.01 M TFA + 0.1 M LiCl. After 24 h treatment, the 

microcapsule’s suspensions were filtered and the microcapsules left on the filter paper were 

imaged. Microcapsules suspended in (a)-(c) solutions showed no depolymerization and identical 

morphologies, which are similar to as-synthesized microcapsule’s morphology (shown in Figure 

3.14). The microcapsules suspended in the (d) solution containing both TFA and LiCl showed the 

most shell wall erosion compared with other samples after 24 h treatment. 
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Figure 3.8. In situ optical microscopy images of cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) 

suspended in different triggering solutions. Microcapsules were suspended in (a) methanol 

(acid-free salt-free), (b) 0.01 M TFA, (c) 0.1 M LiCl, and (d) 0.01 M TFA + 0.1 M LiCl. After 24 

h treatment, the microcapsule’s suspensions were imaged under an optical microscope. 

Microcapsules suspended in (a)-(c) solutions showed no depolymerization and identical 

morphologies. The microcapsules suspended in (d) solution containing both TFA and LiCl 

showed the most shell wall erosion compared with other samples after 24 h treatment. 

 

3.3 ION CO-ACTIVATION EFFECT OF LICL IN ALTERNATIVE ACID SOLUTIONS 

We further verified the co-activation effect of LiCl in alternative acid solutions: HCl and 

p-toluene sulfonic acid (PTSA) (Figure 3.9, Table 3.1, Figure 3.10). The addition of LiCl (1 M) 

reduced tD50 from >24 h to 5.3 ± 0.5 h for 1 mM HCl (Figure 3.9a) and to 6.9 ± 1.2 h for 1 mM 

PTSA (Figure 3.9b). Similarly, we analyzed the depolymerization mol % at 4 h in varied 

concentrations of acids and LiCl (Figure 3.9c-d). A synergistic effect was confirmed in both HCl 

and PTSA, resulting in accelerated cPPA depolymerization rates dependent on the LiCl and acid 

concentrations. These results validated that the LiCl co-activation effect was applicable to 

different acidic solutions. We have also examined microcapsules prepared with a lower 
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molecular weight of cPPA as the shell wall (Mn=42 kDa, PDI=1.6) in varied concentrations of 

acids and LiCl (Figure 3.10). Decreasing the molecular weight of cPPA from 58 kDa to 42 kDa, 

in both HCl and PTSA (at 4 h), the depolymerization maps showed the migration of blue color (≥ 

90 mol % depolymerization) to the lower left side of the maps. This indicates that microcapsule’s 

shell walls consisting of cPPA with a lower molecular weight depolymerized faster than those 

consisting of cPPA with a higher molecular weight.  

 

Figure 3.9. Depolymerization profiles of cPPA microcapsules suspended in different triggering 

solutions over 24 h and summary of depolymerization mol % in varied concentrations of acids 

and LiCl at 4 h. (a) Shell wall depolymerization profiles of cPPA microcapsules (Mn=58 kDa, ~5 

mg/mL) suspended in 1 mM HCl (red) and 1 mM HCl +1 M LiCl (blue) in solvent methanol-d4. 

(b) Shell wall depolymerization profiles of cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) 

suspended in 1 mM PTSA (red) and 1 mM PTSA +1 M LiCl (blue) in solvent methanol-d4. (c) 

Depolymerization mol% of cPPA microcapsules suspended in varied concentrations of HCl and 

LiCl at 4 h. (d) Depolymerization mol% of cPPA microcapsules suspended in varied 

concentrations of PTSA and LiCl at 4 h. Depolymerization (mol %) was measured by NMR using 

ethylene glycol (~5 mg/mL) as an internal standard. Data plots were fitted with an empirical 
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Figure 3.9. (cont.) logarithmic function (quantification procedures were detailed in 3.5.4). Error 

bars represent standard deviation of three experiments. 

 

Table 3.1. Summary of Depolymerization Half-life in Alternative Acids 

Acid Concentration* pH Meter 

Value 

Apparent 

pH Value 

Depolymerization 

at 24 h (mol %) 

Shell Wall 

Half-Life (h) 

1 mM HCl -0.147 4 14.1±10.2 >24 

1 mM HCl+1 M LiCl 0.174 4 87.6±3.2 5.3 ± 0.5 

1 mM TsOH -0.063 4 6.3±1.6 >24 

1 mM TsOH+1 M 

LiCl 

0.059 4 91.5±4.8 6.9 ±1.2 

*Solvent: methanol-d4 

 

Figure 3.10. Effect of cPPA microcapsule’s shell wall molecular weight on depolymerization 

rates in varied concentrations of acids and LiCl, solvent: methanol-d4. Summary of 

depolymerization mol % at 4 h of microcapsules (~5 mg/mL) prepared by (a) 58 kDa cPPA and 

(c) 42 kDa cPPA in varied concentrations of HCl and LiCl. Summary of depolymerization (mol. 
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Figure 3.10. (cont.) %) at 4 h in microcapsules prepared by (b) 58 kDa cPPA and (d) 42 kDa 

cPPA in varied concentrations of PTSA and LiCl. Depolymerization (mol %) was measured by 

NMR using ethylene glycol (~5 mg/mL) as an internal standard.  

 

3.4 CONTROL EXPERIMENTS TO VALIDATE THE CO-ACTIVATION EFFECT OF LICL 

3.4.1 Acid Concentration Determined by Titration  

To exclude the possibility that the accelerated depolymerization rates were attributed to 

generating extra acids from decomposition and/or hydrolysis of the ionic compounds, we 

performed titration experiments to quantify the acid concentrations in different triggering 

solutions (Table 3.2). The titration results suggested that compared to solution 1 (0.01 M TFA, 

salt-free), solution 3 or solution 4 (0.01 M TFA, different concentrations of salts) had 

approximately the same acid concentration. Therefore, the co-activation effect of LiCl and the 

accelerated depolymerization rates were not induced by generating extra acids. 

Table 3.2. Summary of Titration Results 

Solutions Calculated Acid 

(mmol/L) 

Apparent 

pH value 

Depolymerization 

at 24 h (mol %) 

0.01 M TFA 2.50 3 0 

0.03 M TFA 9.38 3 0 

0.01 M TFA + 0.1 M LiCl 2.76 3 100.4±4.0 

0.01 M TFA+1 M LiCl 2.50 3 89.5±4.8 

1 M LiCl 0.05 6 0 

*Solvent: methanol-d4 

3.4.2 Depolymerization Profiles in Different Concentrations of TFA  

Acid-triggered cPPA depolymerization profiles was measured by suspending the cPPA 

microcapsules in different concentrations of TFA/methanol solutions. The depolymerization 
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profiles were measured by NMR using ethylene glycol (~5 mg/mL) as an internal standard. 

(Figure 3.11). As expected, in acid triggered depolymerization, an acid concentration-dependent 

depolymerization rate was observed. Since a higher acid concentration resulted in a lower pH 

value, the depolymerization was inverse to the pH values of the solutions. Complete 

depolymerization was achieved in 0.5 M TFA in methanol-d4 within 48 h (black trace). 

Compared with co-activated samples in 0.01 M TFA + 1 M LiCl solution in Figure 3.4 (pH = -

0.549, tD50=6.0 ± 0.5 h), the depolymerization kinetics in 0.5 M TFA (pH = -0.950, tD50=12.2 ± 

0.3 h) was slower despite the solution has a lower pH value. This indicated that the 

depolymerization kinetics in ion/acid mixed solutions was not pH or acid concentration-

dependent. Thus, acid was not the only driving force for cPPA depolymerization, supporting the 

co-activation effect of LiCl. 

 

Figure 3.11. Shell wall depolymerization profiles of cPPA microcapsules (Mn=58 kDa, ~5 

mg/mL) suspended in various concentrations of TFA/methanol-d4 solutions measured by NMR 

using ethylene glycol (~5 mg/mL) as an internal standard: 0.01 M TFA (pink), 0.05 M TFA 

(blue), 0.1 M TFA (red), and 0.5 M TFA (black). Data plots were fitted with an empirical 

logarithmic function (quantification procedures were detailed in 3.5.4). Error bars represent 

standard deviation of three experiments. 
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Table 3.3. Summary of Depolymerization Half-Life in Different Concentration of TFA 

Acid 

Concentration 

pH  

Value 

Apparent pH 

Value 

Depolymerization at 

24 h (mol %) 

Shell Wall 

Half-Life (h) 

0.5M TFA -0.950 1 86.1 ± 3.8 12.2 ± 0.3 

0.1M TFA -0.628 2 0 >48 

0.05M TFA -0.472 3 0 >48 

0.01M TFA -0.035 3 0 >48 

*Solvent: methanol-d4 

3.4.3 Effect of Water on Depolymerization Rates  

To exclude the possibility that the accelerated depolymerization rates were caused by 

hygroscopy of salts, we studied the effect of water in the depolymerization kinetics as shown in 

Figure 3.12. Depolymerization profiles in solutions containing 0.01 M TFA doped with 2 M H2O 

(black trace) or 1 M H2O (blue trace) were compared with depolymerization profiles in 0.01 M 

TFA. In these depolymerization studies, less than 5 mol % depolymerization was observed after 

48 h. This indicated that the adventitious water did not significantly altered the depolymerization 

rate. Therefore, the co-activation effect was not attributed to the hygroscopy of salts. 

 

 

Figure 3.12. Shell wall depolymerization profiles of cPPA microcapsules (Mn=58 kDa, 

~5mg/mL) suspended in 0.01 M TFA/methanol-d4 solutions doped with 2 M H2O (black), 1 M 
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Figure 3.12. (cont.) H2O (blue), and no H2O. The lines were drawn to facilitate visualization. 

Error bars represent standard deviation of three experiments and were hidden within the data 

plots.  

 

3.4.4 Co-Activation Effect in Water  

To demonstrate the co-activation effect in aqueous solutions, we performed 

depolymerization analysis using D2O as the solvent. Because the microcapsules float in aqueous 

solutions, we used cPPA film samples in this study and taped the films at the bottom of glass 

vials for this experiment. The cPPA films were produced by solvent casting using a cPPA/DCM 

solution (60 mg/mL, Mn = 109 kDa, PDI=1.7). cPPA of a higher molecular weight was used for 

preparing free standing films, The depolymerizaton mol % in varied concentrations of acids and 

salt solutions was summarized in Figure 3.13. Similarly, the depolymerization rate was 

accelerated in the presence of both HCl and LiCl and resulted in more depolymerization mol % 

than individual HCl or LiCl solutions of the same concentration. 

 

Figure 3.13. Summary of depolymerization mol % at 24 h of cPPA films (Mn=109kDa, PDI=1.7, 

3 mg/mL) immersed in varied concentrations of HCl and LiCl in D2O. Depolymerization mol % 

was measured by NMR using ethylene glycol (~6 mg/mL) as an internal standard. The 
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Figure 3.13. (cont.) depolymerization products were cis- and trans- isomers of 1,3-dihydro-1,3-

dihydroxyisobenzofuran and o-PA, and the depolymerization products were quantified by 

integrating the depolymerization products’ aromatic peaks against the internal standard’s peaks. 

 

3.5 EXPERIMENTAL DETAILS 

3.5.1 Materials and Instrumentations  

Unless otherwise noted, all chemicals were obtained from Sigma Aldrich and used as 

received. The monomer o-PA (98%, Alfa-Aesar) was purified by hot filtration followed by a 

single recrystallization according to a literature procedure.13 DCM was obtained from an 

anhydrous solvent delivery system equipped with activated alumina columns. All glassware for 

polymerization was oven dried prior to use. The synthesis of cPPA (Mn=42~109kDa, 

PDI=1.6~1.7) followed previous literature procedures with minor modifications.14  

1H NMR spectra were recorded using a Bruker 500 MHz spectrometer with broad-band 

CryoProbe and automation. Chemical shifts were reported in δ (ppm) relative to the residual 

solvent peak CHD2OD-d4 (3.31 ppm), CHDCl2-d2 (5.32 ppm) or HDO (4.75 ppm). 13C NMR 

spectra were measured in methanol-d4 and chemical shifts were reported in δ (ppm) relative to 

the signals for the solvent (49.00 ppm). Analytical gel permeation chromatograph (GPC) 

analyses were performed with a Waters1515 Isocratic HPLC pump, a Waters (2998) Photodiode 

Array Detector, a Waters (2414) Refractive Index Detector, a Waters (2707) 96-well 

autosampler, and a series of 4 Waters HR Styragel 3wcolumns (7.8 x 300mm, HR1, HR3, HR4, 

and HR5) in THF at 30 °C. The GPC was calibrated using monodisperse polystyrene standards. 

Fluorescence intensities were measured by a HORIBA Fluoromax-4 fluorescence spectrometer. 

Visualization of microcapsule morphology was performed on a Leica DMR optical microscope 

(fluorescence mode) and a Hitachi S-4700 scanning electron microscopy (SEM) with a Oxford 
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Instruments ISIS EDS X-ray Microanalysis System. Before SEM imaging, samples were sputter-

coated with Au/Pd for 60 s to eliminate surface charging effects. Titration experiments were 

performed using 0.05 M potassium hydroxide (KOH) in methanol as the standard solution. pH 

indicator was bromocresol purple. pH measurements for solutions used a pH meter (Metrohm 

827 pH lab) equipped with a H+ Ion Selective Electrode (ISE). The electrode was calibrated 

using buffers pH = 4 and pH = 7. Apparent pH values were measured by pH paper. Zeta 

potential measurements were performed with an Anton Paar Litesizer 500 using cPPA 

nanoparticles, because the cPPA nanoparticles formed much more stable dispersion in 

salt/methanol solutions compared with cPPA microcapsules. The cPPA nanoparticles dispersion 

was left still for 0.5 h before the upper dispersions were collected and injected into a 

measurement cuvette. For each sample, at least three measurements were run. All data fitting and 

data normalization in this study was conducted in OriginPro 2016. 

3.5.2 cPPA Microcapsule’s Preparation and Characterization  

cPPA microcapsules were fabricated by bulk emulsification followed by rapid solvent 

evaporation as described in Chapter 2.12  In brief, a homogeneous mixture of cPPA (shell wall, 

Mn=58 kDa or 42 kDa), JJB (core), and DCM (mcPPA/mJJB/mDCM=1/0.75/13.26) was prepared. 

Nile red was added in the solution to aid visualization and release profile measurements. The 

mixture was added dropwise into a 1 wt % poly (vinyl alcohol) (PVA) solution under 400 rpm 

agitation. The container was capped and an oil-in-water (O/W) emulsion was stirred for another 

10 min. The emulsion was then poured into 100 mL of 1 wt % PVA solution in a 500 mL round 

bottom flask, immediately followed by rapid solvent evaporation for 1 h at reduced pressure. The 

resulting microcapsules were filtered and cleaned by washing with 500 mL deionized water and 

100 mL heptane. The microcapsules were dried in open air for another 24 h. 
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Figure 3.14. SEM images of the as-synthesized cPPA microcapsules (Mn=58 kDa) prepared by 

bulk emulsification with the composition mcPPA/mJJB/mDCM=1/0.75/13.26 and rapid solvent 

evaporation procedure as detailed in Chapter 2, 2.6.3. (a) Intact microcapsules showed exterior 

shell wall morphologies with golf-ball like surface. (b) Manually crushed microcapsules showed 

the cross sectional shell wall morphologies and the approximate shell wall thickness is 10 μm. 

The cross-sectional image also showed that the surface dimple structures did not penetrate the 

shell walls. 

 

3.5.3 cPPA Nanoparticle’s Preparation and Characterization  

cPPA nanoparticles were prepared for zeta potential measurements. cPPA nanoparticles 

were fabricated by bulk emulsification followed by rapid solvent evaporation procedure. A 

solution of cPPA in DCM (mcPPA/mDCM = 1/13.26) was prepared as the oil phase. Nile red was 

added in the oil mixture to aid visualization. The oil mixture was added into a 1 wt % PVA 

solution. Volume ratio of the organic phase to the aqueous phase (PVA) was 1:5. After mixing, 

an O/W emulsion was generated by sonication for 10 s (SONICS, Vibra-Cell, VC 505, 

Ultrasonic Liquid Processor, 500 Watt, 20 kHz, Pulse 5 s, amplitude 35%). Immediately after the 

emulsification, the emulsion was poured into 100 mL 1 wt % PVA solution in a 500 mL round 

bottom flask, followed by rapid solvent evaporation for 1 h at reduced pressure. The 

nanoparticles were cleaned by 5 times of centrifugation and re-dispersion in methanol.  
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Figure 3.15. SEM images of cPPA nanoparticles and digital images of cPPA microcapsules and 

nanoparticles suspensions in methanol. (a) cPPA nanoparticle’s morphology. (b) cPPA 

microcapsule (~5 mg/mL) and nanoparticle (~1 mg/mL) suspension in methanol for zeta 

potential measurements. Nanoparticles formed a stable dispersion in methanol within 30 min, 

allowing enough time for zeta potential measurements. 

 

3.5.4 General Quantification Methods for Depolymerization Profiles 

Depolymerization profiles were measured by NMR used ethylene glycol (~5 mg/mL) as 

the internal standard because it has high boiling point (197.3 °C) and is miscible with the solvent 

methanol-d4. Microcapsules (~5 mg) and ethylene glycol (~5 mg) were accurately weighed into a 

glass vial and 1 mL methanol-d4 triggering solutions (only salts, only TFA, salts and TFA) were 

added to form microcapsule suspensions. The sample vials were kept still and all microcapsules 

sank to the bottom within 10 min. At designated time, 0.1 mL aliquot (supernatant solution) was 

collected and diluted with 0.6 mL methanol-d4 for NMR measurements. At each time point, the 

molar amount of the depolymerization products in the aliquot, i

monomerM ( i is the number of 

collected time points, i 0, 1, 2, …), was determined by integrating the depolymerization 

products aromatic peaks (7.30-7.60 ppm, 4 H) against the internal standard peaks (3.60-3.65 

ppm, 4 H). To obtain microcapsules depolymerization profiles, cumulative depolymerization mol 
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% was plotted vs. time. The cumulative depolymerization mol % at time t (h) was calculated 

based on the equation below, 

Depolymerization mol % = 

1

0

(10 )

100%

i
i i

monomer monomer

polymer

M i M

M



  




          3.1 

where M polymer is the molar amount of shell wall cPPA in the cPPA microcapsules. To 

obtain M polymer, we dissolved the cPPA microcapsules and the internal standard ethylene glycol 

in CD2Cl2-d2. The M polymer is calculated by integrating shell wall cPPA polymer aromatic peaks 

(7.20-7.80 ppm, 4 H) over the internal standard peaks (3.60-3.70 ppm, 4 H) in the NMR spectra. 

The depolymerization profiles were fitted by an empirical logarithmic function as shown 

below,11  
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where D0 is the depolymerization mol % at t = 0 h, Df  is the depolymerization mol % at t 

= 48 h, and n is order exponent. 
50

'Dt  is the apparent depolymerization half-life, corresponding to 

where 0

2

fD D
D


 . When fD  < 100 %, the 

50
'Dt does not accurately reflect the actual 

depolymerization half-life (D = 50). Therefore, we defined and used the actual depolymerization 

half-life (
50Dt ). 

50Dt  is the t value corresponds to D = 50. The 
50Dt  value is determined from the 

logarithmic function fitting curves. A smaller 
50Dt value indicates a faster depolymerization rate. 

The results were reported based on the average of at least three independent experiments.  
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3.5.5 NMR Spectra 

 

Figure 3.16. 1H NMR spectrum of purified o-PA dissolved in 0.01 M TFA/methanol-d4. 

 

Figure 3.17. 13C NMR spectrum of purified o-PA dissolved in 0.01 M TFA/methanol-d4. 
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Figure 3.18. Representative 1H NMR spectrum of microcapsules suspended in 1 M LiCl + 0.01 

M TFA in methanol-d4 after 24h. 

 

Figure 3.19. Representative 13C NMR spectrum of microcapsules suspended in 1 M LiCl + 0.01 

M TFA in methanol-d4 after 24 h. 
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Figure 3.20. Representative 1H NMR spectrum of microcapsules dissolved in CD2Cl2 to calculate 

the molar amount of shell wall cPPA in the microcapsules. 
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 : PROGRAMMABLE PAYLOAD RELEASE TRIGGERED BY A CHAPTER 4

SPECIFIC ION CO-ACTIVATION EFFECT 

 

4.1 INTRODUCTION 

In biological systems, homeostasis depends on accurate and autonomous regulation 

leading to intricate, feedback-controlled reaction networks. Some feedback controlled 

mechanisms originate from specific ion-biomolecule interactions that regulate enzyme 

(de)activation,1 signal transduction,2–4 and cell volume.5   For example, Ca2+ inhibits lipid 

recognition by direct binding to the lipid marker phosphatidylinositol 4,5-bisphosphate in plasma 

membranes, whereas Mg2+ exhibits only a modest inhibition.6 This specific ion-biomolecule 

interaction is mostly attributed to different ion dehydration energy penalties originally studied by 

Hofmeister in the 1880s.7,8 So far, the specific ion effect has been applied to (bio)catalysis,9 

protein aggregation,10–14 thermoresponsive materials phase transitions,12,15,16 colloidal systems 

stability,17,18 and molecular mechanisms of ion-enzyme binding.19–22 

In contrast, the specific ion effect has been less commonly employed in synthetic 

materials but has potential in the design of materials with bio-inspired autonomous regulation. 

For example, combining a specific ion effect with compartmentalized materials, microcapsules23 

and vascularized composites,24 may achieve biomimetic functions such as signal transduction 

and chemical amplification. One strategy involves ion-triggered microcapsules that transduce ion 

recognition into the release of an encapsulated payload. Microcapsules whose shell walls consist 

of transient polymers are a promising possibility.25–27 Typically, the transient polymers undergo 

chain unzipping depolymerization after removing end groups or cleaving the backbone by 
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stimuli.26,28 In Chapter 2, we have shown that the depolymerization of transient polymers leads to 

the rupture of the cPPA microcapsule’s shell wall, releasing the payloads with sigmoidal shaped 

kinetic profiles.29 In Chapter 3, we have used LiCl to demonstrate the ion co-activation effect at 

the solid/liquid interfaces of transient polymer microcapsule’s suspensions. This ion co-

activation effect transduced ion-polymer interactions to tunable depolymerization rates. In this 

Chapter, we investigated the ion specificity in the co-activation effect to understand the criteria 

for cations and anions to control the cPPA depolymerization rates. An established ion library will 

be beneficial for controlled depolymerization kinetics that allows programmable payload release 

triggered by specific ions in the solutions.  Also, specific ion effects at the interfaces of transient 

polymer microcapsules are possible design components for feedback controlled reaction 

cascades. To our knowledge, the specific ion effect on transient polymers has not been addressed 

in previous studies.  

4.2 ION SPECIFICITY IN THE CO-ACTIVATION EFFECT 

4.2.1 Depolymerization Rates Modulated by Hofmeister Anions 

To demonstrate ion specificity, we investigated the depolymerization profiles for various 

anions and cations. First, we varied the anions using lithium as the counter cation (0.01 M TFA + 

1 M lithium salts) (Figure 4.1). Different anions showed distinct co-activation effects, primarily 

depending on the solvation behavior of anions. For the kosmotropic anions such as SO4
2-, OAc-, 

and F-, no co-activation effect was observed, evidenced by their lack of depolymerization mol % 

at 48 h (0 mol %) compared to depolymerization mol % in 0.01 M TFA (salt-free) at 48 h (0 mol 

%) (Figure 4.1).  
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Figure 4.1. Anion co-activation effects on cPPA microcapsule’s depolymerization rates. cPPA 
microcapsules (Mn=58 kDa, ~5 mg/mL) were suspended in methanol-d4 containing 0.01 M TFA 
+ 1 M lithium salts with different anions. The co-activation effect of each anion species was 
represented by depolymerization half-life tD50 and depolymerization mol % at 16 h. Both values 
were obtained from depolymerization profiles in different lithium salts/TFA/methanol-d4 
solutions, shown in Figure 4.12 and Figure 4.13. A lower half-life value or a higher 
depolymerization mol % value indicated a faster depolymerization rate and an increased co-
activation effect. The depolymerization half-life tD50 of SO4

2-, OAc-, and F- were marked in break 
columns because these values exceeded the measuring scale. Among these examined anions, only 
chaotropic anions accelerated the depolymerization rates. Note: Li2SO4 and LiF saturated 
solutions were used.   

 

For chaotropic anions, the depolymerization half-life tD50 was ClO4
- (4.2 ± 1.0 h) < Cl- 

(6.0 ± 0.5 h) < Br- (8.4 ± 0.1 h) < I- (8.8 ± 0.6 h) < SCN- (22.9 ± 2.5 h) < NO3
- (25.7 ± 1.8 h), 

showing distinct co-activation effects. To further validate the anion specificity, an in situ ion 

exchange experiment was designed (Figure 4.2). Microcapsules were first suspended in 0.01 M 

TFA for 24 h (0 mol % depolymerization), followed by adding 0.05 M LiCl to accelerate the 

depolymerization from 24 to 42 h. At 42 h, 0.05 M AgOAc was added to exchange Cl- to OAc- 
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by forming AgCl. The removal of the chaotropic anion Cl- from solutions slowed down the 

depolymerization from 42 to 72 h. This abrupt change in the co-activation behavior at the 

borderline from kosmotropic anions to chaotropic anions is an indication of the Hofmeister 

effect, that originated from the difference in anion solvation behavior (Table 4.1).12 The 

desolvation energy penalties of chaotropic anions are much lower than those of kosmotropic 

anions. Therefore, the interactions between chaotropic anions and cPPA were more energetically 

favorable to co-activate the depolymerization.30  

 

Figure 4.2. In situ depolymerization experiments of cPPA microcapsules (Mn=58 kDa, ~5 
mg/mL) suspended in methanol-d4. From 0 h to 24 h, microcapsules were suspended in 0.01 M 
TFA, which resulted in 0 mol % depolymerization at 24 h. LiCl was added to the solutions in situ 
at 24 h to from 0.01 M TFA + 0.05 M LiCl solution and accelerated the depolymerization rates 
from 24 to 42 h. At 42 h, AgOAc was added to the solutions in situ to form 0.01 M TFA + 0.05 M 
LiOAc + 0.05 M AgCl solutions, and AgCl precipitated immediately in the solutions. The 
removal of the chaotropic anion Cl- from solutions slowed down the depolymerization rates from 
42 to 72 h.  
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Table 4.1.Thermodynamic Data of Hofmeister Anions in the Literature30 

Anions ΔGhyr    
(kJ/mol) 

ΔGtr (MeOH) 
(kJ/mol) 

SO4
2- -1090 31 

F- -472 16 

OAc- -373 16 

Cl- -347 13 

Br- -321 11 

NO3
- -306 13 

SCN- -287 6 

I- -283 7 

ClO4
- -214 6 

 

4.2.2 Depolymerization Rates Modulated by Hofmeister Cations 

Intrigued by the connection of anion specificity to the Hofmeister series, we further tested 

the cation effect using chloride (0.01 M TFA + 0.02 M chloride salts) as the counter anion 

(Figure 4.3). A lower concentration (0.02 M chloride salts) of co-activators were employed to 

ensure solubility of all chloride salts. Compared with the anion specific studies, the cation 

specific studies showed modest difference in the co-activation effects: Li+ (16.7 ± 0.9 h) < Na+ 

(16.9 ± 1.3) < NH4
+ (18.5 ± 0.3 h) < K+ (21.3 ± 1.2 h) < NMe4

+ (22.4 ± 0.9 h). This indicates that 

anions are dominant factors in the co-activation behavior. The dominant role of anions over 

cations in the SICA effect is likely attributed to the stronger interaction of anions with the 

polymer/solvent interfaces compared with cations. In general, cations are smaller in size and 

more solvated compared with anions with similar molar mass, thereby cations are likely to be 
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depleted from a hydrophobic interface (cPPA shell wall) while anions are more attracted to it 

(Table 4.2).10,20,31 Thus, the anion-cPPA interactions are more energetically favored than cation-

cPPA interactions. The stronger interactions apparently led to the dominant role of anions in the 

SICA effect. Cations exhibit a secondary effect that modulates the co-activation inversely to the 

ion pair strength. A weaker ion pair allows a stronger anions-cPPA interaction and a stronger co-

activation effect. More elaboration on this matter is in 4.2.3 and 4.2.4.  

 

Figure 4.3. Cation co-activation effects on cPPA microcapsule’s depolymerization rates. cPPA 
microcapsules (Mn=58 kDa, 5 mg/mL) were suspended in methanol-d4 containing 0.01 M TFA + 
0.02 M chloride salts with different cations. A low concentration (0.02 M) of co-activators was 
used to allow solubility of all chloride salts. The co-activation effect of each cation species was 
represented by depolymerization half-life tD50 and depolymerization mol % at 16 h. Both values 
were obtained from depolymerization profiles in different chloride salts/TFA/methanol-d4 
solutions, shown in Figure 4.14. A lower half-life value or a higher depolymerization mol % 
value indicated a faster depolymerization rate and an increased co-activation. Cations showed a 
modulating role in the co-activation and is correlated to the ion pair strength. The ion pair 
strength was estimated by the Law of Matching Water Affinities as specified in 4.2.3.22,30,32  
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Table 4.2.Thermodynamic Data of Hofmeister Cations in the Literature 30 

Anions ΔGhyr    
(kJ/mol) 

ΔGtr (MeOH) 
(kJ/mol) 

Li+ -481 4 

Na+ -375 8 

K+ -304 10 

NH4
+ -292 5 

NMe4
+ -175 6 

 

4.2.3 Ion Pair and the Law of Water Matching Affinities 

The Law of Water Matching Affinities (LWMA) are qualitative rules to represent ion 

pairing strength.33,34 The affinity of cations and anions depends on the matching of their size and 

hydration properties. If the cations and anions have similar dimension and hydration properties, 

the formation of ion pairs are more energetically favorable. For example, LiF are stronger ion 

pairs compared with LiSCN, because Li+ and F- have similar sizes and hydration properties. 

Since the Hofmeister series are an ordering of cations and anions based on their hydration 

properties, the LWMA can be combined with the Hofmeister series to compare the ion pair 

strength as illustrated in Figure 4.4. When both cations and anions are kosmotropes or chaotropes 

(both on the left side or both on the right side), the hydration properties are similar and form 

solvent shared ion pairs (if both are kosmostropes) or contact ion pairs (if both are chaotropes) 

are energetically favorable. Alternatively, if cations are kosmotropes and anions are chaotropes 

(diagonal directions), or vice versa, the ion pairing effect is relatively weaker. Note: because the 

free energy of transfer (ΔGtr) from water to methanol is small compared to the free energy of 
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hydration (ΔGhyr) for all ions (Table 4.1, Table 4.2),30 we assume the solvation behavior of ions 

in methanol were identical to their hydration behavior. 

 

Figure 4.4. Illustration of ion pair strength determined by the combination of LWMA and the 
Hofmeister series. The cations and anions on the left side are kosmotropes (strongly solvated). 
The cations and anions on the right side are chaotropes (weakly solvated). When both cations 
and anions are kosmotropes or chaotropes (both on the left side or both on the right side), their 
hydration properties are similar and forming solvent shared ion pairs (if both are kosmostropes) 
or contact ion pairs (if both are chaotropes) are energetically favorable. Alternatively, if cations 
are kosmotropes and anions are chaotropes (diagonal directions), or vice versa, the ion pairing 
effect is relatively weaker. Note: because the free energy of transfer (ΔGtr) from water to 
methanol is small compared to the free energy of hydration (ΔGhyr) for all ions (Table 4.1, Table 
4.2),30 we assume the solvation behavior of ions in methanol were identical to their hydration 
behavior.  

 

4.2.4 SICA Effect in Alternative Ion Pairs 

In anion and cation specificity studies, we have found that anions have determining effect 

on the co-activation and cations have modest impact on the co-activation (Figure 4.5). To further 

verify this, we tested various ion pairs with acetate (1 M), sulfate (1 M), nitrate (1 M) and 

thiocyanate salts (0.1 M) (Figure 4.6, Figure 4.7). We used the cumulative depolymerization mol 

% at 24 h to reflect the co-activation effect. A higher depolymerization percentage represents a 

faster depolymerization rate and a stronger co-activation effect.   
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Figure 4.5. The SICA effect at the transient polymer microcapsules interfaces and output 
reaction cascades. 

 

In all compounds with kosmotropic anions, no co-activation effect was observed (Figure 

4.6). This confirmed that anions have a determining effect on the co-activation behavior. Only 

chaotropic anions switched on the co-activation behavior. In nitrate salts, we observed a V-

shaped co-activation effect, owing to weaker ion pairs of Ca(NO3)2 and NH4NO3 compared with 

KNO3, based on the LWMA discussion in 4.2.3 (Figure 4.7a). In thiocyanate salts (0.1 M), a 

descending co-activation effect Ca2+>Li+>Na+>K+ was observed, because SCN- forms 

increasingly stronger ion pair following the order of Ca2+<Li+<Na+<K+ (Figure 4.7b). The ion 

pair strength was estimated by LWMA as illustrated in Figure 4.4 .22,30 Because the free energy 

of transfer (ΔtrG) from water to methanol is small compared to the free energy of hydration 
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(ΔhyrG) for all cations,30 we assume the solvation behaviors of cations in methanol are identical 

to their hydration behavior. 

 

Figure 4.6. Co-activation effects in kosmotropic anion solutions. cPPA microcapsules (Mn=58 
kDa, 5 mg/mL) were suspended in methanol-d4 containing (a) 0.01 M TFA + 1 M acetate salts 
with different cations, and (b) 0.01 M TFA + saturated sulfate salts with different cations. The 
co-activation effect for each ion pair was evaluated by the depolymerization mol % at 24 h. A 
higher depolymerization mol % value indicated a faster depolymerization rate and an increased 
co-activation. These kosmotropic anions showed no co-activation, because no depolymerization 
was observed, same as that of microcapsules suspended in salt-free control solutions (0.01 M 
TFA) for 24 h, which resulted in 0 mol %. The experiments were performed in triplicate and 
showed 0 mol % depolymerization for all measurement. Note: saturated solutions were used for 
all sulfate salts due to low solubility of the salts at 1 M concentration. 

 

Figure 4.7. Co-activation effects in chaotropic anion solutions. cPPA microcapsules (Mn=58 
kDa, 5 mg/mL) were suspended in methanol-d4 containing (a) 0.01 M TFA + 1 M nitrate salts 
with different cations, and (b) 0.01 M TFA + 0.1 M thiocyanate salts with different cations. The 
co-activation effect for each ion pair was evaluated by the depolymerization mol % at 24 h. A 
higher depolymerization mol % value indicated a faster depolymerization rate and an increased 
co-activation. The co-activation behavior followed the cation modulating mechanism: the 
stronger ion-pair yielded a weaker co-activation effect. Error bars represent standard deviation  
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Figure 4.7. (cont.) of three experiments. Co-activation effects in chaotropic anion solutions. 
Note: saturated solutions were used for all sulfate salts due to low solubility of the salts at 1 M 
concentration. 

 

4.3 CONCENTRATION DEPENDENCE IN THE SPECIFIC ION CO-ACTIVATION EFFECT 

We further analyzed ion concentration dependence in the SICA effect. In general, we 

observed a positive concentration-dependent co-activation effect (Figure 4.8). For example, 

increasing LiCl concentration from 0.1 M to 1 M reduced the tD50 from 10.3 ± 1.5 h to 6.0 ± 0.5 

h. In LiSCN, however, 0.1 M LiSCN (tD50 = 20.6 ± 0.5 h) and 1 M LiSCN (tD50 = 22.9 ± 2.5 h) 

yielded similar depolymerization rate. We speculated this saturation-type concentration effect in 

LiSCN was attributed to the affinity of the weakly solvated SCN- to the cPPA interfaces.11,35 

High concentration of SCN- around the cPPA microcapsules was supported by the significantly 

more negative zeta potential (-42.6 mV) of 1 M LiSCN compared with that of 1 M LiCl (-2.8 

mV). Presumably, the highly charged surface led to electrostatic screening effect, resulting in a 

saturation-type concentration-dependent co-activation in LiSCN. 11,13  
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Figure 4.8. Co-activator concentration dependence studies. Shell wall depolymerization profiles 
of cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 
solutions containing 0.1 M (red) or 1 M (blue) (a) LiCl, (b) LiBr, (c) LiNO3, (d) LiSCN, (e) LiI, 
and (f) LiClO4. Depolymerization profiles were measured by NMR spectroscopy using ethylene 
glycol as an internal standard (~5 mg/mL). Data plots were fitted with an empirical logarithmic 
function (quantification procedures were detailed in 3.5.4). Error bars represent standard 
deviation of three experiments.  
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4.4 PAYLOAD RELEASE RATES MODULATED BY THE SPECIFIC ION CO-

ACTIVATION EFFECT 

The SICA effect resulted in tunable depolymerization rates in the cPPA microcapsule’s 

shell walls. Because the sigmoidal-shaped release profiles were caused by the rupture of the shell 

walls resulting from the depolymerization, we also expected the SICA effect modulated the 

payload release rates (Figure 4.9). To measure the payload release profiles, aliquots from 

microcapsule’s suspensions in different ion/acid solutions were collected at designated time. 

Fluorescence intensities of the diluted aliquot solutions (containing the released Nile red from 

microcapsules) were measured by a fluorescence spectrometer and normalized to generate the 

payload release kinetic profiles (4.5.4). The data plots were fitted with an empirical logarithmic 

function and the payload release half-life (tR50) were abstracted. The tR50 correlated with the 

depolymerization half-life tD50. A shorter shell wall depolymerization half-life yielded a faster 

payload release rate (Figure 4.9). Therefore, programmable payload release rates was achieved 

by changing the ionic species in the solutions.  

 

Figure 4.9. Correlation of depolymerization half-life and release half-life. Depolymerization 
half-life (blue columns) and release half-life (red columns) values of cPPA microcapsules 
(Mn=58 kDa, ~5 mg/mL) suspended in methanol-d4 containing (a) 0.01 M TFA + 1 M lithium 
salts and (b) 0.01 M TFA + 0.02 M chloride salts. The depolymerization half-life and release 
half-life were abstracted from corresponding depolymerization (Figure 4.13, Figure 4.14) and 
payload release profiles (Figure 4.15, Figure 4.16).  
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4.5 EXPERIMENTAL DETAILS  

Unless otherwise noted, all chemicals were obtained from Sigma Aldrich and used as 

received. The monomer o-PA (98%, Alfa-Aesar) was purified by hot filtration followed by a 

single recrystallization according to a literature procedure.28 DCM was obtained from an 

anhydrous solvent delivery system equipped with activated alumina columns. All glassware for 

polymerization was oven dried prior to use. The synthesis of cPPA (Mn=58 kDa, PDI=1.6) 

followed previous literature procedures with minor modifications.36  Depolymerization profiles, 

data fitting, SEM, and pH measurements followed the same procedures and quantification 

methods used in Chapter 3, 3.5. 

4.5.1 Microcapsules Suspended in Salt Solutions 

To test the effect of salts (acid-free) on the cPPA depolymerization, the cPPA 

microcapsules were suspended in LiCl (1 M) and LiSCN (1 M) for two weeks. Morphology 

studies (Figure 4.10-Figure 4.11) and NMR spectra confirmed no apparent depolymerization 

after two weeks’ treatment, indicating salts are co-activators.  
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Figure 4.10. SEM images of cPPA microcapsules suspended in acid-free methanol-d4 solutions 
containing (a) (c) 1 M LiCl and (b) (d) 1 M LiSCN for two weeks. After two week, the 
microcapsule’s suspensions were filtered and the microcapsules left on the filter paper were 
imaged. Microcapsules showed identical morphologies without apparent shell wall erosion. 
Their morphologies are similar to the as-synthesized microcapsule’s morphology (shown in 
Chapter 3, Figure 3.14).   
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Figure 4.11. In situ optical microscopy images of cPPA microcapsules suspended in acid-free 
methanol-d4 solutions containing (a) 1 M LiCl and (b) 1 M LiSCN for two weeks. After two 
weeks, the microcapsule’s suspensions were imaged under an optical microscope. Microcapsules 
showed no morphology changes in both solutions.  

 

4.5.2 Depolymerization Profiles 

 

Figure 4.12. Effect of kosmotropic anions on cPPA depolymerization. Shell wall 
depolymerization profiles of cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M 
TFA/methanol-d4 solutions containing 0.05 M Li2SO4 (green), 1 M LiOAc (yellow), or 1 M LiF 
(red). Depolymerization profiles were measured by NMR spectroscopy using ethylene glycol as 
an internal standard (5 mg/mL). The data plots were average values of three experiments and 
error bars were hidden within the plots. Note: saturated lithium sulfate and lithium fluoride 
solutions were used due to low solubility of salts at designated concentrations.    
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Figure 4.13. Effect of chaotropic anions on cPPA depolymerization. Shell wall depolymerization 
profiles of cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 
solutions containing 1 M lithium salts with different chaotropic anions. Depolymerization 
profiles were measured by NMR spectroscopy using ethylene glycol as an internal standard (~5 
mg/mL). The data plots were fitted with an empirical logarithmic function. Error bars represent 
standard deviation of three experiments.   

	  

Figure 4.14. Effect of cations on cPPA depolymerization. Shell wall depolymerization profiles of 
cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 solutions 
containing 0.02 M chloride salts with different cations. Depolymerization profiles were 
measured by NMR spectroscopy using ethylene glycol as an internal standard (~5 mg/mL). The 
data plots were fitted with an empirical logarithmic function. Error bars represent standard 
deviation of three experiments. 
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Figure 4.15. Effect of anions on payload release rates. Payload release profiles of cPPA 
microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 solutions 
containing 1 M lithium salts with different anions. Release profiles were measured by a 
fluorescence spectrometer and was quantified by normalization. The data plots were fitted with 
an empirical logarithmic function. Error bars represent standard deviation of three experiments.  

 

Figure 4.16. Effect of cations on payload release rates. Payload release profiles of cPPA 
microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 solutions 
containing 0.02 M chloride salts with different cations. Release profiles were measured by a 
fluorescence spectrometer and was quantified by normalization. The data plots were fitted with 
an empirical logarithmic function. Error bars represent standard deviation of three experiments. 
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Table 4.3. Summary of Depolymerization Half-Life and Release Half-Life 

Salts* pH Meter 
Value 

Apparent 
pH Value 

Depolymerization          
Half-life (h) 

Release          
Half-life (h) 

Salt-free,      
0.01 M TFA -0.035 3 > 48 h - 

1 M LiCl -0.549 3 6.0 ± 0.5 10.6 ± 1.7 

1 M LiBr -0.662 3 8.4 ± 0.1 11.2 ± 1.9 

1 M LiNO3 0.850 3 25.7 ± 1.8 31.5 ± 2.1 

1 M LiSCN 1.242 4 22.9 ± 2.5 22.0 ± 1.1 

1 M LiI 0.085 3 8.8 ± 0.6 3.8 ± 0.2 

1 M LiClO4 -0.748 3 4.2 ± 1.0 3.5 ± 2.2 

0.02 M LiCl -0.233 3 16.7 ± 0.9 20.0 ± 3.8 

0.02 M NaCl -0.266 3 16.9 ± 1.3 20.6 ± 0.9 

0.02 M KCl -0.252 3 21.3 ± 1.2 24.0 ± 2.8 

0.02 M NH4Cl -0.241 3 18.5 ± 0.3 21.0 ± 2.3 

0.02 M NMe4Cl -0.236 3 22.4 ± 0.9 23.4 ± 2.2 

 
* Salts solutions were all mixed with 0.01 M TFA. LiSCN solution were prepared with 
LiSCN·xH2O as received from Sigma Aldrich. The concentration was calculated based on 
the molar mass of LiSCN. 
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Figure 4.17. Effect of chaotropic anions on cPPA depolymerization. Shell wall depolymerization 
profiles of cPPA microcapsules (Mn= 58kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 
solutions containing 0.1 M lithium salts with different chaotropic anions. Depolymerization 
profiles were measured by NMR spectroscopy using ethylene glycol as an internal standard (~5 
mg/mL). The data plots were fitted with an empirical logarithmic function. Error bars represent 
standard deviation of three experiments.  

 

Table 4.4. Summary of Depolymerization Half-life in 0.1 M Lithium Salts Solutions 

Salts* Depolymerization 
at 16 h (mol %) 

Depolymerization          
Half-life (h) 

0.1 M LiCl 80.8 ± 19.1 10.3 ± 1.5 

0.1 M LiBr 46.5 ± 2.1 17.2 ± 1.0 

0.1 M LiNO3 13.9 ± 3.6 32.2 ± 3.9 

0.1 M LiSCN 39.0 ± 1.2 20.6 ± 0.5 

0.1 M LiI 40.3 ± 2.9 25.3 ± 2.9 

0.1 M LiClO4 95.4 ± 6.0 8.8 ± 0.1  

* Salts solutions were all mixed with 0.01 M TFA 
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Figure 4.18. Effect of cations on cPPA depolymerization. Shell wall depolymerization profiles of 
cPPA microcapsules (Mn=58 kDa, ~5 mg/mL) suspended in 0.01 M TFA/methanol-d4 solutions 
containing 0.1 M thiocyanate salts with different cations. Depolymerization profiles were 
measured by NMR spectroscopy using ethylene glycol as an internal standard (~5 mg/mL). The 
data plots were fitted with an empirical logarithmic function. Error bars represent standard 
deviation of three experiments.  

 

Table 4.5. Summary of Depolymerization Half-life in 0.1 M Thiocyanate Salts Solutions 

 

* Salts solutions were all mixed with 0.01 M TFA 

Salts* Depolymerization 
at 24 h (mol %) 

Depolymerization          
Half-life (h) 

0.05 M Ca(SCN)2 73.1 ± 0.5 15.9 ± 0.8 

0.1 M LiSCN 57.3 ± 2.1 20.6 ± 0.5 

0.1 M NaSCN 43.3 ± 2.0 27.9 ± 1.1 

0.1 M KSCN 19.9 ± 0.2 45.6 ± 2.0 
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4.5.3 NMR Spectra 

 

Figure 4.19. 1H NMR spectrum of microcapsules suspended in acid-free 1 M LiCl for 2 weeks. 
No depolymerization products were observed. Solvent: methanol-d4. 

 

Figure 4.20. 1H NMR spectrum of microcapsules suspended in acid-free 1 M LiSCN for 2 weeks. 
No depolymerization products were observed. Solvent: methanol-d4. 
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4.5.4 Release Profiles Measurements 

Nile red was encapsulated in the cPPA microcapsules to facilitate the payloads release 

profiles measurements. The fluorescence intensities of the collected aliquot supernatant solutions 

that used in depolymerization profiles were measured for payload release profiles. The release 

profiles were calculated by the same equation used in depolymerization profiles and normalized 

to [0, 100]. Release profiles were fitted based on an empirical logarithmic function as shown 

below,37  
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where R0 is release % at t = 0 h, Rf  is release % at t = 48 h, and n is order exponent. 
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depolymerization half-life, the actual release half-life 
50R
t  was extracted from the fitting curves 

using R=50. The results were reported based on the average of at least three independent 

experiments. 
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CHAPTER 5 : DEPOLYMERIZATION TRIGGERED BY LEWIS ACIDS AND 

COACTIVATORS 

 

5.1 INTRODUCTION 

The cationic polymerization and depolymerization mechanisms of cPPA are known to go 

through the same cationic intermediates (Figure 5.1).1,2 This indicates that the Lewis acid 

initiators for cPPA polymerization are potential chemical stimuli for cPPA depolymerization. In 

the SICA effect studies from Chapter 4, we have analyzed a series of anions and cations that co-

activate cPPA depolymerization with Brønsted acids. To further expand the stimuli library for 

triggered cPPA depolymerization in a mild reaction environment, in this chapter, we 

demonstrated Lewis acids such as divalent or transition metal ions triggered cPPA 

depolymerization and the ion co-activation effect was applicable to these Lewis acid and 

accelerated the depolymerization rates.  

 

Figure 5.1. Proposed Lewis acid catalyzed cPPA depolyerization mechanism redraw from 

reference 3–5. 
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5.2 EFFECT OF LEWIS ACIDS ON CPPA DEPOLYMERIZATION 

To test the Lewis acid effects on cPPA depolymerization, three metal cations (Li+, Zn+, 

Mg+) with different acidities were selected as listed in Table 5.1.6 We mainly focused on 

studying the metal ions based Lewis acids because of our interest to develop ion-triggered 

microcapsules for batteries and anticorrosion applications. Therefore, Lewis acids such as boron 

halides were not examined here. The Lewis acidities of these metal ions are collected from 

references.6,7 The Lewis acidities were represented by Kamlet-Taft parameter α, which described 

the ability to donate a hydrogen bond or accept an electron pair.6 The calculation of α was based 

on equation 5.1 and 5.2 from reference 6, 

/ ( 43.8)A                                             5.1 

2(3.72) / 3.78 DA z r R                            5.2 

where z+ is the charge of the cations, r+ is the radius (in nm) of the cations, and RD+ is the 

molar refractivity (cm3/mol) of the cations.  

Table 5.1. Lewis Acidities of the Examined Metal Ions in the Literature 6 

Ions Kamlet-Taft 

Value α  

Li (I) 1.24 

Zn (II) 4.65 

Mg (II) 4.66 

 

We examined Li (I), Mg (II), and Zn (II) salts with two different counter anions: chloride 

(Cl-) and bistriflimide (TFSI-). A polar aprotic solvent, tetrahydrofuran (THF-d8), was selected to 
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prepare cPPA solutions (Mn=55 kDa, PDI=1.6, 5 mg/mL) for the depolymerization studies with 

the Lewis acids (0.01 M-0.1 M in THF-d8). Unlike the cPPA microcapsule’s suspensions in 

methanol (cPPA is not soluble in methanol) used in Chapter 3 and Chapter 4, cPPA is soluble in 

THF and forms a homogeneous solution. We studied the cPPA/THF solutions with Lewis acids 

to analyze the intrinsic effects of Lewis acids on cPPA depolymerization and exclude the effects 

of interfaces in microcapsule’s suspensions. THF also has good solubility for all examined Lewis 

acid compounds at the desired concentrations (0.01 M-0.1 M) (except for MgCl2).  

The cPPA depolymerization rates in the presence of different Lewis acids were studied 

by their corresponding depolymerization mol % at 48 h. The 1H NMR spectra of 

cPPA/THF/Lewis acids solutions were collected after 48 h treatment in situ. The 

depolymerization mol % was calculated by comparing the integration of the depolymerization 

products peaks (o-PA, aromatic protons, 4 H, 7.77-8.00 ppm) over the integration of the 

remained cPPA polymer peaks (acetal protons, 2 H, 6.30-7.15 ppm). For the Cl- salts, the 

depolymerization rates were Mg (II) (70 ± 1 mol %) > Li (I) (64 ± 4 mol %) > Zn (II) (7 ± 1 mol 

%), as reflected by the depolymerization mol % at 48 h (Figure 5.2a). For the TFSI- salts, the 

depolymerization rates were Mg (II) (92 ± 8 mol %) ≈ Zn (II) (90 ± 10 mol %) > Li (I) (50 ± 7 

mol %) (Figure 5.2b). For the TFSI- salts, the ordering of depolymerization rates correlated with 

the Lewis acidities of the metal cations as listed in Table 5.1. This supports the hypothesis that 

the Lewis acids are chemical stimuli to trigger cPPA depolymerization without Brønsted acids. 

Notably, for the chloride salts, the ordering of depolymerization rates did not correlate with the 

Lewis acidities, which indicated that the metal ions were not the sole contributor that caused the 

depolymerization.  
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Figure 5.2. Comparison of depolymerization rates in cPPA/THF/Lewis acids solutions, as 

represented by depolymerization mol % at 48 h. cPPA: Mn=55 kDa, PDI=1.6, 5 mg/mL in THF-

d8; Lewis acids: 0.01 M in THF-d8. Note: MgCl2 saturated solutions were used, because it is not 

fully soluble in THF at the concentration of 0.01M.  

 

To further validate the importance of metal ions in cPPA depolymerization, a control 

study was performed with solutions containing crown ethers to form complexes with metal ions 

(12-crown-4 for lithium salts and 15-crown-4 for magnesium and zinc salts).8 The 

depolymerization mol % in cPPA/THF/Lewis acids/crown ethers solutions at 48 h was plotted in 

Figure 5.3. For both TFSI- and Cl- salts, the addition of crown ethers inhibited the 

depolymerization, evidenced by the less pronounced depolymerization than solutions without the 

crown ethers (Figure 5.2, Figure 5.3). The formation of metal ion-crown ether complexes 

reduced the availability of metal ions to catalyze the cPPA depolymerization. These results 

corroborate our hypothesis that metal ions catalyze the cPPA depolymerization. Also notably, in 

crown ether solutions containing LiCl, MgCl2, or Mg(TFSI)2, more than 30 mol % 

depolymerization was observed after 48 h. The resulting depolymerization in the crown ether 
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solutions is presumably triggered by Brønsted acids generated from hydrolysis of the metal ions 

and decompositions of the ionic compounds.   

 

Figure 5.3. Depolymerization mol % in cPPA/THF/Lewis acids/crown ether solutions at 48 h. 

cPPA: Mn=55 kDa, PDI=1.6, 5 mg/mL in THF-d8; Lewis acids: 0.01 M in THF-d8; Crown 

ethers: 0.011 M in THF-d8; 12-crown-4 was used for lithium salts and 15-crown-4 was used for 

magnesium and zinc salts. Note: MgCl2 saturated solutions were used, because it is not fully 

soluble in THF at the concentration of 0.01M. 

 

5.3 ION CO-ACTIVATION EFFECTS IN LEWIS ACID SOLUTIONS 

Accelerated cPPA depolymerization rates in the Lewis acid solutions were achieved by 

adding LiCl as the co-activators. Generalizing the co-activation effects in Lewis acid solutions is 

beneficial to develop ion-triggered materials in mild environments. LiCl is chosen as the co-

activator (0.1 M in THF-d8) because it effectively accelerates cPPA depolymerization rates 

(Chapter 3 and 4) and is soluble in THF up to 1 M. The depolymerization mol % at 48 h was 

used to estimate and compare the depolymerization rates in solutions with or without adding the 

co-activator, LiCl. Similarly, the depolymerization mol % was calculated by comparing the 

integration of the depolymerization products peaks (o-PA, aromatic protons, 4 H, 7.80-8.05 ppm) 
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over the integration of the remained cPPA polymer peaks (acetal protons, 2 H, 6.30-7.15 ppm). 

LiCl effectively accelerated the depolymerization rates (Figure 5.4b) compared with solutions 

without LiCl (Figure 5.4a). The solution pH values in Table 5.2 also suggested that the 

depolymerization occurred in a mild acidic solutions (pH= 3~4). It should be noted that the 

behavior of LiCl in THF solutions and methanol solutions are different. In THF solutions, LiCl 

by itself catalyzed the cPPA depolymerization, but did not lead to depolymerization in cPPA 

microcapsule/methanol suspensions after 2 weeks. The difference in depolymerization kinetics 

can be attributed to a faster depolymerizaiton rate in homogeneous (cPPA/THF solutions) than in 

heterogeneous (cPPA microcapsules/methanol suspensions) systems.9 Further investigation on 

the solvent effect and interface effect of cPPA depolymerization will provide more insights on 

the depolymerization kinetics and co-activation effect mechanisms. 

 

Figure 5.4. Comparison of depolymerization rates in cPPA/THF/Lewis acids solutions with or 

without co-activator LiCl, as represented by depolymerization mol % in different solutions at 48 

h. cPPA: Mn=55 kDa, PDI=1.6, 5 mg/mL in THF-d8; Lewis acids: 0.01 M in THF-d8; Co-

activator: LiCl 0.1 M in THF-d8. Note: MgCl2 saturated solution was used as it is not fully 

soluble in THF at the concentration of 0.01M.  
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5.4 EXPERIMENTAL DETAILS  

5.4.1 Materials and Instrumentations 

Unless otherwise noted, all chemicals were obtained from Sigma Aldrich and used as 

received. The monomer o-PA (98%, Alfa-Aesar) was purified by hot filtration followed by a 

single recrystallization according to a literature procedure.10 DCM was obtained from an 

anhydrous solvent delivery system equipped with activated alumina columns. All glassware for 

polymerization was oven dried prior to use. The synthesis of cPPA (Mn=55 kDa, PDI=1.6) 

followed previous literature procedures with minor modifications.11  

The molecular weight of cPPA was determined by an analytical gel permeation 

chromatograph (GPC) analyses were performed with a Waters1515 Isocratic HPLC pump, a 

Waters (2998) Photodiode Array Detector, a Waters (2414) Refractive Index Detector, a Waters 

(2707) 96-well autosampler, and a series of 4 Waters HR Styragel 3wcolumns (7.8 x 300mm, 

HR1, HR3, HR4, and HR5) in THF at 30 °C. The GPC was calibrated using monodisperse 

polystyrene standards.  

NMR spectra were recorded using a Bruker 500 MHz spectrometer with broad-band 

CryoProbe and automation. Chemical shifts were reported in δ (ppm) relative to the residual 

solvent peak THF-d8 (1.72 ppm). The depolymerization mol % in cPPA homogeneous solutions 

were measured in situ after 48 h treatment, and the quantification was determined by comparing 

the integration of the depolymerization products peaks (o-PA, aromatic protons, 4 H, 7.77-8.00 

ppm) over the integration of the remained cPPA polymer peaks (acetal protons, 2 H, 6.30-7.15 

ppm). pH indicator was bromocresol purple. pH measurements for solutions used a pH meter 
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(Metrohm 827 pH lab) equipped with a H+ Ion Selective Electrode (ISE). The electrode was 

calibrated using buffers pH = 4 and pH = 7. Apparent pH values were measured by pH paper. 

5.4.2 Representative NMR Spectra of cPPA Depolymerization in Lewis Acid Solutions 

 

Figure 5.5. 1H NMR spectra of cPPA (Mn=55 kDa, ~5mg/mL) depolymerization catalyzed by 

0.01 M ZnCl2 after 48 h. Solvent: THF-d8. 

 

Figure 5.6. 1H NMR spectra of cPPA (Mn=55 kDa, ~5mg/mL) depolymerization catalyzed by 

0.01 M ZnCl2 and co-activated by 0.1 M LiCl after 48 h. Solvent: THF-d8. 
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Figure 5.7. 1H NMR spectra of cPPA (Mn=55 kDa, ~5mg/mL) depolymerization catalyzed by 

0.01 M Zn(TFSI)2 after 48 h. Solvent: THF-d8. 

 

Figure 5.8. 1H NMR spectra of cPPA (Mn=55 kDa, ~5mg/mL) depolymerization catalyzed by 

0.01 M Zn(TFSI)2 in THF-d8 with or without crown ethers 15-crown-5 in the solutions at 48 h. 

Red trace represented a cPPA/THF solution containing both Lewis acids 0.01 M Zn(TFSI)2 and 

0.011 M 15-crown-4 to inhibit the Lewis acid catalysts by forming metal ion crown ether 

complexes. Blue trace represented a cPPA/THF solution containing Lewis acids 0.01 M 

Zn(TFSI)2) and no crown ethers.  
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5.4.3 pH Measurement of Lewis Acid/THF Solutions 

Table 5.2 pH Measurements of Lewis Acid/THF Solutions 

Solutions pH meter Apparent pH 

0.01 M LiCl 4.142 4 

0.01 M LiCl+ 0.1 M LiCl 3.701 4 

0.01 M LiTFSI 3.575 4 

0.01 M MgCl2 3.852 4 

0.01 M MgCl2 + 0.1 M LiCl 3.193 4 

0.01 M Mg(TFSI)2 0.064 4 

0.01 M ZnCl2 1.540 4 

0.01 M ZnCl2 + 0.1 M LiCl 3.726 4 

0.01 M Zn(TFSI)2 -3.479 4 
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 : EFFORTS TOWARDS MECHANISMS OF SPECIFIC ION CO-CHAPTER 6

ACTIVATION EFFECT ON TRANSIENT POLYMER MICROCAPSULES 

6.1 INTRODUCTION 

In Chapter 3 and Chapter 4, we investigated a specific ion co-activation effect (SICA) on 

cPPA microcapsules. From the ion specificity studies, we discovered that the ion co-activation 

effect is related to anion solvation properties, showing Hofmeister behavior. All investigated 

chaotropic anions (Cl-, Br, NO3
-, SCN-, I-, ClO4

-) were found to co-activate cPPA 

depolymerization due to favorable anion-polymer interactions. As anions become less solvated 

from Cl- to ClO4
-, the co-activation effect decreased from Cl- to NO3

- and increased from SCN- to 

ClO4
-, showing a non-monotonic trend. This suggested that the SICA effect resulted from several 

contributions and the dominating mechanisms depended on the anion species. Similar non-

monotonic trends were reported in previous literatures on specific anion-polymer interactions, 

where different anions were dominated by different types of interactions that modulated the 

polymer solubility in water.1 For example, Zhang et al. reported specific anion-poly (N-

isopropylacrylamide) (pNIPAM) interactions that modulated the lower critical solution 

temperatures (LCST) of pNIPAM based on three mechanisms.1 Kosmotropic anions lowered the 

LCST by polarizing the hydration layers of the pNIPAM amide groups. Chaotropic anions such 

as Cl- and Br- lowered the LCST by increasing the surface tension and destabilizing the 

hydrophobic hydration layers of the pNIPAM backbones. Chaotropic anions such as SCN- and 

ClO4
- increased the LCST by directly binding to the amide groups which enhanced the solubility 

of pNIPAM.  
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Inspired by these interaction models, we considered the cPPA backbone structures and 

proposed two chaotropic anion-cPPA interaction models and mechanisms for their co-activation 

effect (Figure 6.1). In the first model, anions interact with cationic cPPA depolymerization 

intermediates via electrostatic interaction, which stabilizes the depolymerization intermediates 

and leads to the accelerated depolymerization rates (Figure 6.1, left). In the second model, anions 

associate with cPPA microcapsules/methanol solid/liquid interfaces via solvent assisted 

hydrophobic interaction.2,3 The affinity of anions to the microcapsule’s interfaces leads to the 

accelerated depolymerization rates (Figure 6.1, right). In this chapter, we studied the proposed 

models to probe the SICA effect mechanisms. To analyze the effect of anions on the cPPA 

depolymerization intermediates, we studied small molecule acetalization reactions of the 

monomer o-PA with methanol in different triggering solutions to mimic the effect of anions on 

the depolymerization intermediates. To understand the importance of the interfaces, we 

compared the SICA effect in homogeneous cPPA solutions and heterogeneous cPPA 

microcapsule’s suspensions. 

 

Figure 6.1.Proposed chaotropic anion-cPPA interaction models. (a) Electrostatic interactions 
between chaotropic anions and cPPA depolymerization intermediates (left). (b) Solvent assisted 
hydrophobic interactions between chaotropic anions and cPPA microcapsules/methanol 
(solid/liquid) interfaces (right).  
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6.2 SPECIFIC ION CO-ACTIVATION EFFECT IN HOMOGENEOUS AND 

HETEROGENEOUS SYSTEMS 

To understand whether the existence of cPPA microcapsules/methanol (solid/liquid) 

interfaces affect the co-activation, we compared the cPPA depolymerization kinetic profiles in 

heterogeneous (cPPA microcapsules/methanol suspensions, solid/liquid interfaces) and 

homogeneous (cPPA/tetrahydrofuran (THF) solutions, no interfaces) systems (Figure 6.2). In 

heterogeneous systems, cPPA microcapsules (~5 mg/mL) were suspended in methanol-d4 (black 

trace 0.01 M TFA, blue trace 0.01 M TFA + 1 M LiCl, red trace 0.01 M TFA + 1 M LiSCN) as 

shown in Chapter 3 and 4. In homogeneous systems, cPPA (Mn=55 kDa, PDI=1.6, ~5 mg/mL) 

was dissolved in THF-d8 (no interfaces, black trace 0.01 M TFA, blue trace 0.01 M TFA + 1 M 

LiCl, red trace 0.01 M TFA + 1 M LiSCN) to form a solution. In homogeneous and 

heterogeneous systems, the co-activation effects of LiCl and LiSCN were found to be different. 

In both microcapsule’s suspensions (heterogeneous) and cPPA solutions (homogeneous), LiCl 

accelerated the depolymerization rates regardless of the existence of the interfaces. This indicates 

that LiCl’s co-activation does not rely on an interface. In contrast, LiSCN only accelerated the 

depolymerization rates in the heterogeneous microcapsule’s suspensions. The less pronounced 

co-activation effect of LiSCN in homogeneous cPPA solutions suggests that LiSCN’s co-

activation is related to interfaces. The different co-activation effects in heterogeneous and 

homogeneous systems support the hypothesis that the co-activation effects of LiCl and LiSCN 

were dominated by different mechanisms resulted from different anion-polymer interactions. 
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Figure 6.2. cPPA depolymerization profiles in heterogeneous and homogeneous systems. (a) 
cPPA depolymerization profiles in heterogeneous systems (replot from Chapter 4): cPPA 
microcapsule’s suspensions in methanol-d4 (~5 mg/mL). The triggering solutions contain 0.01 M 
TFA (black), 0.01 M TFA + 1 M LiCl (blue) or 0.01 M TFA + 1 M LiSCN (red). (b) cPPA 
depolymerization profiles in homogeneous systems: cPPA solutions in THF-d8 (~5 mg/mL). The 
triggering solutions contain 0.01 M TFA (black), 0.01 M TFA + 1 M LiCl (blue) or 0.01 M TFA 
+ 1 M LiSCN (red).  
 

Intrigued by the observation above, we further compared the co-activation effects of 

other chaotropic anions in the heterogeneous and homogeneous systems to determine the anion 

species whose co-activations are related to interfaces (Figure 6.3). The co-activation effects were 

represented by the depolymerization mol % at 16 h, and a higher depolymerization percentage 

indicated an increased co-activation effect. In heterogeneous systems (Figure 6.3a), all examined 

chaotropic anions resulted in accelerated depolymerization rates, showing co-activation effects. 

In homogeneous systems (Figure 6.3b), LiCl, LiBr, and LiClO4
 co-activated the cPPA 

depolymerization, but LiNO3, LiSCN, and LiI led to much less pronounced co-activation effects. 

This indicates that the co-activation effects of LiNO3, LiSCN and LiI are related to the cPPA 

microcapsule’s interfaces. We explain that the dependence on the interface derives from these 

anions (i.e. SCN-) are more hydrophobic (than i.e. Cl- and Br-) and have greater affinities to the 
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hydrophobic cPPA microcapsule’s interfaces.4 The anions at cPPA interfaces could attract 

hydronium ions and lead to decreased interfacial pH values that accelerate the depolymerization 

rates. 5,6 Another possibility is that the anions at the interfaces have a plasticizing effect on the 

shell walls, which cause a faster diffusion of payloads across the shell walls.1 And these 

contributions at the interfaces may result in the co-activation effect of LiNO3, LiSCN and LiI. 

 

Figure 6.3. Comparison of the SICA effect in heterogeneous and homogeneous systems (a) The 
SICA effect in heterogeneous systems (replot from Chapter 4): cPPA microcapsule’s suspensions 
in methanol-d4 (~5 mg/mL). The triggering solutions contain 0.01 M TFA and 1 M lithium salts 
with different anions. (b) The SICA effect in homogeneous systems: cPPA solutions in THF-d8 (~ 
5 mg/mL). The triggering solutions contain 0.01 M TFA and 1 M lithium salts with different 
anions. In both systems, the SICA effect was evaluated by the depolymerization mol % at 16 h. A 
higher depolymerization mol% indicated an increased co-activation effect. Note: Saturated 
solution was used for LiSCN/THF solution due to its low solubility. 

 

6.3 PROBE CO-ACTIVATION EFFECT ON DEPOLYMERIZATION INTERMEDIATES 

To test the effect of anions on the cationic cPPA depolymerization intermediates, the acid 

catalyzed acetalization reactions of the monomer o-PA with methanol was used as a mimic 

reaction because the depolymerization intermediates of cPPA were similar in structures to the 
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intermediates generated during the formation of o-PA acetals as shown in Figure 6.4. To 

elucidate the effect of anions on the reaction energy profiles, we monitored the kinetics of acetal 

formation in the presence and absence of co-activators by NMR spectroscopy.  

 

Figure 6.4. (a) cPPA depolymerization cationic intermediates. (b) Acid catalyzed formation of o-
PA acetals in deuterated methanol. Note: Stereoisomers for Product 1 and cyclic hemiacetals 
were not illustrated here.   

 

Figure 6.5. Representative time sequenced 1H NMR spectra of o-PA (~25 mg/mL, 0.18 M) 
acetalization reactions catalyzed by TFA (1 mM in methanol-d4). 1H NMR spectra were collected 
immediately after dissolving o-PA in the triggering solutions. Only small amounts of o-PA 
remained in the first 1H NMR spectra, and the majority of the starting materials are cyclic 
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Figure 6.5. (cont.) hemiacetals (black arrows). Consumption rates of the hemiacetals were 
calculated by comparing the molarity of hemiacetals with the total molarities of all types of 
acetals (product 1, product 2, and hemiacetals) and remained o-PA. 
 

To examine the kinetics of the model small molecule reaction, starting materials o-PA 

(~25 mg/mL, 0.18 M) was dissolved in methanol-d4 containing 1 mM TFA (salt-free) to form a 

homogeneous solution (Figure 6.5). Immediately after the mixing, time-dependent NMR spectra 

were collected every 2 h (over 24 h) to monitor the conversion of o-PA to Product 1 and 2. The 

majority of the starting material o-PA was found readily converted to cyclic hemiacetals in the 

first collected NMR spectra (Figure 6.5, arrow, 0 h). Therefore, we monitored the reaction 

kinetics by calculating the consumption of the cyclic hemiacetals, which was determined by 

comparing the molarity of cyclic hemiacetals with the total molarities of all types of acetals 

(product 1, product 2, and cyclic hemiacetals) and remained o-PA. The kinetic profiles in 

different triggering solutions, 1 mM TFA (red), 1 mM TFA + 10 mM LiCl (blue), and 1 mM 

TFA + 10 mM LiSCN (green), were compared in Figure 6.6a. Apparently, the addition of LiCl 

in the acidic solutions accelerated the consumption of the cyclic hemiacetals (blue) compared 

with the kinetics in salt-free acidic solutions (red) and acidic solutions with LiSCN (green). A 

control study was performed to monitor the conversion of cyclic hemiacetals in acid-free ionic 

solutions (Figure 6.6b). In both acid-free 10 mM LiCl solutions (blue circles) or acid-free 10 mM 

LiSCN solutions (green circles), less than 5 mol % hemiacetals were consumed, indicating a 

much slower reaction kinetics without acid catalysts and both LiCl and LiSCN did not affect the 

reaction kinetics intrinsically. These results are also consistent with the results discussed in 6.2, 

where LiCl and LiSCN showed different co-activation behaviors in homogeneous solutions. 

Observation of a co-activation effect in forming the small molecule acetals indicated that LiCl’s 

co-activation on cPPA is possibly related to stabilizing the intermediates in the reaction kinetics. 
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On the contrary, the presence of LiSCN did not accelerate the reactions. This was expected 

because the co-activation effect of LiSCN is hypothesized to rely on the interfaces. 2,7  

 

Figure 6.6. Kinetic profiles of hemiacetals consumption in varied triggering solutions. (a) 
Hemiacetals consumption profiles in 1 mM TFA (red), 1 mM TFA + 10 mM LiCl (blue), 1 mM 
TFA + 10 mM LiSCN (green), solvent: methanol-d4. (b) Hemiacetals consumption profiles in 10 
mM LiCl (blue, acid-free) and 10 mM LiSCN (green, acid-free), solvent: methanol-d4. 
Consumption rates of the hemiacetals were calculated by comparing the molarity of hemiacetals 
with the total molarities of all types of acetals (Product 1, Product 2, and hemiacetals) and 
remained o-PA. The data plots in (a) were fitted with an exponential decay model.  
 

We further hypothesize that the LiCl’s co-activation effect on cPPA is a result of chloride 

anion interacts with the degradation cationic intermediates by electrostatic interactions which 

stabilize the intermediates involved in the initial ring opening.  This step was proved to be the 

rate limiting step in cPPA chain unzipping pathway in a previous computational study.8 Because 

the intermediates generated during the conversion from Product 1 to Product 2 have a similar 

structure with the cPPA depolymerization intermediates generated during the ring opening step 

(Figure 6.7b), we probed the effect of LiCl on this rate limiting step by monitoring the 

conversion kinetics of Product 1 to Product 2 in different triggering solutions: 1 mM TFA (red), 

1 mM TFA + 10 mM LiCl (blue), and 1 mM TFA + 10 mM LiSCN (green) (Figure 6.8). The 

addition of LiCl in the acidic solutions (blue) accelerated the conversion of Product 1 to Product 
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2 compared with the kinetics in salt-free acidic solutions (red). Observation of a co-activation 

effect in forming the small molecule acetals indicated that LiCl’s co-activation on cPPA is 

possibly related to stabilizing the intermediates in the reaction kinetics. In comparison, acidic 

LiSCN solutions did not show acceleration effect on this kinetics study (green). This indicated 

that LiSCN and LiCl affected cPPA depolymerization in different mechanisms.  

 

Figure 6.7. (a) Rate limiting step of cPPA depolymerization: initial ring opening. (b) Acid 
catalyzed conversion of Product 1 to Product 2 which mimics the ring opening step. Note: 
Stereoisomers for Product 1 and cyclic hemiacetals were not illustrated here. 
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Figure 6.8. Kinetic profiles of Product 1 consumption in varied triggering solutions. (a) Product 
1 consumption profiles in 1 mM TFA (red), 1 mM TFA + 10 mM LiCl (blue), 1 mM TFA + 10 
mM LiSCN (green), solvent: methanol-d4. (b) Product 1 consumption profiles in 10 mM LiCl 
(blue, acid-free) and 10 mM LiSCN (green, acid-free), solvent: methanol-d4. Consumption rates 
of the Product 1 were calculated by comparing the molarity of hemiacetals with the total 
molarities of all types of acetals (Product 1, Product 2, and hemiacetals) and remained o-PA. 
The data plots in (a) were fitted with an exponential decay model.  
 

6.4 SUMMARY: PROPOSED APPROACHES TO ASSIGN MULTI-SCALE 

CONTRIBUTIONS IN THE SPECIFIC ION CO-ACTIVATION EFFECT 

So far, we have demonstrated that the SICA effect is contributed by multiple factors. 

Possible contributions include changes in the bulk solutions induced by addition of salts, 

interfaces of microcapsules and ionic effect on molecular level depolymerization pathway. This 

session will propose experimental approaches to examine and assign the contributions at each 

level.  

6.4.1 Contribution of Bulk Solutions 

Mixing salts in acidic solutions can cause changes in acidities and polarities in the bulk 

solutions. Therefore, 

   Bulk pH Bulk polaritybulkD D D= +     6.1 
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To extract the contribution of acid in the depolymerization, in Figure 3.11, we have 

shown an acid concentration dependent model using cPPA depolymerization profiles in different 

concentrations of TFA. Plotting depolymerization (mol %) in TFA solutions against the 

corresponding solution pH value, a sigmoidal shaped relationship will be established.   
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where Dmin is the depolymerization mol % at 16 h at the highest pH values (lowest acid 

concentration),  Dmax  is the depolymerization mol % at 16 h in the solution with the lowest pH 

values (highest acid concentration). And n is order exponent. 50DpH =  is the pH value of the 

solution with depolymerization (mol %) =50 mol % at 16 h. And pH is the bulk solvent pH 

values measured by pH meter. Using this model, we can determine the depolymerization 

percentage contributed by the bulk solvent at different pH levels.  

The contributions of solvent polarity change can be probed by the encapsulant, Nile red, 

which is known as an indicator of polarity by the shift of emission spectrum.17 Polarity 

contributions can be tested by measuring the shift of max emission with increasing concentration 

of salts. The excitation spectrum was obtained from the payload release profiles. In preliminary 

tests, we collected the emission spectrums in different salt concentrations and compared their 

maximum emission wavelength. The resulting peak wavelengths shifted less than 3 nm for all 

the ionic solutions, indicating that the polarity changes are negligible.  

6.4.2 Contribution of Interfaces 

After deducting the contribution of acidities, to extract the contribution of interfaces, we 

have compared cPPA depolymerization kinetic profiles in heterogeneous (cPPA 

microcapsules/methanol suspensions, solid/liquid interfaces) and homogeneous 
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(cPPA/tetrahydrofuran solutions, no interfaces) systems (Figure 6.2). As discussed in 6.2, NO3
-, 

SCN-, I- showed much less pronounced SICA effect, indicating that the accelerated 

depolymerization was likely only contributed by the existence of an interface, which was 

originated from the hydrophobicity of these anions. Several changes are expected due to 

hydrophobicity, including surface pH changes, surface polarity changes, solvation and 

plasticizing effect. Surface pH and surface polarity changes are characterized by in situ 

fluorescence imaging. pH indicators and polarity indicators can be encapsulated in the 

microcapsules and the dye trapped in the shell wall is used to monitor the environment changes 

at the interface. Solvation and plasticizing effect can be probed by measuring release profiles of 

microcapsules in acid-free salt solutions and use release profiles in acid-free salt-free solutions as 

a control study. The payload release is driven by diffusion only and is used to determine the shell 

wall barrier properties to reflect the anion solvation and plasticizing effect.   

6.4.3 Contributions at the Molecular Level  

The small molecule model used in 6.3 suggested that Cl- affect the depolymerization at a 

molecular level by interacting with the depolymerization intermediates. It will be valuable to see 

computation results using o-PA as the model molecule and calculate the energy landscape in 

these small molecule acetals with or without the presence of chloride. One step forward is to use 

a 3 or 4-monomer oligomer and examine the depolymerization kinetics of cPPA from ab initio 

computation.16  

Another possible mechanism of LiCl’s co-activation is that the anion-polymer 

interactions altered the depolymerization pathway by inhibiting the nucleophilic solvents to 

capture the cationic intermediates. When the depolymerization intermediates are captured by 

solvent molecules, the depolymerization proceeds through a step-wise manner instead of a 
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domino-like manner.11 If the Cl- inhibits the solvent capture, a step-wise pathway will be shifted 

to an unzipping pathway in LiCl solution. Monitoring the production of o-PA (by NMR) and the 

reduction of cPPA molecular weight (by GPC) during the depolymerization will be useful to 

understand the effect of anions on these pathways.  

6.5 EXPERIMENTAL DETAILS 

Unless otherwise noted, all chemicals were obtained from Sigma Aldrich and used as 

received. The monomer o-PA (98%, Alfa-Aesar) was purified by hot filtration followed by a 

single recrystallization according to a literature procedure.9 DCM was obtained from an 

anhydrous solvent delivery system equipped with activated alumina columns. All glassware for 

polymerization was oven dried prior to use. The synthesis of cPPA (Mn=55 kDa, PDI=1.6) 

followed previous literature procedures with minor modifications.10  

The molecular weight of cPPA was determined by an analytical gel permeation 

chromatograph (GPC) analyses were performed with a Waters1515 Isocratic HPLC pump, a 

Waters (2998) Photodiode Array Detector, a Waters (2414) Refractive Index Detector, a Waters 

(2707) 96-well autosampler, and a series of 4 Waters HR Styragel 3wcolumns (7.8 x 300mm, 

HR1, HR3, HR4, and HR5) in THF at 30 °C.  

NMR spectra were recorded using a Bruker 500 MHz spectrometer with broad-band 

CryoProbe and automation. Chemical shifts were reported in δ (ppm) relative to the residual 

solvent peak methanol-d4 (3.31 ppm) and THF-d8 (1.72 ppm). The depolymerization profiles of 

microcapsule’s suspensions were reproduced from Chapter 3 and 4. Depolymerization mol % at 

16 h for different anions were extracted from Chapter 3 and 4. The depolymerization mol % in 

cPPA homogeneous solutions were measured in situ after 48 h treatment, and the quantification 

was determined by comparing the integration of the depolymerization products peaks (o-PA, 
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aromatic protons, 4 H, 7.77-8.00 ppm) over the integration of the remained cPPA polymer peaks 

(acetal protons, 2 H, 6.30-7.15 ppm).  
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 : OUTLOOK: HOFMEISTER EFFECT ON MACROMOLECULES AND CHAPTER 7

POTENTIAL APPLICATIONS IN AUTOCATALYTIC PAYLOAD RELEASE FROM 

TRANSIENT POLYMER MICROCAPSULES  

7.1 MOTIVATION 

In Chapter 3 to Chapter 6, we have introduced the concept of SICA on cPPA 

microcapsules, which is useful for controlling the depolymerization and payload release kinetics. 

We have concluded in Chapter 3 and 4 that this SICA effect is related to anion solvation 

behavior. In Chapter 6, mechanism studies have shown that the SICA effect on cPPA 

depolymerization is potentially contributed by multi-scale factors: an electrostatic interaction that 

mediates the depolymerization kinetics at a molecular level (Cl-) and an anion-cPPA shell wall 

hydrophobic interaction that affects the depolymerization kinetics at an interfacial level (SCN-). 

The aim of this chapter is to expand considerations on the SICA effect of the cPPA 

microcapsules, understand theoretical approaches to illustrate SICA effect molecular level 

mechanisms, and propose crude models for developing autocatalytic payload release based on 

the cPPA microcapsules and the SICA effect.   

7.2 CURRENT STATE OF HOFMEISTER EFFECT  

 Univalent ions result in specific changes in electrolyte solutions, colloids, surfactants, 

emulsions, and polymer/protein solubility, known as the Hofmeister series.1–3 The specific ion 

effects modulate material’s properties via non-covalent interactions, which offer convenient and 

reversible routes to achieve environmental responsive materials. Experimental and computational 

studies have devoted to understand mechanisms of the Hofmeister series, whereas their 

molecular level origin is still in debate. Different from the classical Debye–Hückel and 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory where the electrostatic interactions were 

considered, the specific ion effect is contributed by ion geometry, solvation behavior and 
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dispersion force. It has been recognized that these contributions either compensate or contradict 

with each other, resulting in ion specific behavior.2 

7.2.1 Hofmeister Effect in Organic Solvents 

The ion specific hydration behavior is one of the contributions accounted for the 

Hofmeister effect. It raises the question whether the Hofmeister behavior exists in non-aqueous 

or mixed solvents. Several studies have investigated the specific ion effect on pNIPAM solubility 

in alcohol-water mixed solutions.4–6 As the molar fraction of methanol increases in the methanol-

water solvent mixture, the LCST of pNIPAM decreases first and then increases, known as the 

reentrant behavior.7 It is hypothesized that the reentrant behavior was caused by the formation of 

solvent complexes, which reduce the accessibility of water molecules for the solute pNIPAM. It 

was found that the minimum value of LCST (transition point) for a solvent mixture is dependent 

on the anions in the solution. Wang et al. have found SCN- and ClO4
- depressed the reentrant 

behavior (increasing minimum LCST), while Cl-, Br-, and NO3
- enhanced the reentrant behavior 

(decreasing minimum LCST). They accounted the ion specific reentrant behavior to the effect of 

ions on the solvent complexes (Figure 7.1). SCN- and ClO4
- broke the methanol-water complexes, 

thereby increasing the accessibility of water molecules to pNIPAM and its solubility. In contrast, 

Cl-, Br-, and NO3
- did not affect the formation of solvent complexes. In another study, Xu et al. 

investigated ion specific pNIPAM solubility in mixed solvents of water and different polyhydric 

alcohols.5 Ion specific effect was found to be amplified in alcohols that require more water 

molecules for alcohol hydrophobic solvation or can form stronger intermolecular hydrogen 

bonding with water (Figure 7.2). Similarly, this was attributed to the effect of ions on the 

formation of water-solvent complexes.  
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Figure 7.1. Schematic illustration of pNIPAM solvation behavior in (a) water, (b) water-
methanol complexes, and (c) methanol. Reprinted with permission from reference7 Copyright © 
2012 American Chemical Society. 

 

Figure 7.2. Ion specific LCST of pNIPAM in different alcohol solutions. (a) The ion specific 
LCST was amplified in the order of MeOH<EtOH<1-PrOH<2-PrOH, as the number of water 
molecules required for the hydrophobic hydration of alcohols increases. (b)The ion specific 
LCST of pNIPAM was amplified in the order of MeOH<ethylene glycol<glycerol<meso-
erythritol<xylitol<D-sorbitol, as the tendency of forming intermolecular hydrogen bonding 
decreases. Na+ is the common cation. Reprinted with permission from reference5. Copyright © 
2014 American Chemical Society.  
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7.2.2 Simulation Studies in the Hofmeister Effect  

To understand the molecular level mechanisms, molecular dynamics (MD) simulations 

have been adapted in several studies to understand the ion-(bio)molecule and ion-polymer 

interactions.8–11 Four types of interactions are generally considered to contribute to the ion specific 

effect: (1) Coulomb and Lennard-Jones interactions; (2) short range dispersion or London type 

forces; (3) solvent assisted hydrophobic interactions; (4) ion pairing or Law of Water Matching 

Affinity. Currently, it is still challenging to differentiate these contributions via simulation 

approach. Nevertheless, physical insights of ion-(bio)molecule affinity and ion distribution are 

obtained in MD simulation by constructing two coarse-grained models, with charged groups 

exposed or buried in the nonpolar surfaces.12 Ion distribution on the (bio)molecules was 

calculated by g(r) (Figure 7.3). In several studies, Cl- and F- were found to locate primarily 

around charged groups. And SCN- was found distributed around nonpolar groups. 9,11–15  

 

Figure 7.3. Radial distribution of Cl- (green) and I- (red) around basic (cationic) and nonpolar 
groups on Lysozyme. Reprinted with permission from reference 12. Copyright © 2008 American 
Chemical Society) 
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7.3 MODELS FOR AUTOCATALYTIC PAYLOAD RELEASE FROM TRANSIENT 

POLYMER MICROCAPSULES 

Understanding the co-activation effect will introduce a new type of microcapsule system 

capable of self-catalyzing its payload release. The payload amplification can be initiated by 

breaking few microcapsules and the released payloads further trigger the shell wall disassembly 

and delivery of payloads. This type of auto-acceleration microcapsules can be achieved by 

encapsulating the co-activators (ionic compounds). To estimate the critical encapsulation 

parameters and probe the feasibility of this system, in this chapter, important parameters are 

analyzed for modeling a self-catalyzed microcapsule system. Two scenarios are considered: (a) 

diffusion rate of the ionic compound in the bulk solution is much faster than the payload release 

rate from microcapsules (Dion-solvent ≫ Dion-μc, bulk solution trigger); (b) diffusion rate of the ionic 

compound is much slower than the payload release rate (Dion-solvent ≪ Dion-μc, flow trigger).  

We define, 𝑅(t) is payload (salts) released in the medium that contributes to co-

activation, normalized to [0, 100]. For both scenarios, an equation describing the relation of 

payload release half-life and salt concentration (in bulk solution) is needed as a calibration curve. 

For the calibration, cPPA microcapsules (no co-activators encapsulated) are suspended in an 

acidic medium containing different concentrations of salts. We assume the initial acid 

concentration A0 remains constant during the payload release. This relation can be obtained by 

plotting payload release half-life 
50
'Rt against triggering solutions of varied salt concentration S.  

50 0' ( , )Rt F A S=             7.1 

The payload release half-life is obtained by data fitting as shown in Chapter 3 and 4, 
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where R0 is release % at t = 0 h, Rf  is release % at t = ∞, and n is order exponent. 
50
'Rt  is the 

apparent release half-life, corresponding to where 0( )
2

fR R
R t

−
= . For simplification, we only 

use apparent release half-life 
50
'Rt in the models. 

For autocatalytic payload release systems, cPPA microcapsules encapsulated with salts 

were suspended in an acidic solvent medium containing acid concentration A0 and salt 

concentration S0. The acid concentration remains constant over time, while the salt concentration 

is a function of time, so 

50 0' ( , ( ))Rt F A S t=         7.3 

To obtain the payload release equation in the autocatalytic payload release system, it is essential 

to solve S(t) for each scenario. 

7.3.1 Autocatalytic Payload Release Triggered by Co-Activators in the Bulk Solutions (Dion-solvent 

≫ Dion-µc) 

First we analyze the scenario where diffusion rate of the ionic compound in the bulk 

solvent is much faster than the diffusion rate of the payload across the shell walls (Dion-solvent ≫ Dion-μc). 

This scenario is a simple extension based on the investigated system in Chapter 3 and 4, where 

the co-activation is a bulk solution trigger. Here we need to account for the increasing co-

activator concentrations released from the microcapsules.   

The real time salt concentration S(t) is dependent on the initial salt concentration in the 

bulk solvent (S0), ultimate salt concentration when all payloads are released (X) and the released 

percentage at a certain time point, R(t),  

0( ) ( )S t S R t X= +         7.4 

 Apparently, X is dependent on the composition of individual microcapsule and the 

microcapsules suspensions: 
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salts

mLX
MW V

=         7.5 

where, 𝑚 (mg) is the mass of microcapsules suspended in the medium, 𝐿 is the loading 

percentage of salts inside the microcapsules (wt %), and 𝑉 (mL) is the volume of solution 

medium, 𝑀𝑊!"#$! (g/mol) is the molecular weight of salts.  

Therefore,  

0
( )( )
salts

R t mLS t S
MW V

= +       7.6 

 Substitute equation 7.4 into 7.3, then 

 
50 0' ( , ( ) )Rt F A S R t X= +         7.7  

So the payload release profiles for this scenario is,  

0 0

0 0
0

( )
1 ( ) 1 ( )

( , ( ) ) ( , ( ) )

f f
f f

n n

o
salts

R R R R
R t R Rt t

mLF A S R t X F A S R t
MW V

− −
= + = +

+ +
+ +

          7.8 

Reorganizing R(t) to the left, then R(t) is determined by A0, S0, m, L, MWsalts, V, indicating 

a high concentration of microcapsules suspension, a high loading efficiency of salts and a low 

molar mass ionic compound as encapsulant favors a faster payload release rate in this auto-

acceleration model.  

 

7.3.2 Autocatalytic Payload Release Triggered by a Flow of Co-Activators (Dion-solvent ≪ Dion-µc). 

Next we consider the scenario where diffusion rate of the ionic compound in the bulk 

solution is much slower than the diffusion rate of the payload across the shell walls (Dion-solvent ≪ Dion-

μc). Similarly, a calibration equation is needed as we described in 7.3.1. 
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Figure 7.4. Schematic illustration of auto-catalytic microcapsules triggered by a flow of co-
activators.  

A typical system in this scenario is suspending microcapsules in viscous medium, such as 

glycerol. We assume the triggering solution (acid A0, salt S0) is introduced in only one individual 

microcapsule, as the “initiator microcapsule” Capsule 1 (Figure 7.4a). In this scenario, the 

release is two stage, stage 1 is Capsule 1 release ionic compound and self-catalyze. Since Dion-solvent 

≪ Dion-μc, for Capsule 1, the autocatalytic payload release is triggered by the salts surrounded the 

Capsule 1 (blue). This is the same as the bulk triggering scenario. Therefore, 

1 1( ) ( )capsule o capsule
salts

mLS t S R t
MW V

= +         7.9 

0
1

0 1

( )
1 ( )

( , ( ) )

f
capsule f

n

o capsule
salts

R R
R t Rt

mLF A S R t
MW V

−
= +

+
+

      7.10 

Here, 1capsuleV V= , m=mcapsule1, so 1( )capsuleR t  is determined by A0, S0, ρ , L, MWsalts, 

indicating a high density of microcapsule, a high loading efficiency of salts and a low molar 

mass ionic compound as encapsulant favors a faster payload release rate in Capsule 1, the 

initiation stage.  

Next is the second stage, “the propagation microcapsule”, Capsule 2 (Figure 7.4). For 

this stage, we need to consider the geometry of the microcapsules and spatial distance of the 
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microcapsules array. Assume that the microcapsules are monodisperse and their radius is r and 

the distance between the centers of any two microcapsules is equal to l  and the microcapsules 

are packed in a hexagonal pattern. The diffusion coefficient of the salts is Dion-solvent. Therefore the 

concentration of salts that trigged Capsule 2 is described by the Fick’s second law,  

2
1 0 1 0

2

( ( ) ) ( ( ) )
( 2 )

capsule capsule
ion solvent

R t S R t S
D

t l r−

∂ + ∂ +
=

∂ ∂ −
    7.11 

For Capsule 2,  

2
1 0

22

( ( ) )
( ) ( )

( 2 )
capsule

ion solvent capsule

R t S
S t D R t

l r−

∂ +
= +

∂ −
   7.12 

So, the payload release profiles for Capsules 2 is 

 0
2

2
0

0, 22

( )
1 ( )

( ( ) )( ( ))
( 2 )

f
capsule f

n

ion solvent capsule

R R
R t Rt

R t SF A D R t
l r−

−
= +

+
∂ + +
∂ −

    7.13 

Therefore, in this scenario, the distance between microcapsules are critical to achieve 

auto-acceleration microcapsules. The boundary condition is that the concentration of salts that 

diffused to Capsules 2 should be higher than the initial salts concentration S0 that triggered 

payload release of Capsule 1. 

2
1 0 1 0

2

( ( ) ) ( ( ) )
( 2 )

capsule capsule
ion solvent

R t S R t S
D

t l r−

∂ + ∂ +
=

∂ ∂ −
> S0 

Therefore, the maximum distance between two microcapsules can be determined. Based on these 

equations, similarly, the release profiles of Capsules 3, 4, 5, ….can also be deducted.  

7.3.3 Challenges in Preparing Autocatalytic Microcapsules  

One challenge for preparing the autocatalytic microcapsules is the limited ionic 

compound that can be encapsulated inside the cPPA microcapsules. This solvent evaporation 

method that based the oil-in-water single emulsion template favors a high boiling point, high 

viscosity payload such as jojoba oil. However, typically, these types of payloads has limited 
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solubility for salts that can reach desired concentration range. For example, to reach final 

concentration of 0.2 M LiCl with 20 mg microcapsules suspended in 1 mL methanol, a loading 

efficiency of 42 wt% of LiCl in microcapsules is required. Several attempts have been made to 

synthesize these microcapsules with LiCl dispersed in jojoba oil or glycerol, but these products 

have < 5wt% LiCl loaded and poor shell wall stability. Another attempt to improve the loading 

efficiency is to encapsulate quaternary ammonium compound with long alkane substitutes. In 

this case, the shell wall stability is still a concern as the ammonium compound resides in the shell 

wall during encapsulation. This could cause uncontrolled degradation of cPPA shell wall.16 As the 

ionic compound is soluble in aqueous carrier, encapsulating ionic compound with double 

emulsion method is more promising moving forward.  
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